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GRAVITATIONAL RADIATION FROM INSTABILITIES
IN RAPIDLY ROTATING NEUTRON STARS?

Lee Lindblom

Department of Physics
Montana State University
Bozeman, Montana 59717

Summary. Rapidly rotating neutron stars are known to be subject to an
instability drivem by gravitational radiationl—“. The modes
responsible for this instability are non—axisymmetric, having azimuthal
angular dependence exp{imp} with typical values of m in the ranges_”
2 {m 5. These modes are also strongly damped by the presence of
viscosity, since the fluid motion contaimed in them is strongly
sheareds_lm. If the viscosity of neutron star matter is sufficiently
large, therefore, the instability in these modes can be completely
suppressed by viscous .damping and the emission of significant amounts
of gravitational radiation would be blocked. The viscosity of neutron

11,10) as '1‘_2, thus sufficiently

star matter varies with temperature
cold mneutron stars will have large viscosities that suppress the
instabilities in these modes. The critical temperature below which

these modes are completely stabilized has been estimatedlo'IZ) to be

T =~ 107 K. This is close to the maximum temperature to which a neutron
star can be heated by accretion. Therefore, it is not clear at this
time whether it is possible for rapidly rotating nmeutron stars spur up
by accretion to undergo this instability and emit significant amounts
of gravitational radiation,

This brief report summarizes the method used to estimate the
properties of the modes that are responsible for limiting the angular
velocity of neutron stars, The calculation of the temperature
dependence of the critical angular velocities of these modes will be
outliued. The oscillation frequencies of these modes for stars

rotating at the critical angular velocity are computed here (for the

first time), These are the frequencies at which any gravitational
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radiation would be emitted or the frequencies at which the x-ray flux
mi ght be modulated by a star spon up by accretion to the point of ome
of these non—axisymmetric instabilities. The oscillation periods for
the relevant modes are in the range .01 to .001 seconds. A wore
accurate computation of these effects, incloding the temperature
dependence of the critical angular velocity of this instability and the
expected temperatures of accreting neutron stars, are needed before it
will be possible to predict with confidence whether or not this kind of
system is likely to be an observationally interesting source of
gravitational radiation.

Finding the Critical Angnlar Velocities. The time dependence of the

non-axisymmetric mode that limits the angular velocity, 2, of a

rotating neutron star will in general have the form:
exp{mm(ﬂ)t - t/rm(ﬂ)} .

The real part of the frequency, om(n), governs the oscillntidn rate of
the star while the imaginary part of the frequency, 1/1:n'.(n), determines
the rate at which the mode is damped (or amplified) by the dissipative
effects of gravitational radiation reaction and viscosity. This mode
becomes unstable at the critical angnlar velocity, ﬂm, where the
imaginary part of the frequency changes sign: i.e., where 0= 1/1.-m(nm).

To aid in the calculation of these critical angular velocities it
is helpful to define the dimensionless fuomctioms am(ﬂ), Bm(ﬂ) and ym(ﬂ)

by the equationms:

s (@) = g(0) a(d) - m8, (1)
m m m

4 Y om(n) 2m+1
@ - @ [‘v,mm) + Tor,m(® [o‘mlo"Sym'(n'T]

] @

In these equations :v,m(o) and tGR,m(O) represent the timescales for
damping this mode due to viscosity and gravitational radiation reaction
in the non—rotating star of the same rest mass. The fumction am(n),
therefore, describes the anmgular velocity dependence of the real part
of the frequency; Bm(ﬂ) describes the angular velocity dependence of
the viscous damping of the mode; and ym(n) describes the relative

effects of viscosity and gravitatiomal radiation reaction on the mode.
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A useful expression for the critical angular velocity, 8 , of a
m

mode can be inferred from eq. (2):

0)
o (0 [am(nm) . v @ [GR (0)]1/(2m+1)] -

The solutions to eq. (3) are, quite generally, the critical angular
velocities of these modes in any rotating stellar model. These
equations are useful, however, only after the values of the relevant
frequencies of these modes in the associated non—rotating stellar model
[cm(O). tGR,m(O)’ and Ty (0)] and the functions a. B

m
known. While the properties of mon-rotating stars are relatively easy

and Yy °re

to compute, the functions that describe the angular velocity dependence
of the modes can, unfortunately, be determined omnly with great
difficulty. To date, the functions L have been computed for the
Maclaurin spheroids7 and for a few rigidly rotating Newtonian
polytropes13; the functions Bm and v have only been computed for the
Maclaurin spheroids7. None of these functions varies significantly
from its nmon-rotating valee, e, (0) =B (0) =y (0) =1, over the entire
range of relevant angular velocities in the Maclaurin spheroids,
Furthermore, the functions o computed for the Newtonian polytropes are
very similar to the corresponding functions computed for the Maclaurin
spheroids. It seems likely, therefore, that the functions a. Bm'
will not depend strongly on the equation of state of the stellar model.
Since the functions that describe the angular velocity dependence
of these modes are not expected to depend strongly on the equation of
state, it is possible to find approximate solutions to eq. (3) for the
locations of the critical angular velocities: Use the Maclaurin
spheroid functions e and T together with the appropriate values of
° (0), TR, m (0) and V.m (0) computed using fully relativistic equations

and realistic models of the stellar matenul7 10

Vhile the accuracy
of this method will only be known after the o Bm and Y, 8re computed
properly for realistic neutron star models (work now in progress in
collaboration with J. Ipser), it seems likely that the accuracy is
better than 30% which is the maximum deviation of the functions o and

Ym from their non~rotating values of ome.
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The Temperature Dependence of ﬂb. In the temperature range below about

9
10° K the neutrons and protons in the core of a neutron star are
expected to exist in a superfluid state, The viscosity of this
material is expected, therefore, to be dominated by electron—electron
11,14)

scattering For the demsity range in which most of the material

in a neutron star is found, the following simple analytic expressionm,

n=6.0 x 108 p2 T2,

gives the electron—electron viscosity to about 5% accuracy. Since this
expression (and indeed the "eyact™ expresson om which it is based)
varies with temperature as T_z, the viscous timescale tv'm(o) that
appears in eq. (3) will vary as Tz. Therefore, the critical angular
velocities, ﬂc, that are the solutions of eq. (3) will depend on the
temperature of the neutron star.

The approximation method described above has been used to compute
the critical nnguiar velocities for a variety of neutron star models

over a range of temperatures7'1°'12). Figure 1 depicts the temperature

dependence of the critical angular velocities for two neutron star
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Figure 1, The temperature dependence of the critical angular velocities
for the gravitational radiation reaction secular instability.

" models. The angular velocities are expressed as a fraction of the
maximum angular velocity that a Maclaurin spheroid can attain
[max @ = 0.670322(uG;)1/2]. (This maximum angular velocity agrees with
those computed for realistic fully relativistic stellar modelsIS) to

within about 5%.) The discontinuities in the derivatives of the curves
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in Figore 1 are the location of the points where the mode responsible
for the instability is changing from m = 2 at low temperature tom = 3
at higher temperatures. The two stellar models depicted in this graph
are the maximum mass stellar model and the model containing 1.4 times
the number of baryons in the sun (the minimum mass core that can
collapse to form a neuntron star) based on a self-consistent
relativistic mean field model for the nuclear matter16). This graph
clearly illustrates that as the temperature of a neutron star drops,
the increasing viscosity of neutron star matter is able to suppress the
gravitational radiation driven secular instability so that stars with
larger and larger angular velocities are stable. This graph also
suggests that below about 106 to 107 K the instability is completely
suppressed. Figure 2 examines in more detail the highest angular
velocity portion of the critical angular velocity curves for a

variety of different equations of state (labeled A, B, C etc. and
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Figure 2. The temperature dependence of the critical angular velocities
" for a range of neutron star masses and a variety of equations of state
for the high density nuclear matter.

defined in Ref, 7), No stellar model having less angular momentum than
the model rotating with maximum angular velocity is subject to the
gravitational radiation driven secular instability for temperatures

below abount 1.5 x 106 K. (For stars having 1.4 times the solar number

of baryons this minimum temperature is about 5 x 106 K). The largest
value of this minimum temperature is 7 x 107 K for the models studied.
While the accuracy of the approximation methods used to compute these

minimum temperatures is unknown, it is likely that the error is
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reasonably large. As Figure 1 illustrates, relatively small changes
in the critical angular velocity computed for a given temperature could
change the minimum temperature of this instability by large amounts.
Even a 5% change in the angular velocity estimates could change the
minimum temperature values by a factor of ten. Since the minimum
temperatures computed here are fairly close to the maximum temperature
of about 10'7 E to which a neutron star can be heated by accretiom, it
is not possible to predict at this time whether or not the
gravitational radiation driven secular instability will occur in real
astrophysical situations. More accurate models of these instabilities
are currently bnder comstruction.

Freqguencies of the Unstable Modes. If these instabilities do exist in

real neuotron stars at sufficiently low temperatures, it has been
suggesteds) that significant amounts of gravitational radiation could
be emitted under suitable circumstances. Consider a neutron star spun
up by accretion to the critical angular velocity of the gravitational
radiation secular instability discussed here. As additional angular
momentum is deposited onto the star by the accretion process the
angular velocity would increase slightly into the unstable region and
the instability would set in. The amplitude of the mode would grow
until the angnlar momentum carried away by gravitational radiation
balanced the angular momentum deposited onto the star by accretiom.
Under these circumstances nearly monochromatic gravitational radiation
would be emitted at the frequency of the unstable mode of the star
rotating at essentially the critical angular velocity. Fur themmore,
the surface of the star would be distorted by the mode. Consequently
it is possible that the accretion onto this uneven surface could
modul ate the x—ray flux produced by the accreting material at this same
frequency. (The amplitude of these surface modulations have been
estimated and a manuscript is in preparation in collaboration with W.
Kluzniak and R. Wagomer,) It is easy to estimate the oscillation
frequency of one of these modes for any given angular velocity using
eq. (1), Using the approximation method described above (i.e.
Maclaurin spheroid functions a and fully relativistic o'm[O]) these
oscillation frequencies have been computed for a number of neutron star

models. Figure 3 depicts the temperature dependence of the oscillation
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periods of these modes for the two stars comsidered in Figure 1,

1.39 Mo
nevtron star.
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Figure 3., The temperature dependence of the oscillation periods for the
modes that give rise to the gravitational radiation reaction secular
instabilities.

These periods are in the range .01 to .001 seconds for all of the
neutron stars examined. They are longer by about an order of magnitude
than the period of the corresponding mode in the non~rotating star of
the same rest mass. The discontinuities in the curves occur at the
temperatures at which the mode responsible for the instability changes
from one value of m to another.
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