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This paper reviews the theory of the stability of stellar models in both the New-
tonian theory and general relativity. The emphasis here is on recent work on
the stability of rapidly rotating stellar models, and the effects of dissipation on
stability.

1 Introduction

- Observations are beginning to provide a wealth of information about stars in
" which relativistic effects play an important role. Measurements of the pulsa-

tion periods of pulsars show that neutron stars can have rotation periods as
" short as 1.56ms.! Measurements of the orbital elements of pulsars in binary

systems now give accurate determinations of the masses of about ten neutron
 stars.2 To understand the meaning of these (and other related) observations the

appropriate theoretical tools must be developed for analyzing the structures
~and stability of relativistic stellar models. The techniques for constructing
and analyzing equilibrium stellar models from a given equation of state are
now well understood.®4 So it is relatively easy now to compare the observable
macroscopic properties (e.g. masses, angular velocities, etc.) of these models
with the observations. The inverse problem of determining the poorly known
equation of state from the observable properties of relativistic stars is only
beginning to be understood.?

In addition to a thorough understanding of equilibrium stellar models,
the stability of these models must also be understood in order to interpret
the observations. Stability theory is required, for example, to determine the
ranges of masses and angular velocities present in stable (and thus physically
possible) stars. This paper reviews the theory of the stability of stellar models
in both the Newtonian theory and general relativity. The emphasis here is on
recent work on the stability of rapidly rotating stellar models, and the effects
of dissipation on stability.

Our understanding of the stability of rotating stars was (until quite re-
cently) based entirely on the analysis of the stability of the uniform density
rigidly rotating stellar models: the Maclaurin spheroids. It has been known
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for over a century that rapidly rotating Maclaurin spheroids were subject to
an instability driven by viscosity.® This instability causes a rapidly rotating
Maclaurin spheroid to evolve into a rigidly rotating but non-axisymmetric con-
figuration such as a Jacobi ellipsoid.”® This type of instability is referred to
as secular since it is driven by dissipative forces in the star. The Maclaurin
spheroids are also subject to a second type of secular instability that is driven
by gravitational radiation reaction.®!? This instability causes the Maclaurin
spheroid to evolve into a stationary but non-axisymmetric configuration such
as a Dedekind ellipsoid.!! Maclaurin spheroids with very large angular mo-
menta (about 1.7 times that required to trigger the viscous secular instability)
are also subject to a dynamical instability that is driven by purely hydrody-
namical forces.!?

During the past two decades new mathematical techniques have been de-
veloped which make it possible to study and analyze the stability of more
realistic stellar models than the simple Maclaurin spheroids. These recent de-
velopments will be described and reviewed in this paper. Section 2 begins
with a brief discussion of the criteria that have been developed for evaluat-
ing the stability of non-rotating stellar models. Section 3 describes techniques
for evaluating the stability of rotating stars based on global energy function-
als. Section 4 presents the analytical techniques needed to analyze the normal
modes of rotating stars in the Newtonian theory and general relativity. Sec-
tion 5 completes the discussion of the normal modes by showing how dissipation
effects their stability.

2 Non-Rotating Stars

The theory of the stability of non-rotating, spherical, stellar models in general
relativity theory is now rather well understood. Criteria have been found which
allow the stability of these stars to be evaluated without solving explicitly the
dynamical perturbation equations. While this has not been an active research
area for some time, the results are rather interesting and not generally well
known. This section is devoted to a brief summary of this work. ‘

The stability of static spherical stars in general relativity theory to spheri-
cally symmetric perturbations can be determined by examining the mass-radius
curve for equilibrium stellar models. Consider the one-parameter family of stel-
lar models that is constructed from a particular equation of state: p = p(p).
The central pressure, p., of these models is a convenient choice for the param-
eter that distinguishes members of the family. Now consider M (p.) and R(pc),
the total mass and total radius of the model with central pressure p., as deter-
mined by solving the equilibrium structure equations.? Figure 1 illustrates the
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curve [M(pc), R(pc)] with parameter pc, which represents the masses and radii
of the stellar models constructed for one particular “realistic” neutron star
equation of state. The points on this curve where the mass is an extremum
(labeled by the letters A, B, C, ...) are places where the stability changes in
one of the spherical modes.!® The stellar models represented by the thickened
portion of the curve are unstable.

Mass

sl R WRETI]

Radius

Figure 1: Total Mass-Radius Curve for Neutron Stars.

The dynamics of the spherically symmetric modes of these stars is deter-
mined by a second-order equation of Sturm-Liouville type with eigenvalue w?,
where w is the frequency of the mode. 1415 The eigenvalues of this equation
are real, hence the frequencies are either real and the mode is stable, or purely
imaginary and the mode is unstable. The frequencies of the modes change con-
tinuously along a smooth one-parameter family of stellar models.“The stability
of a mode, and hence the stability of the stellar model, can change therefore
only at points along the sequence where a zero frequency modes exists.

At an extremum of the mass-radius curve, the transformation that takes
the extreme model into an infinitesimally nearby model is a solution to the
time-independent linearized structure equations. This solution leaves the mass
of the model fixed, and is a solution of the oscillation equation with zero
frequency. Thus, the extrema of the mass-radius curve are models where the
stability of some mode is changing. For realistic neutron star equations of state,

aThe smoothness conditions required of the equation of state to guarantee the continuity
of these eigenvalues have not been worked out to date.
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the lowest density models are known to be stable.!® Thus the first extremum, A
in Figure 1, is a point where the models first become unstable. The. thickened
portion of the curve represents the higher density models which are unstable.
The second extremum, B in Figure 1, represents another point where some
mode is changing stability. In the zero-frequency mode at this point, however,
the outer surface of the star gets larger as the central density of the star
increases. Therefore the function that describes the radial displacement of
each fluid element (which is proportional to the eigenfunction of this mode)
must have an odd number of nodes, unlike the mode changing stability at A.
The eigenfunction associated with the smallest eigenvalue of a Sturm-Liouville
systems has no nodes, and the modes with successively larger eigenvalues have
eigenfunctions with successively larger numbers of nodes.'® This implies that
the mode changing stability at B is not the fundamental mode, and the stellar
models beyond point B must have two unstable modes.b Similar arguments
reveal that the stellar models remain unstable up to the point D where stability
is regained. The models between D and E are stable neutron stars, while those
beyond point E are unstable.

The stability of stars to non-radial perturbations is determined by the
quantity S,

stry= _ (213) dp 1

where 7 is the radial spherical coordinate, p is the pressure of the fluid, p
is the total energy density (including rest mass), and s is the entropy per
particle of the stellar fluid. When S is positive the adiabatic exchange of
fluid masses at different “elevations” within the star requires the addition of
energy to the system.'” When S is negative in some region, however, the
energy of the configuration can be lowered by re-arranging the fluid. In this
region, consequently, the stellar fluid is unstable to convection. It has been
shown that the condition S > 0 everywhere within the star is the necessary
and sufficient condition for the stability of the non-radial modes of Newtonian
stellar models.’®19.20 In general relativity theory it has also been shown that
the non-radial outgoing quasi-normal modes are stable if S > 0 throughout
the star.?! The proof that this is also a necessary condition for stability of the
non-radial modes in general relativity theory has not been completed to date.

bThe standard theorems apply only to non-singular Sturm-Liouville systems. The radial
pulsation equation is singular at r = 0 and to date the relevant properties of the eigenvalues
and eigenfunctions of this equation have not been established rigorously to my knowledge.
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3 Rotating Stars

The conditions that determine when rotating stars are unstable are not as well
understood as in the non-rotating case. However, a few general results are
known. The stability of uniformly rotating stars with respect to axisymmetric
perturbations can be determined by a technique that is analogous to the mass-
radius diagram analysis described above. Consider a one-parameter family of
uniformly rotating equilibrium stellar models of fixed angular momentum, all
based on a particular equation of state p = p(p). It has been shown that the
region of stable stars in this family is bounded by points where the mass is an
extremum.2? As in the non-rotating case, the extrema of the mass signal the
onset of instabilities to axisymmetric perturbations in rotating stars. At these
points there exists a time independent solution of the perturbation equations
which takes one uniformly rotating solution into a nearby one. This solution
transfers angular momentum among the fluid elements in order to preserve
uniform rotation. Hence the instability that sets in at this point will develop
on a time scale set by the dissipation process (e.g. viscosity) that facilitates the
angular momentum redistribution in the fluid. The proof of this result is based
on a very general stability theorem?23 which does not rely on the properties (e.g.
existence or completeness) of the normal modes.

The stability of rotating stars with respect to non-axisymmetric pertur-
bations is a very interesting and difficult subject, and this has been the focus
of most of the research effort in this area in recent years. Simple local sta-
bility conditions analogous to eq. (1) have not been found and probably do
not exist for rotating stars. A few global conditions have been found, however,
and these have been extremely useful in understanding a number of interesting
instabilities in rotating stars. These global conditions determine the stability
of rotating stars from the properties of certain non-local functionals of the
perturbations. Perhaps the most important example of such a functional is
the energy E. This functional can be expressed as a Hermitian quadratic form
in the perturbation fields integrated over the volume of the star. For pertur-
bations that satisfy dissipation-free (e.g. no viscosity) evolution equations the
energy E is conserved for all perturbations. Thus E is not a useful tool for
diagnosing the presence of dynamical instabilities. When the effects of dissipa-
tion are considered, however, the energy functional E evolves with time; and
in some circumstances it decreases monotonically for all fluid perturbations.
Under these conditions E can be used to diagnose secular instabilities. If E
is positive for all possible perturbations then the star is stable. The evolution
equations in this case may only change E by decreasing its value toward its
lower bound, zero. This ensures that the perturbation remains bounded (at
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least in an £2 sense). If the energy E were negative for some perturbation,
however, then E would have no lower bound. The evolution equations would
cause a perturbation with negative E to decrease without bound and the star
would be unstable.

The emission of gravitational radiation by a stellar perturbation causes
the energy functional F to decrease. Thus F can be used to test the secular
stability of rotating stars with respect to the emission of gravitational radiation.
When the functional E for rotating stars is examined in detail a remarkable
fact emerges: every rotating star is unstable to the emission of gravitational
radiation.?42% That is, there exists some perturbation in every rotating star for
which FE is negative. An example of such a negative energy perturbation can be
found by considering the perturbations of the star that correspond to “waves”
which propagate around the star in the direction opposite its rotation. If these
waves propagate slowly enough then the underlying rotation of the star drags
them along so they appear from infinity to propagate in the same direction as
the star’s rotation. Such waves have negative FE and are unstable. The physical
nature of this instability can be visualized as follows. These waves emit positive
angular momentum gravitational radiation since they are seen from infinity to
propagate in the same direction as the star’s rotation. The waves themselves,
however, carry negative angular momentum since they propagate (relative to
the fluid in the star) in the direction opposite this rotation. Thus angular
momentum can only be conserved for these perturbations by increasing the
amplitude of the perturbation in order to decrease its angular momentum as
it emits gravitational radiation.

A closely related functional E, which represents the energy of a pertur-
bation as measured in the co-rotating reference frame of the star, has also
been useful for diagnosing instabilities in rotating stars. For Newtonian stellar
models this functional has an extremely simple form:

E= % / (p(S *5v® + ‘SPP‘SP 5 *5@) ddz, 2)

where p is the mass density, and év®, 6p, ép, and 6& are the perturbations
in the fluid velocity, density, pressure, and gravitational potential respectively.
An analogous functional is also known in the general relativistic case.?® E is
conserved for fluid perturbations that satisfy dissipation-free evolution equa-
tions, hence it is not a useful diagnostic of dynamical instabilities. Internal
fluid dissipation causes E to decrease with time. Thus, E can be used to di-
agnose secular instabilities that are driven by viscous forces in rotating stars.
The study of this functional has revealed that thermal conductivity and bulk
viscosity can cause the same type of secular instability as shear viscosity in
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rotating stars.?”

The use of these energy functionals to diagnose instabilities is based on the
expectation that any negative energy perturbation will grow without bound
and thus represent an instability. While this is believed to be the case for each
of the energy functionals discussed above, the careful mathematical analysis
needed to establish this has only been completed to date for the Newtonian
E in a star having viscosity and thermal conductivity but no interaction with
gravitational radiation. In this case it has been shown that F is strictly de-
creasing with time unless E vanishes.?® This shows that a necessary condition
for stability is that £ > 0 for all fluid perturbations. '

The effects of gravitational radiation cause the functional E to decrease
with time while viscous effects cause E to decrease. Unfortunately, neither
functional is decreasing for every perturbation when both viscous and gravita-
tional radiation effects are considered simultaneously. Thus in general neither
functional (nor any known combination of them) can be used to diagnose these
secular instabilities except in special cases. For very slowly rotating stars the
waves with negative F that are subject to the gravitational radiation driven sec-
ular instability have very short wavelengths. These waves couple only weakly
to gravitational radiation but very strongly to viscosity. Under these condi-
tions it has been shown that the functional E is a decreasing function of time
while E is not.28 Thus, £ may be used to evaluate the secular stability of
these perturbations while £ may not. This analysis reveals that any amount
of viscosity suppresses the gravitational radiation driven secular instability in
sufficiently slowly rotating stars.

4 Normal Modes

The analysis of the energy functional stability criteria discussed in Section 3 has
revealed that gravitational radiation tends to make all rotating stars unstable,
while viscous forces tend to suppress this instability. Unfortunately there is
no known functional that always decreases with time when all of the relevant
dissipative forces are present together. Thus no generally applicable test for
the stability of rotating stars is presently available at all. The study of the
stability of rotating stars has been directed therefore toward the study of the
normal modes of rotating stars: solutions of the perturbation equations having
time dependence e**. This analysis provides a sufficient test for instability: the
instability of one mode proves that the star is unstable.Even the analysis of the
normal modes of rotating stars turns out to be a rather difficult and interesting

cLacking a proof of the completeness of the normal modes, however, stability of all normal
modes does not prove that the star is stable.
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subject however. Considerable progress has been made in transforming this
problem into a more tractable form in recent years. The analysis that leads
to this simplification is simple and elegant, and so it is presented here in some
detail for the simplest case of Newtonian stellar models.

In real stars the effects of dissipation are rather weak in that dissipative
effects occur on time scales that are much longer than the dynamical time
scale. Under these conditions it is possible to ignore the effects of dissipation
as a first approximation. In this section the discussion is confined therefore
to the simpler problem of the dissipation-free modes of rotating stars. The
techniques for evaluating the effects of dissipation are discussed in Section 5.

The equations that govern the perturbations of a dissipation-free self-
gravitating Newtonian fluid are given by

O:bp + 12V abp + Vo (pbv®) = 0, (3)
Bs6v® + vPVp60° + 6vPVp® = —V° (% - 5@) , (4)

and
VeV 6P = —4nGép, (5)

where any quantity preceded by é represents the (Eulerian) perturbation of
that quantity, while those not preceded by é represent equilibrium values. In
these equations p, p, ®, and v® represent the mass density, pressure, gravita-
tional potential, and the fluid velocity. This system of equations is completed
by specifying the thermodynamic relationship between the perturbed pressure
and density. For simplicity here the equation of state is taken to be barotropic
so that

dp
=% bp. : (6)
The unperturbed equilibrium stellar model is assumed here to be rigidly ro-
tating, i.e. v® = Q® where  is the (constant) angular velocity and ¢° is the
vector field representing rotations about the 2% axis.

The equations (3)-(6) that describe the perturbations of rotating stars
constitute a complicated sixth-order system for the five independent compo-
nents of the perturbation fields (ép, 6v*, §®). The solutions to these equations
are known analytically only for the perturbations of uniform density stars?®
and have only been directly solved numerically for more realistic models quite
recently.3? Rather than attempt to solve these equations directly, two different

op
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approaches have been devised to reduce the complexity of the equations by an-
alytical means. The first approach introduces a potential £%, the Lagrangian
displacement, for the velocity perturbation:

5% = By€® + vPVpE® — 0V (7)

Using this potential the perturbed continuity equation (3) can be solved analyt-
ically: 6p = —V4(p€?). This substitution reduces the number of independent
perturbation fields to four, (£¢,6®), and reduces the equations that must be
solved to the system (4)—(6). One nice feature of this representation of the
equations is the existence of a Lagrangian from which the equations in this
form may be derived.?! Unfortunately this representation also increases the
order of the system of differential equations from sixth to eighth. For the
purposes of actually solving the equations, this transformation does not offer
much simplification. The equations have only been solved in this form (to my
knowledge) numerically for the special case of axisymmetric normal modes.3?

A second analytical transformation has been found that does significantly
simplify the perturbation equations.3® This transformation is limited to per-
turbations which are normal modes with angular dependence e™¥, where @ is
measured about the rotation axis of the star. For this case eq. (4) reduces to

[i(w + mS)ap + 2vaa] Svb = -V, <%” - 6(1)) , (8)

where 8,5 represents the three-dimensional Euclidean metric. This equation is
algebraic in the velocity perturbation év* and can be solved analytically:

§v° = QP VU, (9)
where 6U is defined as
§U = %p — 60 (10)

and Q9 is the tensor

Qab — 1
(w +mQ)2 — 4Q2

4
w + mQ)§¥® — ———— %2 — 21V . 11
Using equation (9) to replace 6v* in the remaining perturbation equations
reduces the system to a pair of second-order equations for the scalar potentials

§U and 6®:
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Ve (pQ“beéU) =—(w+ mQ)pZ—Z(&U + 6®), (12)

VoV,68 = —47erg—§(6U +6®). (13)

This transformation has reduced the equations for the modes of rotating
stars to this relatively simple fourth-order system for the two scalar poten-
tials (U, 6®). These equations constitute a reasonably standard eigenvalue
problem with eigenvalue w. The tensor Q® in eq. (12) is positive definite if
(w + mQ)? > 402, so the equation is elliptic for sufficiently slowly rotating
stars. These equations can be solved for the eigenfunctions 6U and é6® and
the eigenvalue w using fairly standard numerical techniques.343% Figure 2 il-
lustrates a typical eigenfunction 8U for an m = 3 mode of a rapidly rotating
Newtonian stellar model. Figure 3 illustrates the angular velocity dependence
of the eigenvalue w for two different sets of modes.33 The frequencies in
Figure 3 are displayed in terms of the dimensionless function o, (£2),

w(Q) + mQ

="

(14)
which is normalized so that a,,(0) = 1 for non-rotating stars.

Once the eigenfunctions 6U and 6@ are determined, then every other phys-
ical property of the stellar oscillation may be determined from them. Equa-
tion (9) gives the velocity perturbation §v® in terms of §U, while the density
perturbation ép is given by

dp
bp = p—(6U + 6@ 15
p=p o (6U + 69), (15)
and the Lagrangian displacement £% by
Q“"VbéU
a_x "0, 16
¢ w +mS (16)

The particular version of the equations presented here, egs. (12)-(13), is for the
special case of barotropic perturbations of rigidly rotating stellar models. This
approach can also be used to reduce the equations for the general adiabatic
perturbations of differentially rotating stellar models without any restriction
(e.g. barotropic) on the equation of state.3” The equations in the more general
case remain, like egs. (12)-(13), a fourth-order system for the two functions
6U and 69.
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Figure 2: The eigenfunction §U for the [ = m = 3 mode of a rapidly rotating Newtonian
stellar model. Each curve represents the radial dependence of the eigenfunction along one
angular spoke.

The problem of evaluating the modes of rapidly rotating stars has been
rendered considerably simpler by the transformation that leads to egs. (12)-
(13). Nevertheless, there are some interesting questions that remain unre-
solved. The tensor Q2 that appears in eq. (12) is positive definite whenever
(w + mQ)? > 402. In this case eq. (12) is elliptic and can be solved using
standard numerical techniques.3® This condition is always satisfied in non-
rotating stars; however, in more rapidly rotating models it may be violated.
When this condition is violated eq. (12) becomes hyperbolic yet the physical
solutions must still satisfy Dirchlet boundary conditions. Little appears to be
known about hyperbolic eigenvalue problems of this kind. Numerical tech-
niques based on a variational principle have been devised which give solutions
to the equations even in this case however.36:38 The change in signature of this
equation does not appear to be connected to the onset of a physical instability.
The physical significance of this change and the meaning of the characteristic
surfaces that appear in eq. (12) are presently unknown.

In neutron stars the gravitational fields are rather strong and general rel-
ativistic effects significantly influence the structures and the dynamics. Thus
it is of considerable interest to extend the analysis of the modes of rotating
stars into the domain of general relativity theory. Unfortunately, this problem
is extremely difficult. The chief obstacle is the coupling of these modes to
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Figure 3: The angular velocity dependence of the frequencies of the modes of rapidly rotating
Newtonian stellar models. The graph on the left gives the frequencies of the [ = m modes
for n = 1 polytropic stellar models. The graph on the right gives the frequencies of the
I = —m = 2 modes for stellar models constructed from thirteen realistic equations of state.

gravitational radiation. In general relativity theory a star may oscillate at any
frequency at all! If gravitational radiation of a given frequency were directed
toward a star, then the star would oscillate at that frequency. The defini-
tion of normal modes for general relativistic stars must be refined therefore to
include as an additional boundary condition that there be no incoming gravi-
tational radiation. These solutions are referred to as the quasi-normal modes.
This boundary condition is difficult to enforce because it must be done far away
from the star in the wave zone of the gravitational radiation. This is reasonably
easy to deal with in the case of non-rotating stars where the spacetime outside
the unperturbed star is simply the Schwarzschild geometry.3%:40:4! In rotating
stars, however, the spacetimes outside the stars are only known numerically
and only on rather small numerical grids. A practical method for imposing the
outgoing radiation boundary condition on such spacetimes has not yet been
devised. Fortunately there is a middle ground. The post-Newtonian approxi-
mation to general relativity provides a reasonably accurate description of the
spacetimes associated with neutron stars. At the lowest orders the dynamics in
the post-Newtonian approximation does not couple to gravitational radiation.
Thus the problems associated with the outgoing radiation boundary condition
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does not arise in a post-Newtonian description of the modes of rotating stars.

It is reasonably straightforward to extend the Newtonian analysis of the
modes of rotating stars to the post-Newtonian theory.*?#3 The oscillations of
post-Newtonian stars are determined completely by the post-Newtonian correc-
tions to the mode functions 6U and §®. These post-Newtonian eigenfunctions
are determined by solving a pair of second-order equations having the same dif-
ferential structures as egs. (12)~(13) plus inhomogeneous terms that depend on
§U and 6® (and on the Newtonian and post-Newtonian structures of the equi-
librium star). The post-Newtonian corrections to the frequency of a mode can
be determined from the integrability condition for these pulsation equations,
without solving the post-Newtonian pulsation equations at alll There exists
an explicit formula for the post-Newtonian frequency that depends on U and
6® as well as the Newtonian and post-Newtonian structures of the star.®3 As
is typical of post-Newtonian analyses, this formula is extremely complicated
(and unenlightening). However, it is straightforward to evaluate the needed
integrals numerically and so determine the frequencies of the modes in this
approximation. Figure 4 compares the frequencies of several modes of non-
rotating stars computed in this post-Newtonian approximation with the exact
general relativistic values. The post-Newtonian approximation for the frequen-
cies of 1.4 Mg neutron stars agree with the exact general relativistic frequencies
to within about 4%. In comparison, the Newtonian frequencies agree with the
exact values only to within about 12% for these same neutron stars. Figure 5
illustrates the angular velocity dependencies of the frequencies of the modes of
rotating stars in both the Newtonian and post-Newtonian approximations for
stars with GM/c*R = 0.2. The post-Newtonian frequencies for these modes
differ from the Newtonian values by about 10%.

The analysis of the modes of rotating stars in full general relativity theory
is far less complete. But, the general equations for these modes have been
derived and a certain amount of analysis has been done with them. The general
relativistic version of the Lagrangian displacement has been used to transform
the equations into a simpler and more canonical form.4* These equations have
been very useful for analyzing the effects of general relativity on the secular
instabilities of rotating stars.2%26 These equations have never been solved (even
numerically), however, except in the case of non-rotating stars.39:40 The general
relativistic version of the transformation that leads to eq. (9) has also been
found. For modes with angular dependence e™¥ the perturbed conservation
laws, §(V,T%) = 0, can be solved analytically for the perturbed four velocity
§u® in terms of a scalar potential §U, defined by
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Figure 4: The post-Newtonian values for the frequencies of the modes of non-rotating stars
(solid lines) are compared with the exact general relativistic values (dashed lines) for stars
with different values of GM/c*R.

6U = _Z_S_p__’ 17
p+p

and the perturbed metric tensor §g,5.*> The resulting equation for fu®,

Su® = iQ™V6U + 6F*(6gca), (18)

is the relativistic analog of eq. (9). The vector §F® that appears in eq. (18)
depends on the metric perturbation 8g4 and the functions that describe the
unperturbed star. The tensor Q*® depends on the geometry of the unperturbed
star and the frequency of the mode w. This Q% is simply the relativistic
generalization of eq. (11). There is also a general relativistic analog of eq. (12)
which is derived by replacing the four-velocity perturbations in the energy
conservation law using eq. (18). The resulting equation has the form

Val(p + p)Q** VU] — Q°°V,pV,8U + USU = 6F (6gas) (19)

where U depends on the frequency of the mode and the unperturbed structure
of the star, and §F depends on 8gqp. This equation is particularly useful when
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Figure 5: The angular velocity dependence of the frequencies of the modes of rotating stars.
The post-Newtonian values for the frequencies (solid lines) are compared with Newtonian
values (dashed lines) for stars with different angular velocities.

" the dynamics of a mode is driven primarily by hydrodynamic rather than

gravitational forces. Such is the case for the higher-order modes of stars,*

as well as the modes of objects like accretion disks where self gravitational
effects are not important. Under these circumstances the metric perturbations
may be ignored and the complete dynamics of the general relativistic mode is
determined by eq. (19) with §F = 0. This equation is no harder to solve in the
relativistic case than it is for N rtonian stellar models. The equation in this
form has been used to determii the modes of relativistic accretion disks.*’

5 Dissipative Effects

Dissipation plays an importan ole in the stability of rotating stars. The
general arguments outlined in Secvion 3 show that gravitational radiation tends
to make all rotating stars unstable?42® while internal fluid dissipation processes
(e.g. viscosity) tend to suppress this instability and make sufficiently slowly
rotating stars stable.?6#8 In this section the techniques are described which
have been used to evaluate the effects of dissipation on the stability of the
normal modes of rotating stars. The principal tool that is used in this analysis
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is the equation that determines the evolution of the energy of the perturbation
due to dissipative effects. For example, the evolution of E defined in eq. (2) can
be evaluated using the equations for a dissipative Newtonian fluid including
the effects of gravitational radiation reaction forces:4°

dE _ abg *| 13
i ——/[21760 bouy, + (bobo ]d z
~(w +mQ) > Niw? 16Dy Dj- (20)
!

The thermodynamic functions 7 and ¢ that appear on the right side of eq. (20)
represent the viscosities of the fluid. The viscous forces in a fluid are driven
by the shear 6o,; and the expansion ¢ of the perturbation:

Sogp = %(Vaévb + Vb, — géabvcév"), (21)

60 = V605 (22)

The gravitational radiation reaction force couples to the evolution of the fluid
via the mass multipole moments of the perturbation Dy,

6Dy = / Sprtyy.dz, (23)
with coupling constant Nj:

4G (1+1)(1+2)
oA (- 1)[(2L + N2

Now consider the normal modes of a rotating star that is subject to dis-
sipative effects. Assume that the time dependence of the mode is giwt=t/T,
where w is the real part of the frequency and 1/7 is the imaginary part. A
mode is stable if 1/7 is positive and unstable if negative. Thus the problem
of evaluating the stability of a mode is reduced to determining the sign of the
imaginary part of its frequency. Equation (20) provides a means of evaluating
this quantity. The functional E is real and quadratic in the perturbations,
so its time dependence is e~ 2t/7_ Tt follows that the imaginary part of the
frequency is given by

N (24)

1__14d8 (25)
T oF dt
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The right side of eq. (25) is, using eqgs. (2) and (20), a functional of the eigen-
function of the mode. This is an exact identity which is not however partic-
ularly useful. If the exact dissipative eigenfunctions of the star were known,
then the frequency of the mode could easily be evaluated in a number of ways.
Equation (25) is nevertheless an extremely useful tool for evaluating 1/7 ap-
proximately. Dissipation is a relatively weak force in stars: gravitational ra-
diation and internal fluid dissipative processes effect the evolution of the fluid
in a star on time scales that are much longer than the dynamical time scale.
Thus the presence of dissipation has a relatively small effect on the evolution
of the fluid in a star, and so the exact eigenfunctions of a mode (including
the effects of dissipation) differ only slightly from the more easily evaluated
eigenfunctions based on dissipation-free hydrodynamics. Thus, the functional
on the right hand side of eq. (25) has essentially the same value whether eval-
uated using the exact or the dissipation-free eigenfunctions. This functional is
straightforward to evaluate approximately, therefore, using the dissipation-free

eigenfunctions as determined in Section 4. This approximation is expected to

give values for the imaginary part of the frequency that have fractional errors
of order 7w, the ratio of the dissipative to the dynamical time scales. Studies
have shown that this ratio is extremely small in neutron stars.50

The imaginary part of the frequency can be evaluated numerically using
eq. (25). All that is needed is the dissipation-free eigenfunction of the mode,
and the thermodynamic functions  and ¢ that describe the viscous forces in
the stellar fluid. The viscosity coefficients have been evaluated for neutron star
matter,51%2 and these quantities are given approximately by

¢ =6.0x1075° (5)2T6, (26)

n = 6.0 x 10° (%)2. 27)

Note that these viscosities depend on the thermodynamic temperature T of the
star. The bulk viscosity ¢ is proportional to 7% and becomes very large when
the temperature of the star is high. The shear viscosity 7 is proportional to 72
so it becomes large when the temperature is low. These two types of viscosity
are comparable in neutron stars when T = 10°K. Viscosity tends to suppress
the gravitational radiation instability in rotating stars. Hence it is clear that
these viscous forces will be very effective in suppressing this instability in very
hot and very cool neutron stars.

To determine which rotating stars are unstable, the imaginary parts of the
frequencies of their modes must be evaluated using eq. (25). The modes with
the lowest values of [ and m couple most strongly to gravitational radiation,
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while the viscous coupling increases as | and m increase. The viscous forces
tend to suppress the gravitational radiation driven secular instability. Thus,
the only modes that are likely to be unstable in these stars are those with rel-
atively small values of [ and m. In practice the viscous forces are always found
to suppress the gravitational instability in modes with m > 6. In sufficiently
slowly rotating stars all of the modes (that have been examined) are stable. Tt
is useful therefore to define the critical angular velocity Qcrit where some mode
first becomes unstable, that is where

1

0 o) (28)
Figure 6 illustrates the critical angular velocities for a range of neutron star
temperatures.’® The critical angular velocity is displayed in units of Qmax
the maximum angular velocity for which there exists an equilibrium stellar
model. Figure 6 reveals that in very cool neutron stars, 7' < 107K, the critical
angular velocity is identical to Qmax. Thus, the viscous forces completely
suppress the gravitational radiation instability in these stars. Similarly in hot
neutron stars, T > 101K, the bulk viscosity suppresses the instability. Only
neutron stars with temperatures in the range 107 < T' < 10'°K are subject to
the gravitational radiation driven secular instability. Further, this instability
only occurs in the most rapidly rotating stars. Even for the most extreme
case, T ~ 2 x 10°K, only those stars with angular velocities greater than
about 0.96{Yma.x may be subject to the gravitational radiation driven secular
instability. Figure 6 illustrates that there is only a moderate dependence of
Qerit on the mass of the star. (More massive stars couple more strongly to
gravitational radiation and hence have somewhat lower Qerit-)

The discussion of the effects of dissipation up to this point has been based
on Newtonian hydrodynamics, with the effects of gravitational radiation added
as a small correction. Some work has been done, however, to estimate the ef-
fects of general relativistic dynamics on these results. Figure 7 illustrates the
critical angular velocities based on a calculation that uses the post-Newtonian
frequencies for the modes as described in Section 4.53 This calculation shows
that post-Newtonian effects tend to enhance the gravitational radiation insta-
bility in these stars. This increases the range of temperatures where this insta-
bility may set in, and lowers the critical angular velocities to about 0.91Qmax
in the most extreme case for 1.4Mg, stars. The effects of post-Newtonian hy-
drodynamics on these stability results are quite striking. It illustrates the need
for us to press on to a more accurate fully relativistic analysis of this problem.

The earliest studies of the secular instabilities of rotating stars were con-
cerned with the viscosity driven instability,® rather than the gravitational ra-
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Figure 6: The temperature dependence of the critical angular velocities of neutron stars.
The critical angular velocities criy are expressed in terms of Qmax the maximum angular
velocity for which there exists an equilibrium neutron star model.

diation driven instability discussed extensively here. The viscosity driven in-
stability occurs in a different set of modes, but the formalism described here
can easily be turned to study it. Such studies reveal that the viscosity driven
secular instability probably does not play any role in neutron stars at all. The
principle reason is that the viscosity driven secular instability only occurs in
stars with very stiff equations of state. In stars with polytropic equations of
state, p = kp”, the adiabatic index ~ must exceed 2.237 for a viscosity driven
secular instability to exist at all.5* The equation of state of real neutron star
matter appears to be not quite stiff enough. Analysis has shown that the vis-
cosity driven instability does not occur in any of thirteen realistic equations
of state for 1.4Mg neutron star models.36:5% These realistic equations of state
become stiffer at higher densities, however. In a few of the stiffest equations of
state, it has been found that the most massive neutron star models are subject
to this instability in the most rapidly rotating models. It remains to be seen
whether the actual equation of state in neutron stars is stiff enough to allow
this viscosity driven instability, and whether this instability plays any role in
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Figure 7: The temperature dependence of the critical angular velocities of neutron stars
using Newtonian (dashed curves) and post-Newtonian (solid curves) gravitation and hydro-
dynamics.

the astrophysics of real neutron stars.
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