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Instabilities in Rotating Neutron Stars

S I

The maximum angular velocity of rotating neutron stars—and hence the
minimum pulsation period of pulsars—is determined by the instabilities
to which these objects are subject. This paper reviews the properties of
the gravitational-radiation driven instability that is presently believed to
limit the rotation of neutron stars. Numerical models of these instabilities
are described along with estimates of the maximum angular velocities of
rotating neutron stars. )

1. INTRODUCTION

Numerous pulsars have been observed with millisecond pulsation periods, and more
are being discovered each year. At present the shortest of these periods is 1.56 ms
in pulsar PSR1937+21,! followed by 1.61 ms in PSR1957+20.? It is of considerable
theoretical interest to understand what physical mechanism limits these periods,
and to determine quantitatively what those limits are. The standard model of a
pulsar is a neutron star whose pulsation period is determined by the star’s rotation.
This paper explores the instabilities that limit the rotation rates of neutron stars
and hence, in the standard model, the pulsation periods of pulsars.
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The angular velocities of rotating stars are limited by the nature of the equi-
librium equations as well as by the existence of unstable solutions to the dynamical
equations. The equilibrium states of neutron stars are expected to be rigidly rotat-
ing within a few years of their birth. The viscosity of neutron-star matter damps
out differential rotation on a time scale of about® r ~ 107T¢ s, where Tp is the
temperature in units of 10°K. Since the interior temperature is expected to drop
to Tp ~ 1 within a few years after its birth,* a neutron star is expected to be
rigidly rotating after this time. Rigidly rotating stellar models can exist only if the
angular velocity of the star does not exceed the “Keplerian” angular velocity of
the equatorial circular orbit that coincides with the star’s surface. Various studies
indicate that this equilibrium limit on the angular velocity of a neutron star is given
approximately by Q@ < Qmax & 0.6 \/7Gp,, Where j, is the average density of the
non-rotating star of the same mass.5® This limit appears to be rather insensitive
to the equation of state of the stellar matter and applies to both Newtonian and to
general-relativistic stellar models.

The angular velocities of rotating neutron stars may be limited further by
the existence of unstable solutions to the dynamical equations. It appears that a
gravitational-radiation driven instability is probably responsible for determining
the maximum angular velocity of a neutron star. This instability was discovered
by Chandrasekhar,” and was shown to be generic (i.e., it tends to make all ro-
tating stars unstable) by Friedman and Schutz.®® Therefore if no other physical
mechanism operates, the maximum angular velocity of a neutron star is zero.

The action of the gravitational-radiation instability is not difficult to under-
stand. Consider a neutron star that rotates with angular velocity 2, and a small
perturbation of this star having time dependence e~ and angular dependence
¢™$ with m an integer. This perturbation propagates with angular velocity w/m
in the direction opposite the star’s rotation (assuming m > 0) in sufficiently slowly
rotating stars. (Note that with this sign convention, w < 0 for these perturbations.)
Figure 1 depicts this situation schematically for m = 4. These perturbations cre-
ate time-dependent mass-multipoles, which causes the star to emit gravitational
radiation having negative angular momentum. The perturbation itself has nega-
tive angular momentum—since it propagates in the direction opposite the star’s
rotation—and so the gravitational radiation reduces the perturbation’s amplitude
in order to conserve angular momentum. Thus gravitational radiation damps out
the perturbation. In sufficiently rapidly rotating stars these perturbations are forced
to move in the opposite direction. The waves are in effect dragged along by the fluid
in the star. In this case the star emits gravitational radiation having positive angular
momentum. Since the angular momentum in the perturbation is negative—it still
propagates against the rotational flow of the star—the perturbation’s amplitude
must grow in order to conserve angular momentum. Thus, any counter-rotating
perturbation will become unstable when the star rotates rapidly enough to force it
to corotate with the star.

This gravitational-radiation instability is quite generic. These perturbations are
rather superficial and propagate much like waves on the surface of the ocean. Thus,
the speed of the wave relative to the matter is rather independent of the rotation
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FIGURE 1 Representation of anm = 4 perturbation of a rotating neutron star

of the star. To a fairly good approximation, then, the angular-velocity dependence
of the frequency of a perturbation is given by w(Q) =~ w(0) + mS), where w(0)
is the frequency when the star is not rotating. These perturbations will reverse
direction at the angular velocity where the frequency passes through zero, that
is, when Q & —w(0)/m. It is easy to see why the instability is generic from this
formula. The frequencies of the modes of nonrotating stars increase with m roughly
as \/m. Thus the angular velocity where a perturbation becomes unstable varies
with m approximately as € o 1/y/m. An unstable perturbation can be found in
any rotating star, therefore, simply by choosing m sufficiently large.

We know of course that all rotating stars are not unstable. The argument
outlined above merely shows that some other physical mechanism must act to pre-
vent gravitational radiation from driving these perturbations unstable. One such
mechanism is internal dissipation in the stellar matter.1® Viscosity and thermal
conductivity quickly damp out any large gradients in the velocity or thermal per-
turbations. Those perturbations with angular dependence ¢'m% have gradients that
increase as m increases. Thus, the time scales for the internal dissipation mech-
anisms to damp out a perturbation tend to decrease as m increases. In contrast,
the time scale for gravitational radiation to drive a perturbation unstable becomes
very long as m gets large. This is because the radiation couples more weakly to the
higher mass-multipole moments. Thus, for sufficiently large m, viscosity will sup-
press the gravitational-radiation instability.!! As a consequence, sufficiently slowly
rotating stars are stable. ,

While the presence of dissipation ensures the stability of some rotating stars, it
also complicates considerably the analysis needed to determine which stars are actu-
ally stable. If the viscosity is large enough, for example, the gravitational-radiation
instability can be suppressed in all rotating stars.!? If the viscosity is very small,
however, only the most slowly rotating stars will be stable. In order to determine
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which stars are stable, then, a detailed analysis of their perturbations must be car-
ried out which includes the influences of gravitational radiation and viscosity. The
remainder of this paper outlines the techniques that have been developed during
the past several years to carry out this analysis, and some of the numerical results
of that work are described.

2. THE THEORY OF STELLAR PULSATIONS

Consider the perturbations of a rotating star with time dependence e~ and an-
gular dependence ¢™#. (Since the analysis of such perturbations has only been
completed to date in the context of Newtonian physics, the discussion here will be
limited to that case.) All of the properties of such a perturbation are determined
by two scalar potentials 6& and §U.1213 The potential §® represents the perturbed
Newtonian gravitational field, while §U is a potential related to the density pertur-
bation ép of the star by

§p = p-;i—z- (w - 5<1>) , (1)

where p and p are the density and pressure. Quantities not preceded by § are equi-
librium quantities. (While a more general formalism exists,!* the equations given
here apply only to barotropic perturbations, 8p = [dp/dp)ép, of rigidly rotating
stars.) The velocity of this perturbation §v°® is also determined by the potential
§U. Tn neutron stars the dissipative forces (both viscosity and gravitational radia-
tion) are weak in the sense that the dissipative time scales are much longer than
the pulsation period 1/w. Thus the dissipative effects may be ignored in the first
approximation. In this case the perturbed Euler equation has a particularly simple
form which determines 6v° in terms of §U:

§v® = iQ®PV,6U. (2)
In this equation the tensor Q°® is given by

1 w i
Qab = _a)_zazb _ P RToD (gab _ zazb + _i_)vavb)’ (3)
where v is the velocity and Q is the angular velocity of the unperturbed star, z¢
is the unit vector parallel to the rotation axis, and @ = w — Q. The Euclidean
metric gqp (i-e., the identity matrix in Cartesian coordinates) and its inverse g®
are used to raise and lower tensor indices. The covariant derivative V, associated
with gqp is just the partial derivative §/8z® in Cartesian coordinates.
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The two scalar potentials §U and 6@ are determined by the perturbed mass-
conservation and gravitational-potential equations. These form a system of second-
order (in most cases elliptic) equations for the two potentials:

Va(anbvb6U) +c§p%§(6¢ - 6U) =0, (4)

VeV.69 + 41erj—Z(6<I> - 6U) =0, (5)

where G is Newton’s gravitation constant. The boundary condition §& — 0 must
be imposed in the limit » — oo, where r is the spherical radial coordinate. The
frequency of the perturbation w plays the role of an eigenvalue in these equations.
Although the most difficult step in the problem, it is reasonably straightforward
to solve these equations numerically for the frequency w and the eigenfunctions 6@
and 6U even in rapidly rotating stars. The needed techniques are described in detail
elsewhere®1® and will not be reviewed here.

It is easy to evaluate the effects of (weak) dissipation on the pulsation of a star
once the frequency w and the potentials §U and §@ have been determined by the
non-dissipative equations as outlined above. To this end, it is useful to introduce
the following “energy” associated with the pulsations:

E®) =4 / (60603 + 4(606U° +65°60) ] a%, NG

where * represents complex conjugation. This energy is conserved, dE/dt = 0, in the
absence of dissipation. In general its time derivative is determined by the equations
for the evolution of a viscous fluid coupled to gravitational radiation:

dE

[} . °
=== / (21750“"50;,, +C606cr")d3:c —o 3" muWPsDRED™. ()

I=lmin

In this expression Iy, is the larger of 2 or |m|. The functions ¢ and 7 are the bulk-
and shear-viscosity coefficients, while §0% and 6o are the shear and expansion of
the perturbed fluid motion:

60_::6 = %(va&ub + Vbé‘l)a _ gg""chSvc), (8)
o = Vg 6v°. (9)

The gravitational-radiation energy loss is determined by the multipole moment

§DM = / bpr'Y™d3e (10)
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and the coupling constant N; (with ¢ the speed of light),

N = 4arG  (I1+1)(1+2)
N T (CT S THEN

(11)

When dissipation is present in the star, it is convenient to represent the time
dependence of a perturbation in the form e~iwt—t/T where w and T are real. The
energy E(t) defined in Eq. (6) is a real function that is quadratic in the perturbation
variables. Thus, its time derivative is given by

o2 (12)

This formula can be used to evaluate 1/7. The integrals in Egs. (6) and (7) that
determine E and dE/dt may be evaluated to lowest order (in the strength of the
dissipative forces) by using nondissipative values of the frequency w and the po-
tentials §U and §&. Once evaluated, these integrals determine 1/7 via Eq. (12). It
is convenient to decompose the imaginary part of the frequency into contributions
from each of the dissipative forces: 1/7 = 1/ + 1/m; + 1/7or. These individual
damping times are defined—using Egs. (7) and (12)—by the integrals

1 1 .13
E = ﬁ/(&d’&d’ d x, (13)
1 1 )
;; = -E-/n&o'abéo'abdsz, (14)
1 _ 0 <
- 2i+1 m *m
—=1z S~ Nw™LDPreD; (15)

I=lmin

Consider a sequence of rotating stars—parameterized by the angular velocity
Q)—of fixed mass and equation of state. A perturbation of one of these stars is stable
whenever the imaginary part of the frequency of that perturbation 1/7(Q) is posi-
tive. Stars whose angular velocities do not exceed the smallest root of the equation
1/7(Q2) = 0 are stable (assuming that the nonrotating star in this sequence is sta-
ble). The problem of determining the maximum angular velocity of a neutron star
has been reduced, therefore, to finding the values of the critical angular velocities
Q. that are the roots of the equation

1 1 1 1

0=y = men T e T e (16)

The integrals in Egs. (6) and (13)—(15) are easily evaluated once the nondissipa-
tive pulsation problem has been solved. Then 2. is determined from Eq. (16) for
each solution to the perturbation equations. The smallest of these critical angular
velocities is, therefore, the maximum angular velocity of a stable neutron star.
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3. A NUMERICAL EXAMPLE

In this section the techniques for analyzing the pulsations and stability of rotating
neutron stars are illustrated with a numerical example. For simplicity, attention is
limited here to neutron stars based on the idealized polytropic equations of state:
p = kp'*1/" The index n determines the “stiffness” of the equation of state. Real-
istic equations of state for neutron-star matter have n = 1, and so this discussion
will focus on this value. Most of the results presented here are independent of the
parameter x in the polytropic equation of state. For numerical purposes its value
is chosen to make the physical size of these models comparable to those based on
more realistic equations of state.

The first task in analyzing the stability of rotating stellar models is to solve
Egs. (4) and (5) for the frequencies w and the eigenfunctions 6U and é® that de-
scribe the pulsations of a star in the absence of dissipation. As the discussion in
section 1 indicates, the modes of primary interest here are those which propagate in
the direction opposite the star’s rotation. These are the modes which may become
unstable via the emission of gravitational radiation in sufficiently rapidly rotating
stars. The modes that are the most susceptible to this instability are those that
reduce to the | = m f-modes in nonrotating stars.!® Table 1 gives the frequencies of
these modes for 2 < ! = m < 6 in nonrotating n = 1 polytropes.® The frequencies
are given here in units of Q, = v/7Gp,, where p, is the average density of these
nonrotating stars. The ratios w/Q, are independent of the parameter x that ap-
pears in the polytropic equation of state. The angular velocity dependence of these
frequencies is most conveniently expressed in terms of the dimensionless functions

a(Q) defined by

w(Q) — mQ
Q)= —~—or——, 1
(@) = 2205 (17)
These functions are displayed in Figure 2 for the | = m f-modes of n = 1

polytropes.’ The a(Q) are very slowly varying with o ~ 1 over the entire range of
angular velocities. This fact justifies the argument given in section 1 that the fre-
quency of these modes is given approximately by w(Q) ~ w(0)+mS. Also displayed
in Figure 2 are the post-Newtonian versions of these functions.!” These were com-
puted for a reasonably relativistic (GM/c?R = 0.2) sequence of n = 1 polytropes
with post-Newtonian mass M = 1.4Mg. Thus, Figure 2 illustrates the errors that
result from the neglect of general-relativistic effects.

Before the dissipation time scales 7, and 7, can be determined, expressions
for the bulk- and shear-viscosity coefficients ¢ and n must be given.® Bulk vis-
cosity arises in neutron-star matter because the pressure and density perturbations
become slightly out of phase due to the long time scale needed for the weak interac-
tions to reestablish local thermodynamic equilibrium. Sawyer!® calculates the bulk
viscosity of neutron-star matter to be ¢ = 6.0 x 10~5°p2w =27 in cgs units. Shear
viscosity in neutron-star matter is primarily the result of neutron-neutron scattering
(when the temperature exceeds the superfluid-transition temperature). Flowers and
Itoh!® calculate this form of shear viscosity to be approximately n = 347p%/47-2.
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FIGURE 2 Frequencies of the | = m f-modes are represented in terms of the functions
an () defined in Eq. (17)

Given these formulas for ¢ and 7, the frequency w, and the eigenfunctions §U and
6®, it is straightforward to perform the numerical integrals needed to evaluate the
expressions in Eqs. (13)-(15) for 7, 7, and 7os. These damping times are given
in Table 1 for the nonrotating stellar models described in this study.?® The vis-
cous damping times 7; and 7, are given for neutron stars having the temperature
T = 10°K. These damping times scale simply with temperature: 7, as T7~° and 7,
as T2,
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TABLE 1 Frequencies and Damping Times of the { = m f-modes of Nonrotating n = 1
Polytropes. These quantities are given in units of 2, = /7Gp,, where p, is the average
density.

l=m —w/, T6RS T8 e

2 1.415 2.43 x 10? 6.00 x 101! 1.85 x 107
3 1.959 1.06 x 10* 6.15 x 101! 2.66 x 1017
4 2.350 5.21 x 10° 7.00 x 10! 4.90 x 10%7
5 2.667 2.95 x 107 7.98 x 10!! 9.14 x 10%7
6 2.939 1.92 x 10° 8.99 x 10%! 1.65 x 1018

The angular-velocity dependence of the damping times are most conveniently
expressed as dimensionless functions:

; (18)

_ w(@) [ 1(0) 1en(Q)]YEHY
= Z0) [ran(O) () ]

= %(0) ()
@ =@ @ 19

These functions are independent of the temperature of the neutron-star matter
and the parameter x that appears in the polytropic equation of state. Figures 3
and 4 illustrate these functions for the { = m f-modes of n = 1 polytropes.2% These
functions are very slowly varying except for the very highest angular velocities.
The effects of bulk viscosity are suppressed in spherical stars because the nonra-
dial pulsations have very little expansion 8o associated with them. In very rapidly
rotating stars, however, spherical symmetry is broken and the pulsations are no
longer constrained to have small 6o. Figure 4 illustrates that as a consequence the
¢ are much shorter in rapidly rotating stars.

Having determined the angular-velocity dependence of the damping times 7¢(Q2),
(), and 7or(2), Eq. (16) can be solved for the critical angular velocities €2,
where the perturbation becomes unstable. The numerical determination of Q. is
made easier by transforming Eq. (16) into the form

w Ter Tar 1@
Q. = (0){ Q) +7(Q )[ ,,(E)(;)Jr Tc(g;)e(nc)] } (20)

This equation is easy to solve numerically because a(Q2) = v(R%) = () = 1
Eq. (20) must be evaluated separately for each solution of the perturbation equa-
tions. The smallest of these §2, for a given sequence of stellar models is the maximum
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FIGURE 3 Angular-velocity dependence of the gravitational-radiation damping times as
represented by the functions v, (2) defined in Eq. (3.2).

angular velocity with which a stable star may rotate. Since the viscosity of neutron-
star matter depends on the temperature of the star, so too will these critical angular
velocities. Figure 5 illustrates the smallest 2, for a range of neutron-star tempera-
tures. These €. are displayed as ratios, with Qmax the angular velocity above which
mass shedding occurs. For the n = 1 polytropes considered here Qmax = 0.639%,.
Figure 5 shows that the gravitational-radiation instability is completely suppressed
in neutron stars except for those with temperatures in the range 107 to about
1019K. Shear viscosity suppresses the instability for lower temperatures while bulk
viscosity suppresses it for higher temperatures. The analysis described here has
not taken into account the superfluid nature of neutron-star matter at tempera-
tures below about 10°K. A preliminary investigation?! indicates that dissipation
in the superfluid state due to electron-vortex scattering completely suppresses the
gravitational-radiation instability in all neutron stars cooler than the superfluid-
transition temperature, T =~ 10°K.
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FIGURE 4 Angular-velocity dependence of the viscous damping times of the l=mf-
modes as represented by the functions €, () defined in Eq. (19).
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FIGURE 5 Critical angular velocities for rotating n = 1 polytropes.
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