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INTRODUCTION

It is well known that gravitational radiation tends to make all rotating stars
unstable.? Viscosity, however, tends to counteract this instability so that only
sufficiently rapidly rotating stars are in fact unstable.> In order to determine which
stars are stable, therefore, a detailed calculation of the pulsations of rapidly rotating
stars must be carried out, which includes the effects of viscosity and gravitational
radiation. Such calculations are very difficult. The problem of finding solutions to the
pulsation equations for rapidly rotating relativistic stellar models has never been
seriously attempted, let alone solved. Various approximate calculations have been
completed, however. For example, the equations that describe the pulsations of
rapidly rotating Newtonian stars have been solved, including the effects of viscosity
and gravitational radiation.”® These calculations are unrealistic due to their neglect
of relativistic effects in the equations for the structure and pulsations of the stars, and
due to their use of very idealized equations of state for the stellar matter. More
realistic calculations have also been carried out using the full relativistic equations
and using more realistic equations of state,> but these calculations are limited to
nonrotating stars. :

Although idealized, these calculations do give some approximate understanding
of the gravitational radiation instability in rotating neutron stars. The shear viscosity
of neutron-star matter scales with temperature like 772 Therefore, in sufficiently
cold neutron stars, the viscosity is so large that it completely suppresses the
gravitational radiation instability in all rotating stars. The approximate calculations
just described indicate that this complete suppression occurs when T < 10K. In
hotter stars the instability may occur, but only in stars rotating faster than about 90
percent of the maximum equilibrium angular velocity. In the very hottest stars, T >
5 x 10"K, the bulk viscosity (which scales with temperature like T°) becomes very
large and completely suppresses the instability in all rotating stars.

4This research was supported by National Science Foundation Grants AST-8817792 and
PHY-9019753.
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In an attempt to improve our understanding of these instabilities, we report here
on another approximate calculation of the pulsation frequencies of rapidly rotating
stars. In typical realistic neutron-star models the gravitational field is fairly weak in
the sense that GM/c’R is considerably less than one. Under these circumstances the
structure of the star and its gravitational field can be reasonably well approximated in
a post-Newtonian expansion of general relativity. Thus, we review (and extend) in
the next two sections the formalism developed by Cutler" for computing the
structure and pulsations of rotating stars in the post-Newtonian approximation. In -
the fourth section we present numerical results for the frequencies of the [ = m
f-modes of rapidly rotating neutron-star models. We illustrate the accuracy of this
method by comparing the post-Newtonian frequencies computed here with those
computed for nonrotating stars using the full general-relativistic equations. We show
that the post-Newtonian frequencies agree with the exact ones to within a few
percent. We then compute, in the post-Newtonian approximation, the critical
angular velocities where the frequencies of the ! = m f-modes vanish. These are the
angular velocities where these modes would become unstable to the gravitational-
radiation-induced instability in the absence of viscosity. We find that post-Newtonian
effects lower, by up to 8 percent, the ratios of these critical angular velocities to
vwGp,; where p, is the average density of the star. Thus, post-Newtonian effects tend
to make the gravitational radiation instability more important.

THE POST-NEWTONIAN APPROXIMATION

The dynamics of the material that makes up a general-relativistic stellar model is
constrained (if not completely determined) by Einstein’s equation,

_ 8nG

c4

G

T, @)

For our purposes it is sufficient to approximate the stress energy tensor of the stellar
matter as that of a perfect fluid,

T = (e + p)uu® + pg™, 2

where e is the energy density, p the pressure, and u*® the four-velocity of the stellar
fluid. The space-time metric is denoted g, and its inverse g*®. We limit our attention
here to cases where the pressure is determined completely by the energy density of
the fluid: p = p(e). Under these conditions the dynamics of the stellar matter is
determined completely by (1) and (2). Even under these idealized assumptions,
however, it is very difficult to find solutions to these equations except under the
simplest time-independent equilibrium conditions.

For most realistic stellar models the gravitational fields are relatively weak and
the fluid velocities are only a small fraction of the speed of light. Under these
conditions it is possible to approximate the solutions to (1) and (2) in a “post-
Newtonian” expansion. Following Chandrasekhar" (and for the notation used here,
Cutler') we expand the space-time metric, and the fluid variables as formal series in
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inverse powers of the speed of light 1/c™:

2 2
ds” = gupdedx® = —|1 + =0 + (P + V) + O(C_ﬁ)]czdtz

2 2
|54, + O™ [cdrdx” + o1 — S| + O(C")]dx" &', (3)
c
e=pc+ (o + 2p® — pv¥) + O(c7?), 4
1dp s »
p=p(p)+§d—p(0+2p<l>—pv)+0(c ) ©))

1
cu'=1+§(vz——2(l>)
1
+— - - —Yv +20°A, +w,)]| +0),
5o [0 = 300" — 2% — Yiv' + 204, + )] + 0™, (6)

1 1
U= Zv“ + 5w+ o(c™). @)
[

A particular choice of coordinates (¢, x) has been made in order to cast the
components of these quantities in this form."! The preceding equations serve as
definitions of the Newtonian fields, p, v°, and @, and of the post-Newtonian fields o,
w*, ¥, and A,, which represent the next order “corrections” to the Newtonian
quantities. Spatial indices are raised and lowered with the Euclidean metric 3,, (i.e.,
the identity matrix in Cartesian coordinates) and its inverse 3*; and v* denotes v°v,.

The equations that determine the Newtonian fields p, % and ®, and their
post-Newtonian counterparts o, w*, ¥, and 4%, are obtained by expanding Einstein’s
equation (1) and the associated conservation law, V,T°* = 0, as formal power series
in 1/c". Following Gunnarsen,” the coefficient of each power of 1/c in these
expansions is set separately to zero. The coefficients of the lowest order terms in this
expansion give the standard Newtonian equations for p, v*, and ®:

3p + Dy(pv) = 0, ®)
p(8,0° + v°D,w®) + D’p + pD°® = 0, )
D°D,® = 4wGp, (10)

where 9, represents the partial derivative with respect to ¢, and D, is the covariant
derivative associated with the spatial metric 3,, (i.e., just the partial derivatives 9/ox*
in Cartesian coordinates). The next-order terms in this expansion give the post-
Newtonian equations for the fields o, w®, ¥, and 4°. The resulting equations are
rather complicated (see Cutler'). Since these equations are not explicitly needed
here in their general form, we do not reproduce them. Suffice it to say that the
post-Newtonian fields o, w?, ¥, and 4° are determined by solving the post-
Newtonian analogs of (8)—(10). Finally, the Newtonian and post-Newtonian fields
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are combined as prescribed in (3)-(7) to produce a solution of Einstein’s equation
(1) in the post-Newtonian approximation.

POST-NEWTONIAN STELLAR OSCILLATIONS

Here we are interested in analyzing the pulsations of rapidly rotating stars in the
post-Newtonian approximation. Following the formalism described in the previous
section, this analysis begins with the solution of the Newtonian equations for stellar
pulsations. Fortunately, the solutions to (8)-(10) that correspond to small pulsations
of rapidly rotating Newtonian stars are well understood. A useful formalism for
finding these Newtonian pulsations has been developed in a series of papers by Ipser
and Lindblom.** We briefly review that work here.

Newtonian stellar models are the time-independent and axisymmetric solutions
of (8)—-(10). We limit our attention here to rigidly rotating stars, that is, those in
which the velocity is taken to be a constant multiple of the rotational Killing field:
v* = Q¢”. Under these conditions (8)-(10) reduce to

1 » dp

C=5vi-0- ' —— 11
2" o p(P) an
D"D,® = 4nGp, (12)

where C is a constant. Numerical techniques for solving these equations for se-
quences of rotating stellar models of given mass were developed by Ipser and
Lindblom® on the basis of the work of James."

Once a Newtonian stellar model has been found, its pulsations may be studied by
solving the linearized time-dependent equations for the small departures from
equilibrium of each of the fluid fields 3p, & v, and 8&. We will consider the solutions
for these quantities that correspond to normal modes, that is, those having time and
angular dependence ¢ ™*"*, The constant o is the frequency of the mode, and m is
an integer. Ipser and Managan'*'® showed that such perturbations are determined
completely by two scalar potentials 3U and 8®. The remaining fluid perturbations
are determined from these by the equations

5 = p 2F (8U — 50 1
p—pdp(8 ~ 39), (13)
Sv® = iQ*D,3U, (14)
where the tensor Q* is given by

* = A+ (A — D)zzb 20D"w” 15
Q o -mQ ( )22 o —mQf 1s)

In this expression z* is the unit vector that is parallel to the rotation axis and

» — mQ)

( ) (16)

(0 — mQ) — 407
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The potentials 83U and 8P are determined by two second-order equations that are
consequences of the linearized (8) and (10):

d
D,(pQ“D,3U) + (& — mQ)p 3127 (6 — 3U) = 0, a7

d
D*D5® + 4Gy i (3 - 3U) = 0. (18)

The methods needed to solve these equations numerically for rotating stellar models
have been developed by Ipser and Lindblom.%” The particular form of the pulsation
equations presented here applies only to the barotropic perturbations
[3p = (dp/dp)dp] of rigidly rotating stars. The equations for the general adiabatic
pulsations of arbitrary differentially rotating stars are qualitatively similar to (13)-
(18), only they are somewhat more complicated."”

Having found a solution of the Newtonian equations (8)-(10) that corresponds to
the pulsation of a rotating star, the next step in our analysis is to find the correspond-
ing solution of the post-Newtonian equations. As in the Newtonian case, the
post-Newtonian equations are solved in two stages. First, the time-independent
fields o, w*, ¥, and A° that describe the post-Newtonian corrections to the structure
of the equilibrium star are found. And then second, the time-dependent fields 3a,
dw*, 8%, and 84 “ that describe the small amplitude pulsations about this equilibrium
configuration are found.

The equations that determine the post-Newtonian corrections to a time-
independent rigidly rotating stellar model are:

oLy 20 QL‘ZAQ “ 19

wh=3lv" - + Q" (19)

DD, A* = 16wGpv*, (20)

D°D¥ = 4nG(c + pv* + 3p), (21)
1 AQ
AAC == —¥ - 200> +v°A, + vc*—
4 . 0

1gp » pdp
- (e—prt+2p®) + [ T (22
S+ 20)+ [ @

where AC is a constant. The Newtonian quantities that appear in these equations are
a time-independent and rigidly rotating solution to (8)—(10). In particular the
velocity is a constant multiple of ¢, the rotational Killing field: v* = Q¢°. The
quantity AQ) represents the post-Newtonian correction to the angular velocity of the
rotating star.? Thus, the full post-Newtonian angular velocity is 3 + AQ. We note
that the post-Newtonian equations (19)-(22), as well as those that appear through-
out the remainder of this paper, are (slightly) more general than those derived by

4Throughout this paper we use the notation AQ to denote the post-Newtonian change in a
quantity Q.
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Cutler," in that we allow here for the possibility that the Newtonian and post-
Newtonian angular velocities are not equal (i.e., AQ = 0).

Equations (19)-(22) are easily solved using the same techniques that were
developed to find the structure of a rotating Newtonian star.”" In particular, the first
step is to choose the post-Newtonian correction to the angular velocity of the star
AQ. There are two free parameters in selecting which (rigidly rotating) post-
Newtonian stellar model to associate with a given Newtonian model; the choice of
AQ is one of them. Having made a suitable choice for AQ), (19) determines the
post-Newtonian correction to the fluid velocity w*. The second step is to solve (20)
for the post-Newtonian gravitomagnetic field 4°. This involves the numerical solu-
tion of Poisson’s equation for the various components of A* (with the boundary
condition A4° — 0 as r — », where r is the spherical radial coordinate) using well-
known numerical techniques. The third step is to determine the post-Newtonian
gravitational potential ¥ by eliminating o from (21) and (22). The resulting equation
has the form

d
D*D,(¥ + c*AC) + 4’rerd—;(‘I’ + ¢?AC) = 4wG (2pv* + 3p — 2p®)

dp (1
+4qupd —p* =200 + v°4, + v ~—+f

d
PP) 23)

[p(®@)I

This is an elliptic equation for ¥ + ¢?AC whose right side depends only on the
Newtonian and the previously determined post-Newtonian fields. A boundary condi-
tion for this potential must be specified in order that this equation have a unique
solution. This boundary condition fixes the post-Newtonian correction to the mass of
the stellar model AM. This is the remaining free parameter needed to specify which
post-Newtonian model is associated with a given Newtonian model. It is possible, for
example, to select the post-Newtonian star with the same gravitational mass as the
Newtonian model. This is accomplished by imposing the boundary condition r¥% — 0
as r — », Alternative boundary conditions can be imposed by adding to this ¥ some
appropriate solution of the homogeneous version of (23). Once the appropriate
boundary condition has been selected, (23) can be solved numerically using standard
techniques.” Finally, having solved for ¥ + ¢?AC, the post-Newtonian field o is fixed
by (22).

The time-dependent fields 3o, d3w*®, 3%, and &84° that describe the post-
Newtonian corrections to the pulsations of a star are determined from the linearized
post-Newtonian equations [i.e., the time-dependent generalizations of (19)—(22)].
Cutler" has shown that the solutions to these equations having time dependence
e ~“*%X and angular dependence e™ are determined completely by two scalars 3W
and 3V and the vector 84° The other post-Newtonian fields are determined from
these by equations that are analogous to the Newtonian expressions (13) and (14):

d
30 =p d—; GW — W), (24)

oW = IQU[DAW — ic*Awdy, — i(0 — mQ)ad, — D,(v°34,) — 8B,].  (25)
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In these expressions Q% is the tensor defined in (15), Aw is the post-Newtonian
correction to the frequency of the mode, and 8B, is a rather complicated quantity
that depends only on the previously determined Newtonian and stationary post-
Newtonian fields:

d|( dp d’p
dp\Pdp| ~ Udpz

5B, =-D 2 _20) dp — 2 dl(scp— %3v,) ¥pw
a_p a (U P pdp v b p q

+0 1 +a AQ

- 2CI>+v2+p—D,,8CI>~ CI>+—v2—p——cz—D,,8U
p 2 p Q

wdp

pdp

+ iv, 3 — 2o — 3mQ)8d — [(0 — mQ)v, + 4iD,P]5°

5 AQ
+ D,(v"4,) ?p — iwc? — bu,

-D® o

20%8u, + 200 +

dp\ 3
v2+2<1>+—p)—p
dp| p

dp , A 8p
2<I>—%—2c Q) ,

+ (D, A, — D,A,)50".

- v”D,,v,,[ZvEBv‘ +

(26)
The equation that determines the vector 84° is
D*®D,8A4, = 16nG(v,dp + pdu,) — iewD . 27

This is simply Poisson’s equation with a source that depends only on the previously
determined Newtonian fields. It can be solved numerically using standard tech-
niques. The equations for the two scalar potentials 3W and 3¥ are inhomogeneous
generalizations of the Newtonian pulsation equations (17) and (18):

D(pQ”DdW) + (0 — mQ)p Z—; Y — d8W) =
Aw cY[dp + iD,(pQ™5v,)] + 8X,, (28)
D°D3¥ + 4wGp Z—; Y — 8W) = 4wGdX,. (29)
The linear operators on the left sides of these equations are precisely the same as
those in (17) and (18). The right sides depend on the post-Newtonian correction to

the frequency Aw, and the previously determined fields. In particular, the quantities
aX,, and &X,, depend only on previously determined fields:

83X, = —p(@ + mQ)d® + D,[pQ*[8B, + i(w — mQ)dA, + D,(v°34,)]}

+ mQjpv°d P, iD,||c +p + pD - *[8v°|, (30

mQpv v,,—dp+c Qﬁp +iD,/|o +p + p® — 5 pv’ |07, (30)
dp

3X, = v2+3d—F)8p+2pv,,8v". (31)

Now, the homogeneous versions of (28) and (29) admit a nontrivial solution, namely
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3U and 8®. It follows that the inhomogeneous equations will admit no solution at all
unless the sources on the right side are orthogonal (in an appropriate sense, see
Cutler") to this homogeneous solution. This constraint determines the post-
Newtonian change in the frequency:

Ao ¢ [ (pdurdu” + 8pdU*) dx = f[(m — mQ)sX,db* — 8X,3U*] d*x
+ifadd*dvn,d%x. (32)

The volume integrals are to be performed over the interior of the stellar model where
p > 0, while the surface integral is to be performed over the boundary of this region.
The outward directed unit normal to this surface is denoted n,. The surface integral
that appears in this expression is needed to enforce the boundary condition ¥ — 0
as r — oo, It arises because 3V is not continuously differentiable at the star’s surface
unless o = 0 there. The post-Newtonian correction to the frequency Aw is completely
determined by evaluating these integrals. It can be shown that Aw is real whenever o
is real. Once Ao has been determined, (28) and (29) can be solved for the potentials
SW and 3. Note that it is not necessary to determine these potentials if only the
frequency of the mode is desired.

NUMERICAL RESULTS

We have used the methods described in the previous section to evaluate
numerically the post-Newtonian corrections to the pulsation frequencies of rapidly
rotating neutron stars. For this study we have selected a simple polytropic equation
of state, p = 10°p? (in cgs units), whose parameters were chosen to reproduce
approximately the macroscopic properties of more realistic neutron-star models.

This analysis begins with the construction of an appropriate sequence of equilib-
rium rotating stellar models. Even for nonrotating stars, there is freedom to select
which post-Newtonian model to associate with a given Newtonian model. After a
certain amount of numerical experimentation, we found it to be convenient to
associate nonrotating models having the same M/R ratios, where M is the gravita-
tional mass and R is the radius of the star (see also Balbinski et al.*®). This constraint
is imposed by adding to any given solution to (23) a sufficient amount of the
homogeneous solution so that AR/R = AM/M. In this study we consider post-
Newtonian models having gravitational mass M + AM = 1.400 M, The values of M
and R for this model are listed in TABLE 1, along with the corresponding values for
the Newtonian and general-relativistic stellar models based on the same equation of
state and having the same M/R ratio. We note that relativistic effects are fairly
important in these stellar models: AM/M = —0.2. We also note that the post-
Newtonian parameters agree with the general-relativistic values to within about
(AM/M)* = 0.04. This is the expected magnitude of the second-order post-
Newtonian corrections.

A sequence of rotating Newtonian stellar models is constructed numerically
using the methods developed by Ipser and Lindblom.*” Each model in this sequence
has the same mass, M = 1.736 M,, as the nonrotating model previously selected.
Associated with this sequence of Newtonian models is a sequence of rotating
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post-Newtonian models, each with mass M + AM = 1.400 M, Having selected the
mass of the post-Newtonian models, there is still the freedom to choose the
post-Newtonian correction to the angular velocity for each model in the sequence. It
might appear natural to allow the post-Newtonian model to have the same angular
velocity as its Newtonian counterpart: AQ2 = 0. Numerical experimentation shows,
however, that this is in fact a poor choice. The reason is that post-Newtonian gravity
is stronger than Newtonian gravity. Thus, a post-Newtonian star will be less distorted
in shape by its rotation than its Newtonian counterpart rotating at the same angular
velocity. In fact the 1.400 M, post-Newtonian star that rotates at the maximum
angular velocity of our sequence of 1.736 M,, Newtonian models is not particularly
rapidly rotating. It is more appropriate, therefore, to associate models whose angular
velocities are related in some more dynamically meaningful way. Various studies”**
have shown that sequences of rotating stellar models all terminate when the ratio
/Q, = 0.6, where Q2 = wGp, = 3GM/AR® (with M the mass and R the radius of the
nonrotating star in the sequence). This result applies to both Newtonian and
general-relativistic stellar models, and is essentially independent of the equation of

TABLE 1. NONROTATING STELLAR PARAMETERS*

O Oy + AQpy Oor

MM, 1.736 1.400 1.352
R(km) 15.343 12.374 11.959
Q™) 6917 8256 8871

—0,/0, 1.416 1.423 1.374
— 0,0, 1.960 1.854 1.801
— 0/, 2351 2177 2.124
— g0 2.667 2.448 2.393
~ gy 2.939 2.684 2.629

*The Newtonian (Qy), post-Newtonian (Qy + AQpy), and general-relativistic (Qgx) value is
given for each quantity.

state of the stellar material. This ratio is, therefore, a dynamically meaningful
measure of the star’s angular velocity. Thus, we choose the angular velocity of the
post-Newtonian stellar model so that this ratio is the same as its Newtonian
counterpart: A({/€),) = 0. This condition is equivalent to AQ/Q2 = AL, /Y,

A sequence of stellar models (Newtonian or general relativistic) terminates when
the angular velocity of the star is equal to the angular velocity of a test particle that
orbits at the star’s surface in the equatorial plane. For Newtonian stellar models this
orbital or “Keplerian” angular velocity is given by the expression

1dd

x = ;Fr—’ (33)

where the quantity on the right side is to be evaluated in the equatorial plane at the
surface of the star. The sequence of equilibrium stellar models terminates when () =
Q. For the equation of state used in this study, this maximum angular velocity occurs
at ,/Q, = 0.635. By solving the geodesic equation for the metric in (3), the
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post-Newtonian correction to the Keplerian angular velocity is found to be

1

AQ, =
T e,

40 Y 0,d@A) 409 (d0 wlal s
dr+dr_Q dr +"dr +c dr e (34

where the quantities on the right side are evaluated in the equatorial plane at the
surface of the star, and Ar represents the post-Newtonian change in the radial
coordinate of the surface of the star at the equator. The sequence of post-Newtonian
stellar models considered in this study terminates at £}, /Q, + A(£2,/€),) = 0.634. This
near equality between the Newtonian and post-Newtonian values of Q,/€), shows
that it is appropriate to associate the Newtonian and post-Newtonian models having
the same (}/€), ratio.

Having constructed an appropriate sequence of rotating post-Newtonian stellar
models, it is fairly straightforward to determine the post-Newtonian corrections to
the frequencies of the modes Aw. The first step is to solve (27) for the potential 34°.
This can be accomplished using fairly standard numerical techniques. The second,
and final, step is to evaluate the integrals in (32). The details of the numerical
methods involved in these steps will be published in a forthcoming paper on this
work.

We have used the techniques just described to investigate the properties of the
! = m f-modes of rapidly rotating neutron stars. These are the modes that are most
subject to the gravitational-radiation-driven secular instability.*"** The frequencies
of these modes for the nonrotating stellar models previously described are given in
TABLE 1 for 2 < m < 6. In this paper we are concerned with the modes that
propagate in the direction opposite to the star’s rotation (i.e., the/ = m modes), so
o,,(0) is negative. For comparison, the frequencies of these modes for the correspond-
ing general-relativistic stellar models are also given in TABLE 1. We expect that the
post-Newtonian approximation will give the frequencies of rotating stars to a similar
level of accuracy. It is convenient to describe the frequencies of the modes of rotating
stars in terms of the dimensionless function®’

0, () - mQ
,,(0)

The post-Newtonian correction to this function, Aq,, (), is related to the post-
Newtonian change in the frequency of the mode, Acw,, (12), by

o, (Q) = (35)

Ao, () = (0) [A0, () — mAQ -, (DAa, (0)]. (36)

The Newtonian functions «,, (2) and their post-Newtonian counterparts o, ({2) +
Aa,, (2) are depicted in FIGURE 1. We note that the post-Newtonian functions are
smaller than their Newtonian counterparts by as much as 10 percent.

The I = m f-modes are unstable to the emission of gravitational radiation when
the angular velocity of the star exceeds the angular velocity where the frequency of
the mode passes through zero. Thus it is of great interest to determine the values of
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FIGURE 1. The angular-velocity dependence of the frequencies of the / = m f-modes for 2 <
m < 6. These frequencies are displayed as the Newtonian (dotted curves) and post-Newtonian
(solid curves) values of the functions a,,({2) [®,(©2) = — mQ)/w,,(0). Key: - Newtonian; ——
post-Newtonian.

these critical angular velocities. The Newtonian equation for the critical angular
velocities o, (£2,) = 0 can be transformed into the form

—= - o, (). 37

This equation is easily solved numerically, since the function a,, as defined in (35) is
slowly varying. The post-Newtonian condition for a critical angular velocity is o, +
Aw,, = 0. This may be transformed into an equation for AQ, using the expressions for
a,, and Aq,, in (35) and (36):

AQ
Q

&, (Q.)Alw, (0] + [0, (0)/Q] A, (Q,) + [Q,0, (0] [da, (,)/d 2] AQ,
m + @, (0) [do,,(Q)/dQ] :
(38)

We find no critical angular velocity (Newtonian or post-Newtonian) having ) <
for the I = m = 2 mode. The values of the critical angular velocities are given in
TABLE 2 for the 3 < m < 6 modes. The ratios of the post-Newtonian critical angular
velocities to ), are smaller than their Newtonian counterparts by up to about 8
percent. (Since the post-Newtonian £, is larger than its Newtonian counterpart by
about 20 percent, the actual critical angular velocity of the post-Newtonian star is
larger, however.) Thus, post-Newtonian hydrodynamic effects tend to lower the
maximum value of this ratio in rotating neutron stars by up to about 8 percent. In
order to determine the actual upper limit on the angular velocity, however, a more
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complicated calculation that includes the effects of gravitational radiation and
viscous dissipation on the modes would have to be carried out.?

The angular velocities of rotating stellar models are often parameterized by the
dimensionless quantity T = —K/W, the ratio of the rotational kinetic energy of the
star to its gravitational potential energy. We use the general-relativistic definitions of
these quantities given by Friedman, Ipser, and Parker:"®

Q B
K= [ (c+p)ud,uds, 39)

W= [ (12 + p)uu® + (¢ — p) g™]1, — eu®}dS, — K, (40)

where ¢, is the globally timelike Killing field, ¢, is the rotational Killing field, and the
integrals are performed over a ¢ = constant hypersurface with volume element dS,,.
Using the expansions in (3)-(7) for the various quantities that appear in these
integrals, expressions may be obtained for K and W in the Newtonian and the
post-Newtonian approximations. The first-order terms in these expansions are the

TABLE 2. CRITICAL ANGULAR VELOCITIES

Q. o .0
I=m Q 9 %q w 1o + At
3 0.610 0.583 0.0798 0.0615
4 0.560 0.522 0.0582 0.0439
5 0.515 0.475 0.0453 0.0340
6 0.477 0.436 0.0368 0.0277

standard Newtonian expressions for K and W:%
1
= -2- f pv2 dsx, (41)

W=1f ® d’ (42)
2J PEAx

The post-Newtonian corrections to these quantities are given by the second-order
terms in the expansions of (39) and (40):

AQ
(0’ + p — 4p® + 2pc? —)v2 + pfA,

3
) d’x, (43)

S

AW = —8K +— [ o[ ~137® — @ + 20t 4 29 + 62t 2 4 20
2?d [P 2 ) ‘

d
+4p(@® - 3®) + (302 + 20) + 62’;; (o + 2p® — pv®)|d’x. (44)

We have evaluated the ratio 1 = —K/W and its post-Newtonian correction At =
KAW/W? — AK]W for the stars rotating at the critical angular velocities of the = m
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f-modes. These values are given in TABLE 2. We note that the values of 7, + Ar, are
reduced from their Newtonian counterparts by almost 20 percent. This large
discrepancy is due to the fact that = = 7(Q) is a rather nonlinear function of ). We
have also evaluated 7 for the stellar model rotating at the maximum angular velocity
of the sequence. We find 7 < 0.1026 for the Newtonian sequence of rotating stars,
and 7 + Ar < 0.1035 for the post-Newtonian sequence.

QAW

@~

19.
20.
21.
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