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1 SUMMARY

Dieter Brill has made important contributions to the study of the positive mass
theorem in general relativity theory (Brill 1959) and to the analysis of the conforma)
properties of asymptotically flat space-times (Cantor & Brill 1981). It is a pleasure
to honor him on this occasion by applying these analytical tools to the study of static
stellar models. We use the positive mass theorem and the conformal properties of
these spacetimes to deduce an interesting constraint on the allowed values of the
adiabatic index in the static stellar models of general relativity theory.

It is well known that non-singular polytropic stellar models in the Newtonian theory
can exist only if the adiabatic index of the fluid is sufficiently large, v > 6/5 (or equiv-
alently if the polytropic index is sufficiently small, n < 5; see e.g., Chandrasekhar
1939). In this paper we derive two limits on the allowed values of the adiabatic index
in the stellar models of general relativity theory. Our limits apply to static stellar
models that have a finite radius and an equation of state which satisfies certain fairly
weak smoothness assumptions. Our first bound on the adiabatic index guarantees
that

d
%d—z > 1, (1)

g

at some points in every neighborhood of the surface of such stars. This limit, although
weaker than the traditional Newtonian limit, is simply a consequence of the regularity
of the spacetime at the surface of these stars. This result makes no assumption about
the high-density portion of the equation of state. Thus it applies to (essentially) every
static stellar model in general relativity theory. Our second bound on the adiabatic
index guarantees that

v > §(1+—§)2. (2)
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in some portion of every static stellar model with finite radius. This result is the direct
general-relativistic analogue of the Newtonian limit o > 6/5 for spherical polytropic
stars with finite radius. Our result is considerably more general, however, because we
do not assume that the equation of state is polytropic (i.e., of the form p = kp'*/»
where k and n are constants). Our result is also more general because it does not
assume that the stellar model has spherical symmetry. Thus, our result compliments
the work on the necessity of spherical symmetry in static general-relativistic stellar
models by Masood-ul-Alam (1988) and by Beig & Simon (1991, 1992). Those proofs
of spherical symmetry specifically exclude any equation of state which violates equa-
tion (2) at any point within the star. Thus, our second bound eliminates a large class
of potential counterexamples to the spherical-symmetry conjecture. In particular,
our result shows that no stellar model whose equation of state violates equation (2)
everywhere can exist in general relativity theory.

2 THE SURFACE LIMIT

A stellar model in general relativity theory is an asymptotically-flat spacetime that
satisfies Einstein’s equation with a perfect-fluid source. A static (i.e., time inde-
pendent and non-rotating) stellar model has a time-translation symmetry (by as-
sumption) whose trajectories are hypersurface orthogonal. Thus, coordinates may be
chosen in which the spacetime metric tensor has the representation

ds? = =V?%dt* 4 g, dzdx®, (3)

where V' and the three-dimensional spatial metric g,, are independent of . The topol-
ogy of the constant-t hypersurfaces must be R* (Lindblom & Brill 1980, Masood-ul-
Alam 1987a). Einstein’s equation for static stellar models reduces in this representa-
tion to the pair of equations

DD,V =47V (p + 3p), (4)

Ry =V™'D,D,V +47(p — p)gas- (5)

The density and pressure of the fluid are denoted p and p; and the density is assumed
to be a given function of the pressure, p = p(p) (the equation of state), which is
non-negative and non-decreasing. The spatial covariant derivative compatible with

gas 1s denoted D, and its Ricci curvature is denoted R,,. The Bianchi identity for
the three-dimensional spatial geometry may be reduced to the form

Du.p = =V~ (p+p)D,V, (6)

with the use of equations (4)—(5).
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The surface of a stellar model is the boundary between the interior fluid region where
the pressure is positive, and the exterior region where the vacuum Einstein equation
is satisfied. We limit our consideration here to stars whose surfaces occur at a finite
radius (i.e., to stars which have non-trivial exterior vacuum regions). The pressure
must vanish on the surface of the star in order to insure that the spacetime is non-
singular there. We first prove that the ratio p/p must also vanish on this surface:
Consider a smooth curve z%(A) that lies inside the star for Ay < A < As, while the
point z%(As) lies on the surface. Let n® = dx®/dA denote the tangent to this curve.
We evaluate the integral of (p + p)~'n®D,p along this curve using equation (6):

(7)

0 p+p )\o V

-

/p(x) dp _ /A n*Dypd) An*D,VdX\ Io [V(,\o)]
p00) P(P)+D  Ia

- vy

In the limit A — A3 the expression on the right is well behaved, thus, the integral on
the left must also be well behaved. Consequently the function,

_ [P__dp
h(p) =/0 POFYS (8)

is well defined for all p within any static stellar model in general relativity theory.
The equation of state, p(p), is a non-decreasing function; thus, we may estimate h(p)
as follows,

P__dp P__dp p
D= 5+ > pB)+h O\ b ©
Since lim ,_o+ h(p) = 0, we conclude from equation (9) that

0 = lim "” — 1> lim P (10)
p—o+t p—o+t P

Thus, the limit of p/p must vanish. So, we have established the desired result:

Lemma. Consider a static stellar model in general relativity theory whose surface
occurs at a finite radius. Assume that the equation of state p = p(p) is a positive
and non-decreasing function in some open neighborhood of the surface of the star:
i.e., for pressures 0 < p < €. Then lim ,_o+(p/p) = 0.

We now turn to the derivation of our first limit on the adiabatic index,

_pP+pdp
():T:i;' (11)
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We assume that the equation of state, p(p), is a positive and non-decreasing C*
function in the open interval, 0 < p < € (for some ¢ > 0). Thus, 1/¥(p) is a
continuous and non-negative function there. Let I'(¢) be the least upper bound of
¥(p) for 0 < p < €: i.e., let T'(€) = sup o, ¥(p). If ['(€) is not finite, then there exist
points in the open interval 0 < p < € where v > 1, trivially. We turn our attention,
therefore, to the case where I'(¢) is finite. From the definition of the adiabatic index,
we obtain the following inequality

_ptpdp . pdp (12)

I'(e) >y > .
© p dp ~ pdp

This inequality may be integrated to obtain an upper bound for the density function
on the open interval 0 < p < €

p 1/T(e)
< - . 13
p<o9(2) (13)
This upper bound and the Lemma may then be used to obtain the following condition
on I'(e),

—1/F(e)
im 2> 1im —(2)7. (14)
p—0t p T poot p(e€) Ve

The limit on the right vanishes only if I'(¢) > 1. Since lim, o+(p/p) = 0 as a
consequence of the Lemma, it follows that I'(¢) > 1. Thus there exist points in the
open interval 0 < p < € where v > 1. The constant € may be chosen to be arbitrarily
small, so there must exist points in every open neighborhood of the surface of the
star where 4 > 1. In summary then our first limit on the adiabatic index is:

Theorem 1. Consider a static stellar model in general relativity theory whose surface
occurs at a finite radius. Assume that the equation of state p = p(p) is a positive
and non-decreasing C! function of the pressure in some neighborhood of the surface
of the star, 0 < p < €. Then the adiabatic index y(p) > 1 at some point in every
open neighborhood of the surface of the star.

3 THE MAXIMUM LIMIT

Our method for deriving a limit on the maximum value of the adiabatic index is
very similar to the technique developed by Masood-ul-Alam (1987b) for proving the
necessity of spherical symmetry in certain static stellar models. We construct a
particular conformal factor which is used to transform the spatial metric g,,. This
conformal factor scales the mass associated with the spatial geometry to zero while
leaving the transformed scalar curvature non-negative—unless the adiabatic index of
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the fluid is sufficiently large. For stellar models composed of fluid with small adiabatic
index, then, the positive mass theorem implies that the transformed geometry is flat.
We show, however, that this is inconsistent with our assumption that the stellar model
has a finite radius. Thus, we conclude that the maximum value of the adiabatic index
must exceed a certain lower bound in every static stellar model with a finite radius.

The Bianchi identity, equation (6), for static fluid spacetimes determines a functional
relationship between the fluid variables, p and p, and the potential V. In particular,
with the aid of equations (7)- ( ), the density and pressure may be expressed as
explicit functions of V: p(V') = h*[log(Vs/V)], and p(V) = p[p(V)], where Vs is the
value of the potential on the surface of the star. We use these functions to define a
conformal factor ¢ in the interior region of the star (where 0 < V' < Vj):

Vs % p(V)
P(V) = (1 +Vs) exp{ 1+ Vs /V Vip(V) + 3p(V)]} 1o

If the interior of the star is composed of more than one connected region, then (V)
is defined in each region by equation (15) with the constant Vs taken to be the surface
value of V for that region. In the exterior of the star (e.g., where Vs <V < 1) we
define the conformal factor to be,

V) = 514 V). (16)

It is easy to see that this conformal factor is continuous across each component of
the surface of the star by setting V = Vs in equations (15) and (16). It is also
straightforward to verify that di¢/dV is continuous at the surface of the star. The
derivative of % in the interior of the star satisfies the equation

dy _ Vs
dV V(1 +Vs)(1+3p/p)

(17)

Using the result of the Lemma, lim _,(p/p) = 0, it is easy to take the limit of the
right side of equation (17) to verify that dy/dV = 1/2 at the surface of the star. The
second derivative d*1/dV? vanishes in the exterior of the star, while it is given by
the expression

d* _ Vs [2 +3Vs §<1 4 3)2] (18)
av:  V2(1+Vs)(1+38p/p)?l1+Vs v p/ I’

in the interior of the star. The function d?y /dV? is continuous and has a finite upper
bound for V' < Vs whenever 1/7 is bounded. Thus, v is C'? (i.e, its first derivative
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satisfies a Lipshitz condition) even across the surface of the star as long as 1 /v is
bounded. Note that 1/+(p) is finite for any p > 0 as a consequence of our assumption
that p(p) is a C* function. Thus, our assumption that 1/~ is bounded is a restriction
on the behavior of the equation of state only near p = 0. The boundedness of 1 /7
follows automatically for equations of state which are smooth enough that the limit
of 7(p) is well defined (in the sense that lim infy = lim sup v) as p — 0*. In this
case Theorem 1 implies that lim inf~ > 1, and so 1/ is bounded as p — 0+.

We use the function 9 given in equations (15) and (16) to define a conformally
transformed spatial metric tensor g,:

gab = ¢4gab- (19)

This transformed metric has two important properties: a) the mass associated with
Gas is zero; and b) the scalar curvature associated with g, is non-negative unless the
adiabatic index is too large. The first of these properties can be deduced by examining
the asymptotic boundary conditions on the stellar model. In general relativity theory
a stellar model is a non-singular asymptotically-flat solution to equations (4)-(5). The
appropriate asymptotic forms for V' and g, are therefore,

V=1- AT/I— +0(r™?), (20)

2M
Gab = (1 + T) bap + O(172), (21)

where the constant M is the mass of the star, ., is the flat Euclidean metric, and
r is a spherical radial coordinate associated with the metric é,. These asymptotic
forms imply that the conformal factor defined in equation (16) has the asymptotic
form

p=1- g/f—r + O(r™?). (22)

It follows, then, that the asymptotic form of the transformed metric is
gab = 6ab + O(T_Z)' (23)
Thus, the mass associated with g,, is zero. The second important property of ga, the

sign of its §cala,r curvature, is easily deduced. The general expression for the scalar
curvature R associated with the metric gg; is

R = 8y~*(2rpp — D°D.). (24)
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The term D®D,1 can be evaluated by using equations (4) and (15)—(18). The result
can be expressed in the form

2
7 V?(p + 3p)? 7 1+Vs] (29)

in the interior of each connected component of the star, while R vanishes in the
exterior of the star. The potential on the surface of the star is strictly less than
one, Vs < 1, in any stellar model that has a finite radius. Thus, the conformally
transformed scalar curvature is non-negative as long as the condition,

_ 802 Vs D*VD,V 2 243V
Y*(1+ Vs)R = 16mp(1 — Vi) + P s [3( 2) - >

P)2 1+ Vs

< £y 1 7S
1<3(0+0) sy

; (26)

is satisfied by the adiabatic index.

The positive mass theorem (Schoen & Yau 1979, Parker & Taubes 1982) implies
that a C'' asymptotically-flat Riemannian three-metric is flat if its scalar curvature
is non-negative and its mass is zero. The needed smoothness of g,, follows from
the smoothness of 3 established above. Thus, the spatial metric g,, is flat if the
adiabatic index satisfies equation (26). But, if g,, is flat, then the scalar curvature R
vanishes. This implies, from equation (25), that V5 = 1 and that equality must hold
in equation (26). But V5 < 1 in any star with a finite radius, and so we conclude that
R must be negative somewhere in such stars. Thus equation (26) must be violated.
Consequently, at some point in every static star with a finite radius the adiabatic
index must satisfy

7>3(1+3)21+V5>g(1+§)22 . (27)

(@21 We>

In summary, then, we have established the following lower bound on the maximum
value of the adiabatic index:

Theorem 2. Consider a static stellar model in general relativity theory whose surface
occurs at a finite radius. Assume that the equation of state p = p(p) is a positive
and non-decreasing C' function of the pressure. Assume that 1/~(p) is bounded as
p — 0%. Then the adiabatic index must satisfy the inequality

7>§(1+§)2>6

5 =5’ (28)

at some point within the star.
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We point out that the extreme case in the argument that leads to Theorem 2—when
equality holds in equation (26) and V5 = 1—is not vacuous. This case constrains
the equation of state of the fluid to be the one used by Buchdahl (1964) to construct
a family of non-singular but infinite-radius stellar models. The existence of these
asymptotically flat, albeit infinite radius, stellar models suggests that our limit on
the maximum value of the adiabatic index is the strongest possible limit of this kind.

4 CONCLUDING REMARKS
It is instructive to examine the implications of Theorem 2 for stellar models con-
structed from fluid that has a polytropic equation of state:

p=rpHm, (29)

where k and n are constants. The constraint on the adiabatic index, equation (28),
is equivalent for polytropes to a constraint on the polytropic index n:

n < 5(1+6p/p)~ <5 (30)

Thus, n < 5 for general-relativistic stellar models that have a polytropic equation
of state. This shows that equation (28) is the direct general-relativistic analogue
of the familiar Newtonian limit on the polytropic index n < 5 (see e.g., Chan-
drasekhar 1939).

We have chosen to express the limit on the adiabatic index, equation (28), in a form
which involves only the equation of state without making any reference to the macro-
scopic properties of the particular stellar model. In fact, a somewhat stronger limit
was obtained in equation (27). That limit on the adiabatic index can be expressed
in another form that involves the surface value of the potential Vs in a simple way:

1
tVs 8 (31)

>3 .
2+3Vs 5

Thus, for a spherical star of mass M and radius R the adiabatic index must satisfy
the inequality

1+ (1 — 2M/R)"?
2+ 3(1 — 2M/R)\/?

6
v>3 > '5', (32)

at some point within the star. For polytropic stars this condition is equivalent to the
bound
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n<2+3Vs=2+3(1-2M/R)"* <5, (33)
on the polytropic index.

The limits on the adiabatic index that we derive in this paper are necessary conditions
for the existence of a static stellar model in general relativity theory. Our limits are
weaker, therefore, than the bounds needed to guarantee the stability of these models.
Glass and Harpaz (1983) have shown, for example, that the adiabatic index must
exceed 4/3 in a stable relativistic polytrope by an amount that depends on the ratio
p/p at the center of the star. A similar limit on a suitably averaged value of the
adiabatic index, 5 > 4/3, is necessary for the stability of nearly Newtonian stars with
any equation of state (see e.g., Misner, Thorne & Wheeler 1973).

The bound on the adiabatic index derived in Theorem 2 does not assume that the
stellar model has spherical symmetry. Thus, our result compliments the work on
the necessity of spherical symmetry in static general-relativistic stellar models by
Masood-ul-Alam (1988) and by Beig & Simon (1991, 1992). Those proofs of spheri-
cal symmetry apply only to equations of state for which the adiabatic index satisfies
the inequality (28) at every point. Thus, Theorem 2 eliminates a large class of poten-
tial counterexamples to the spherical-symmetry conjecture. In particular, our result
shows that no stellar model whose equation of state violates equation (28) every-
where can exist in general relativity theory. Of course many equations of state exist,
including many realistic models of neutron-star matter, which satisfy equation (28)
for some values of the pressure and violate it for others.

This research was supported by the grant PHY-9019753 from the National Science
Foundation, and grant NAGW-2951 from the National Aeronautics and Space Ad-
ministration.
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