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Abstract
This paper reviews the analysis of instabilities of rapidly rotating stellar models. Particular
emphasis is given here to those instabilities driven by dissipative processes (e.g. viscosity and
gravitational radiation emission) that are expected to play a significant role in influencing the
observable properties of rotating neutron stars.

1 Introduction

Observations are beginning to provide a wealth of information about rapidly rotating
stars in which relativistic effects play an important role. Measurements of the periods
of pulsars show that neutron stars can rotate with periods as short as 1.56ms (Backer '
et al. 1989). Measurements of the orbital elements of binary systems containing pulsars
now give accurate determinations of the masses of about ten neutron stars (Thorsett
et al. 1993). To understand the meaning of these (and other related) observations, the
appropriate theoretical tools must be developed for analyzing the structures and stabil-
ity of rapidly rotating relativistic stellar models. The techniques for constructing and
analyzing equilibrium models from a given equation of state are now well understood
(Friedman et al. 1986, Cook et al. 1994). Thus it is relatively easy to compare the ob-
servable macroscopic properties (e.g. masses, angular velocities, etc.) of these models with
the observations. The inverse problem of determining the poorly known equation of state
from the observable properties of relativistic stars is only beginning to be understood
however (Lindblom 1992).

In addition to a thorough understanding of the structures of equilibrium stellar models,
the stability of these models must also be understood in order to interpret the observa-
tions. Stability theory is required, for example, to determine the ranges of masses and
angular velocities present in stable (and thus physically possible) stars. This paper re-
views the theory of the stability of rapidly rotating stellar models in both the Newtonian
theory and general relativity. The emphasis here is on the effects of dissipation on the
stability of these stars. Instabilities driven by dissipative processes may well determine
the maximum rotation rates of neutron stars. The discussion here also attempts to point
out issues and questions on which further analysis is needed.
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Figure 1 Non-radial modes of rotating stars emit gravitational radiation. These modes are

driven unstable in stars rotating sufficiently rapidly that the pattern speed changes from counter-
rotating to co-rotating.

Our understanding of the stability of rotating stars was (until quite recently) based en-
tirely on the analysis of the uniform density rigidly rotating stellar models: the Maclaurin
spheroids. It has been known for over a century that rapidly rotating Maclaurin spheroids
are subject to an instability driven by viscosity (Thompson and Tait 1883). This insta-
bility causes a rapidly rotating Maclaurin spheroid to evolve into a rigidly rotating but
non-axisymmetric configuration such as a Jacobi ellipsoid (Roberts and Stewartson 1963,
Press and Teukolsky 1973). This type of instability is referred to as secular since it is
driven by dissipative forces in the star. The Maclaurin spheroids are also subject to a sec-
ond type of secular instability that is driven by gravitational radiation (Chandrasekhar
1970a,b). This instability causes the Maclaurin spheroid to evolve into a stationary but
non-axisymmetric configuration such as a Dedekind ellipsoid (Detweiler and Lindblom
1977). Maclaurin spheroids with very large angular momenta (about 1.7 times that re-
quired to trigger the viscous secular instability) are also subject to a dynamical instability
that is driven by purely hydrodynamical forces (Chandrasekhar 1969). Secular instabil-
ities grow on time scales proportional to the strength of the dissipative process. These
secular time scales are generally much longer than the characteristic hydrodynamic time
scale of the system. Dynamical instabilities grow on time scales that are comparable to
the hydrodynamic time scale. .

The gravitational radiation driven secular instability is of particular interest in the study
of neutron stars. Neutron stars have comparatively strong gravitational fields and many
of their modes couple strongly to gravitational radiation. Thus, the time scale on which
the gravitational radiation instability can act in these stars is relatively short. Further,
the gravitational radiation instability was shown by Friedman (1978) and Friedman and
Schutz (1978) to be generic: every rotating perfect fluid star has some mode that is
driven unstable by this mechanism. The physical nature of this instability mechanism
can be visualized as follows. Consider the perturbation of a slowly rotating neutron
star depicted in Fig. 1. The surface of the unperturbed star (viewed from above the
rotation axis) is depicted as a dashed line and the perturbed surface by a solid line in
this figure. The star rotates in a clockwise direction while the perturbation—rather
like a wave that propagates along the surface of the star—moves in the counter-clockwise
direction. This perturbation carries negative (relative to the direction of the unperturbed
star’s rotation) angular momentum, and emits negative angular momentum gravitational
radiation to infinity. As gravitational radiation removes energy and angular momentum
from the perturbed fluid, the fluid motion is damped away.
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Figure 2 Non-radial modes are strongly sheared and thus strongly damped by internal fluid
dissipation (e.g. viscosity).

Consider now the analogous mode in a very rapidly rotating neutron star. If the star
rotates rapidly enough the pattern speed of the mode as seen from infinity would change
from negative (counter-clockwise) to positive (clockwise). Under this circumstance the
mode would emit positive angular momentum gravitational radiation, since it would
be seen from infinity to propagate in the same direction as the star’s rotation. The
hydrodynamic waves themselves, however, carry negative angular momentum since they
still propagate (relative to the fluid in the star) in the direction opposite the star’s
rotation. Angular momentum can only be conserved for this perturbation by increasing
its amplitude in order to decrease its angular momentum. Thus any counter-rotating
mode becomes unstable to this mechanism when the star’s angular velocity reverses its
propagation direction as seen from infinity. Friedman and Schutz (1978) and Friedman
(1978) have shown that this happens to some mode in every rotating perfect fluid star.

Contrary to the argument above, however, all rotating neutron stars are not unstable.
Figure 2 illustrates why. It depicts the same perturbation as shown in Fig. 1 with the
velocities of selected fluid elements near the surface indicated. At any given instant of
time, those fluid elements on the leading edge of the perturbation must move radially
outward as the wave travels under them. Similarly those fluid elements on the trailing
edge of the wave move radially inward as the wave passes them by. This motion is highly
sheared and consequently internal fluid dissipation (e.g. viscosity) tends to damp out this
type of motion. Those modes which are unstable to gravitational radiation emission in
very slowly rotating stars are very high order multipole modes. (Only in these modes is
the pattern speed slow enough to be overcome by the star’s rotation.) These modes are
very strongly sheared and couple strongly to viscosity. In contrast, gravitational radiation
couples only weakly to the higher order multipole moments. Thus, the presence of any
viscosity will completely suppress the gravitational radiation instability in sufficiently
slowly rotating stars (Lindblom and Hiscock 1983).

The secular instabilities of primary interest here all involve non-axisymmetric pertur-
bations of rotating stars. While there exist interesting axisymmetric instabilities (e.g.
those that determine the maximum and minimum masses of neutron stars) these have
been relatively well understood for some time now. The interested reader is referred to
the literature for a discussion of the specialized analytical techniques developed to study
this type of instability [e.g. for a recent review see Lindblom (1996)]. The primary focus
here is on the study of the stability of non-axisymmetric perturbations of rapidly rotat-
ing stars—a subject that is far from completely understood even now.! During the past

1 Most of the analysis described here also applies to the particular case of axisymmetric perturbations,
but that special case is not emphasized.
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two decades new mathematical techniques have been developed that make it possible to
analyze the stability of such perturbations in rapidly rotating stellar models composed
of fluid with any realistic equation of state. These recent developments are described
and reviewed in this paper. Section 2 describes certain general criteria for evaluating the
stability of rotating stars with respect to general non-axisymmetric perturbations. These
criteria can be applied without any specific knowledge about the properties of the normal
modes of these stars. Section 3 presents the analytical techniques needed to analyze the
non-axisymmetric normal modes of rotating stars in the Newtonian theory and in general
relativity. For certain types of instabilities the only tools presently available for analyzing
instability are the normal modes. Section 4 completes the discussion of the normal modes
by showing how dissipation effects their evolution and stability.

2 General Stability Criteria

The stability of stars with respect to non-axisymmetric perturbations is an interesting
and difficult subject, and this has been the focus of most of the research effort in this
area in recent years. For the case of non-rotating stars, the situation turned out to be
remarkably simple. In this case the stability of the star is determined completely by the
quantity S(r) defined by

Sty =2 _ (92) dp 1)

where p, p, and s are the density, pressure, and specific entropy of the fluid in the star,
and r is the radial spherical coordinate. When S is positive the adiabatic exchange of
fluid masses at different “elevations” within the star requires the addition of energy to the
system (Schwarzschild 1958). When S is negative in some region, however, the energy of
the configuration can be lowered by re-arranging the fluid. In this region, consequently,
the stellar fluid is unstable to convection. It has been shown that the condition S > 0
everywhere within the star is the necessary and sufficient condition for the.stability of
the non-radial modes of Newtonian stellar models (Lebovitz 1965). In general relativity
theory it has also been shown that the non-radial outgoing modes are stable if § > 0
throughout the star (Detweiler and Ipser 1973). The proof that this is also a necessary
condition for stability in general relativity theory has not been completed to date.

Simple local stability conditions analogous to eq. (1) have not been found and probably
do not exist for rotating stars. A few global conditions have been found, however, and
these have been extremely helpful in understanding a number of interesting instabili-
ties in rotating stars. These global conditions determine the stability of rotating stars
from the properties of certain non-local functionals of the perturbations. Perhaps the
most important example of such a functional is the energy E. This functional can be
expressed as a Hermitian quadratic form in the perturbation fields integrated over the
volume of the star.? For perturbations that satisfy dissipation-free (e.g. no viscosity)
evolution equations the energy F is conserved for all perturbations. Thus E is not a
useful tool for diagnosing the presence of dynamical instabilities. When the effects of
dissipation are considered, however, the energy functional E evolves with time; and in

2 The explicit expression for this functional is long, complicated, and not particularly enlightening. The
interested reader is referred to the literature: Friedman and Schutz (1978) and Friedman (1978).
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some circumstances it decreases monotonically for all fluid perturbations. Under these
conditions E can be used to diagnose secular instabilities. If E is positive for all possi-
ble perturbations then the star is stable. The evolution equations in this case may only
change E by decreasing its value toward its lower bound, zero. This ensures that the
perturbation remains bounded (at least in an £? sense). If the energy E were negative
for some perturbation, however, then E would have no lower bound. The evolution equa-
tions would cause a perturbation with negative E to decrease without bound and the
star would be unstable. The emission of gravitational radiation by a stellar perturbation
causes the energy functional F to decrease. Thus F can be used to test the secular sta-
bility of rotating stars with respect to the emission of gravitational radiation. When the
functional E for rotating stars is examined in detail a remarkable fact emerges: every
rotating star is unstable to the emission of gravitational radiation (Friedman and Schutz
1978, Friedman 1978). That is, there exists some perturbation in every rotating star for
which F is negative. An example of such a perturbation is illustrated in Fig. 1 above.
When the star rotates sufficiently rapidly that the pattern speed of the wave becomes
co-rotating, then the energy functional E becomes negative. The analysis of Friedman
and Schutz (1978) and Friedman (1978) shows that a perturbation with negative energy
E can be found for any rotating star simply by choosing the wavelength of the pertur-
bation to be sufficiently small. Thus, every rotating star is unstable to the emission of
gravitational radiation.

A closely related functional E, which represents the energy of a perturbation as measured
in the co-rotating reference frame of the star, has also been useful for diagnosing insta-
bilities in rotating stars. For Newtonian stellar models this functional has an extremely
simple form:

B-3f (p duzdve + 22 5p*5<1>) dz, (2)

where p is the mass density, and §v?, ép, dp, and §® are the perturbations in the fluid
velocity, density, pressure, and gravitational potential respectively. An analogous func-
tional is also known in the general relativistic case (Lindblom and Hiscock 1983). E is
conserved for fluid perturbations that satisfy dissipation-free evolution equations, hence
it is not a useful diagnostic of dynamical instabilities. Internal fluid dissipation causes
E to decrease with time. Thus, E can be used to diagnose secular instabilities that are
driven by viscous forces in rotating stars. The study of this functional has revealed that
thermal conductivity and bulk viscosity can cause the same type of secular instability as
shear viscosity in rotating stars (Lindblom 1979).

The use of these energy functionals to diagnose instabilities is based on the expectation
that any negative energy perturbation will grow without bound and thus represent an
instability. While this is believed to be the case for each of the energy functionals discussed
above, the careful mathematical analysis needed to establish this has only been completed
to date for the Newtonian E in a star having viscosity and thermal conductivity but no
interaction with gravitational radiation. In this case it has been shown that Eis strictly
decreasing with time unless £ vanishes (Lindblom 1983). This shows that a necessary
condition for stability is that £ > 0 for all fluid perturbations.

The effects of gravitational radiation cause the functional E to decrease with time while
viscous effects cause E to decrease. Unfortunately, neither functional is decreasing for
every perturbation when both viscous and gravitational radiation effects are considered
simultaneously. Thus in general neither functional (nor any known combination of them)
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can be used to diagnose these secular instabilities except in special cases. For very slowly
rotating stars the waves with negative E that are subject to the gravitational radiation
driven secular instability have very short wavelengths. These waves couple only weakly to
gravitational radiation but very strongly to viscosity. Under these conditions it has been
shown that the functional E is a decreasing function of time while E is not. Thus, £ may
be used to evaluate the secular stability of these perturbations while E may not. This
analysis reveals that any amount of viscosity suppresses the gravitational radiation driven
secular instability in sufficiently slowly rotating stars (Lindblom and Hiscock 1983).

3 Normal Modes

The analysis of the energy functional stability criteria discussed in Sect. 2 has revealed
that gravitational radiation tends to make all rotating stars unstable, while viscous forces
tend to suppress this instability. Unfortunately there is no known functional that always
decreases with time when all of the relevant dissipative forces are present together. Thus
no generally applicable test for the stability of rotating stars is presently available at
all. The study of the stability of rotating stars has been directed therefore toward the
study of the normal modes of rotating stars: solutions of the perturbation equations
having time dependence e*“*. This analysis provides a sufficient test for instability: the
instability of one mode proves that the star is unstable.® Even the analysis of the normal
modes of rotating stars turns out to be a rather difficult and interesting subject however.
Considerable progress has been made in transforming this problem into a more tractable
form in recent years. The analysis that leads to this simplification is simple and elegant,
and so it is presented here in some detail for the simplest case of Newtonian stellar
models.

In real stars the effects of dissipation are rather weak in that dissipative effects occur on
time scales that are much longer than the dynamical time scale. Under these conditions
it is possible to ignore the effects of dissipation as a first approximation. In this section
the discussion is confined therefore to the simpler problem of the dissipation-free modes
of rotating stars. The techniques for evaluating the effects of dissipation are discussed in
Sect. 4.

The equations that govern the perturbations of a dissipation-free self-gravitating New-
tonian fluid are given by

8:0p + v*Vadp + V,(pdv®) =0, (3)
a b a b a a 6p
0:6v° + v°Vpdv® + §0° Vv = -V i %), 4)
and
VeV o0® = —4nGop, (5)

3 Lacking a proof of the completeness of the normal modes, however, stability of all normal modes does
not prove that the star is stable.
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where any quantity preceded by ¢ represents the (Eulerian) perturbation of that quantity,
while those not preceded by § represent equilibrium values. In these equations p, p, ®, and
v° represent the mass density, pressure, gravitational potential, and the fluid velocity.
This system of equations is completed by specifying the thermodynamic relationship
between the perturbed pressure and density. For simplicity here the equation of state is
taken to be barotropic so that

_dp

The unperturbed equilibrium stellar model is assumed here to be rigidly rotating, i.e.
v® = Qy® where Q is the (constant) angular velocity and ¢ is the vector field representing
rotations about the z* axis.

The equations (3)—(6) that describe the perturbations of rotating stars constitute a com-
plicated sixth-order system for the five independent components of the perturbation
fields (8p, 6v®,8%). The solutions to these equations are known analytically only for the
perturbations of uniform density stars (Bryan 1889) and have only been directly solved
numerically for more realistic models quite recently (Yoshida and Eriguchi 1995). Rather
than attempt to solve these equations directly, two different approaches have been de-
vised to reduce the complexity of the equations by analytical means. The first approach
introduces a potential £2, the Lagrangian displacement, for the velocity perturbation:

6v% = 8,£° + vPVpE® — £PV°. (7)

Using this potential the perturbed continuity equation (3) can be solved analytically:
8p = —V4(p€?). This substitution reduces the number of independent perturbation fields
to four, (£2,6%), and reduces the equations that must be solved to the system (4)-(6).
One nice feature of this representation of the equations is the existence of a Lagrangian
from which the equations in this form may be derived (Lynden-Bell and Ostriker 1967).
Unfortunately this representation also increases the order of the system of differential
equations from sixth to eighth. For the purposes of actually solving the equations, this
transformation does not offer much simplification. The equations have only been solved
in this form (to my knowledge) numerically for the special case of axisymmetric normal
modes (Clement 1981).

A second analytical transformation has been found that does significantly simplify the
perturbation equations (Ipser and Managan 1985). This transformation is limited to per-
turbations which are normal modes with angular dependence ™%, where ¢ is measured
about the rotation axis of the star. For this case eq. (4) reduces to

)
[i(w +mQ)dap + 2vaa] v = -V, (71) - 5<I>) , (8)
where J,; represents the three-dimensional Euclidean metric (i.e., the identity matrix in

Cartesian coordinates). This equation is algebraic in the velocity perturbation Jv* and
can be solved analytically:

Sv* = iQ®PV,6U, (9)
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Figure 3 The eigenfunction éU for the [ = m = 3 mode of a rapidly rotating Newtonian stellar
model. Each curve represents the radial dependence of the eigenfunction along one angular spoke.

where 0U is defined as

U = % —6® (10)
and Q% is the tensor
1 402
ab __ ab __ a b _ g:7a,b
Q¥ = (o T ma)E — & [(w—}-mﬂ)é praraper o 2iV%y ] . (11)

Using equation (9) to replace dv* in the remaining perturbation equations reduces the
system to a pair of second-order equations for the scalar potentials §U and §¥:

Ve (pQ™VbdU) = —(w + mQ)pZ—Z(JU +6%), (12)

VoV,6% = —47er%§(5U +6%). (13)

This transformation has reduced the equations for the modes of rotating stars to this
relatively simple fourth-order system for the two scalar potentials (6U, §&). These equa-
tions constitute a reasonably standard eigenvalue problem with eigenvalue w. The tensor
Q°® in eq. (12) is positive definite if (w + m)? > 402, so the equation is elliptic for
sufficiently slowly rotating stars. These equations can be solved for the eigenfunctions
60U and 6% and the eigenvalue w using fairly standard numerical techniques (Ipser and
Lindblom 1989, 1990). Figure 3 illustrates a typical eigenfunction 6U for an m = 3 mode
of a rapidly rotating Newtonian stellar model. Figure 4 illustrates the angular velocity
dependence of the eigenvalue w for two different sets of modes (Ipser and Lindblom 1990,
Skinner and Lindblom 1996). The frequencies in Fig. 4 are displayed in terms of the
dimensionless function a,,(£2),
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Figure 4 The angular velocity dependence of the frequencies of the modes of rapidly rotating
Newtonian stellar models. The graph on the left gives the frequencies of the | = m modes for
n = 1 polytropic stellar models. The graph on the right gives the frequencies of the | = —m = 2
modes for stellar models constructed from thirteen realistic equations of state.

w(2) + mQ
w()

which is normalized so that a,,(0) = 1 for non-rotating stars.

Once the eigenfunctions §U and §® are determined, then every other physical property
of the stellar oscillation may be determined from them. Equation (9) gives the velocity
perturbation dv?® in terms of §U, while the density perturbation ép is given by

am(@) = (14)

dp
= p— i 3 1
dp pdp(5U+5 ), (15)
and the Lagrangian displacement £ by

¢o = Q**Vy U ‘
w + mS}

The particular version of the equations presented here, egs. (12)—(13), is for the special
case of barotropic perturbations of rigidly rotating stellar models. This approach can also
be used to reduce the equations for the general adiabatic perturbations of differentially
rotating stellar models without any restriction (e.g. barotropic) on the equation of state
(Ipser and Lindblom 1991a). The equations in the general case are somewhat more com-
plicated but remain, like eqs. (12)—(13), a fourth-order system for the two functions §U
and 6®.

The problem of evaluating the modes of rapidly rotating stars has been rendered con-
siderably simpler by the transformation that leads to eqs. (12)~(13). Nevertheless, there
are some interesting questions that remain unresolved. The tensor Q°® that appears in
eq. (12) is positive definite whenever (w + mQ)? > 4Q2. In this case eq. (12) is ellip-
tic and can be solved using standard numerical techniques (Ipser and Lindblom 1990).
This condition is always satisfied in non-rotating stars; however, in more rapidly rotating
models it may be violated. When this condition is violated eq. (12) becomes hyperbolic
yet the physical solutions must still satisfy Dirchlet boundary conditions. Little appears
to be known about hyperbolic eigenvalue problems of this kind. Numerical techniques

(16)
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Figure 5 The post-Newtonian values for the frequencies of the modes of non-rotating stars
(solid lines) are compared with the exact general relativistic values (dashed lines) for stars with

different values of GM/c*R.

based on a variational principle have been devised which give solutions to the equations
even in this case however (Skinner and Lindblom 1996, Managan 1986). The change in
signature of this equation does not appear to be connected to the onset of a physical
instability. The physical significance of this change and the meaning of the characteristic
surfaces that appear in eq. (12) are presently unknown.

In neutron stars the gravitational fields are rather strong and general relativistic effects
significantly influence the structures and the dynamics. Thus it is of considerable in-
terest to extend the analysis of the modes of rotating stars into the domain of general
relativity theory. Unfortunately, this problem is extremely difficult. The chief obstacle is
the coupling of these modes to gravitational radiation. In general relativity theory a star
may oscillate at any frequency at all! If gravitational radiation of a given frequency were
directed toward a star, then the star would oscillate at that frequency. The definition
of normal modes for general relativistic stars must be refined therefore to include as an
additional boundary condition that there be no incoming gravitational radiation. These
solutions are referred to as the outgoing modes. This boundary condition is difficult to en-
force because it must be done far away from the star in the wave zone of the gravitational
radiation. This is reasonably easy to deal with in the case of non-rotating stars where the
spacetime outside the unperturbed star is simply the Schwarzschild geometry (Thorne
1969, Lindblom and Detweiler 1983, Detweiler and Lindblom 1985). In rotating stars,
however, the spacetimes outside the stars are only known numerically and only on rather
small numerical grids. A practical method for imposing the outgoing radiation boundary
condition on such spacetimes has not yet been devised. Fortunately there is a middle
ground. The post-Newtonian approximation to general relativity provides a reasonably
accurate description of the spacetimes associated with neutron stars. At the lowest or-
ders the dynamics in the post-Newtonian approximation does not couple to gravitational
radiation. Thus the problems associated with the outgoing radiation boundary condition
does not arise in a post-Newtonian description of the modes of rotating stars.
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Figure 6 The angular velocity dependence of the frequencies of the modes of rotating stars.
The post-Newtonian values for the frequencies (solid lines) are compared with Newtonian values

(dashed lines) for stars with different angular velocities.

It is reasonably straightforward to extend the Newtonian analysis of the modes of rotat-
ing stars to the post-Newtonian theory (Cutler 1991, Cutler and Lindblom 1992). The
oscillations of post-Newtonian stars are determined completely by the post-Newtonian
corrections to the mode functions §U and §®. These post-Newtonian eigenfunctions are
determined by solving a pair of second-order equations having the same differential struc-
tures as eqgs. (12)—(13) plus inhomogeneous terms that depend on §U and §® (and on the
Newtonian and post-Newtonian structures of the equilibrium star). The post-Newtonian
corrections to the frequency of a mode can be determined from the integrability condition
for these pulsation equations, without solving the post-Newtonian pulsation equations at
alll There exists an explicit formula for the post-Newtonian frequency that depends on
6U and 6% as well as the Newtonian and post-Newtonian structures of the star (Cutler
and Lindblom 1992). As is typical of post-Newtonian analyses, this formula is extremely
complicated (and unenlightening). However, it is straightforward to evaluate the needed
integrals numerically and so determine the frequencies of the modes in this approxima-
tion. Figure 5 compares the frequencies of several modes of non-rotating stars computed
in this post-Newtonian approximation with the exact general relativistic values. The
post-Newtonian approximation for the frequencies of 1.4Mg neutron stars agree with
the exact general relativistic frequencies to within about 4%. In comparison, the New-
tonian frequencies agree with the exact values only to within about 12% for these same
neutron stars. Figure 6 illustrates the angular velocity dependencies of the frequencies of
the modes of rotating stars in both the Newtonian and post-Newtonian approximations
for stars with GM/c?R = 0.2. The post-Newtonian frequencies for these modes differ
from the Newtonian values by about 10%.

The analysis of the modes of rotating stars in full general relativity theory is far less com-
plete. But, the general equations for these modes have been derived and a certain amount
of analysis has been done with them. The general relativistic version of the Lagrangian
displacement has been used to transform the equations into a simpler and more canonical
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form (Friedman and Schutz 1975). These equations have been very useful for analyzing
the effects of general relativity on the secular instabilities of rotating stars (Friedman
1978, Lindblom and Hiscock 1983). These equations have never been solved (even nu-
merically), however, except in the case of non-rotating stars (Thorne 1969, Lindblom
and Detweiler 1983). The general relativistic version of the transformation that leads to
eq. (9) has also been found. For modes with angular dependence ™% the perturbed con-
servation laws, 6(V,T*®) = 0, can be solved analytically for the perturbed four velocity
du® in terms of a scalar potential U, defined by

op
oU = —— 17
i (1)
and the perturbed metric tensor dgqp (Ipser and Lindblom 1992). The resulting equation
for 6u®,

6u® = iQ™V,8U + 6F%(8g.4), (18)

is the relativistic analog of eq. (9). The vector §F® that appears in eq. (18) depends
on the metric perturbation dg,, and the functions that describe the unperturbed star.
The tensor Q*® depends on the geometry of the unperturbed star and the frequency of
the mode w. This Q* is simply the relativistic generalization of eq. (11). There is also
a general relativistic analog of eq. (12) which is derived by replacing the four-velocity
perturbations in the energy conservation law using eq. (18). The resulting equation has
the form

Val(p + p)Q®V38U] — Q**V,,pVU + TSU = §F(6gap) (19)

where ¥ depends on the frequency of the mode and the unperturbed structure of the
star, and JF depends on §g,5. This equation is particularly useful when the dynamics
of a mode is driven primarily by hydrodynamic rather than gravitational forces. Such is
the case for the higher-order modes of stars (Lindblom and Splinter 1990}, as well as the
modes of objects like accretion disks where self gravitational effects are not important.
Under these circumstances the metric perturbations may be ignored and the complete
dynamics of the general relativistic mode is determined by eq. (19) with §F = 0. This
equation is no harder to solve in the relativistic case than it is for Newtonian stellar
models. The equation in this form has been used to determine the modes of relativistic
accretion disks (Ipser 1996).

4 Dissipative Effects

Dissipation plays an important role in the stability of rotating stars. The general argu-
ments outlined in Sect. 2 show that gravitational radiation tends to make all rotating
stars unstable (Friedman and Schutz 1978, Friedman 1978) while internal fluid dissi-
pation processes (e.g. viscosity) tend to suppress this instability and make sufficiently
slowly rotating stars stable (Lindblom and Hiscock 1983, Lindblom and Detweiler 1977).
In this section the techniques are described which have been used to evaluate the effects
of dissipation on the stability of the normal modes of rotating stars. The principal tool


joann
Rectangle

joann
Rectangle


Instabilities of Rotating Neutron Stars 167

that is used in this analysis is the equation that determines the evolution of the energy
of the perturbation due to dissipative effects. For example, the evolution of £ defined in
eq. (2) can be evaluated using the equations for a dissipative Newtonian fluid including
the effects of gravitational radiation reaction forces (Ipser and Lindblom 1991b):

dE _ abg * *| 43
= = —/[21760‘ doyy, + (oodo ]d z

—(w+mQ) ) Nw 6Dy, 6D;,,. (20)
I

The thermodynamic functions 7 and ¢ that appear on the right side of eq. (20) represent
the viscosities of the fluid. The viscous forces in a fluid are driven by the shear do,; and
the expansion do of the perturbation:

00 qp = %(Vc.&vb + Vv, — %&,Nc&v‘), (21)

b0 = V60" (22)

The gravitational radiation reaction force couples to the evolution of the fluid via the
mass multipole moments of the perturbation §.Dj,y,,

6Dy, = /JprlYl:ndsm, (23)
with coupling constant Nj:

4G (+1)(I+2)
A1 1)[(21 + 12

Now consider the normal modes of a rotating star that is subject to dissipative effects.
Assume that the time dependence of the mode is e**~*/7  where w is the real part
of the frequency and 1/7 is the imaginary part. A mode is stable if 1/7 is positive
and unstable if negative. Thus the problem of evaluating the stability of a mode is
reduced to determining the sign of the imaginary part of its frequency. Equation (20)
provides a means of evaluating this quantity. The functional E is real and quadratic in
the perturbations, so its time dependence is e~2¢/7, It follows that the imaginary part of
the frequency is given by

N (24)

1 1 dE

T 9E dt’
The right side of eq. (25) is, using eqgs. (2) and (20), a functional of the eigenfunction of
the mode. This is an exact identity which is not however particularly useful. If the exact
dissipative eigenfunctions of the star were known, then the frequency of the mode could
easily be evaluated in a number of ways. Equation (25) is nevertheless an extremely
useful tool for evaluating 1/7 approximately. Dissipation is a relatively weak force in
stars: gravitational radiation and internal fluid dissipative processes effect the evolution
of the fluid in a star on time scales that are much longer than the dynamical time

(25)
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scale. Thus the presence of dissipation has a relatively small effect on the evolution of
the fluid in a star, and so the exact eigenfunctions of a mode (including the effects of
dissipation) differ only slightly from the more easily evaluated eigenfunctions based on
dissipation-free hydrodynamics. Thus, the functional on the right hand side of eq. (25)
has essentially the same value whether evaluated using the exact or the dissipation-free
eigenfunctions. This functional is straightforward to evaluate approximately, therefore,
using the dissipation-free eigenfunctions as determined in Sect. 3. This approximation
is expected to give values for the imaginary part of the frequency that have fractional
errors of order Tw, the ratio of the dissipative to the dynamical time scales. Studies have
shown that this ratio is extremely small in neutron stars (Cutler et al. 1990).

The imaginary part of the frequency can be evaluated numerically using eq. (25). All
that is needed is the dissipation-free eigenfunction of the mode, and the thermodynamic
functions 7 and ¢ that describe the viscous forces in the stellar fluid. The viscosity coef-
ficients have been evaluated for neutron star matter (Sawyer 1989, Cutler and Lindblom
1987), and these quantities are given approximately by

¢ =6.0x10% (5)21’6, (26)

n = 6.0 x 10° (%)2. (27)

Note that these viscosities depend on the thermodynamic temperature 7' of the star. The
bulk viscosity ¢ is proportional to T® and becomes very large when the temperature of
the star is high. The shear viscosity 7 is proportional to 72 so it becomes large when the
temperature is low. These two types of viscosity are comparable in neutron stars when
T =~ 10°K. Viscosity tends to suppress the gravitational radiation instability in rotating
stars. Hence it is clear that these viscous forces will be very effective in suppressing this
instability in very hot and very cool neutron stars.

To determine which rotating stars are unstable, the imaginary parts of the frequencies of
their modes must be evaluated using eq. (25). The modes with the lowest values of [ and
m couple most strongly to gravitational radiation, while the viscous coupling increases as
! and m increase. The viscous forces tend to suppress the gravitational radiation driven
secular instability. Thus, the only modes that are likely to be unstable in these stars are
those with relatively small values of [ and m. In practice the viscous forces are always
found to suppress the gravitational instability in modes with m > 6. In sufficiently slowly
rotating stars all of the modes (that have been examined) are stable. It is useful therefore
to define the critical angular velocity (2, where some mode first becomes unstable, that
is where

_ 1
T(chit) )

Figure 7 illustrates the critical angular velocities for a range of neutron star temperatures
(Lindblom 1995). The critical angular velocity is displayed in units of Q,;,,x the maximum
angular velocity for which there exists an equilibrium stellar model. Figure 7 reveals that
in very cool neutron stars, T < 107K, the critical angular velocity is identical t0 Qmax.
Thus, the viscous forces completely suppress the gravitational radiation instability in
these stars. Similarly in hot neutron stars, T > 10'°K, the bulk viscosity suppresses the

0 (28)
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Figure 7 The temperature dependence of the critical angular velocities of neutron stars. The
critical angular velocities ;¢ are expressed in terms of Qmax the maximum angular velocity
for which there exists an equilibrium neutron star model.

instability. Only neutron stars with temperatures in the range 107 < T < 10'°K are
subject to the gravitational radiation driven secular instability. Further, this instability
only occurs in the most rapidly rotating stars. Even for the most extreme case, T' =
2 x 10°K, only those stars with angular velocities greater than about 0.96(m.x may be
subject to the gravitational radiation driven secular instability. Figure 7 illustrates that
there is only a moderate dependence of Qc; on the mass of the star. (More massive stars
couple more strongly to gravitational radiation and hence have somewhat lower Qcyis.)

The discussion of the effects of dissipation up to this point has been based on Newtonian
hydrodynamics, with the effects of gravitational radiation added as a small correction.
Some work has been done, however, to estimate the effects of general relativistic dynamics
on these results. Figure 8 illustrates the critical angular velocities based on a calculation

1 .00 ~ T \“\t'\":" U N '”}’/’7 y
?é } :\\\ /:jl
éc_: 0.95f1.4 M, N -
oy
T 090 20M :
-

0.85 PR '

106 107 108 109 1010 1011
Temperature (K)

Figure 8 The temperature dependence of the critical angular velocities of neutron stars using
Newtonian (dashed curves) and post-Newtonian (solid curves) gravitation and hydrodynamics.
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that uses the post-Newtonian frequencies for the modes as described in Sect. 3 (Lindblom
1995). This calculation shows that post-Newtonian effects tend to enhance the gravita-
tional radiation instability in these stars. This increases the range of temperatures where
this instability may set in, and lowers the critical angular velocities to about 0.91,.,
in the most extreme case for 1.4Mg stars. The effects of post-Newtonian hydrodynamics
on these stability results are quite striking. It illustrates the need for us to press on to a
more accurate fully relativistic analysis of this problem.

The earliest studies of the secular instabilities of rotating stars were concerned with
the viscosity driven instability (Thompson and Tait 1883), rather than the gravitational
radiation driven instability discussed extensively here. The viscosity driven instability
occurs in a different set of modes, but the formalism described here can easily be turned
to study it. Such studies reveal that the viscosity driven secular instability probably does
not play any role in neutron stars at all. The principle reason is that the viscosity driven
secular instability only occurs in stars with very stiff equations of state. In stars with
polytropic equations of state, p = xp7, the adiabatic index v must exceed 2.237 for a
viscosity driven secular instability to exist at all (James 1964). The equation of state
of real neutron star matter appears to be not quite stiff enough. Analysis has shown
that the viscosity driven instability does not occur in any of thirteen realistic equations
of state for 1.4M, neutron star models (Skinner and Lindblom 1996, Bonazzola et al.
1996). These realistic equations of state become stiffer at higher densities, however. In a
few of the stiffest equations of state, it has been found that the most massive neutron star
models are subject to this instability in the most rapidly rotating models. It remains to
be seen whether the actual equation of state in neutron stars is stiff enough to allow this
viscosity driven instability, and whether this instability plays any role in the astrophysics
of real neutron stars.

Acknowledgments: I thank James Ipser for several helpful discussions. This research was
supported by NSF grant PHY-9796079 and NASA grant NAG5-4093.
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