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INTRODUCTION

Rotation plays an essential role in determining the observable properties of a
number of interesting astrophysical phenomena, for example, the accretion disks
that we observe as compact x-ray sources and active galactic nuclei, and the rapidly
rotating neutron stars that we observe as pulsars. This paper is concerned with the
mathematical problem of describing the oscillations and determining the stability of
these objects. Such oscillations may eventually be observed as temporal variations in
the radiation emitted by these sources. And, the effects of such instabilities may
eventually be observed -either directly—by watching the dynamical evolution of
unstable objects, such as too-rapidly rotating supernova cores—or indirectly—by
measuring the physically allowed range of equilibrium states, such as the maximum
angular velocities of neutron stars. The quantitative understanding of the oscillations
and stability of rotating self-gravitating fluids must form the foundation for any deep
understanding of those observations that measure the dynamics of these astrophysi-
cal phenomena. ‘

A mathematical technique—the two-potential formalism—has been developed
in recent years'-? that provides a relatively simple and elegant description of the
oscillations of rotating self-gravitating fluids. In this approach the equations that
describe these pulsations are reduced to an eigenvalue problem whose eigenfunc-
tions are a pair of scalar potentials: one potential that describes the hydrodynamic
perturbations and a second that describes the gravitational perturbations of the fluid.
All other perturbation quantities, such as the fluid’s velocity perturbation or the
Lagrangian displacement, are determined as linear combinations of these potentials
and their derivatives. This formalism was designed to describe the adiabatic oscilla-
tions of equilibrium fluid states that may have arbitrary differential rotation, and an
arbitrary—possibly nonbarotropic—equation of state.> The first application of this
formalism was to evaluate numerically the modes of rapidly rotating neutron stars.**
The effects of gravitational radiation and viscosity on the stability of those modes
have also been determined using these techniques.® The mathematical simplification
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that leads to the two-potential formalism has proved to be remarkably adaptable. It
has been extended to include post-Newtonian effects on the oscillations of rotating
stars.”8 It has also been adapted to describe the perturbations of a rotating fully
general-relativistic fluid in terms of one scalar potential—to describe the hydrody-
namic perturbations—and one tensor—to describe the perturbations in the space-
time metric.® For nonrotating relativistic fluids this description reduces to an
eigenvalue problem that again involves only a pair of scalar potentials.’!!

We believe that the two-potential formalism is a powerful tool that will have
numerous additional astrophysical applications. In particular, we believe that these
techniques will be useful in the study of astrophysical disks. One motivation for
preparing this paper for this volume, then, is to provide a succinct review of this
formalism in a representation that is appropriate for the study of disks. In particular,
we present the formalism here for the case of the general adiabatic perturbations of
differentially rotating fluid states that may have nonbarotropic equations of state. We
also give explicit representations of the differential equations and the integral
variational-principle expression for the frequencies of these modes in cylindrical
coordinates. These new coordinate representations of the equations are probably the
most suitable for the analysis of disks. The explicit coordinate representations of the
equations presented here reveal an interesting fact that was not transparent in
previous covariant discussions:? the variational-principle expression for the pulsation
frequencies is valid even when those frequencies are complex. Thus, we think that
the variational principle may be a useful tool for investigating the dynamical stability
of rotating fluids.

THE TWO-POTENTIAL FORMALISM

The oscillations of a rotating self-gravitating fluid are described by the solutions
of the linearized fluid equations:

39p + vV, dp + V, (pdv?) = 0, 0))
: Ve d3pVe
3,5v° + 1PV, 807 + dubVu® = ~ pp + il 2P + V3P, 2)
p
VeV 3D = — 4uGdp. 3)

In these equations 8p represents the perturbation in the fluid density, 3p the
perturbed pressure, dv? the perturbed fluid velocity, and 8 the perturbed gravita-
tional potential. Those quantities without the prefix 3 represent the equilibrium
values of those fields. The equilibrium state whose perturbations are being studied is
assumed to be stationary and rotationally symmetric, and the equilibrium fluid
velocity is assumed to be purely rotational. Time derivatives in these equations are
denoted 4,, while V, represents the three-dimensional spatial covariant derivative
(i.e., just the partial derivatives §/ax? in Cartesian coordinates).

We are interested in the normal mode solutions to (1)—(3), that is, those solutions
having time dependence e, where the frequency o is a constant. Since the
equilibrium configurations are axisymmetric, the angular dependence of the sepa-
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rated solutions has the form €%, where ¢ is the angle that measures rotations about
the symmetry axis of the star and m is an integer. The solutions to (1)-(3) having
these properties are completely determined by two scalar potentials, U and 8,
which have the form

U = dUggiot+ime, (@)
3D = dDgiortime, (5)

where 8Uj and 8®, are independent of ¢ and ¢. All of the fluid perturbations are
determined by these two potentials and their derivatives:

5p = p(8U + 8D), (6)
ap P '
dp = (ap)f’p +1i o 54, @)
7 = iQP[V,0U + p(3U + 5P)4,). (8)

Equation (6) is essentially the definition of 8U, (7) is the condition that the
perturbation be adiabatic, and (8) is equivalent to (2) for these perturbations. In
these expressions ¢ = o + m{} is the frequency of the mode as measured in a frame
rotating with the (position = dependent) angular velocity of the fluid . The
thermodynamic derivative (dp/dp); is to be computed at constant entropy per unit
mass 5. The vector 4, and the tensor Q°* depend only on the equilibrium configura-
tion and the frequency of the mode o:

A==V - 2] v
ﬂ_p2 aP — '317; al | » (9)
d'
ab=l\_ — Ac b &b eac| _dep
Q p (02 — AV p)g® + 2ipberc| o), A,

w4
— 2w + Vipqb — i@”e”‘(omc - Td ch) . (10

The scalar A, which is proportional to the determinant of 9, is given by
A = oot — 0249Y,p — 26V, + 24%,(V,p| 1. (11)

The vector w® = (V X v)? = €% Vv, is the vorticity of the fluid; Q¢ = Q27 is the
angular velocity vector; z¢ is the unit vector that is parallel to the rotation axis, and 2
is the unit vector in the ¢ direction; spatial indices are lowered and raised by the
metric g, (i-e., the identity matrix in Cartesian coordinates) and its inverse g, and
finally e = €?$_ where €% is the totally antisymmetric tensor whose components
have the values =1 or 0 in Cartesian coordinates. The Lagrangian displacement &, is
also determined by the two potentials 8U and 8% via (8) and the formula:

dvt. (12)
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The two potentials 3U and 5@ are determined in turn by the two second-order
partial differential equations:

V,(p0%V,5U) + T33U = —p?Q%A,V 50 — ¥,50, 13)

4nGp?

VY30 + 4nGT P = ——

A,0%V,BU — 4nG¥ 13U, (14)

which are equivalent to (1) and (3) for these perturbations. The scalars ¥y, ¥, and
¥, depend only on the equilibrium fluid state and the frequency of the mode o:

o P,
q’l - p(ap): - O_AaQa Ab3 (15)
W, = 0¥ + V,(p’0%A4p), (16)
02
Ty = W, +im = (O — Qo 17

where  is the radial distance from the rotation axis. The solution of (13) and (14)
for the functions 3U and 8@ that satisfy the appropriate boundary conditions is an
eigenvalue’ problem. One boundary condition is that the perturbed gravitational
potential & must vanish at infinity. The second boundary condition, that the
Lagrangian perturbation in the pressure Ap = 8p + £V, p must vanish on the surface
of the fluid, is automatically satisfied by the bounded solutions of these equations if
the density p vanishes on the surface of the equilibrium configuration.

It is often helpful to have a variational principle for the pulsation equations that
can be used as a tool for estimating the frequencies of the modes. Such a variational
principle for (13) and (14) is given by

5= o= [ Ip(o0 - w0V, 061V 0, 12Y) L2 spte0
=5 ) |p(eQ? — iwQ V)V = Vol ~ ) — 7 UT

5 sUt
—| + 804, V,|—
g g

— ¥, (3018 + 3PV + SCDSU*)] d*, (18)

2
+ %(cQ“" — w0V, 04Y) 5D,

Va3V, 5P
+ 4G

where d3 is the proper spatial volume element, and the adjoints 38U and 8®* are
defined by

U = JUpe wt=ime, 19)
3Dt = Py ier-ime, (20)
This expression (18) is a variational principle in the sense that arbitrary independent

variations of § with respect to 8U, and 8, vanish if and only if (13) and (14) are
satisfied. The proof of this is given by Ipser and Lindblom? for the case of real w. A
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proof is given in the last section of this paper for the case of complex . The
frequencies of the modes are estimated by using the equation S = O to “define” w asa
function of 38Uy, 8®,, and m. For given 38U, 8®, and m, S depends only on w, and
consequently the zeros of S determine w. The stationary values of w—with respect to
infinitesimal variations in 80, and 8®,—are eigenvalues therefore of (13) and (14).

In practice the eigenvalues  of (13) and (14) may be estimated using (18) by first
selecting a set of trial eigenfunctions 8Uy(\;) and 3®g()\;) that depend on N
parameters \;. The optimal values of these parameters and the best estimate of w are
then obtained by solving S = 0 together with S/d\; = 0 for each \;, keeping dw/d\; =
0 (the Ritz method). We note that this version of the variational principle involves
parameterizing both trial potentials 83Uy and 3®y. When (14) does not depend on w, a
more efficient variational principle exists® that involves parameterizing only the
single potential 8Uj. In this case, 3@, is considered to be the function of 3U, that is
obtained by solving (14). However, in the case of fluids where 4, = 0 (like the hot
material in an accretion disk), (14) does depend on w, and so the more complicated
variational principle given in (18) must be used.

Self-gravitational effects are often negligible in accretion disks. In this case (the
Cowling approximation), the two-potential formalism simplifies considerably: The
fluid perturbations are determined from the single potential 3U by setting 8® = 0 in
(6)—(8). The potential 8U is determined in turn by the single partial differential
equation obtained by setting 8® = 0 in (13). The frequencies of the modes in this
approximation may be estimated with the aid of the variational principle obtained by
setting 8® = 0 in (18).

CYLINDRICAL COORDINATES

The covariant form of the two-potential equations, (14) and (13), is simple and
compact. The equations are most conveniently derived in this form,* and abstract
manipulations of the equations are often easiest using this form as well. The
covariant form of the equations also has the advantage that it can be transformed
into any convenient choice of coordinates in a perfectly straightforward manner.
However, before any explicit solution of the equations can be found it is inevitable
that the equations must be expressed in some particular choice of coordinates. For
the study of accretion disks, we feel that cylindrical coordinates are the most natural
choice. Therefore, we present in this section the explicit representation of the
two-potential equations in cylindrical coordinates.

Let z, w, and ¢ denote the standard cylindrical coordinates: z measuring
translations parallel to the rotation axis, w the radial distance from the axis, and ¢
measuring rotations about the axis. In cylindrical coordinates, then, the equations
that express dp and the components of 322 in terms of the two potentials 8U, and 8@,
are given, via (4), (5), (7), and (8), by

Q\p? A? 38T,
op = (¥, (38U, + ddg) ’—EFAWSUO — ?Am -

dYy| ..
gltime, 1)

Ap?
- [024, — 20(4,0, + Agwg)]
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A 2mQ
o =i p o[04, — 204,00, + Agwe)J8Us + 3Do) + —;AwBZPSUO

adU, adly . .
+ (0% ~ Agdup — 20w,) Y + AL8,p gltime

@

(22)

20
8u™ = i =5 pa?Ao8Us + 30g) + —— (0 - A,3,p)3U,

A
o3

U,
0] eim(+im¢p, (23)

+((72—Aap)£UO+A a.p
ZV2, am oY, aZ

A
dvP = — {p[(fz(Azmm — Ayw,) — 200 4,0, + A 0,)[8Up + 3Py)
@

_ _ 2( 2270
(02 —A,0,p — AydopBUs + 0% |0y 5 am)

o

adU, adU,
0 O)] ein-imq;. (24)

+ (‘Azmz +Ammm) (azp .F‘ID'_ - amp oz

The components of 4, and w, used in these expressions are given by

A, 0.p 0.p
1 1/o

Aq|==|0ap __2(_") 30|, (25)
p p*\0p;

A 0 0

2Q + wa )

wg| = —wd )

® 0

(26)

and the scalars A and ¥, are given by

A =oYo* — 0%A4,0,p + A d.p + 200,) + 200A,0, + A 0q)8,p], 277
2p°\0
o

LAYy
aP); - ) (‘Az +AG) +

\Pl =p Az(‘Azmz + Ammm)' (28)

In transcribing the covariant expressions for these quantities into cylindrical coordi-
nates we have made repeated use of the identity 2Qw,, = A; 35 p — Ag 9.p, which is
satisfied by these equilibrium fluid configurations. The shorthand 9,p = dp/dz, 05p =
dp/ 3w, etc., is sometimes used to denote partial differentiation in these expressions.
We note that the covariant and contravariant z- and w-components of vectors are
equal, 8 = dv, and 3v® = dv,,, while the p-components are related by dv,, = w2,
The components of the Lagrangian displacement £ are related to the components of
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the perturbed velocity, via (12), by

& odv?

i
£ = - e odu® . (29)
4 adv® — i3179,8) — idUT0,5)

The potentials 8U; and 8®,, which depend only on z and w, are determined by
the cylindrical coordinate representations of (13) and (14):

d [pA d [dU;  pr a (38U,
Pl (02 — Ay dap — 20w,) 62( + 02Aﬁ,azp ol
1 9 [pAw d [8U, pr\w d {dU,
i Lty g B SR et} I ivhad i
w i@ | o2 (o 2:p) Bm( o * o? Aad:p z\ o
v 3 [pA)\ mo 0 [pwA, 2A U,
+03_m0620'~m8m e | TPl
2
p2\ 20 3P, 03D,
== P z a2 (141(”1 +Amwm) oz Y S
mp?
e ‘Pz + —0'_ (AZAZ + AWAW) 8@0, (30)
4G | 922 +m8mmam G 17 a2 0
2
= —_— _— + — —
- St s 4| 20 4 L
mp?
— |+ — (A4, + A AL)| 8T, (31)

The scalars ¥; ¥, and ¥; that appear in these equations are given by (28) and

v v a [p® P 2Q 4 1 9 [p°Aw
2_01+BZ p z_o_z(Azwz+ mwm) +'E|'6'E|’ P Am? (32)
2
mp*\
Y, =¥, + A (Amazp _Azamp) (Az“)z + Amwm)
ctw
mp?\
+ s Awy — Ay, — 204,), (33)
and the quantities A,, A, and A, are defined by
= —0‘2(.02 + (‘Azmz +Ammm)azp . (34)

Am
ko)
A‘P 0'(0-2 - Azazp - Amamp)/m
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For real values of the frequency w, (30) and (31) are real; thus the potentials 3Ujp and
5@, may be taken (without loss of generality) to be real. For cases where the
frequency is complex, however, these potentials will necessarily be complex as well.
We point out that these coordinate representations of the equations are significantly
more complicated than their covariant counterparts. This illustrates why the covari-
ant expressions are in many cases a more convenient choice for abstract manipula-
tions.

THE VARIATIONAL PRINCIPLE
As we remarked earlier, a variational principle is often a useful tool for
estimating the eigenvalues of partial differential equations. In order to facilitate the

use of (18) for the study of the pulsations and stability of accretion disks, we present
here its transcription into cylindrical coordinates:

—ff’ (02 — Agydgp — znmz)laz

U, 2p\
+;5(02 A,0 ZP)[ ( . ” + 74t

d [pA,

BUO
g

an 3

Bm

2 |[BUO
— mpA,| =

aUO)

g

80,

g

mo 3 [pwAy

—_ ‘\I[ —
o¥; — mO'aZ

w 0w Iy

2p2A

+ o 3Py —

2Q
0z
2

Az_ngmz+Amm)
27 | s, 2 D (AA, + AgAy)| SUBD
+. P w 0813 P - + o2 ( A + AgAg 090

1 |{03Dg|2  [38Dy|2 m? 5

+ yoved| e ) + Py ) + vt ¥, | (3Dp)} wd wdz, 35)
where the integral is to be carried out over the w = 0 half-plane. The various
functions that appear in (35), for example, A, ¥, A,, etc., are expressed in terms of
cylindrical coordinates in the previous section. It is straightforward (but somewhat
tedious) to verify that the variation of this S with respect to 83U, vanishes if and only if
(30) is satisfied, and its variation with respect to 8@, vanishes if and only if (31) is
satisfied. It is also straightforward to verify that S = 0 when (30) and (31) are
satisfied. The calculations needed to verify these relationships do not depend on the
frequency w being real. It follows, then, that this variational principle is valid even for
modes having complex frequencies. It should be suitable therefore for the study of
the dynamical instabilities of rotating stars and accretion disks. The derivation of the
variational principle presented here generalizes the work of Ipser and Lindblom? by
showing that it applies to modes having complex frequencies. The original argument
was based on a covariant analysis of the equations and used the fact that the tensor
o0 — iwQ*V N¢* was Hermitian. This tensor is not Hermitian unless the

2|,
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frequency o is real, however. Thus, the proof given by Ipser and Lindblom? fails for
complex . However, as we have shown here, the vanishing of the variations of the
functional S is equivalent to the pulsation equations even for complex «. Thus the
variational principle is valid even in this more general case. This is one example, then,
when the analysis of the coordinate representations of the equations lead to an
important insight that was not apparent in the covariant analysis.
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