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ABSTRACT

Title of Dissertation: Fundamental Properties of Equilibrium Stellar Models
Lee Arlow Lindblom, Doctor of Philosophy, 1978

Dissertation directed by: Dieter R. Brill, Professor of Physics

This dissertation discusses the final equilibrium states of stars which
result from the completion of the thermonuclear evolution process. The
stellar models, based on the Newtonian and the general relativistic theories
of gravitation, are analyzed to determine what predictions they make about
the properties of the final equilibrium configurations of stars. Since
it is very difficult to solve the equations of stellar structure (especially
when the angular momentum is non-zero), the equations themselves are
analyzed to determine general properties which any particular solution to
the equations (a stellar model) must possess.

The equations of thermodynamics, fluid mechanics and gravitation are
presented for both the Newtonian and general relativistic theories. The
concepts of thermodynamic equilibrium and stationarity ("'time independence")
of the stellar models computed from these theories are defined and discussed.
The relationships between stationarity and thermodynamic equilibrium are
derived.

Tt is shown that the final equilibrium state of a star must be a
highly symmetric object. gtellar models composed of viscous, heat-conducting
fluids must be axisymmetric in their final stationary states (in either
the Newtonian or the general relativistic theories). Newtonian stellar models
must have a plane of mirror symmetry if the velocity of the fluid satisfies
certain (fairly weak) assumptions. Newtonian stellar models which are static

(i.e. stationary with no fluid motion) must be spherical., A review



is given of attempts to demonstrate that "static implies spherical" for
general relativistic stellar models also.

In addition to the results on the symmetries of stellar models, a number
of other properties of the structure of these models are presented. For
Newtonian stellar models, it is shown that a barotropic model in differential
rotation must have the angular velocity constant on cylinders concentric
with the rotation axisj; the shape of the constant density surfaces must
satisfy certain convexity properties; the angular velocity of a rotating
star cannot exceed a certain limit; a stellar model whose density is
constant on the surfaces of ellipsoids is either spherical or has uniform
density; there are no pressureless fluid stellar models.

Since general relativity is a more complicated theory, the properties
of equilibrium stellar models which have been derived to date tend to be
more technical and less complete than the properties derived for Newtonian
models. It is shown that general relativistic stellar models must be
described by analytic functions if they satisfy certain minimal differentiability
criteria; a large number of identities involving the Killing vector fields
which describe the symmetries of stellar models are derived; the general
relativistic generalizations of the rotation on cylinders theorem and the
upper limit on the angular velocity theorem are presented; the equivalence
of the material and the metric staticity conditions is derived; the equivalence
of orthogonal transitivity and convection free flow is derived; a number
of inequalities which must be satisfied by the "gravitational potentials"

in a stellar model are presented.
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§1 INTRODUCTION

What are the properties of the final state of thermonuclear evolution
of a star? Consider a star which has N baryons and a certain amount of
angular momentum, J. Let all nuclear and chemical reactions proceed
to their final endproducts. Let radiation carry off any excess heat,
and leave the star as a cold burned out cinder. What are the possible
forms that such an endproduct of stellar evolution may assume? What
is the constitution of the material in the star? What spatial
configuration does the matter in the star assume in its final equilibrium
configuration? The purpose of this dissertation is to seek answers
to this kind of question through the rigorous application of our
current physical theories.

The physical interactions in a star occur omn two widely differing
distance scales: the short scale nuclear and chemical interactions and
the long scale gravitational interaction. The distance scales of
these two types of interactions are so different that it is possible
to separate the study of stellar models into two parts. One part
studies the inter-particle interactions on a small scale to determine
the constitution of cold catalyzed matter, while neglecting the
gravitational interaction. The second part studies the large scale
structure of the matter and the gravitational field, while treating
the matter as a smoothed out fluid distribution. In this dissertation
we will concentrate on investigating the second part of this problem.

A review of the small scale properties of matter, relevant to the
study of the endpoint of stellar evblution, is given by Zeldovitch
and Novikov (1971).

According to our present understanding, a star may approach as its



final equilibrium configuration either an "ordinary" star containing
degenerate matter (i.e. a white dwarf or neutron star) or if it has
too much mass it may become a black hole. At the present time a great
deal is known about the final configurations which may be described
as stationary black holes. It is now known that the Kerr family

of black hole solutions provide the complete description of this
possible endpoint of stellar evolution (see Carter 1973 and Robimson
1975). 1In comparison, much less is known about the properties of the
non-singular endpoint which consists of an "ordinary'star. We will
concentrate here on the study of these "ordinary" non-singular
stellar models.

To study the properties of equilibrium non-singular stellar models,
we should like to take our favorite theory of gravitation, impose the
condition of equilibrium on the matter and then find the most general
solution for the configuration of the matter and gravitational field.
Unfortunately, even for a relatively simple theory of gravity like
Newton's theory, it has only been possible to find very simplistic
solutions to the equations of stellar structure. For example, the
uniform density ellipsoidal models are essentially the only non-~zero
angular momentum solutions which are known (except for approximate
or numerical solutions). The prospect of determining all equilibrium
solutions seems quite hopeless. Our approach will be: attempt to
extract from the theory the general properties which any solution of
the equations must possess, but do this without actually writing down
all of the possible solutions. We are able to determine in this way,
a great deal about the symmetries which an equilibrium stellar model

must possess. Further, we are able to determine a large number of



very interesting properties which the functions describing a stellar
model must possess. These symmetries and properties of stellar models
will be derived and discussed at length in the following chapters.

Our discussion of the fundamental properties of equilibrium
stellar models has two parts. We discuss separately the stellar models
of the Newtonian and the general relativistic theories of gravitation.
Newtonian stellar models are considered because the theory is
relatively simple, and it is easier to determine what kinds of results
are possible. Newtonian stellar models are discussed in Part I of
this dissertation. The matter in a burned out, equilibrium stellar
model must be in a relatively high density state where the Fermi
repulsion of the electrons or neutrons can provide the pressure needed
to keep the star from collapsing. Consequently the gravitational
fields in these stars will be rather strong. Therefore, it is important
to study the properties of these stellar models using the general
theory of relativity, which is believed to be a more accurate theory
in strong field situations. Since general relativity is a considerably
more complicated theory, our results are incomplete and tend to be
of a more technical nature than those discussed for the Newtonian stellar
models. General relativistic stellar models are discussed in Part II
of this dissertation. Complete summaries of the contents of each

Part are given in sections 2.1 and 6.1 respectively,
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NEWTONIAN STELLAR MoDELS



§2 DESCRIPTION OF THE NEWTONTAN MODELS

2-1. Introduction to Part I

In the first part of this dissertation we discuss the fundamental
properties of equilibrium stellar models, within the context of the
Newtonian theory of gravitation. Our approach will be to write down the
thermodynamic, gravitational, and fluid equations of motion in a form
which is very general. These equations will therefore be adequate to
describe the most complicated, chaotic time dependent motiomns of the
fluid in a star. From these general equations we will attempt to deduce
the properties of a stellar model which has come to an equilibrium state.
Farlier reviews of this type of work are given by Jardetzky (1958),

Lebowitz (1967) and Roxburgh (1970).

The assumption that a stellar model is in a state of equilibrium is
a very stringent one. We would not expect to find any real stars in a
state of equilibrium. However, we might expect a large number of stars
to be in "nearly equilibrium' states which can be described adequately as
perturbations of some equilibrium model. To determine the way in which
a stellar model evolves toward the equilibrium state, and to compute the
rate at which this occurs is an extremely difficult task. Appendix I
describes the evolution of the simplistic "homogeneous ellipsoidal figures"
under the influence of viscosity and gravitational radiation reactiomn.
Simple calculations of this sort, and calculations based on the perturbations
of equilibrium models give some information about the evolution of a stellar
model toward the equilibrium state. A comprehensive review of this kind
of calculation is beyond the scope of the present work however, We will
concentrate instead on determining as much as possible about the equilibrium

state.



Chapter 2 describes the general laws of thermodynamics, fluid
mechanics and Newtonian gravitation on which the stellar models are based.
We also describe the set of boundary conditions which we put on the
solutions of the fluid equations. These boundary conditions distinguish
our solutions as being stellar models, rather than other possible solutions
of the fluid equations, such as flow through a pipe.

Chapter 3 discusses two different notions of the concept of
"equilibrium": thermodynamic equilibrium and stationarity. We show that
stationarity implies thermodynamic equilibrium (Theorem 3.1) and that
thermodynamic equilibrium implies stationarity with respect to some uniformly
rotating reference frame (Theorem 3.4). We prove that stationary viscous
stellar models must be axisymmetric (Theorem 3.5). And, we prove that the
angular velocity of a stationary axisymmetric ideal fluid model is constant
on cylinders coaxial with the rotation axis, if and only if the fluid is
barotropic (Theorem 3.7).

Chapter 4 discusses the mirror symmetry of stellar models. We
prove that an ideal fluid stellar model with stratified flow, must necessarily
have a plane of mirror symmetry (Theorem 4,6). Two corollaries of this re-
sult are also presented. We show that the shape of a star must be in a
certain sense convex (Theorem 4.7). And, we show that static stars must be
spherically symmetric (Theorem 4.8).

Chapter 5 derives three results which delineate prpperties which a
stellar model may not have. We derive Poincare's limit on the angular
velocity of a stellar model (Theorem 5.1). We prove that the level sur-
faces of the density of the fluid cannot have a certain form unless the
density of the fluid is uniform (Theorems 5.2 and 5.3). Theée theorems

show (as a special case) that the ellipsoidal stratification of the



density of the fluid is not possible except for uniform density models:
the Maclaurin spheroids. We also prove that no pressureless fluid

(dust) stellar models exist (Theorem 5.4).

2.2, Newtonian Fluid Mechanics

The thermodynamic properties of a fluid will be described by the

following functions:

p mass density,
g - internal energy density,
P - pressure,
s entropy density,
T ~---* temperature,
n **° particle number density,
wott chemical potential,
m - particle rest mass,
NG *=* coefficients of viscosity,
K ot coefficient of heat conduction, and
i

q °°° the heat flow vector.

The motion of the fluid is described by the functions:

v velocity field of the fluid,
i .
a °°° acceleration,
6 - expansion, and
14
g 3. the shear tensor.

Finally, the Newtonian gravitatioal field is described by

o o the gravitational potential.



These functions are related to each other by the laws of thermo-
dynamics, the equations of motion of the fluid and by the Newtonian
law of gravitation. Let us begin by describing the laws of thermo-
dynamics. Fluids which are composed of different types of matter will
have somewhat different physical properties. For example, a fluid of
hydrogen atoms will behave somewhat differently then a fluid of helium
atoms. These individual characteristics of the fluid are described math-
ematically by the equations of state of the fluid. The equation of state,
as used in this work, will be represented by taking €, n, T and ¢ to be

known functions of the particle number density and the entropy density
e = e(n,s), n =nn,s), ¢ =t(n,s) and ¥ = k(n,s); (2.1)

and by specifying m >0, the constant rest mass of a particle of fluid.
We do not require that these functions take any particular form, except
a) each function must be sufficiently smooth, Cz; and b) the functions n,

¢z and x must be non-negative
niO,;iOandKf_O. (2.2)

From the equation of state, and using the first law of thermodynamics,
the four remaining thermodynamic potentials can be expressed as functions

of n and s:

T = 3e/9ds , (2.3)
u = 3e/dn , (2.4)
p=1Ts +yun - ¢ , and (2.5)

p = mn. (2.6)



The heat flow for these fluids, will be assumed to proceed according

to the usual law,
qg =- VT @2.7)

These conditions are sufficient to completely determine all of the ther-
modynamic potentials in terms of the two functions n and s. To ensure
that n, s, p and T represent the number density, the entropy density,

the pressure and the temperature of a realistic fluid, we require:
n>0, s>0, p>0 and T > 0. (2.8)

We require the third law of thermodynamics: if T =0 then s = 0. We
will also impose certain theromodynamic stability criteria on the fluids
of our stellar models (see Callen 1960, p. 194). These conditions are

given by
dp/dn > O, 35T/9s > 0 and 3du/on > O. (2.9)

Imposing these conditions ensures that the speed of sound of the material
is real, and that phase transitions do not occur.

The system of thermodynamics which we use here is discussed at length
by Landau and Lifshitz (1959) in §§2, 6, 15, 49 and 63.

The motion of the particles in the fluid are described by the velocity
vector field vi. The acceleration, expansion and shear temnsor are related

to v by
(2.10)

A, and (2.11)

o 2 vt + vt - 27386 (2.12)
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Consequently, the state of the fluid can be completely specified by
giving the functions n, s, vi and ¢ . An equation of motion is needed
for each of these functions. According to the theory of Newtonian
hydrodynamics (see Landau and Lifshitz [1959]) these equations of motion

are given by: the conservation of particle number
i
Btn + Vi(n v)=20, (2.13)
the equation of entropy production

i i 2 |1 i
T[Bts + Vi(sv )] = Vi(KV T) + g6~ + 5 N Gij o . (2.14)

Newton's law of gravitation

vivi¢ = - 4mp , (2.15)

and Euler's equation (also called the Navier-Stokes equation)
pa, =-V.p+p V.0 + v*(no, ) + 7, (z8). (2.16)
i i i ki i

A fluid which satisfies the above system of equations (2.1)-(2.16)
will be called a viscous heat-conducting Newtonian fluid. Two special
cases of these equations are of particular interest in the study of
stellar structure. Any fluid having vanishing coefficients of viscosity

and heat condition,
n=¢=x=20, (2.17)

will be called an tdeal fluid. The equations of motion for an ideal fluid
take on a particularly simple form. The conservation of particle number,
and Newton's law of gravitation remain unchanged, however the entropy pro-

duction equation and Euler's equation simplify to
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T3, s + V(s v')] = 0, and (2.18)

= - . 2.19
pa; v.P +po V.o (2.19)

Another interesting special case occurs when the level surfaces of the
density function coincide with the level surfaces of the pressure

function,
- = 0. 2.20
VP Vjo Vjp VP ( )
When eq. (2.20) is satisfied the fluid is called baTOtTOPiG.

2-3. Boundary Conditions

To distinquish the solutions of the fluid equations which we will
call stellar models, from other possible solutions, we must impose
certain boundary conditions on the various functions in the model.

These boundary conditions will be imposed both at infinity, and at the
interface between the fluid and the vacuum exterior: the surface of the

etar. We impose the following conditons:

2
a) The gravitational potential, ¢, vanishes as x2 +yv + 22 > o,
b) The support of the thermodynamic variables is bounded.
¢) The pressure, D, vanishes on the surface of the star.

i
d) The heat flow vector, q , is tangent to the surface of the star.

We also require the functions in the model to be reasonably smooth. In

particular, we require:

e) The solutions must be non-singular, therefore we require the functions

to be bounded.
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Fach function must be at least Cz, except at the surface of the
star, where discontinuities in some functions may occur.

The gravitational potential must be at least C3 except at the
surface of the star where it must be at least Cl with respect to

. . 2 . . . .
normal derivatives and C~ with respect to tangential derivatives.
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§3 STATIONARITY AND THERMAL EQUILIBRIUM

3-1. Introduction

In this chapter we begin to investigate the properties of stellar
models which are assumed to be stationary, oOr in a state of thermal
equilibrium. (The precise meanings of these terms are given below.)

We show that these two concepts are in a certain sense equivalent. 1In
particular we show that a stationary stellar model must be in thermal
equilibrium (Theorem 3.1); and we show that a viscous fluid stellar
model which is in thermal equilibrium must appear stationary in some
rotating frame of reference (Theorem 3.4). We also derive a remarkable
result for stationary viscous fluid stellar models; these models must
necessarily be axisymmetric (Theorem 3.5). It does not follow, however,
that all stellar models which are in thermal equilibrium are necessarily
axisymmetric; a counter—-example is discussed. To conclude this chapter,
we prove one of the classic results in this field: that the angular
velocity of the fluid must be comstant on cylinders (which are coaxial
with the rotation axis), in a stationary axisymmetric ideal fluid stellar
model (Theorem 3.7).

We begin by defining the concepts of thermodynamic equilibrium,
and stationarity. For our purposes, we will say that a particular sol-
ution of the fluid equations is in a state of thermodynamic equilibrium
if the entropy of each particle of fluid is constant along the trajectory
of that particle. The precise mathematical statement of this condition

is given by

Bt(s/n) + viVi(s/n) =0 . (3.1)
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A somewhat more useful, equivalent form, can be derived from eq. (3.1)

by using the conservation of particle number eq. (2.13):
3 s + V (svi) =0 (3.2)
t i ’ '

A solution of the fluid equations is called stationary if all of the
functions n,s, ¢ and v are independent of time. This concept is com-
plicated somewhat by the Galilean invarience of the fluid equatioms.

That is, if we make a coordinate transformation of the form
i i i
t'=t ,x'"=x -tv , (3.3)

oy i . ] . ,
with constants v~ the equations of the fluid are invariant. However,

as we can see from the expression for the transformed time differential

_ i
at, = at + v vi s (3.4)

a fluid solution which is stationary according to one reference frame

is not necessarily stationary according to another reference frame. Thus,
we will call a solution stationary if it is stationary according to some
Galilean frame. Another useful concept is that of a stellar model which
is stationary in a uniformaly rotating frame of reference; this has the

obvious interpretation.

3-2. Stationarity and Thermal Equilibrium are Equivalent (Almost)

The concepts of thermal equilibrium and stationarity are closely re-
lated physically. Our next objective is to establish that relationship
through two theorems. The first (Theorem 3.1) shows that stationarity
implies thermal equilibrium while the second (Theorem 3.4) establishes
the extent to which thermal equilibrium implies stationarity. The proofs

which we give here apply only to the nonzero temperature case. The results
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are still valid for the zero temperature case, and the proofs are fairly

straightforeward generalizations of those given here.

THEOREM 3.1 — 4 Newtonian fluid stellar model which is stationary must be

in a state of thermal equilibrium.

PROOF: From eq. (2.14) it follows that

i i -1.i 2 1 i,
—xV = Y, ) - . .
ats + Vi(sv kV 1logT)= kT TV.T + 0" + 5 oy O 1/T (3.5)

In the stationary case 3ts = 0, therefore it follows that
i i
Vi(sv - kV logT) > 0. (3.6)

Integrating the divergence on the left hand side of eq. (3.6) over the
interior of the star yields an integral over the surface of the star.
This surface integral vanishes beeause a) the heat flow vector is assumed
to be tangent to the surface of the star (see §2.3) and b) in the
stationary case the velocity vector is also tangent to the surface of
.the star. Thus the integral of Vi(svi - KVilogT) vanishes. This fact

togeather with eq. (3.6) implies that the integrand itself vanishes:
Vi(svl ~ ¥V 1logT) = O. (3.7)

The right hand side of eq. (3.5) is the sum of three non-negative terms,
therefore each term must vanish separately whenever the left hand side
vanishes. 1In particular it follows that ViT = 0, and from eq. (3.7)

that

- iy _
ats = Vi(sv ) =0 (3.8)

Therefore eq. (3.2) is satisfied and the star must be in thermodynamic

equilibrium. -
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Before proceeding to establish the extent to which thermal equilibrium

implies stationarity, it is convenient to prove two preliminary results.

LEMMA 3.2 - The only solutions of the equation vy vy + Vj v, =0 in a flat
3-dimensional space are constant Linemr combinations of the six vectors

(expressed in Cartesian coordinates):

> >

T, = (1,0,0) R_= (0,-z,y)

> >

T = 0,1,0 R = Z,O,—X
- ( ) v ( )

> >

TZ - (0,0,l) RZ - (—Y,X,O)

PROOF: It is straightforeward to show that these six vectors do in fact
solve the equation. That these are the only solutions is a special case
of a well known theorem (see for example Weinberg 1972, p. 377) which
shows that this equation admits exactly N(N+1)/2 solutions in an N

dimensional symmetric space. ]

THEOREM 3.3 - A viscous heat conducting Newtonian fluid stellar model which
is in thermal equilibrium must be in a state of rigid rotation, the

temperature must be uniform and the fluid must be barotropic.

PROOF: Since the fluid is in thermal equilibrium it must satisfy (see

eq. 2.14),

_ i _ -1 i 2 1 ij
v, (¥ LlogT) leT V,IVT + g8” + 5 no,, 0 1/T. (3.9)

The left hand side is a divergence while the right hand side is non-negative.
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Consequently, by an argument similar to that given in the proof of
Theorem 3.1, each side must vanish. Thus it follows that each of the

positive terms on the right must vanish separately so that,

v, v, +V, v, =0, and (3.10)
i3 j i

v.T =0 . (3.11)

Lemma 3.2 shows us that the independent solutions of eq. (3.10) are

> > -> > > > .
precisely the vectors T _, T , T and R , R , R . The first three repre-

x’ Ty Tz x' 'y z
sent uniform linear motions while the second three represent uniform

. i . . .
rigid rotations. The velocity vector v must be a linear combination of
_._),

these, where the coefficient of each of the vectors (e.g. Tx) can depend
only on time. To show that the motion is rigid, we must prove that the
distance between two particles of the fluid does not change with time.

let xl(t) and xz(t) be the trajectories of two fluid particles. The

distance between the two varies with time according to the formula

d -> _—> . > _—)- - —> _—)- . > _—>

[(xl x,)) - (xxy)]/de = 2(x; x,) (v v,). (3.12)
The right hand side of eq. (3.12) is a sum of terms of the form

> > > > > > > > .
(xl—xz) [Tx(xl) - Tx(xz)] and (xl—xz) . [Rx(xl) - Rx(xz)]. It is easy
to check that each of these types of terms vanish identically. Con-
sequently the distance between particles is independent of time, so the

motion is rigid. Equation (3.11) shows that the temperature of the fluid

is uniform. To show that the fluid is barotropic, use equations (2.3)=(2.5):
= + . .
Vip s ViT n Viu (3.13)

Since the temperature is uniform, it follows that
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Vo Vn-YpVYn=20. .
;P jn jp i 0 (3.14)

That the fluid is barotropic, follows directly now from eq. (2.6). [
This last theorem (3.3) shows that the definition of thermal equilibrium
used here implies other common notions of thermal equilibrium: uniform
temperature and barotropic flow.

We proceed next to establish the extent to which thermal equilibrium

implies stationarity.

THEOREM 3.4 - A viscous, heat conducting, Newtonian fluid stellar model
which is in thermal equilibrium must be stationary in the co-moving frame

of the fluid, and the fluid must rotateuniformly.

PROOF: From Theorem 3.3 we learned that the velocity of the fluid must

satisfy eq. (3.10). Consequently the acceleration vector is given by

i i 1.1, ]
= 9 - =V . .
a e Vv > (v vj) (3.15)

Since the fluid must be barotropic (Theorem 3.3), Euler's equation (2.16)

for this system reduces to

i Al ] o
o, v —V(zv‘]vj+¢ W), (3.16)

where W is defined by ViW = p_l Vip. Consequently, it follows that

i j j i_
v at v v Bt v =0 (3.17)

However, from eq. (3.10) it also follows that

v 3, v o+ vl 3, v =0 (3.18)
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The only vectors, Bt VJ, which satisfy (3.17) and (3.18) are linear
combinations of %x’ %& and %z' Therefore the velocity vector must have

the form (see Lemma 3.2),
V=f ()T +c B + ... ) (3.19)
X X X X

where £ (t), £ (t) and f (t) are function of time, and c_,c_, c_ are con-
X v z x>y’ Tz
stants.
The equations of motion for n and s are given by eq. (2.13) and
(3.2). For the velocity field in eq. (3.19) the expansion vanishes,

6 = 0. Therefore the equations for n and s reduce to

dn + v V.n=0, and (3.20)
t 1

i
o

i
ats + v Vis (3.21)

We can derive a similar equatioﬁ for the gravitational potential. We
use the gravitational field equation (2.15) and the properties of the

velocity field in eq. (3.19) to derive
i i ; i
V. VTR VT 0) = - 4m(d e+ VT p). (3.22)
The right hand side of eq. (3.22) vanishes by eq. (3.20). Since¢

vanishes asymptotically, eq. (3.22) implies

i —
at¢ + v vi¢ =0. (3.23)

Now, multiply eq. (3.16) by v© and use eqs. (3.20), (3.21) and (3.23)

to conclude that

] r
at(—zvlvi + ¢-W) = 0. (3.24)
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We can now derive a further simplification of the velocity field by

taking the time derivative of eq. (3.16) and using eq. (3.24):
3 3 vi=0. (3.25)
Therefore, the velocity field reduces to the form
- (at+b )T +c K+ (3.26)
X x' X X X

where a,, b, and c, are all constants.
i i i
To simplify the velocity field more, we must use the conservation
laws for the mass and the momentum of the star. These conservation
laws are derived from the following expressions which are derived from

eqs. (2.15), (3.16) and (3.20):

30 = - V. (ov'), and (3.27)
t 1
at(p"i) = Vj{pvi v+ pstd + [Teve - %' ‘Sljvk‘bvk‘b]/lm}.
(3.28)

The right hand sides of egs. (3.27) and (3.28) are divergences, whose
integrals vanish because of the boundary conditions imposed in §2.

Therefore we conclude that

Bt J 0 d3x = 0, and (3.29)

Bt J p vt d3x =0 . (3.30)

When these two constraints are taken into account, it is always possible to
perform a Galilean transformation of the coordinates which boosts to a
frame of reference in which the constant a_, ay and a, vanish. By per-

forming another coordinate transformation which is a combination
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translation and boost, a frame of reference can be reached in which the
constants bx’ by and bz vanish. The velocity vector in this frame takes

the form

$ = c E +c¢c R +¢ K (3.31)

which represents a uniform rotation. We can,if we choose,perform a
further single rigid rotation of the coordinates to align the rotation
axis of the fluid with the z axis of the coordinates. Therefore, we can
always choose coordinates in which the velocity field of the fluid takes

the simple form,

>
v

= Q(-y, x, 0). (3.32)

Equations(3.20) and (3.21) demonstrate that all of the thermodynamic
functions are stationary in the co-moving frame of the fluid. Equation

(3.32) demonstrates that this co-moving frame is a uniformly: rotating one.

3-3. Stationary Stars are Axisymmetric

The next theorem is an example of the most fascinating property of
equilibrium stellar models: they are necessarily highly symmetric objects.
Anyone who has examined photographs of the nearby "stars" (the Sun,
Jupiter, Saturn) cannot have failed to notice and wonder about the high
degree of symmetry which these objects posess. It is gratifying, there-
fore, to discover that our models predict this very simple, highly

symmetrical motion for the stationary state.

THEOREM 3.5 - A viscous heat conducting Newtonian fluid stellar model which

18 stationary must also be axisymmetric.
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PROOF: From Theorem 3.1 we know that the stellar model must be in thermal
equilibrium, and from Theorem 3.4 we know that the velocity field must be
that of a uniform rotation eq. (3.32). Furthermore we know that the
equation of motion for n and s are given by egs. (3.20) and (3.21). 1In

the stationary case, where Bt s = Bt n = 0, these equations reduce to

vi V.n =0, and (3.33)

viv.s=0. (3.34)

Therefore, all of the thermodynamic variables must be constant along the
integral curves of the vector field vi. Thus, the stellar modelmust be
axisymmetric., -
One might have guessed that one could derive a result analogous to
Theorem 3.5 by replacing the stationarity assumption, by the requirement
of thermal equilibrium. Such a result is false however; Newtonian stellar
models which are in thermal equilibrium need not be axisymmetric. An
example of a non-axisymmetric, uniformly rotating Newtonian fluid stellar
model is provided by the Jacobi ellipsoids (see Chandrasekhar 1969, p. 101).
These models are uniform density fluid models, which are triaxial ellipsoi-
dal figures uniformly rotating about one of the principal axes of the

ellipsoid.

3-4. Barotropes Rotate on Cylanders

We conclude this chapter by discussing some of the properties of
stellar models constructed with ideal fluids, rather than the viscous heat
conducting fluids discussed above. Even though realistic fluids all have
non-vanishing coefficients of viscosity and heat conduction, the time-
scales required to achieve equilibrium are often very large for stellar

models. Therefore, it is in some sense more realistic tomodel stars by
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ideal fluids. Mathematically, however, this is a far more difficult job,
because there is no longer the necessity of rigid motion in the equili-
brium state. In fact for ideal fluid models, our requirement of thermal
equilibrium (eq. 3.2) is always satisfied. Therefore there is a very
large diversity of possible fluid motions, even in the stationary case.
In order to make someprogress possible in the study of ideal fluid
stellar models it is necessary to make some (admittedly arbitrary)
assumptioﬂs about the motion of the fluid. One approach is to consider
generalizations of the motion which is allowed by a "truely equilibrium"
fluid stellar model. As shown in Theorem 3.4, the motion of a fluid in

equilibrium is given by the vector field
-
v = Q(-vy, x, 0) (3.35)

where Q is a constant. One possible generalization of this motion is to
let  be an arbitrary function of position; this generalization is called
differential rotation. Another possible generalization introduces yet

another arbitrary function
v = (vx, vy, 0); (3.36)

this generalization has been called stratified flow. The Jacobi,

Dedekind and Riemann S ellipsoids (see Chandrasekhar 1969) are interesting
examples of stratified flow. We now present two results for ideal fluid
stellar models having these specialized fluid flows. The first has been

derived previously by Lindblom (1977a).

LEMMA 3.6 - Euler's equation for an ideal barotropic Newtonian fluid stellar

model with stratified flow may be written in the simplified form
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Vip = Viw (3.37)

where Y = ¢ ~ Tand Tis some function which is independent of z.

PROOF: Euler's equation for an ideal fluid is given by eq. (2.10),

which may be rewritten in the form
i -1
a~ =-9p Vip + Vi¢. (3.38)

The right hand side of eq. (3.38) is a gradient whenever the fluid is

barotropic, consequently the left hand side must also be a gradient.
at = VT, (3.39)

Equation (3.38) and (3.39) can be combined to give equation (3.37) if we

define
p =¢ -T (3.40)

Since the fluid is stratified (eq. 3.36) it follows that v, = 0, and
consequently a, = 0 (using eq. [2.10]). Therefore 8ZT = 0 from eq.
(3.39) so that T is independent of z as required. =
This lemma will be needed in the proof of the mirror symmetry theorem in
the next chapter.

The final result presented in this chapter is one of the older known
"fundamental" properties of equilibrium stellar models (see for example,

Wavre 1932).

THEOREM 3.7 - A stationary axisymmetric ideal Newtonian fluid stellar model
which is in differential rotation is barotropic 1f and only if the angular

velocity of the fluid is constant on cylinders coaxial with the rotation axis.
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PROOF: When the z axis is chosen as the rotation axis of the fluid,
2 2
(as in eq. [3.35] with Q an arbitrary function of x° + y  and z) the

acceleration is given by

at = -1 o v, (3.41)
Euler's equation therefore becomes

- %- o2 Vi(x2+y2) = -1 V.p + V.4 . (3.42)
Taking the curl of eq. (3.42) yields

2,2 -2
-Q v[i Q Vj](x ty) =0 v[i p Vj]p. (3.43)

When the fluid is barotropic the right hand side of eq. (3.43) vanishes
sothat the angular velocity Q must only be a function of x2 + y2. Con-
sequently Q must be constant on cylinders coaxial with the rotation axis.
Whenever Q depends only on x2 + y2 the left hand side of eq. (3.43)

vanishes, so the fluid must be barotropic. B
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§4 MIRROR SYMMETRY:

4-1. Introduction and Summary

This chapter presents what is perhaps the most remarkable result in
the theory of the fundamental properties of equilibrium stellar models:

a rotating stellar model must have a plane of mirror symmetry which is
perpendicular to the rotation axis of the star. This theorem, like the
axisymmetry theorem (3.5) of the last chapter, demonstrates that equili-
brium stellar configurations must be highly symmetrical. The first proof
of this result was given by Lichtenstein (1918),(1933) for the case of
uniform density stellar models in rigid rotation. The result was genera-
lized by Wavre (1932) to the case of stationary axisymmetric barotropic
ideal fluids in differential rotation. A further generalization has been
given by Lindblom (1977a) for the case of barotropic ideal fluids which
have stratified flows. This latter result does not assume that the fluid
is either stationary or axisymmetric. Consequently, the result applies to
interesting non-axisymmetric, non-stationary objects such as the Jacobi,
Dedekind and the Riemann 8 ellipsoidal stellar models (see Chandrasekhar
1969).

The version of the proof due to Lindblom (1977a) is given here as
Theorem 4.6. Tt is similar in many respects to the proof of Wavre (1932);
it differs, however, in one important respect. Wavre's proof depends
crucially on the use of the Green's function for the Laplace operator in
the Newtonian gravitational field equation. Consequently Wavre's proof is
completely unsuitable as a model for generalization to the case of general
relativistic stellar models, where the gravitational field equations are
non-linear. The proof presented here, however, does not make use of the

Green's functions; instead it uses the maximum principle satisfied by
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solutions of certain elliptic differential equations. Consequently, the
proof presented here may serve as a model for a generalization of this
theorem to general relativistic stellar models.

We complete this chapter by proving two interesting corollaries of
Theorem 4.6. The first corollary provides us with a qualitative picture
of the structure of the stellar model, by proving that the star must be
in a certain sense convex. We will call a stellar model z-convex if, for
every two points (x,y,zl) and (x,y,zz) within the support of the density
function p, it follows that all points (x,y,z) (with z between z, and 22)
are also within the support of p . Figure 4.1 illustrates this concept
by showing several figures which violate it. Theorem 4.7 proves that
stratified Newtonian stellar models must be z-convex.

The second important corollary of the mirror plane theorem is pre-
sented here for the case of static stellar models. A stellar model is

called static if the velocity field vanishes,
v: = 0. (4.1)

In this special case Carleman (1919) (see also Lichtenstein 1933) has
shown that the stellar model must also be spherically symmetric. This
result is presented here as Theorem 4.8.

Since the proof of Theorem 4.6 is somewhat circuitous, it will be
helpful to describe the proof qualitatively. We begin by considering the
set of chords which are parallel to the z axis, and which have both end-
points on the same level surface of the gravitational potential function.
Lemma 4.3 is used to show that every point is the endpoint of some such
chord. Next we consider the set of midpoints of those chords. For this

purpose we define a function m,, which maps the endpoints of chords into

¢
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FIGURE 4.1: These figures represent possible sections of stratified
Newtonian stellar models. Figures A, B and C are not z-convex and
consequently cannot represent stellar models according to Theorem 4.7.

Figure D is z2-convex.
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their midpoints. In Lemma 4.4 we show that there is a chord whose mid-
point's z component, z s is larger than or equal to the z component of
the midpoint of any other chord. We will decompose each of the functions
into even and odd parts with respect toreflection about the plane z = z s
and we will show that this plane is a mirror plane of the star. 1In

Lemma 4.5 we derive the important fact that the odd part of the mass density,
p_, is negative for all z exceeding zm. This brings us to the proof of
Theorem 4.6. We show that the odd part of the gravitational potential, ¢—,
must satisfy the differential equation Vi Vi ¢ = - bap > 0 for all z z_Zm;
this follows from Lemma 4.5. In addition we argue that ¢ must have a
maximum in the half space z > z . The maximum principles for this type of
differential equation are then invoked to show that in fact 6 =0
everywhere. It follows that the odd parts of the mass density and pressure

must vanish also. Thus the star must have a plane of mirror symmetry.

Our rigerous derivation of this result follows next.

4~2, Preliminary Lemmas

Theorem 4.6 deals with a fluid having a velocity field which is

stratified according to eq. (3.36), thus
v = 0 . (4.2)

This stratification picks out the preferred z coordinate which we use in
the following discusion.

To construct the plane, z = constant, which we show in Theorem 4.6 is
a plane of mirror symmetry of the stellar model, we classify the points in
the star, based on the nearby behavior of the gravitational potential o
We call a point (x,y,2z) normal if 3¢/3z(x,y,z) # 0; and we call a point

special if 3¢/3z(x,y,z) = 0. Furthermore we say that the point (x,vy,2)
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is aasoctated with the point (x,y,z) if ¢(x,y,z) = ¢(x,y,z) and

6 (x,y,2) < ¢(x,y,2') for all z' between z and z. Pairs of associated
points form the endpoints of chords which are parallel to the z axis.

If the set of midpoints of these chords were contained in some z=constant
surface, then the stellar model would necessarily be mirror symmetric
about this plane. Therefore, it is useful to consider the function m¢

which maps the endpoints of chords into their midpoints:
m, (%,5,2) = (x,y,1/2[z + z]) (4.3)

For technical reasons we restrict the domain of m¢ to points lying in
the support of the mass density function, p.

The proof of the mirror plane theorem presented here depends crucially
on the maximum principles which must be satisfied by the solutions of cer—
tain elliptic differential equations. Therefore, we reproduce here (with-
out proof) the versions of the maximum principle needed to prove our
result. Proofs of these theorems, and more general versions of the

maximum principle may be found in Bers, John and Schecter (1964) .

THEOREM 4.1 - Let B be an open ball, and x a point on ite boundary.
Assume that f ig a 6'2 funetion everywhere in B, and 6'0 in the elosure
of B, Let vivl f>20and f < f‘(xo) everywhere in B. Then the outward

normal derivative df/dn > 0 at T s or f= f‘(xo) everywhere in B.

THEOREM 4.2 - Assume that f is a 6'2 function everywhere in a bounded open
netghborhood U, and that V,L.V’L I > 0 everywhere in U. If there is q point
x in U sueh that f‘(xo) > flx) for all x in U, then f‘(xo) = f(x) for

all z in U,
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We present next three lemmas which define the prospective mirror

plane, and delineate some of its properties.

LEMMA 4.3 - Let ¢ be the gravitational potential of a barotropic ideal
Newtonian fluid stellar model which has stratified flow. For every point

(x,y,23) there exists q unique associated point (z,y,z).

PROOF: Let us first show that $(x,y,z) > 0 everywhere. If there is a
point with ¢(x,y,z) < 0, then we could find some point, say (x',y',z'),
with ¢(x',y',2"') < ¢(x,y,2z) for all points (x,y,z). By eq. (2.15) we
have Vi Vi ¢ < 0. Using Theorem 4.2 one can show that if the point
(x',y',2") exists, then ¢ = 0 everywhere. If the point (x',y',z") lies
on the boundary of the star, a slightly different argument using Theorem
4.1 gives the same result, ¢ = 0. Thus we can conclude that ¢ must be
positive everywhere.

We next consider the normal point (x,y, z). One can start at (x,v,2)
and proceed along the line (%,¥) = constant in the direction of increasing ¢
When one reaches points having sufficiently large values of x2 + y2 + 22,
the potential ¢ will become arbitrarily small. This guarantees that a
point, say (x,y,z), will be reached along the line at which ¢ (x,y,2z) =
¢(x,y,2). If one takes the first such point reached along the line, say
(x,y,z), then ¢(x,y,z') > $(x,y,2) for all z' between z and z. Thus

(x,7,2) is associated with (x,y,z) and the lemma is proved. ]

The next lemma will derive an important property of the function m¢.

LEMMA 4.4 - There exists g point (xo,yo,zo) in the domain of'm¢, whose

image (xo,yo,zm) = m¢(x0,yo,zo) 18 a least upper bound of the z component

of the range of m¢: t.e. for every point (x,y,2) in the range of m¢,zm > 2.
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PROOF: Let us first argue that the z components of the range of m¢ are
bounded. We can consider the total potential Y, defined in Lemma 3.6.
The function mw, constructed using Y rather than ¢, is identical to the
function mw ~because ¢~y = T is independent of z. By eq.(3.37)the level
surfaces of § coincide with the level surfaces of the functions p and p.
Therefore the points which are associated with normal points within the
support of the density will also lie within the support of the density.
Thus, the range of m, must be bounded since the domain, which is the

¢

support of the density, is bounded by assumption. Since the range of m¢
is bounded, the z component of the range must also be bounded and there-
fore must have a least upper bound, say z .

We will now show that z_ is the z component of some element in the
range of m,. In any case, there must be a sequence of numbers Cn each

¢

of which is the z component of some element of the range of m,, and

¢
lim En =z . There must also be a corresponding sequence of points En
in the domain of m¢ whose images have ;n as z components: m¢(£n) = (Xn’
Yo gn). The domain of m¢ is compact, therefore, there is a subsequence
Eé of En which converges to a point in the domain, say lim g& = (xo,yo,zo).
It follows that lim m¢(££) = (xo,yo,zm). The prime will henceforth be
dropped from the name of the sequence of points E;. If m¢ were a continuous
function, it would follow that m¢(xo,yo,zo) = (xo,yo,zm).and the proof
would be complete. m¢ is not necessarily continuous however.

Let us first consider the case where there is a subsequence 5; of £y
which are all special points. At each of these points we have 8¢/az(£;) = 0;
and since 3¢/9z is a continuous function, 8¢/az(xo,yo,zo) = 0. For special

"
points m¢(x,y,z) = (x,y,2), therefore lim‘m¢(£n) = (xo,yo,zo) = (xo,yo,zm).

Therefore (xo,yo,zm) must be an element of the domain of m¢ with the property
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z = (x z ). Thus we have shown that the lemma follows
m¢(XO,YO, m) ( Osyoa m)
if there exists a subsequence E; of special points.
The other case we need to consider is when En are all normal points
when n becomes sufficiently large. To each of the normal points En
(with z component wn) there is an associated point En(with z component Qn).
We also know that lim w_ = z and lim 1/2(w + © ) = z , thus
n o n n m

lim w_ = 2z - 2 . There are three possibilities: z =2z , z > z and
n m o o m’ "o m

z < z . We will consider first the case where z, =z . The chord
connecting each pair of points En to E; in our sequence must contain a
point E; where 8¢/82(E;) = 0. Thus, the sequence E; are all special points.
Furthermore 1lim &" = lim £ = lim'E = (x ,¥ ,z ). Thus, we have a
n n n o' "0’ o
sequence of special points whose limit point is (xo,yo,zo). We have shown
above that the lemma follows in this case. We next consider the case where
z > z 3 then (xo,yo,zo) must be a normal point with associated point
(x ,y ,z ). It follows that z < 2z - z because z is the least upper
o’’0’ o o m o m
bound. Since ¢ is a continuous function lim ¢(£n) = ¢(xo,yo,zo) =
lim ¢ (% = X 2z - z ). Therefore e i 2 -
¢(En) ¢( 0 Y0222, O) ref the point (xo,yo, z zo)
must be the point associated with z and a e
P (xo,yo, O) d as a result m¢(xo,yo,zo)
= (xo,yo,zm) and the lemma follows. The last possibility is that z, <=zm.
In this case the sequence of associated points En must converge to
b4 2z - z and 2 -z > . ) ! 41
( 0?Yo2 %% 0) z o z The same argument as the cne given
for the case z, >z shows that (xo,yo,zo) is the point associated with
2z -z ). i - =
(xo,yo, z O) In this case m¢(xo,yo,22m Zo) (xo,yo,zm) and the
lemma follows. ]

We can now derive a very important inequality for the odd part of

the density function, when it is taken with respect to the plane z = z -
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LEMMA 4.5 - Let p be the mass density function of a barotropic ideal

Newtonian fluid stellar model which has stratified flow. Then,

P (x,y,2) = 1/2 p(x,7,2) - 1/2 0(x,y,22,72) < 0 for all z > 2 _

PROOF: Consider a point (x,y,z) with z > z_ - If (x,y,2) is not in

the support of p, then p (x,y,z) = - 1/2 p(x,y,sz - z) < 0. Next

suppose that (x,y,z) is in the support of p. Since zm is the least

upper bound of the midpoints, (x,y,z) must be a normal point and the
associated point (x,y,z) must satisfy z j_sz - 2 < 2z. Lemma 4.3

implies ¢(x,y,22m - 2z) > ¢(x,y,2) so that ¢ (x,v,2) = 1/2 ¢(x,v,2) -

1/2 ¢(x,y,22m - z) < 0. The total potential ¥, defined in Lemma 3.6
satisfies y = ¢_, because T is independent of z; consequently w_(x,y,z) < 0.
From eq. (3.37) it follows that the level surfaces of p, p and ¢ all

coincide. This fact and the requirement that p >0, p>0 and dp/dp >0

from eq. (2.9) imply that p_(x,y,z) < 0 for all =z >z . »

4-3. Stars Have Mirror Symmetry

Having established these preliminary results, we are ready to proceed

with the main theorem.

THEOREM 4.6 - Comsider a barotropic ideal Newtonian fluid stellar model
which has stratified flow. There exists a plane z = 3 such that the odd
parts of the functions ¢, p, p vanish when taken with respect to the plane

z =z . Thus, the star must have a plane of mirror symmetry.
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PROOF: From Lemma 4.4 we know that there is a point (xo,xo,zo) such that
m, (x z = (x z ). We will consider two separate cases. In

¢( o’yo’ 0) ( O,YO, m) P

the first case (xo,yo,zo) is assumed to be a normal point, in the second

case it is assumed to be a special point.

CASE 1: Associated with the point (xo,yo,zo) is the point (xo,yo,zo)
with Eo = 22m -z Since ¢_(x0,y0,zo) =1/2 ¢(x0,y0,zo) -1/2 ¢(x0,y0,§0)
= 0, there exists a point [either (xo,yo,zo) or (xo,yo,Eo)] say
(xo,yo,zo) with zO > zm where ¢_ vanishes. The function ¢_ vanishes on
the boundary of the half space z > z . In the interior of this region
¢~’is bounded by assumption; therefore there must exist a point
(x,y,z) in this half space where ¢ is maximal. The odd part of eq. (2.15)
is given by Vi Vi ¢_ = —4mp . TFrom Lemma 4.5 we have Vi Vi ¢- 2 0 for
all z > z_ This inequality, the existence of a point where ¢ is
maximal and Theorem 4.2 guarantee that ¢— = 0 everywhere. That p = p— =0
follows trivially.

The argument given above is not strictly correct for the case where
the maximum of ¢_ lies on the boundary of the star. The density p need
not be continuous at the surface of the star, and consequently the poten-
tial ¢ need not be sufficiently differentiable there to apply Theorem 4.2
Consider now the case where the maximum of ¢—, (%,9,2) lies on the
boundary of the star. Find an open ball B which has (%,9,2) as a point
on its boundary, which is tangent to the surface of the star at (%,9,2)
and which is sufficiently small that all of the points of B lie in the
exterior of the star. Within B, ¢ will be C3, and ¢ is Cl at (%,¥,

Furthermore ¢ < ¢ (%,¥,2) at all points in B and Vi¢_(i,?,2) = 0, since

¢ 1s a maximum at (%,9,2). From Theorem 4.1 it follows that ¢— has
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the constant value ¢_(2,?,2) everywhere in B and consequently everywhere.
This constant value must be zero since ¢_ vanishes on the boundary of

the half space z > z_ -

CASE 2: We now consider the case where (xo,yo,zo) is a special point.
We have shown that ¢ < 0 and p < 0 for all z >z Similarly ¢ >0
and p > 0 for all z 2z It follows that there is a neighborhood U
of the plane z = z, in which the following inequalities must hold:

3¢ /oz < 0, 3p /az < 0. From eq. (2.15) it follows that Vi V1(3¢—/Bz)

-4mdp /dz, hence Vi V1(8¢_/Bz) > 0 in U. At a special point 3¢/3z = 0

3¢+/Bz + 3¢ /dz, but at z = z s 3¢+/Bz vanishes, therefore 3¢_/Bz(x0,yo,zm)
= 0 > 3¢ /3z for all points in U, By Theorem 4.2 it follows

that 3¢ /dz = 0 everywhere in U, and consequently ¢ = 0 everywhere in

U, and as a result ¢ = 0 everywhere.

As in case 1) special consideration must be given to the case that
(xo,yo,zm) is on the boundary of the star. By assumption (see Chapter 2)
we know that ¢ must be at least Cl in the normal direction, and C in
the tangential direction at the surface of the star. Therefore Theorem 4.2
cannot be applied and Theorem 4.1 must be used. Since (xo,yo,zm) is a
special point, it follows that 3¢/dz = 3y/dz = 0. Therefore 3/9z is a
tangential derivative to the surface at this point. Thus, 3¢—/Bz is Cl
at (xo,yo,zm). We have argued that 3¢_/Bz < 0 in the set U. Thus 3¢_/az
will be a maximum at (xo,yo,zm) so that Vi(8¢—/3z) = 0 there also. Con-
struct an open ball B which contains (xo,yo,zm) as one of its boundary
points, which is tangent to the surface of the star at (xo,yo,zm), and
which is sufficiently small that B lies completely within U and com-

pletely within the exterior of the star. Within B, Vi Vl(8¢_/az) =0
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and 8¢—/Bz is C2. Thus by Theorem 4.1, 8¢_/Bz = 0 in B, and there-

fore ¢— = 0 in B (the plane z = z_ intersects the center of B). It
follows that ¢ = 0 everywhere since it vanishes at an interior point
of the half space z > z_ ]

We note that Theorem 4.6 is in a sense incomplete as a mirror plane
theorem. We have shown that the functions p, p and ¢ must all have
mirror symmetry. However, it appears that no simple analogous result
exists for the velocity field of the fluid, vi. For example, consider a
stationary axisymmetric star with azimuthal velocity field. An in-
finite number of related stellar models may be constructed by keeping
the functions p, p and ¢ fixed while defining a new velocity field
’v'i = hvi, where h is an arbitrary function which is independent of
aximuthal angle and h2 = 1. Note that h may be discontinuous, so that
parts of the fluid may rotate one direction while other parts rotate the
other way. These related stellar models need not have simple mirror
symmetry in the velocity field. A final point to note is that the
assumption that the velocity field is stratified, is only used to prove
Lemma 3.6. This assumption could be replaced by the weaker (but physically

less transparent) assumption 0 = a, = sz/Bt + v Vj V-

4.4. Stars Are Z-Convex

We next consider an interesting corollary of the mirror plane theorem.

THEOREM 4.7. - A barotropic ideal Newtonian fluid stellar model which has

stratified flow (having vanishing z component of velcotiy) must be z-convex.
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PROOF: From Theorem 4.6 it follows that there is a plane z = z which

is a plane of mirror symmetry of the stellar model. We first argue that
this must be the only plane z = constant which is a plane of mirror
symmetry. If there were another plane of mirror symmetry z = Z vs then
clearly each of the planes z = z + N(zm, - zm) for arbitrary integer

N must also be a plane of mirror symmetry. But in this case, the density
function could not have bounded support, contrary to assumption.

Consider two points (x,y,zl) and (x,y,zz) which are contained within
the support of the density function (take lzl—zm|zjz2—zm|). If the point
m¢(x,y,zl) does not lie in the plane z = z then Theorem 4.6 proves the
existence of an additional plane of mirror symmetry. Since this is for-
bidden, it follows that ¢(x,y,zl) = ¢(x,y,22m—zl) and ¢(x,y,zl)< ¢ (x,v,2)
for all z between zq and ZZm—zl, hence for all points with Izl—zml>lz—zml.
it also follows (using Lemma 3.6) that w(x,y,zl)< v(x,y,2) for all z with
!zl—zm|>lz—zm|. By using equation (3.37) it follows that p(x,y,zl)< p(x,v,2).
Therefore all points having z satisfying Izl—zml>|z-zm| are contained
within the support of the density function. 1In particular all points
between (x,y,zl) and (x,y,zz) are contained within the support of p; thus,

the stellar model is z-convex. L

4.5, Static Stars Are Spherical

The final result presented in this chapter, is also possibly the most

well known of the fundamental properties of stellar models:

THEOREM 4.8 - Static Newtonian fluid stellar models must be spherically

symmetric.
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PROOF: For a static stellar model (see eq. 4.1) the Euler's equation

(2.16) reduces to the simple form
V.p =p V., ¢. (4.4)

Consequently the fluid must be barotropic. Also, since the fluid is
static, it follows that the fluid velocity is stratified with respect

to any chosen direction. Therefore from Theorem 4.6 it follows that

for any choice of direction the stellar model has a plane of mirror
symmetry orthogonal to that direction. Consider the three mirror planes
which are orthogonal to the x, y and z coordinate axes. Choose the
coordinates so that these planes are the planes x = 0, y =0 and z = 0
respectively. Now consider any one of the mirror planes, say M. Let
(nx’ny’nz) denote a vector which is orthogonal to the plane M. Upon
relecting the plane M through the mirror plane z=0, we will obtain another
mirror plane M' with orthogonal vector (nx,ny,—nz). In the same way a
mirror plane M" can be obtained by reflecting M' through the plane y=0,
and then again through the plane x=0. The normal vector to M" will be
(—nx,—ny,—nz). Hence M" is parallel to the plane M. As we showed in the
proof of Theorem 4.7 two distinct parallel mirror planes are not possible,
hence M=M". Consequently M (and therefore every mirror plane) must con-
tain the point (0,0,0). Consider two points (x,y,z) and (x',y',z') which
lie on the surface of a sphere centered at (0,0,0). Consider the pPlane,
N, which bisects the chord which joins (x,y,z) and (x',z',z'). Since these
points lie on the surface of a sphere centered at (0,0,0) it follows that
N must intersect (0,0,0) also. Therefore N must be a plane of mirror
symmetry so that ¢(x,y,z) = ¢(x',y',z'). Thus the gravitational potential

is constant on spheres centered at (0,0,0), so the stellar model must be

spherical. =
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§5 NEGATIVE RESULTS

5-1. Introduction and Summary

In the days of an era gone by (before the availability of large
computers) a great deal of effort was spent in attempts to obtain exact
analytic solutionsto the equations for rotating Newtonian stars. Some
of the more notable solutions which resulted from these efforts bear the
names of their discoverers : Dedekind, Jacobi, Maclaurin and Riemann
(see Chandrasekhar 1969). 1In the course of these efforts, several
results of a very general nature were derived which showed that certain
classes of stellar models could not exist. In this sense, these results
were negative ones.

In this chapter we will recall those negative results, and reproduce
their proofs here. We derive a generalization of Poincare's result which
shows that no star can rotate faster than a certain limit (Theorem 5.1).
We present another result which is the culmination of the work of Volterra,
Wavre and Dive (see Dive 1952). Their analysis shows that the level
surfaces of the density function cannot take a certain (fairly general)
form, unless the density is uniform or the star is spherical (Theorems
5.2 and 5.3)., These theorems show that no stellar 111odel'E exists
which has ellipsoidal density stratifications, unless the model is

Maclaurin's constant density spheroid,
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Finally, we show that there are no bounded stellar models
composed of pressureless fluid (dust). This result (Theorem 5.4) is
of interest because of recent speculations (see Bonner 1977) that general
relativistic pressureless fluid stellar models might exist. The only
negative fesult of this sort which we neglect here is von Zeipel's
theorem that radiative equilibrium is incompatible with a barotropic
fluid in purely rotational motion. We neglect this result
because it requires a more complicated thermodynamics than that de—
veloped in §2. (We have not included the possibilities of energy sources
or radiation flux out of the fluid.) See Eddington (1926) or Clayton

(1968) for a discussion of von Zeipel's theorem.

5-2. Poincare's Limit

The first result of a negative type which we present here is Poincare's
limit on the angular velocity of a star. Poincare's version of this
theorem was for the case of rigid rotation (see Poincare 1903 or Lamb
1932, p. 597). We present here a slight generalization of this result

to the case of an arbitrary ideal fluid.

THEOREM 5.1 - The velocity of an ideal Newtonian fluid stellar model

must be sufficiently small so that

4mM > - [ v, al 3% (5.1)
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where Mris thé total mass of the star. In the cgse of a star which is

rotating rigidly with angular velocity Q, this limit can be written as
- 2
2n p. > Q" , (5.2)

where p 1is the average density of the star.

PROOF: 1In the interior of an ideal Newtonian stellar model, the following

equation must be satisfied (see eqs. 2.15 and 2.19):

VT, p) = = dmp - v, al. (5.3)

We integrate eq. (5.3) over the support of the pressure function. The
left hand side is a divergence, consequently its integral reduces to an

integral over the surface of the star.

-1 4 2 i
} p le d s, = =4mM - f Vi a’ d3x (5.4)
The integrand on the left hand side of eq. (5.4) is proportional to
the outward normal derivative of the pressure at the surface of the
star. The pressure is positive within the star and zero on the surface,
consequently the outward normal derivative is non-positive. It follows

that

0 > ~4uM - f v, al a’% (5.5)
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For the special case of rigid rotation, the acceleration of the fluid

is given by

at = 172 @® v + Y. (5.6)
In this case eq. (5.5) becomes

0 > —4mM + 20° f a3x (5.7)

Eq. (5.7) is equivalent to eq. (5.2) when the average density p is
defined in the usual way. )
Poincare's limit on the angular velocity of a stellar model is not
a very stringent one. In fact far more restrictive conditions have been
derived (see Roxburgh 1969, p. 13; and Chandrasekhar 1969, Chapter 5).
These more stringent conditions are based on the stability of the stellar
models, rather than being conditions én the existence of equilibrium models.
Appendix II describes the considerably more restrictive condition which
applies to the Maclaurin spheroids when the effects of viscosity and
gravitational radiation are taken into account. However, since the
analysis of the stability of stellar models is beyond the scope of this

work, we will not discuss the other conditions here.

5-3. Ellipsoidal Stratification Theorem

The following theorem shows that the density function of a stellar
model cannot have level surfaces of a certain, fairly general form, unless
the density is in fact uniform. These level surfaces include all cases
of ellipsoidal stratification except the case where the ellipsoids all
have the same eccentricity. Since we feel that rotating stars should

look qualitatively like oblate spheroids, this theorem goes a long way in

eliminating simple possible shapes.
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THEOREM 5.2 - Consider a stationary axisymmetric barotropic ideal
Newtonian fluid stellar model whose velocity field is purely rotational.
If the level surfaces of the density function coincide with the level

surfaces of B, defined implicetly by

n
B=z + ] £ (et E (5.8)
k=1
where &, 8 an arbitrary function of Blwith w, # 05 W = - BEk/BB],

then the density is uniform throughout the star.

PROOF: The simplest case of this theorem is that of elliposidal
stratification (n=1). We will work out completely the proof in this
case, and then sketch more briefly the proof for general n. We set
£17 & and u; = y.

Euler's equation for this type of stellar model is given by eq.

(3.33). We take the divergence of that expression to find

Vi(p—lvlp) = —4mp + 1/2 Vi[Q2 vt r2], (5.9)

2
where r2 = x2+y . Theorem 3.7 proves that 2 = (r2). Consequently

the term Vi[Q2 vt r2] is only a function of r2; we write

z(x?) = 1/2 vi[sz2 vt 2. (5.10)

To establish the theorem, we will assume that the level surfaces of
the density function coincide with the surfaces of ellipsoids, and then
we will show that the density must be uniform. Consider the family

of ellipsoids defined by eq. (5.8) with n=1:

8=z +¢g£2 (5.11)
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where VB 1is the semi-minor axis of the ellipsoid and £ = £(B) is the
oblateness parameter. We assume that the density is constant on the

surfaces of these ellipsoids, therefore we have

p = p(B) . (5.12)

We will now consider the left hand side of eq. (5.9). Using the fact

that the fluid is barotropic, and eq. (5.12) we find that
1.4 . .
V.(0TV) = WI(B)V, VB +W'(B) VB VB, (5.13)
where the two functions of B, W' and W" are defined by

W'= »p 9, p, and (5.14)

W'=13 (p 36 p). (5.15)

. . i i .
We now wish to compute the expressions Vi V B and ViB VB in
. s 2 .
a system of coordinates using o = r~ and B as coordinates rather than
the standard cylindrical coordinates r and z. These coordinate

differentials are related by

3 = 2/&'3@ + 25/&'(1+ap)'136 , and (5.16)

2 2(B~a€)l/2(l+au)—l 36 .

S8
i

(5.17)

It follows that

VB VI8 = 4(B - af +aE?) (L + ap) 2 , and (5.18)

VB =201+ o)™t 4 4B - a) (@ + au)”2

d -—
-4 o TMB' (B - at + aaz)(l + au) 3. (5.19)
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We note that the right hand sides of eq. (5.18) and (5.19) are ratios
of polynomials in o. Equation (5.9) can now be rewritten in the

following way:

1 i 113 i
() = W(B)V,VTB + W'(B)V.B VB + 4mp(B) . (5.20)

Therefore z(o) is a rational fraction in a. Since z is independent of
B, it follows that the coefficients in the polynomials which make up z
must also be independent of 8. The polynomial in the denominator of z
is precisely (l+ua)3, therefore we conclude that u is independent of B
and hence it is a constant. The polynomial which makes up the numerator

of ¢ is given by:
(+ua)> £(a) = 4mp(lua)3 + 20" (14+10) % + 4w'g(1-a2p?y
+ 4W" (B=aE+ag?) (1+am) . (5.21)

In the case that p # 0 (so that the ellipsoids do not all have the
same eccentricity) eq. (5.21) is a cubic polynomial. The coefficient
of a3 in this case is 4ﬂpu3. It follows that p is independent of g,
and therefore is a constant.

We return now to the more general case of a stratification defined
by eq. (5.8). We compute Vi(p_lvip) according to eq. (5.13) where the

relevant derivatives of 8 are now given by

V.8 v = 4{s-akak-ha<kgk ak—l)z}/(l+ukak)2 . and (5.22)
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2 k-1 k
2(1+2k Eka )/(l+uka )

<

<

™
i

8(ke, @) (™) / (L4, 0

k k-1.2
- 4(ak38uk){8—£ka -+a(k£ka ) }/(l+ukock)3 . (5.23)

where k is summed from 1 to n within the first set of parenthesis.

When these expressions are used in the right hand side of eq. (5.20)

we again find a rational fraction in o. The polynomial in the de-
nominator is (l+ukak)3. Therefore the function Hy must be independent

of B. 1If H # 0 (as assumed) then the coefficient of the largest power
of o in the numerator is 4ﬂp(un)3. This coefficient must be independent

of B8, therefore p must be a constant. »

Theorem 5.2 ruled out a large class of possible deﬁsity stratifications
for rotating barotropic stellar models. This theorem did not, however,
rule out the possibility of stratification on concentric self-similar
ellipsoids. The next theorem rules out this possibility, along with another
large class of possible density stratifications. The proof of the
n = 1 case of this theorem is given by Dive (1952) while the more general

case 1s new.

THEOREM 5.3~ Consider a stationary axisymmetric barotropic ideal fluid
stellar model whose velocity field is purely rotational. If the level
surfaces of the density function coincide with the level surfaces of 8,

defined by

ol
8 = 22 4 y x> + yHk (5.24)

2
k=1 ©

where Ek are constants and for n = 1, 0 < g < 1, then the density is

uniform throughout the star or the star is static and spherical.
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PROOF: When Ek are constants, the functions Wy = BBEk vanish. In

this case eqs. (5.22) and (5.23) simplify to the forms:

V,BViB = 4{B - § ak + a(kE ak_l)z},. and (5.25)
i k k

viveg = 2+ 4k2g o<1 (5.26)
i k

Therefore, the function (o) from eq. (5.20) is given by:

z(a) = 4W"B + 2W' + 4mp - 4W"£kak + 4W'k2£kak_1

2.2 2k-1

+ 40E, o (5.27)

The right hand side of eq. (5.27) is a polynomial in o, while the left
hand side depends only on a. Therefore the coefficients in the polynomial
must Be constants. We consider the two cases n =1 and n > 1 separately.
If n > 1, it follows that W' is a constant, by requiring the
coefficient of the highest power of o on the right hand side of eq; (5.27)
to be a constant. It then follows that W' must be constant also by
requiring the coefficients of the other powers of o to be constants.
Therefore, W" vanishes; Finally, by requiring the coefficient of a®
to be constant, it follows that the density, p, must be constant.
For the case n = 1, the argument is not as simple. In this case
non-constant density solutions to the fluid equations exist, however,
it is not possible to match on a properly behaved external gravitational

field. We set & = &, in eq. (5.27) for the case n =1 to find:

1

(o) = [4mp + 2W' (1428) + 4W"R] + o[4W"E(E-1)]. (5.28)

The right hand side of eq. (5.28) is a linear equation in a, therefore

each of the coefficients must be a constant. We take the constants Kl and KZ:

Kl =", and (5.29)
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K2 = 4mwp + 2W' (14+2&) + 4W'B . (5.30)

Equation (5.29) can be integrated to give W'

v — 31
W Kl B + KB' (5.31)

The density function p can be determined now by substituting eq. (5.31)
and (5.29) into (5.30). Furthermore, the pressure p can be found by
integrating eq. (5.31). The angular velocity function @ can be de-
termined by integration of eq. (5.28), when one recalls eq. (5.10).
Finally, the gravitational potential is determined by integrating

Euler's eq. (3.42). The resulting solution, in terms of the six con-

stants Kl’ K2, K3, K4, K5 and & is given as follows
4rp = - 2K1(2£+3)B +K, - 2K3(2£+1) , (5.32)
_ 2 2 3,1 v _ 2
4rp = 5 Kj(e+3)8” + 3 Kl[ K, 8K3(£+l)]8
+ KB[K2—2K3(2£+1)]B +K, (5.33)
9% = Ke@E-1a + + K (5.3
= Kgle-ba + 5K, +34)
-1 2 1 el _ L
¢ = > Kl B™ + K3B 4 K1£(£ Da 4 Kzu + K5 . (5.35)
We recall that the coordinates o and B are related to Cartesian
coordinates by
2 2
B =12z + E£(x +y2) , and (5.36)

a=x +y . (5.37)
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Equations (5.32)- (5.35) fepresent valid solutions to the fluid
equations. To represent valid interiors of stellar models, however, the
gravitational potential must be matched onto an exterior solution
which has no singularities, and which falls off to zero at infinity. The
gravitational potential will have the correct form only if it is the

one produced by the‘asymptotically vanishing Green's function:

1 3 1
o = J plxN)d x! (5.38)

x — x'

Therefore, we must check the potential given in eq. (5.35) to see if it
agrees with the potential given by eq. (5.38). The integral in eq. (5.38)
is very difficult to perform. However, for the type of ellipsoidal

stratification given in eq. (5.36) the integral can be transformed to

a more managable form:

had 11)(11,0%8) du
$(c,8) = -mg’? (5.39)
° ) 1/2
(B +Ew) (8 +u)
where Bo is the semi-minor axis of the surface of the star,
f(u,0,B)
Y(u,a,B) = J p(BR'") dB', and (5.40)
1
£(u,0,8) = (B - Ea)/(B +u) + ga/ (B + gu). (5.41)

The transformation of eq. (5.38) into this form is a lengthy derivation
which may be found in Chandrasekhar (1969) p. 52.

The integrals in eqgs. (5.39) and (5.40) can be explicetly evaluated
when eq. (5.32) is used for the density of the star. The resulting

expression has the form:

¢(a,B) = T az + I o+ F382 + T (5.42)

1 2 B + TSQB + T

4 6
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The coefficients Fl - F6 are certain complicated functions of &, Bo,
Kl’ K2’ and K3. Comparing the expression for ¢ given in eq. (5.35)
with this expression, we see that the interior models will admit

asymptotically regular gravitational potentials only if FS vanishes.

The precise form of FS is computed from eqgs. (5.39) and (5.40):

3/2
o

/2,

_ 1 ” -2 -3
o= 5K E(2643)8 fo (8 +Ew) ™" (8 +w)

{1 - (so+gu)(eo+u)*1} du.  (5.43)

This integral vanishes only for £ = 1: spherical stars. In this case it
follows that the star must be static also. The only other way for

FS to vanish is for Kl to be zero. In this case the density must

be constant from eq. (5.32). | B

5-4. No Dust Stars

Recent calculations indicate that there exists a gravitational
spin-spin repulsion force in general relativity theory (e.g. Wald 1972).
This has lead to speculation that perhaps a rapidly rotating star could
counteract completely the attractive aspect of gravity via the spin-spin
repulsion. Hence, it is conjectured that stationary axisymmetric
pressureless fluid (dust) stellar models might exist within general
relativity theory (see Bonner 1977). In this section we will reproduce

Bonner's (1977) argument that no such Newtonian model can exist.

THEOREM 5.4 — A stationary azisymmetric Newtonian fluid stellar model,
whose velocity is purely rotational, cannot exist if the fluid is pressure-

less.
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PROOF: When the pressure of the fluid vanishes, Euler's equation becomes

1 2. .2 2
-5 TV Gy = e (5.44)

The z component of eq. (5.44) reduces to Bz¢ = 0. Therefore the
gravitational potential is independent of z, at least within the fluid.

Tn the exterior of the star we have
v oe) = 0 (5.45)
i z ’ *

from the Newtonian law of gravitation. The function Bz¢ vanishes on
both the surface of the fluid, and at infinity. Therefore, from

eq. (5.45) it vanishes everywhere in the exterior of the fluid. Con-
sequently BZ¢ is zero everywhere so that sz vanishes everywhere.
Therefore the fluid does not have bounded support, and cannot be a

stellar model by definition (see §2). =
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§6 DESCRIPTION OF THE RELATIVISTIC MODELS

6.1 Introduction to Part II

The second portion of this dissertation discusses the properties
of equilibrium stellar models within the general theory of relativity.
Our approach to this problem will be similar to our approach to the study
of Newtonian stellar models. We will review in great detail those results
which may be deduced about the properties of equilibrium stellar models,
without making a large number of unphysical assumptions. And, we will
neglect a vast body of important work which deals with other aspects
of relativistic stellar structure. We will not discuss perturbations of
stationary stellar models. We will not discuss the many results which
have been derived for spherical models., Nor will we discuss the important
work on the equation of state of cold catalyzed matter or the work on the
maximum mass of neutron stars. Instead we will concentrate on trying to
answer such fundamental questions as, "Are non-rotating stellar models
necessarily spherical?", and "What are the topology and symmetries of
equilibrium stellar models?".

Chapter 6 reviews the general relativistic theory of fluid mechanics
on which the theory of relativistic stellar models is based. We also
discuss the boundary conditions on the fluid and gravitational fields
which distinguish the solutions to the equations which we call stellar
models, from other possible solutions.

Chapter 7 discusses two different notions of equilibrium for
relativistic stellar models. We define stationary spacetimes by the
presence of a timelike Killing vector field. We prove many useful

identities which must be satisfied by any Killing vector field. A
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notion of thermodynamic equilibrium is defined for relativistic fluids,
and the relationships between the notions of stationarity and thermo-
dynamic equilibrium are derived.

Chapter 8 derives some useful technical properties of stationary
stellar models. We demonstrate that if the stellar model is assumed
to have certain minimal smoothness properties, then in fact the model
must be analytic when written in appropriate coordinates. This technical
result is used in our proofs in later chapters of this work.

Chapter 9 discusses the properties of static stellar models.
Lichnerowicz's theorem is presented, which demonstrates the equivalence
of the material and the metric staticity conditions. The progress which
has been made on the proof of the conjecture that static étellar models must be
spherical is reviewed.

Chapter 10 presents the proof that stationary viscous fluid stellar
models must be axisymmetric.

Chapter 11 reviews the fundamental properties of stationary axisymmetric
stellar models. We present a number of useful identities which involve
two independent Killing vector fields. We present the proof of the
equivalence of the orthogonal transitivity of the spacetime and the
convection-free nature of the matter. We discuss two different ways of
explicitly writing out Einstein's equations for stationary axisymmetric
stellar models. And, we prove.a number of properties which these models
must possess including the relativistic versioms of Poincare's limit on the

angular velocity of a star and the rotation on cylinders theorem.
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6.2 General Relativistic Fluid Mechanics

The thermodynamic properties of a fluid are local properties.

Consequently the general relativistic treatment of thermodynamics is

essentially identical to the Newtonian treatment, whenever quantities are

measured with respect. to the co-moving frame of the fluid. The following

functions will represent the thermodynamic properties of the fluid as

measured by a co-moving observer:

p . e . mass density,

€ - internal energy density,

P . . pressure,

s AN entropy density,

T . o . temperature,

n . e particle number density,

u . .. chemical potential,

n, ¢ . . . coefficients of viscosity,
K . .. coefficient of heat conduction,
o

q . e o heat flow vector, and
aB

T e v . the stress energy tensor.

The motion of the fluid is described by the functioms,

u o e four-velocity of the fluid,
o. ’ .
a . . . acceleration,
8 . e . expansion,
aB
a e . . shear tensor,
ofB .
w . . . rotation tensor, and
oB . .
P . .. the projection tensor.

The gravitational field in the general theory of relativity is represented

by the geometry of the spacetime.

The geometry is described by the following
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functions:

gaB .« . . metric tensor,

TGBY . . .  Christoffel symbol,
RaBuv e e s Riemann tensor,

Rae e . . Ricci tensor, and

R e . . the scalar curvature.

These functions will be related to each other by the laws of thermodynamics,
the fluid equations of motion, the general relativistic law of gravitation,
and the equations of differential geometry.

The equation of state of the fluid will be represented by specifying
e, N, ¢ and k as given functions of the particle number density and the

entropy density:

e = ¢(n,s), n = n(n,s), r = z(n,s) and k = «(n,s)
(6.1)

We require that these functions be C2, and that they all be non-negative,
e >0, n >0, ¢ >0 ad « > 0. (6.2)

The remaining thermodynamic quantities are defined as follows:

T = 3¢e/3s, (6.3)
u = 93¢/dn, (6.4)
p = Ts + un - ¢, (6.5)
P = €, (6.6)
¢ = —KPaB(VBT + Tay), (6.7)

TOLB = puauB + (p-;e)PaB- noaB + auuB + q
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The major differences between the Newtonian and the relativistic theories
of thermodynamics come in eqs. (6.6) and (6.7). In the relativistic
theory we equate the mass density with the internal energy density of the
fluid, while the Newtonian theory identifies the mass density with
the particle number density. We also point out the additional term
in the heat flow equation (see Eckart 1940). This extra term takeg into
account the gravitational redshifts which occurr whenever energy is
transported through a gravitational field.

As in the Newtonian thermodynamics, we require the number density,

entropy density, pressure and the temperature to be non-negative functions:

n >0, s >0, p >0 ad T > 0. (6.9

We require the third law: if T = O then s = 0. And we require the stability

conditions:
3p/dn > O, 9T/3s > 0 and du/3n > O. (6.10)

The motion of the relativistic fluid is described by the vector field

a
u . The integral curves of u” are the world lines of the particles

in the fluid. We normalize u® to unit length:
uu =-1. (6.11)

In terms of u® and the metric gaB , the other properties of the fluid

motion are defined by:
a = u VBu . (6.12)

8 = Vou, (6.13)
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(6.14)

(6.15)

(6.16)

We note that these functions provide a useful decomposition of the gradient

o
of u:

Vu = -u a, + l + lm + leP
o o

a"B B8 T 3%8 T 2%g T 3 (6.17)

8"
Furthermore, we see that the thermodynamic properties, and the motion of the
o
fluid are completely determined by the functions n, s, u and gaB'
The geometry of a general relativistic spacetime is determined
completely by the metric tensor gaB' The connection coefficients and

the curvature tensors are related to gaB by the formulae:

a 1

"oy T 2 gau(avgue * angY " 9,8y (6.18)
Runv B ?urasv - avra6u+ Paourcsv - PaovPOBu’ (6.19)
R, = unav, (6.20)
R = guvRuv. (6.21)

We use the notation 3 for the partial derivative and V for the covariant
derivative. Our sign conventions are chosen so that the derivatives

satisfy the relationships:

v uB = 3 uB + PB uu, (6.22)
o a ol

v L H AY :
VGVBu vaau R vaBu . (6.23)
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We also point out that the curvature tensors satisfy the following

Bianchi identity,
R] = 0. (6.24)

The equations of motion for the functions n, s, u® and gaB (which
completely determine the state of the stellar model) are given by the

conservation of particle number
a
Va(nu ) =0, (6.25)

and Einstein's equations

1
R, - 3R gaB = 8nTa

8 5 (6.26)

The equations which correspond to Euler's equation and the entropy
production equation of Newtonian hydrodynamics are implied by eq. (6.26).
These equations can be derived by taking the divergence of eq. (6.26).
The left hand side vanishes by the Bianchi identity eq. (6.24), which

implies
VdT = 0. (6.27)

We project this equation parallel and orthogonal to u® to obtain the

expressions:
a oy _ 1 of 2 o
Va(pu +q) = -p8& + 500 OaB + 76" - a q (6.28)
(o + pla” = —P“Bva + 1>°‘Yv£_3{r,el>BY + 00 - BuY - Pl (6.29)

These equations correspond to the Newtonian energy conservation law and

Euler's equation respectively. Equation(6.28) can be transformed into the
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relativistic version of the entropy production equation by using egs.

(6.3)-(6.5) and (6.25). The resulting equation is given by

a o _ o 1 oaB 2
TVa(su +q /T) = ¢ qa/KT + §n0 OaB + zo. (6.30)

The equations of motion for the gravitational degrees of freedom are
also contained in eq. (6.26).

Solutions to the system of fluid equations defined above will be
called viscous heat-conducting relativistic fluids. Certain special cases
of these equations will also be of interest. Whenever the coefficients
of viscosity and heat-conduction vanish, the solutions to the fluid
equations will be called ideal relativistic fluids. The fluid equations
for this case take a particularly simple form. The stress energy tensor

becomes

TOLB = puauB + pPaB. (6.31)

Euler's equation and the entropy production equation simplify to

B

(o + p)aa = -p” va’ and (6.32) -

TVa(sua) = 0. (6.33)

Another interesting special case occurrs when the level surfaces of the

density coincide with the level surfaces of the pressure:

VapV p - VapVBp = 0. (6.34)

B

When eq. (6.34) is satisfied the fluid will be called barotropic.
We note that this definition of a barotropic fluid is formally the same

as the definition used for a Newtonian fluid. In fact, however, the
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concepts are very different from a thermodynamic point of view, since the
density is identified with the internal energy of the fluid in one case,
and with the particle number density in the other case.

The fluid mechanics which we describe here is also discussed by
Weinberg (1972) p. 53ff, Misner, Thorne and Wheeler (1972) §22, and by

Landau and Lifshitz (1959) §§125-127.

6.3 Boundary Conditions

In this section we discuss the conditions which distinguish stellar
models from all other possible solutions to the equations of relativistic
fluid mechanics. We must specify boundary conditions at the surface of
the star, which is the surface which separates the fluid interior of the
stellar model from the vacuum exterior region. Furthermore, we must
specify the asymptotic behavior of the gravitational field in the
external vacuum region.

A spacetime (l:I, éas) will be called asymptotically flat at null infinity
if there exists a smooth manifold M (with boundary L ) which has a
smooth non-degenerate metric gaB and a diffeomorphism ¥ from ﬁ onto M - &
satisfying the following conditions:

i) There exists a smooth function £ on M such that W*(gas) = w*(gz)gas

1

on M, with @ 0 and VaQ # 0 on <.

ii) There exists a neighborhood N of <& in M such that gaB satisfies

the vacuum Einstein equation in N )} ¥(M).
iii) If @ is so shosen that VaVaQ =0on W (where V is the covariant

BV Q is complete

B -~
on < and the space 2 of orbits of n® on o is diffeomorphic to

derivative on (M, gaB)),then the vector field n” = ga

2
S~ (where the differential structure on 2 is the one induced by

that on «f ).
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This definition of asymptotic flatmess has been introduced recently by
GCeroch and Horowitz (1978) and is used to prove the theorem which
classifies the possible symmetries of asymptotically flat spaces by
Ashtekar and Xanthopoulos (1978).

In addition to the above condition which characterizes the asymptotic
behavior of the geometry at null infinity, we will need to use the
properties of the asymptotic behavior in spacelike directions. : We
will call a spacetime asymptotically flat at spacelike infinity if there

exist coordinates t, x, ¥, z such that the metric has the asymptotic form:

as? = -[1 - %—4 + o Hlat® + [5ij + 0¢c 1) 1ax dx]
-3 i -3 i
+4[Jx Eiij + 0(r 7)Jldx dt, (6.35)
2 2 2 2 A . .
where r* = x +y + z°. It may be that the two notions of asymptotic

flatness, which we have introduced here, are not independent. However,
since this relationship has not been clarified yet, we introduce both
here. For simplicity, a spacetime will be called asymptotiéally flat
if both the spacelike and the null asymptotic flatness conditions are
satisfied.

A general relativistic stellar model is a solution of the equations
of relativistic fluid mechanics, egs. (6.25) and (6.26), which also
satisfies the following conditions:

a) The solution must be asymptotically flat.

b) The solution must be globally hyperbolic.

¢) The fluid must have compact support on each Cauchy surface.

d) The fluid variables are C2 functions of position in the interior

of the star.

e) The surface of the star is a 02 surface which is the boundary of
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the region of positive pressure. The pressure is continuous at the
surface of the star.

The spacetime manifold has a C5differentiable structure.

The metric tensor is C3 except at the surface of the star.

At the surface of the star the metric is C2 for tangential
derivatives and Cl for normal derivatives.

The heat flow vector,at the surface of the star, is tangent

to the surface of the star.
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§7 STATIONARY SPACETIMES AND THERMODYNAMIC EQUILIBRIUM

7-1. Introduction

In this chapter we begin to investigate the final equilibrium con-
figuration of general relativistic stellar models. We study the re-
lationship between therelativistic notions of thermodynamic equilibrium
and stationarity. We use a slightly stronger notion of thermodynamic
equilibrium here then was used in the study of Newtonian stellar models
(§3.1). We will say that a relativistic stellar model is in thermo-

dynamic equilibrium if the entropy current, sua+qa/T, is divergenceless:
Va(sua + q%/T) = 0. (7.1)

This condition implies the constancy of the entropy per particle along
the world lines of the fluid; however, the two conditions do not appear
to be equivalent as they were for a Newtonian fluid.

The concept of stationarity is more complicated in the general
relativistic case than it was in Newtonian mechanics. The curved space-
times of general relativity have no preferred time coordinate which one
might use to define stationarity. Instead, we will call a spacetime
stationary (see Carter 1973) if there exists a global symmetry group
action on the spacetime whose trajectories are timelike curves diffeo-
morphic to the real line, and under which all physical fields are in-
varient. The existence of such a group action implies the existence of a
timelike wvector field na whose integral curves are the trajectories of the
group action, and along which all physical fields are Lie transported. In
particular the metric has vanishing Lie derivative along na , which is

equivalent to Killing's equation:

Va nB + VB na= o . (7.2)
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The main purpose of this chapter is to establish the extent to which
the concepts of stationarity and thermodynamic equilibrium are equivalent
for relativistic fluids (Section 7.3). We will show that a fluid in a
stationary spacetime is necessarily in thermodynamic equilibrium
(Theorem 7.7). Furthermore, we will show that a fluid in thermodynamic
equilibrium moves along the trajectories of a timelike Killing vector
field, and is therefore in a certain sense "locally" stationary (Theorem 7.9).
We are not able to determine at this time whether or not a global isometry
is necessary however.

The other purpose of this chapter is to establish a number of "technical"
results which are needed to study the properties of stationary spacetimes.
Since the stationarity of a spacetime is defined by the presence of a
Killing vector field, we will investigate the properties of Killing vector
fields. Section 7.2 states and proves a number of useful properties which

will be needed throughout the later chapters.

7-2. Killingvectorology

In this section we derive some useful properties of non-null Killing
vector fields. We do not use any assumptions about the dimension or
signature of the manifold for these results. We will assume that the Killing
vector fields are sufficiently smooth, usually at least C2. The identities
which we present here can be found in the literature of Papapetrou (1966),
Carter (1973) and Trautman (1974). The complete list of results preceeds

the proofs.
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LEMMA 7.1 - Any Killing vector field, nY , satisfies

v V. n =17 1 . (7.3)

LEMMA 7.2 - Any Killing vector field, nY , satisfies

v {n v ng} = (2/3)n M. (7.4)

[y Yo "g] o %61 M

The vector field wa will be called the twist of the vector field na if

W' = naBuv n, V. n (7.5)

Buv

o4 . . . . .
where n is the totally antisymmetric tensor field, having values

+1 /=g or zero.

LEMMA 7.3 - If nY ie a Killing vector field , and 1f w* is the twist of

na , then

v = YRV Y, .
o “81 = Moguy " Ry M (7.6)

LEMMA 7.4 - If 2% i8 a non-null Killing vector field, and if o is the

twist of n* » then the gradient of n can be written in the form

- M 1 H Yyl
v, Mg = —{n[a VB](n nu) + 5 Nagpy @ 1 }(n nc). (7.7)

LEMMA 7.5 - If 0% is a non-null Killing vector field, and if o is the

twist of n , then

v {0/ (" nu>2} - 0. (7.8)
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LEMMA 7.6 — Let u be a unit vector field, uaua = + 1. The vector field

n® = £« is a Killing vector field if and only if

o)

u Va ug = + VBlog f, and (7.9
H \Y -
Pa P8 (VU u, + Vv uu) o, (7.10)
where POL6 = gaB Fu” uB.

The proofs of these lemmasare now given. Those not interested in the

details of these proofss are advised to skip to section 7.3.

PROOF OF LEMMA 7.1: The Ricci identity for n” gives (eq. 6.23):

U
vV v - V.V = -7nR .
o B nY B o nY Y yo.B (7.11)

We cyclically permote the indices in eq. (7.11), add the three expressions

and use Killing's equation to obtain,

VVn +9Y9n +V9n =-(1/2 H e H . 7.12
o6y 8%y AP (1/ )nu(R b + oy + R Bya) ( )

The right hand side of eq. (7.12) vanishes because of the symmetry of the

Riemann tensor. The left hand side gives,
Y =V v -V v = " .
n nY a n n R (7.13)

y o B B «a By u o yoB’

when eqs. (7.2) and (7.11) are used. [

PROOF OF LEMMA 7.2; We expand the left hand side of eq. (7.4)

Y 1Y Y Y
v v = = v
{n[Y . nB]} 3 {n v, Yy Mgt vion, Vg n, * Vi ong VY na}
+-l {-n VARV n. +n vv nlt. (7.14)
3 o Yy B B Y o
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The first three terms in eq. (7.14) are simply the Lie derivative of

Va n, along nY. Since na is a Killing vector field, this Lie derivative

B

vanishes. The last two terms are simplified by applying Lemma 7.1:

1 1
}==n R"n - 30 R Y q

Y
v V. n
n[Y o B o u*

Bl

PROOF OF LEMMA 7.3: We recall first two identities (see for example

Synge 1966, p. 356):

cabce

n aBuv=—5""BGuav-sisgsB-avasau
+ 62 5P 6 4 6% §P 5¢ 1+ 5% 60 8¢ | and (7.15)
B v u B v v u B
nHvab N vag = - 2000 a‘; - o5 52}. (7.16)
From eq. (7.15) it follows that
nabcu w =06 n[a Vb nc] . (7.17)

We now consider the left hand side of eq. (7.6). This expression can be

rewritten as

AY

v
B

1 u VY
7 v, G, 8; - GB 8.) wv}. (7.18)

(o “81 ~ u

The combination of Kronecker deltas on the right hand side of eq. (7.18)

can be replaced using eq. (7.16):

-1 abuv
v[a o 7 vu{n 1. (7.19)

abaB “y
We use eq. (7.17) to find

=3 fa ;b ul
v[a wB] 2 nabaB Vu{n viontl (7.20)
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Lemma 7.2 is now used on the right hand side of eq. (7.20) to finish

the proof. =

PROOF OF LEMMA 7.4: The gradient of a Killing vector field is anti-

symmetric (see eq. 7.2), therefore we use eq. (7.16) to write

1 uvab
= - = . .21
va nB 4 n nuvaB va My Y )

We split the contraction on the index v in eq. (7.21) into the part

o . .
parallel to na and the part normal to n ; the result is given by

1 uoab | Y _ Y € '
L yas [6G n nc/(n ne)]Vanb . (7.22)

The second term in eq. (7.22) contains a singly contracted pair of totally
antisymmetric tensors. These are replaced by using eq. (7.15). When the
resulting expression is simplified by performing all of the contractions

involving Kronecker deltes, the result is

__1 0 -1 bV
Vo g AU NyBuy @
1 1, ¢ -1 u
+ =V - = v . .2
2 V. Mg 7(n" n) Mo B](n " ) (7.23)
This expression is easily converted to the form of eq. (7.7). -

PROOF OF LEMMA 7.5 : We use the definition of the twist wa, eq. (7.5),

and the Leibniz property of covarient derivatives to show that

v o = nuBuv

N {Va g Vu n, + g Y, Vu nv} . (7.24)



71

The second term on the right hand side of eq. (7.24) can be re—-expressed
in terms of the Riemann tensor by applying Lemma 7.1. The Riemann tensor
will be antisymmetrized on its last three indices in eq. (7.24); there-
fore this term will vanish. The first term on the right hand side of

eq. (7.24) can be simplified by using the equation for VanB from Lemma
7.4. The resulting expression is simplified by applying eqs. (7.15)

and (7.16). The result is given by

o v -1 o H
vou =2 n ) e Y00 ). (7.25)

Equation (7.25) can be easily converted into eq. (7.8). [ ]

PROOF OF LEMMA 7.6: If n* is a Killing vector field then

o u o. 2
= - . -
0 n Va(n nu) + 1 Va f (7.26)

Therefore the acceleration of u® may be written
A AR L (7.27)

Use Killing's equation to rewrite the right hand side of eq. (7.27) as

-2 VB 2

WY ou =I%f £2, (7.28)

o
This equation is equivalent to eq. (7.9). We now consider the left hand
side of eq. (7.10).

H Y U
P P Vv + vV =
8 ( " u, N uu) Pa P

v, —1
f Vv + Vv
o { (unv vnu)

g
+n V f—1 +n V f—l}
v U TR
(7.29)
The first two terms on the right hand side of eq. (7.29) vanish by Killing's

equation, while the second two vanish because Pau n = 0.
u
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We now consider the converse. We assume eqs. (7.9) and (7.10).
When the definition of the projection operator is substituted into eq. (7.10)

the following non-vanishing terms remain.
- a — a
0= Vu +V u +u u V u +u u V u . (7.30)
[TRRY v ou v a

U H o v

We use the expression for the acceleration from eq. (7.9), and the

definition of na to rewrite eq. (7.30) as
0= n +7 n)
u nV v nU
-2
- ) v + v . 7.31
f (nv Vuf + nu vf) + u " logf uu N logf (7.31)

The last four terms cancel each other, so that eq. (7.31) becomes Killing's

equation. [

7.3 - The Equivalence of Stationarity and Thermodynamic Equilibrium

The first theorem in this section demonstrates the necessity of
thermodynamic equilibrium for a stationary relativistic stellar model.
The proofs of the theorems in this section were first given by Lindblom
(1976a). Although the proofs of the theorems given here assume that the
temperature of the fluid does not vanish, the theorems remain true in
that case also. The proofs for the zero temperature case involve fairly

straightforeward modifications of theproofs which are given.

THEOREM 7.7 - 4 relativistic fluid stellar model which is stationary,
globally hyperbolic and asymptotically Minkowskian must be in a state of

thermodynamic equilibrium.
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PROOF: A stationary spacetime admits a timelike vector field, na , along
which all physical fields are Lie transported. In particular the metric
tensor, gaB’ and the entropy current vector, s ot o+ qa/T, have zero Lie
derivatives along na. Since the spacetime is globally hyperbolic, there
exists a spacelike surface T, which intersects every integral curve of

na exactly once. We create a family of surfaces, 1(t), by Lie tramsporting
the surface T along the integral curves of na

The total entropy of the fluid may be defined by an integral over one

of the surfaces T(t):

S(t) = J / —g (su” + qa/T)d3 X, - (7.32)
T(t)

Since the entropy current, and the metric are Lie transported along na s
the total entropy as defined by eq. (7.32) is independent of the parameter t.
Now consider a region of spacetime, { , whose boundary consists of the
two surfaces T(tl), T(tz) and a plece at spacelike infinity. The support
of the thermodynamic potentials is bounded on any spacelike surface. There-
fore the entropy current vanishes on the portion of the boundary of @ which
lies at infinity. The integral of the divergence of the entropy current
over the region 2 is therefore zero:
f F v (su” + */ma*x = S(ty) - s(t) = 0. (7.33)
The entropy production equation (6.30) for a relativistic fluid implies

that

o

Va(su + q%/1) > 0. (7.34)

Equation (7.33) states that the integral of this non-negative quantity
vanishes. We conclude that the divergence of the entropy current itself

vanishes, so the fluid must be in a state of thermodynamic equilibrium. g



74

In the next theorem we prove the relativistic analogue of Theorem 3.3,
that a fluid in thermodynamic equilibrium must be barotropic and the
motion of the fluid must be rigid. The concept of rigid motion is not a
local one, therefore the extension of this idea to arbitrary curved space-
times is not totally straightforeward. We will say that a body is in
rigid motion if the unit vector field u® (whose integral curves are the

world lines of points in the body) is shear free and expansion free:
au By _
PP (Vu u, + Vv uu) = 0. (7.35)

This definition of rigid motion for relativistic objects is equivalent

to a definition given by Born, Herglotz and Noether: "A body is called
rigid if the distance between every neighboring pair of particles, measured
orthogonal to the world line of either of them, remains constant along the
world line." The concept of rigid motion for relativistic systems is
discussed at length by Trautman (1965) §8. In particular Trautman gives
the proof of the equivalence of eq. (7.35) and the Born, Herglotz and

Noether definition.

THEOREM 7.8 - If a relativistic fluid, having nonzero coefficients of
viscosity and heat conduction, 1s in a state of thermodynamic equilibrium,

then the motion of the fluild is rigid and the fluid is barotropic.

PROOF: From the definition of thermodynamic equilibrium eq. (7.1) and the

equation of entropy production eq. (6.30) it follows that

0=q"= Pau(VuT + Ta), (7.36)
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0=0¢ " , and (7.37)

0=26. (7.38)

Equations (7.37) and (7.38) are equivalent to eq. (7.35), therefore the
fluid motion is rigid.
The entropy and particle number conservation laws eqs. (7.25) and

(6.30) reduce to the form

0, and (7.39)

[
<
=}

il

wWv s=0. (7.40)

Therefore, all of the thermodynamic functions, (e.g. the temperature)
have zero derivatives along u”. Equation (7.36) then implies that the

acceleration is a gradient
a =-V log T. 7.41
y L 1o ( )
Euler's equation for this system eq. (6.29) simplifies to

-1
= - + v . 7.42
a (p+p) L P ( )

Since the acceleration is a gradient from eq. (7.41) it follows that the

right hand side of eq. (7.42) must also be a gradient. It follows that

the fluid is barotropic. [
We next prove a rather trivial corollary of Theorem 7.8, which shows

that a fluid in thermodynamic equilibrium is at least locally stationary.

It is quite possible that a much stronger result is true for asymptotically

Minkowskian relativistic stellar models. I conjecture that thermodynamic
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equilibrium implies'global stationarity for relativistic stellar models.
This is a stronger result than the corresponding Newtonian theorem (3.4).
Non-stationary examples of thermal equilibrium in the Newtonian case are
non-axisymmetric rigid rotators like the Jacobi ellipsoids. In general
relativity theory, objects of this sort would radiate gravitational
radiation and consequently could not remain in thermodynamic equilibrium.
Thus, I suspect that in relativity theory these objects would be eliminated
by the assumptions of thermal equilibrium, leaving as possible stellar

configurations only the truely stationary models.

THEOREM 7.9 - If a relativistic fluid, having non-zero coefficients of
viscosity and heat conduction, is in a state of thermodynamic equilibrium,
then the four velocity of the fluid is proportional to a Killing vector field
along which all fluid variables are Lie transported. (Thus, the fluid is

"locally" stationary.)

PROOF: Equations (7.37), (7.38) and (7.41) from the proof of Theorem 7.8
are satisfied by this fluid. According to Lemma 7.6 these equations imply
that the four velocity of the fluid is proportional to a Killing vector
field, n®. Equations (7.39) and (7.40) imply that the entropy density, s,
and the number density, n, are Lie transported along na. That the four

velocity is also Lie transported along na is easily verified. "
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§8 ANALYTICITY OF RELATIVISTIC STELLAR MODELS

8.1 Preliminaries

TIn this chapter we show that the functions which describe the
stellar models of general relativity theory must be analytic functions
when they are expressed in appropriate coordinates. Therefore the
metric, and the other functions of the model can be expressed as
power series, and consequently are completely determined by specifying
all derivatives of the functions at a single point within each connected
analytic region. Thus we can study the global properties of the stellar
models by examining their properties in a few local neighborhoods.
Hawking (1972) has used these results in his proof that stationary black
holes must be axisymmetric; and Lindblom (1976a) uses the results in his
proof that stationary stellar models must be axisymmetric (see also §10).

The techniques for proving the analyticity of these spacetimes were
developed by MUller zum Hagen (1970a) and (1970b). We reproduce his
proof that the vacuum exterior region of a stationary stellar model must
be analytic (Theorem 8.7). We also present here an extension of this
work which shows that the interior region of a rigidly rotating stellar
model must be analytic, if the equation of state is analytic (Theorem 8.8).
A slightly weaker version of Theorem 8.8 has been given by Lindblom
(1976b). The surface of the star, which forms the boundary between the
analytic exterior and the analytic interior of the star, is a place where
the functions necessarily fail to be analytic.

The main tool used in the proof of the analyticity of these space-
times is a theorem by Morrey (1958) which states that every sufficiently
differentiable solution to a system of elliptic differential equations

must be analytic. We show that when the spacetime is stationary one can
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choose coordinates in which Einstein's equations become a system of
elliptic eduations. Morrey's theorem is then used to show that any
solutions of the equations must be analytic functioms.

The concept of an analytic function on a manifold only makes sense
if the manifold has an analytic atlas. In particular, the transfor-
mation functions, which relate coordinates on the intersection of two
coordinate charts, must be analytic functions. We use stationary and
harmonic coordinates which are defined by the two conditions:

a) the components of the timelike Killing vector field are given by

nt = Suo; and b) the Christoffel connection satisfies g“v Puuv = 0.

We show in Lemma 8.3 that stationary and harmonic coordinates exist at
each point. We also show (Lemma 8.4) that the transformation function
between two stationary harmonic coordinate charts are analytic functions
whenever the metric is analytic with respect to these charts. Thus, the
stationary and harmonic coordinate charts form an analytic atlas for a
stationary spacetime.

In order to use the necessary theorems from the literature on partial
differential equations, we must consider a somewhat stronger continuity
condition than the usual one. We say that a function f(x%) is Hglder

continuous of order n , 0 < u < 1 (written CM*) on some domain D, if there

. a a .
exists a constant K so that for all x , y € D it follows that

le™ - £ <k x5 -y ", (8.1)

2 0.2 1.2 2.2 2
= (x7) ") T+HED) +(x3) . Furthermore, we say that a

where |xu]
f s . m+y .
unction, £, is of class C for integer m and 0 < y < 1 if f has con-

tinuous derivatives through order m, and if the m'th derivatives are

1 .
Holder continuous of order p .
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We will be considering systems of second order elliptic partial

differential equations. The system of equations

o2, 5,0 £5, 5 8. £) = 0 (8.2)
a a B

with A,B = 1,2, ...N is said to be elliptic in some domain D if for all

x' ¢ D and for all vectors 24 0, the determinent on the indices A and

B
o a A C C C
dget {7 2RIt v, v, v 1M A0, (8.3)
B 3y v’ Jye
X B
does not vanish when evaluated at ;: = fC, y 2 = Ba fC, and
C C

= 3 .
y af Ba 8 f

The proof of our results will be based on the following two theorems
about the solutions of elliptic differential equations. The first theorem

is a special case of a theorem by Morrey (1958), which guarantees the

analyticity of the solutions of elliptic differential equations

THEOREM 8.1 - Assumptions: 8 s a function which s a solution of a
system of elliptic differential equations (eq. 8.2) in a domain D , and
which is class C2+u , 0 <u< 1. The function @A(xa, yB, yga, yEB ) (see

eq. 8.2) is analytic in the variables =7, yB, yz, yzs).

. . B . . .
Assertion: The function £ is analytiec in D.
The second theorem is a local existence theorem for the solutions of

elliptic differential equations in one dependent variable.
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THEOREM 8.2 - Let | be a second order elliptic operator
[=a 3 d,+a 3, + a, (8.4)

where the coefficients aaB, as, a and the function h are of class Cm+u ,
0 <u < 1. In a sufficiently small neighborhood of a point, say X s

there exists a solution, £, of the equation

Lf =, (8.5)

having the following properties: a) £ <s of class C2+m+u

b) £ and its first derivatives have prescribed values at the point X .
The proof of Theorem 8.1 may be found in Morrey (1958), while the proof

of Theorem 8.2 is given in Bers, John and Schecter (1964) p. 136 and 228.

8.2 Lemmas
In this section we state and prove several lemmas which are needed

to prove the analyticity theorems in the next section.

LEMMA 8.3 - Assumptions: Consider a spacetime (M,g) having a Cn+2

differentiable structure for integer =n > 2. (M,g) admits a globally

1

timelike Killing vector field, n® , which is Cn+ The metric tensor

is c"
Assertion: In a neighborhood of each point x e M there exist stationary

harmonic coordinates which are Cn+u > 0 < u<1,functions of the Cn+2

coordinates on M.
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n+ .
PROOF: Since na is a C . vector field, one can always choose coordinates

(in a neighborhood of any point) in which the components of na = Gg ,

and which are Cn+2 functions of the coordinates in the Cn+2 differentiable

. . iy L . .
structure on M. In these coordinates the metric g J, i,j = 1,2,3, is
positive definite. We note that if one performs a coordinate trans-

formation of the form

\ s 7 ' ] .
% = x° + h(xj), and x* = f- (xJ), (8.6)
a . a' o' .
then the components of n~ remain unchanged, n = § o'? and the matrix
et s
gl J remains positive definite. Killing's equation is given by (see
eq. 7.2).
o o o
9 = 0. .
n aa guv + 8o y n + gud Bv n 0 (8.7)

il

. . . . a a . . .
Therefore in the coordinates in which n do, Killing's equation reduces

to

=0 . (8.8)
The Christoffel connection transforms according to the formula,
0. X 3 x 4+ 93 3 x (8.9)

under a change in coordinates (see e.g. Eisenhart 1926). If we can

|
. , a . . .
find new coordinates x  which satisfy the equations

La* ) =g s o x* -g™r% 5 x* =0, (8.10)

g Tgryr =0 (8.11)
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We make a coordinate transformation in the form of eq. (8.6). The

operator | from eq. (8.10) on this transformation reduces to

(o]

v
- 8.12
aih g ruv , and ( )

o' ij _oouv i
L") =g~ 8, 83, h -8 " T

L(Xk') 13 . 0, k! gV 1 . k! . (8.13)

Il

o
9]
9]
Hh

I
—
9]
+h

The operators in eqs. (8.12) and (8.13) are elliptic. Consequently the

1 1]
equations L(xa ) = 0 are elliptic equations for h and fk .  Theorem 8.2

guarantees the existence of solutions of this equation which are of class

1

k . . PP
e , 0 <y <1, Since the values of h and £ and their first derivitives

C

can be specified at a point, x, we can choose values so that the Jacobian

of the coordinate transformation is nonsingular is some neighborhhod of x.

Thus, stationary and harmonic coordinates of class Cn-Hl exist in a
neighborhood of each point. [
LEMMA 8.4 - C(Consider a stationary spacetime (M,g) in which the components

of the metric temsor are analytic functions of the stationary harmonic
coordinate charts. Then, the stationary harmonic coordinate charts form

an analytic atlas on M.

PROOF: To show that the stationary harmonic coordinate charts form an
analytic atlas on M, we must show that the transformation functions between
the coordinates in overlapping charts are analytic. Since the coordinates
are stationary in both charts, the components of na in both systems are

given by n% = 63. Therefore

x =3 x . (8.14)
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By integrating eq. (8.14) it follows that the transformation between
two stationary coordinate systems must be in the form of eq. (8.6):

1

. . P .
© = x4+ h(xJ), and xT = £ (xJ). (8.15)

From the transformation law for the Christoffel connection, eq. (8.9),
it follows that the transformation functions between two harmonic coor-

dinate systems must satisfy the equation
Vs 5 x* =o0. (8.16)

From the form of the transformation law given in eq. (8.15) it follows

that eq. (8.16) reduces to the following elliptic equation
g3 5, 5, x5 = 0. (8.17)

Lemma 8.3 guarantees that the transformation functions are at least

2+

C , 0 < y<l. Theorem 8.1 then shows that the transformation functions

must be analytic since eq. (8.17) is an elliptic equation, and since the

. ij . . .
metric, g J, was assumed to be an analytic function of the coordinates. @

LEMMA 8.5 - The Ricei temsor in a stationary harmonic coordinate system

can be written in the form

- _ 1 _ii
R 2 & ai aj g

oB + BaB(g,ag), (8.18)

where the function B, depends algebraically on the metric g and its

B
first derivatives 3g, but not on any higher derivatives.

PROOF: From the definition of the Ricei temsor, eq. 6.20, it follows that

_ T u
Ryg = 9, Tog = 2 T+ Cup(esm). (8.19)
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The functions Ca are the quadratic terms in the Christoffel symbols,

B

therefore Ca depends algebraically on g and 3g, but does not depend

B
on any higher derivatives. We expand the first two terms on the right

hand side of eq. (8.19) to make explicit the terms containing second

derivatives in g:

=1 W
R = 5 8 {au 3

aB B gav U o ng o

1 uv '
- = . .2
5 8 Bu W Bz + Cae(g,ag) (8.20)

The first three terms on the right hand side of eq. (8.20) can be re-
expressed as a term which depends only on the metric and its first deriva-

tives, when one uses the harmonic coordinate condition (see eq. 8.11):

HV -
g {2 au 84y ~ % guv} 0. (8.21)

Therefore eq. (8.20) can be written as

- - 1w
R = 3 g

- 3, 9, Byp + Byg(8:28)- (8.22)

u

Killing's equation in these stationary harmonic coordinates is given by

eq. (8.8). Consequently eq. (8.22) is equivalent to eq. (8.18). B

LEMMA 8.6 - Consider a stationary spacetime in which the metric tensor is

an analytic function of the stationary harmonic coordinates. If the c3

vector field £% commutes with the Killing vector Y,

u a u a
Y - Y = .
n . g £ " n 0, (8.23)

and if €% satisfies the equation

uoa o U
v = e
Vu £ R 0 £, (8.24)
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then £ is an analytic vector field

PROOF: 1In stationary coordinates, eq. (8.23) becomes
3 & =20. (8.25)
Consequently in these coordinates, eq. (8.24) can be written in the form
gt 3 3 £* + B%(g,0t, g,9g, 99g) = O . (8.26)

The function B* depends on each of its arguments algebraicly. Since

the metric is assumed to be an analytic function of these coordinates, it

follows then from Theorem 8.1 that Ea must be analytic.

The proof of the first two lemmas (8.3 and 8.4) was first given (in a
1"

slightly different form) by Muller zum Hagen (1970a) and (1970b).

Lemma 8.5 is a well known result (see e.g. Lichnerowicz [1967] p. 14).

The proof of Lemma 8.6 was previously given by Lindblom (1976a).

8.3 The Analyticity Theorems

The boundary of the star is a place where the functions in the
stellar model necessarily fail to be analytic. Consequently we need
separate theorems to establish the analyticity of the interior and ex-
terior regions respectively. The first theorem, whose proof has been
given by Muller zum Hagen (1970b), establishes the analyticity of the

vacuum exterior region of a stationary stellar model.
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THEOREM 8.7 - Consider a stationary vacuum spacetime :(M,g). If the

manifold, M , admits a c differentiable structure with respect to which
A . .

the timelike Killing vector field, n® , 18 C and the metric is C3 R

then M admits an analytic atlas in which the metric is an anmalytic function.

PROOF: From Lemma 8.3 it follows that there is a stationary harmonic
coordinate chart in a neighborhood of each point, and that the metric is
a C3 function of these coordinates. Lemma 8.5 implies that Einstein's
equation for a vacuum spacetime can be written invthe form

1
7 894 95 85

= Bas(g,ag)- (8.27)

Equation (8.27) is a system of elliptic equations. Theorem 8.1 proves

that the solutions to this equation must be analytic functions since

they are assumed to be C3. Therefore, the metric tensor is an analytic

function of the stationary harmonic coordinate system at each point.

Lemma 8.4 proves that in this case the stationary harmonic coordinate

charts form an analytic atlas for M. .
The last theorem of this chapter proves that the interior regions of

stellar modelswhich have come to thermodynamic equilibrium (see Theorem

7.8) must be analytic spacetimes. We note that this theorem does not

need to assume that the interior of the star is stationary since Theorem 7.9

guarantees the existence of a timelike Killing vector field in the interior

region. The proof of a slightly weaker result than Theorem 8.8 has been

given by Lindblom (1976b).
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THEOREM 8.8 - Comsider a spacetime (M,g) which contains a rigidly

moving barotropic ideal fluid. If the manifold M has a CSdEf?brentiabZe
structure with respect to which the metric, Byg 18 C4, the fluid

four velocity o is C4 and the pressure, p , 18 C3, and 1f the mass
density, p, ie an analytic function of the pressure, then M admits an

analytic atlas with respect to which 8,8° u* and p are analytic functions.

B
PROOF: Since the fluid moves rigidly and barotropically it follows that
the four velocity of the fluid is proportional to a Killing vector field,

n* = f (see the proof of Theorem 7.9). According to Lemma 7.6 the

function f is given by u® Va uB = -VB log £. Therefore the function £
is C4 since ua; and gaB are also C4. Consequently the timelike Killing
vector field na nmust be C4 also. It follows therefore from Lemma 8.3
that there exist stationary harmonic coordinate systemsin a neighborhood
of each point. Since the components of na are given by na = 60 in
these coordinates, it is obvious that n® is analytic in the stationary
harmonic coordinates. The vector field u® depends, therefore, only on
the metric in these coordinates. Since u” is not null, this dependence
on the metric is analytic. To show that the remaining functions gaB
and p are analytic, we show that they are the solutions of a system of
elliptic differential equations.

Einstein's equation for a rigidly moving barotropic fluid are given

by

RdB = 81r(p+p)uauB + 4ﬂ(p—p)ga8. (8.28)
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Consequently, when one uses Lemma 8.5, one can rewrite eq. (8.28) in

the form

glJ d, 9,

.2
i J gaB + BOLB(g’ ag’P)- (8 9)

The function Ba depends on each of its arguments analytically, since p

B

depends on p analytically by assumption.

Euler's equation for this type of fluid is given by (see eq. (7.32)

u = e
(p+p)u V, U = 7Y, P (8.30)

Taking the divergence of this expression using the Ricci identity

(eq. 6.23) and the expansion free nature of the fluid gives

o _ 0 _ o B B a
Ve V' p=-a Va(p+p) (p+p){RaB u u + va ug V" u}. (8.31)

When eq. (8.28) is substituted into the right hand side of eq. (8.31) for
the Ricci tensor, and when the left hand side is written out in stationary
harmonic coordinates, equation (8.31) reduces to

oy s

;35 P B(g, d9g, P, 9P). (8.32)

g

The function B depends on each of its arguments analytically. Equations
(8.29) and (8.32) form a system of elliptic differential equations for gaB
and p. It follows from Theorem 8.1 that these must be analytic functions
of the stationary harmonic coordinate charts. It follows from Lemma 8.4
that the stationary harmonic coordinate charts form an analytic atlas for

M. a
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It is clear from the techniques which we used to prove Theorems 8.7
and 8.8, that it would be possible to prove the analyticity of any
stationary spacetime containing matter fields which satisfy elliptic
equations in the stationary case. This is true for other common fields
of mathematical physics: Yang-Mills fields, scalar fields, Dirac fields,
etc. The case of a spacetime containing a source free Maxwell field has

been proved by Lindblom (1976b).
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§9 STATIC STELLAR MODELS
9-1 Discussion
In this chapter we discuss the properties of a special class of
relativistic stellar models, which in addition to being stationary are
also static. In our treatment of Newtonian stellar models, we called
a star static when the velocity field vanished, vi = 0 (see §4.1).
The concept of staticity therefore, is the complete absence of motion;
even steady motions such as uﬁiform rotations are to be excluded. There
are two different ways of generalizing this notion of staticity to curved
spacetimes. The first will be called the material staticity condition which

requires that the timelike Killing vector na(that defines the stationarity

of the spacetime) be an eigenvector of the Ricci tensor:

H =
n[aRB] nu =0 9.1)

This condition corresponds to the Newtonian definition of staticity in
the following way. The flux of momentum, as seen by a stationary observer

(one who moves along the integral curves of n%), is given by
P =T"qn . (9.2)

These stationary observers will observe no motion of the mass-energy in
their vicinity if the momentum flux, Pa’ points purely in their local

time direction:

TWGPB] = 0. (9.3)

Equation (9.3) is equivalent to eq. (9.1) whenever Einstein's equations

(6.26) are satisfied.
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The second notion of staticity, the metric staticity condition is
said to hold whenever the twist of the timelike Killing vector field,

na, vanishes:
aBuv
n n.vn =0. (9.4)

This condition has the following interpretation. Equation (9.4) is
equivalent to the requirement that the integral curves of the Killing
vector field, na, are orthogonal to a family of spacelike surfaces

(see Carter 1973, p. 152). These spacelike surfaces can be thought

of as the level surfaces of a time function. The requirement that na

be orthogonal to these surfaces means that the stationary observers

will observe themselves to be at rest in these surfaces. Thus, eq. (9.4)
is equivalent to the requirement that there exist a time function which :
makes the stationary observers appear to be at rest. In the usual
terminology, a stationary spacetime is called statie if the metric
staticity condition is satisfied.

In section 9.2 we reproduce Lichnerowicz's (1955) proof (see also
Carter 1973, p. 151) that the material staticity copdition is equivalent
to the metric staticity condition in an asymptotically flat singularity
free spacetime. For the case of a spacetime containing an ideal fluid,
the material staticity condition reduces to the requirement that the fluid

four velocity be parallel to the stationary Killing vector field:

u[dnB] = 0. (9.5)

Therefore Lichnerowicz's theorem (9.1) shows that the spacetime of a
relativistic stellar model is static if and only if the fluid obeys
eq. (9.5). We will need to use this result in the proof of the axi-

symmetry theorem in §10.
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Tn the Newtonian theory of gravity we found that a static stellar
model was necessarily spherically symmetric (Theorem 4.8). We would
expect the analogous result to hold for relativistic stellar models,
but no one has found a way to prove this yet. In section 9.3 we discuss
the general framework of the problem in general relativity. We discuss
the necessary features which any proof that static stars are spherical
must posess. In section 9.4 we write out the Einstein equation for a
static fluid in a system of coordinateswwhich appear to be useful for
the analyses of this problem. Section 9.5 reviews the papers in the
literature which address the problem of proving that static stars are
spherical. Section 9.6 outlines the methods which this author has used

to search for a proof that static stellar models: must be spherical.

9-2 Lichnerowicz's Theorem

Lichnerowicz's theorem establishes the equivalence of the spacetime
staticity condition and the material staticity condition. The proof
which we present here requires that the spacetime be singularity free.
This is the case which applies to relativistic stellar models. Generaliza-
tions of this result have been given by Hawking and Carter (see Carter 1973
p. 155). Hawking's generalization allows the presence of black holes in
the spacetime. Carter generalizes the theorem by including electro-
magnetic fields. He defines two notions of staticity for the electro-
magnetic field and its current, in analogy with the conditions on the
metric and the stress tensor eqs. (9.1) and (9.4). He then proves the
equivalence of the matter (stress energy and electric current) staticity
conditions with the field (metric and electromagnetic) staticity conditionms.
We will not have a need for these more complicated results in this work

however.
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THEOREM 9.1 - Consider a spacetime which is stationary, asymptotical Ly
flat, asymptotically source free and topologically Minkowskian. Then

the material staticity condition,

H =

18 equivalent to the metric staticity condition,

n[aVBnY] 0. (9.7)

PROOF: 1If we assume the metric staticity condition, eq. (9.7), it

follows from Lemma 7.2 that the material staticity condition, eq. (9.6)

must hold also. The proof of the converse is somewhat more involved.
When eq. (9.6) is satisfied, Lemma 7.3 states that the twist of

o .
n is curl free

V[a we] = 0, (9.8)

Since the topology of the manifold is taken to be simply connected,

eq. (9.8) implies the existence of a scalar, w, which satisfies
Vw= w. (9.9)
Let us consider the following expression
2

2va{ww[°‘nB]/(n“nu) }. (9.10)

We can expand expression (9.10) in the following way,

ol
29 f'wm[dnﬁ] ) w w, 8 .y W% 8
W n"n )2 (P2  (Hn y2)
nnu nnu nnu
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2 (v n_ - nav wB}
u 2 o B o
(n"n )
u
wa o B o W
- — 9V n —wun}V —_— . (9.11)
u 2 o ) TN
(n nu) (n nu)

The second term on the right hand side of eq. (9.11) vanishes by

Lemma 7.5. The third is proportional to the commutator of na and

o¥ which vanishes. The fourth term vanishes because the Killing vector
na is divergenceless, and the final term vanishes because w and nunu

. a .
are constant along the integral curves of n . Therefore we find that

ww[a 8] wawa 8
2V L on = —2—p". (9.12)
* (nun )2 (nun )2
u u

We integrate equation (9.12) over any asymptotically flat spacelike

surface, & .

[e B1 9 0w 3
2£/§de =J/-“g‘——‘l—-2-n3dx8. (9.13)
5% (nunu) oB 5 (nunu)

The left hand side of eq. (9.13) comes from applying Stokes theorem to
the integral of the left hand side of eq. (9.12). When the integrand
on the left hand side of eq. (9.13) is evaluated in the asymptotic form

of the metric discussed in §6.3, we find that

e B] -
/g T Px = o . (9.14)
('ay? P
u
Therfore, the integral on the left side of eq. (9.13) vanishes. The

integrand on the right hand side is negative definite sinee w” is a

. s , . 3
spacelike vector, wawa > 0, and since the surface 1is spacelike, nad xd< 0.
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9-3 Are Static Stars Spherical?

We would all be quite surprised if someone presented us with a
static non-spherical general relativistic stellar model. It has been
shown (Theorem 4.8) that there are no Newtonian models of this sort.

Thus, it seems plausible to believe that a relativistic example must
involve strong fields accompanied by their significant non-linearities.
On the other hand, Israel (1967) has shown that static black holes must
be spherical. Since the non-linearities of strong gravitational fields
cannot conspire to spoil the spherical symmetry of this related problem,
it is unlikely that they can prevent spherical symmetry in the case of
non-singular stellar models. Yet, no proof has been found which shows
that no model exists which lacks spherical symmetry. In the next three
sections we attempt to summarize some of the thought which has gone into
this problem. Our summary is almost certainly incomplete since this is
an unsolved problem, and much of the work has not been published.

Let us first discuss some of the obvious general features which any
proof of the "static stars are spherical" theorem must posess. It is
clear, for example, that it is necessary to assume that the matter is a
fluid which cannot support stresses. If we allowed solid matter we
could certainly find solutions which represented a static ice axe
(for example) in an otherwise empty and asymptotically flat spacetime.
Furthermore, the proof must use the fluid matter assumption in some global
way. If the solutions were composed of fluid "almost everywhere' but
contained some small amount of non-spherical solid matter, then the entire
solution would be non-spherical because of the long range effects of the
gravitational field. Therefore, the proof that static stars are spherical

must somehow examine the nature of the matter everywhere at once to ensure
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that it is a fluid. Another important assumption is the boundary con-
dition at spacelike infinity, i.e. asymptotic flatness. If we were to
replace this boundary condition by non-spherically symmetric boundary
conditions, then the solutions would fail to be spherically symmetric
also. ’For example if we required the asymptotic form of the metric to
approach some anisotropic cosmological model, then we would not expect
to find that static stars were spherical. Therefore, we see that the
proof must somehow check the boundary conditions to see if they are of
the appropriate type.

What kind of proof can fulfill these criteria? One type of proof
that has been used with great success on problems in general relativity
is illustrated by the proof of Lichmerowicz's theorem in the last sectiom.
An heuristic outline of the proof goes as follows. We used the assumptions
about the matter at each point to derive eq. (9.12). This expression has
the form of a divergence equaling a definite signed quantity. Integrating
the expression over the star insures that the assumptions are satisfied
at all points. The divergence is converted into a surface integral, which
vanishes because the appropriate boundary conditions are satisfied. The
remaining integral therefore vanishes. 1Its integrand has definite sign,
therefore we conclude that the integrand vanishes, which establishes that
which we set out to prove. Other important theorems in relativity theory
have been established in qualitatively the same way: e.g. Robinson's
(1975) proof of the uniqueness of the stationary black hole solutioms,
and Israel's (1967) proof that static black holes must be spherically
symmetric. This type of proof meets our criteria of being essentially

global in nature, and of using the boundary conditions in a crucial way.
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Therefore, it seems reasonable to look for a proof of the "static stars
are spherical" theorem which is of this form. We will discuss some

attempts in §9.6.

9-4 Mathematical Machinery

In this section we will write down Einstein's equations in a system
of coordinates which appear to be useful ones for the study of the static
star problem. The equations have been written in essentially this way by
Avez (1964) and Kiinzle (1971) in their studies of static stellar models,
and by Israel (1967), Muller zum Hagen, Robinson and Seifert (1973) and
Robinson (1977) in their studies of static black holes.

We have assumed that the Killing vector field, na , which defines
the stationarity of the stellar model, is also twist free. By Frobenius'
theorem (see e.q. Flanders 1973, p. 92), the twist free condition is
equivalent to the existence of functions t and V (at least locally) such

that
2
n = -V Vat- (9.15)

We can choose the function t as a time coordinate. By defining three
additional coordinates on one of the t=constant surfaces, and Lie trans-
porting them along the integral curves of n@, we obtain a system of

coordinates in which the metric has the form:

. .
ds® = - v%a t% + gy dx axd (9.16)

where i,j = 1,2,3. We note that Killing's equations in this system of

coordinates takes the simple form

5.V=0=03_g. . (9.17)
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The three dimensional metric, gij’ defines a covarient derivative
which we denote by semicolon (;) and an associated curvature tensor which
we denote by 3Ra.bcd. For three manifolds we recall that the Riemann
tensor can be related to the Ricci and scalar curvatures by the ex-

pression

3 3 3 3 3
Rubed = 8. Rbd ~ Bad Rbe T Ebd Rac T Bbe ad

13
*3 R (B8 T Bac®hd)- (9.18)

Since the Weyl curvature vanishes in three dinensions, the following tensor

field is used to measure the conformal structure of the geometry:

3 3

3 3
17k = Raggk T Rikgg

1
+ Z(gik R;j - gij R;k)' (9.19)

The tensor Rijk vanishes if and only if the three geometry is conformally
flat (see e.g. Eisenhart 1926, p. 89).
Einstein's equations for the static perfect fluid in this special

coordinate system are given by

v,a = 4V (p+3p), and (9.20)
3 =v v .+ 4n(o-p)g .- (9.21)
ab ;ab ab

Equations (9.20) and (9.21) can be used to find an expression for the

scalar curvature:

3R = 167P. (9.22)

The Bianchi identities for the three dimensional curvature are equivalent

to

il
o

-1
p,, t (ptp) VOV (9.23)

> >
We recognize eq. (9.23) as Euler's equation for this static situation. Note
that this equation implies the p and p have the same level surfaces as the

function V.
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We will next pick a system of coordinates within the three
dimensional surfaces, t = constant. Let ¢ denote a function with
Bt¢ = 0, and ¢;a # 0 within some open neighborhood (our coordinate chart).
We choose the two additional coordinates, by picking coordinates on some
(¢,t) = constant two surface, and Lie transporting them along the integral
curves of na and Va¢ . The resulting form of the metric tensor is given

by

- 2
d52 = —V2 dt2 + W 1 d¢~ + gAB dxA de, (9.24)

where A,B = 1,2. We denote the intrinsic covarient derivative related to
the metric 8ap by DA- and the scalar curvature of the (4,t) = constant
3

2 e . .
two-surfaces by "R. The extrinsic curvature of these two-surfaces 1is

defined by

o1 _1/2
Ryg = 3 W0 . (9.25)

We also use the notations:

Vg = det g,g, (9.26)
_ AB _.1/2
K=g Kg=W a¢ log Vg , (9.27)
x_ -t K, and
1/2
Q=W / a¢ v. (9.29)

In terms of these quantities, Einstein's equations can be written as

follows:

-1/ 1/

3¢Q = - DA{w'l/2 DV} - W 2 KQ + 41V W 2(p+3p), (9.30)

A
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-1, _ -2 _A ~1/2 ~1/2 _ 1 -1 _-1/2 _2
8¢(KV )y = -V D{VDAW -W DAV} sV oW K
-1 - -1 ~-1/2
e R Vyg - gyt w2 (o1p) (9.31)
B 1.2 -1
DB(Vq)A ) = DAQ +5 \Y DA(KV ), (9.32)
A _ -1/2 A A -1/2 1 A _C -1/2
a¢(vwg)-—vw K vy v{D" Dy W -5 8, DD, W }
-1/2, A 1 A _C
- W {D DB v - > 8 B D DC v} , and (9.33)
2. 1.2 -1 AB -1 A
R=5K +2V 7 KQ-y,, ¥ - 16mp + 2V~ D D, V. (9.34)
Einstein's equations as written in egqs. (9.30) - (9.34) represent no

loss of generality for the static problem. Coordinates which put the
metric is the form of eq. (9.24) can always be found locally.

Why have we gone to the trouble to write out Einstein's equations in
this detailed way? We are trying to show that a certain spacetime has
spherical symmetry. It is sufficient to show that there is a function ¢ ,
whose level surfaces have the topology Sz, for which the following

geometrical quantities vanish:
= 0. (9.35)

Let us show why these conditions are sufficient to guarantee spherical
symmetry. We first note that it follows from eqs. (9.34) and (9.35) that

the two-dimensional curvature is a constant on each ¢= constant surface:

D, R = 0. (9.36)
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Since each of these surfaces has the topology of a sphere, it follows from,
eq. (9.36) that the intrinsic geometry of each surface must be spherical
also. Therefore, each ¢ = constant surface admits three independent

Killing vector fields which satisfy the intrinsic Killings' equation,

D 0. (9.37)

A fp T D&y T
By writing out the components of the four-dimensional Killing's equation
in the coordinates of eq. (9.24), it is not hard to see that these in-
trinsic Killing vector fields also satisfy the full four-dimensional
Killing's equation whenever eq. (9.35) is satisfied. Therefore, the
existence of a function ¢ which satisfies the conditions of eq. (9.35)
is sufficient to guarantee the spherical symmetry of the spacetime.

How can we find a function ¢ which has the properties of eq. (9.35)?
One obvious choice is the function V. This function has no critical points
near spacelike infinity, and the topology of its level surfaces is S2 near
infinity (see Kinzle 1971). Furthermore, when one chooses ¢ = V, the
condition DAV = 0 is automatically satisfied. Since V has these desirable
properties, most authors have made the choice ¢ = V. This choice is not
valid globally however. The function V must have a critical point at the
center of the star, and g priori may have any number of other critical
points also. Israel's (1967) original proof that static black holes are
spherical, explicitely assumed that V had no critical points so that the
above coordinate choice could be made globally. Miiller zum Hagen, Robinson
and Seifert (1973) have since shown that this assumption is unnecessary
for the black hole case. We shall take Israel's approach and assume that
V has no critical points, except for the one at the center of the star.

This assumption is probably unnecessary, but we will worry about eliminating
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it only after proving that static stars must be spherical in this case.
Whenever the function V is free of critical points, Einstein's
equations simplify considerably by choosing ¢ = V in eqs. (9.24) - (9.34).

In particular, we note that eqs. (9.30)-(9.34) simplify to

2 = —ok 2 4 srv(ot3p) | (9.38)
8K = - % w1/2 &+ v g - DADA(W_l/z)
- WAy e 2oy (9.39)
B 1/2 -1, 1 (9.40)
DBw A DA{W Vo o+ 2 K} , and
A _ -1/2 1 A C .-1/2 -1 _-1/2 . A
BV g = DADBW +5 8, D DM (V "4 K)Y g (9.41)

Since DAV = 0 is automatically satisfied for this choice of surface,

the Bianchi identities of these equations are given by

= 0, and (9.42)

~1
9yP = —~ V "(ptp). (9.43)
The conditions for spherical symmetry for this system are given by
= 0. (9.44)

The problem of proving that static stars are spherical reduces, therefore,
to showing that eq. (9.44) is satisfied by any asymptotically flat

singularity free solution of eqs. (9.38)-(9.43).
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Avez (1964) and Kinzle (1971) have shown that the conditions in
eq. (9.44) are not independent of each other. They show that the

single condition
D, W=20 (9.45)

implies all of eq. (9.44) whenever Einstein's equations are satisfied.

The proof of this goes as follows. Take the two dimensional gradient of

eq. (9.38). When eq. (9.45) is satisfied this condition implies DAK = 0,
Similarly, by taking the gradient of eq. (9.39) we learn that DA(wBCwCB) = 0.
Therefore wABwBA is constant on each level surface of V. This constant

A
must be zero for the following reason. The tensor ¥ B may always be

decomposed in the following way:

. _1,¢ A A
[ B 73 (x XC)6 B + Xg (9.46)

The vector xA is one of the eigenvectors of the tensor wAB. Whenever
¢AB # 0 the eigenvectors are distinct because wAB is trace free. Since
the level surfaces of the function V are topologically SZ, the vector
field XA must have a zero on each level surface. At the point where XA
vanishes, wABwBA vanishes also. Therefore wABwBA vanishes everywhere,
and consequently wAB vanishes everywhere also. Thus we have shown that
eq. (9.45) is sufficient to guarantee the spherical symmetry of the
stellar model. Avez (1964 ) and Klinzle (1971) actually prove a somewhat
more general result. They make no assumption about the critical points
of V, but assume that W is a function only of V. They show that this
assumption, along with Einstein's equation and the asymptotically flat
boundary conditions are sufficient to guarantee the spherical symmetry

of the star. Their derivation is somewhat involved, and it will not be

discussed here.
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9-5 Review of the Literature

This section will present a brief (but complete) review of the
published literature related to the problem of proving that static
stars are spherical in general relativity theory. The first attempts
to prove this result were given by Avez (1963) and (1964). The 1963
paper is a brief anouncement of Avez's result with a summary of the
proof, while the 1964 paper presents the details of the arguments.

Avez claims to prove that static stars must be spherically symmetric,
subject to the assumption that the function V have no degenerate critical
points. Unfortunately, Avez made an algebraic error in the proof of

his Lemma 2 (see Avez 1964, p. 297). His proof is only correct when one
adds the additional assumption that the function W depends only én the
function V@ W= W{V).

Kinzle (1971) generalizes Avez's result somewhat by removing the
assumption about the critical points of the function V; however, he was
not able to eliminate the unpleasant assumption W = W(V). Kiinzle (1971)
also considers the problem of proving that the staic spherically symmetric
stellar models are isolated from other possible static models by proving
that they admit no static solutions to the linearized equations. He proves
that there are no (non-trivial) static perturbations of a static spherically
symmetric stellar model which leave the central pressure and central
"gravitational potential" V unchanged. Unfortunately these are not the
appropriate physical constraints to put on the perturbations. Rather
than holding the central pressure and V fixed for the perturbation, one
should demand that the perturbation does not change the total number of
particles in the fluid. It is possible that Klinzle's restrictions on
the perturbations are equivalent to the correct physical restrictions,

however, this has not been shown yet.
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The most recent publication concerning the spherical symmetry of
static stars has been given by Marks (1977). Marks claims to prove the
general result, static stellar models must be spherical. His proof is
fallacious however, and his arguments do not appear to add any new in-
sight into the problem.

Two other interesting papers which discuss static asymptotically
flat spacetimes in general relativity are given by Muller zum Hagen
(1970) and (1974). He considers the question of whether gravity is always
attractive in the case of static models. In the course of these studies,
he proves some results about the topology of the level surfaces of the
function V. He also considers the possibility of having two separated

bodies in a static spacetime.

9-6 Lasciate Ogni Speranza, Voi Ch' Entrate!

The problem of proving that static general relativistic stellar models
must be spherical has intrigued a large number of scholars. A great deal
of effort has been expended on this problem. With an unsolved problem of
this sort, the largest portion of the ideas and work on the problem never
appear in print, even though a description of the blind alleys and false
starts would be extremely helpful to anyone who cared to follow. The
purpose of this section therefore is to present some of the main thoughts
and approaches which this author has made .in his studies of static stellar
models. Hopefully this material will be useful to anyone who studies this
problem in the future. We feel obligated, however, to issue Dante's (1310)
warning to anyone who would follow the approach given here too closely
"Lasciate ogni speranza, voi ch' entrate!" Abandon all hope, ye who enter

here.
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The results presented here will be given without detailed proofs since
none of the results is of great inherent interest, and the proofs require
only a rather straightforward application of the appropriate Einstein
equations to verify there validity.

In terms of the 3+1 dimensional decomposition of the spacetime in-
troduced in eq. (9.16) we can write out explicit formulas for some
geometrical objects of interest. The three-dimensional curvature tensor

is given by

3 -1
Reabc =V {gebv;ac - gecV;ab + gacv;eb N gabV;ec

}

+ 8ﬂp(gecgab - gebgac)- (9.47)
The three dimensional conformal tensor (see eq. 9.19) is given by

R, =-V 24,

abc salb'se] T Ba[b"sc] } . (9.48)

- 8ﬂV(p+3p)ga[bV_c]

The square of the conformal tensor is also an interesting object.

R . RS - avthw @ - v Uwtw - v wid
abc sa sa -a
_3207 W V;a(p+%)).a - 64ﬂV_4W2(p+p)
+16nv"3(p+3p)v;aw_a - 64ﬁ2V—2W(p+3p)2. (9.49)

Another object which has potential interest for this problem is the

following combination of four-dimensional curvature tensors:

I=Rg. ROBUY _ 4 RGBRGB + R? (9.50)

The integral of this object is a topological invarient of a four manifold,
. 2 . . . .
just as the scalar curvature R in two dimensions is related to the Euler

characteristic of a two manifold via the Gauss-Bomnett theorem. If we
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assume that the topology of our four-manifold is R4 and if the space-
time is static and asymptotically flat, then the integral of I vanishes.
In terms of the 3+1 dimensional decomposition of the geometry, I is

given by

I=gv2y . v

ab - 128r” (o+p) (0+3p) (9.51)

Since our stellar model is static, the integral of I over any t = constant
surface must also vanish. Perhaps knowing that the integral of eq. (9.51)
is zero will help prove that static stars are spherical.

We can also write these objects in terms of the 2+1+1 decomposition
of the geometry introduced by eq. (9.24) with ¢= V. The square of the
conformal tensor (eq. 9.49) reduces to a particularly elegant form in

this notation

abc 4

_ 2 AB | 1
R, R - =8V Wiy +

-2
3 W DAWDAW} . (9.52)

Note that eq. (9.52) does not depend on the density and pressure at all.
This is exactly the same expression as the one for a vacuum spacetime.
Also note that if the left hand side of eq. (9.52) vanishes, the stellar
model is necessarily spherical because of eq. (9.45). Therefore,
spatially conformally flat stellar models are necessarily spherical.

The proof that static black holes must be spherical is accomplished
by showing that the scalar Rabc RabC is proportional to a divergence
(see Robinson 1977). For the vacuum case, eq. (9.49) can be written as

a divergence in the following two ways

3 74 gabe _ (w‘3/4v'lw;a). , and (9.53)

1
4 v abce sa

1 .5 -7/4 abec _ , 1 .~3/4 __sa_ /4 3a
16 vV W RabCR = ( 4 W VW -zwl \ );a . (9.54)
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One argues from the boundary conditions that the integrals of these
quantities must vanish. It follows that the black hole must be spatially
conformally flat, and then from eq. (9.52) that it must be spherical.
This author, along with Steven Detweiler, attempted to carry out an
analogous program for the case of fluid stellar models. We attempted to
find a divergence proprotional to the right hand side of eq. (9.49). We
were unsuccessful in these attempts however.

Continuing now with our program of writing out the interesting
geometrical quantities in the coordinates of eq. (9.24), we find that

the scalar I from eq. (9.51) can be written as

1/2
P

/g w21 - 3,{-8 /g WK + 64mvE W }

Aw 2 p W, (9.55)

+4/§V"1D A

The factor /E'Vw—llz

is just the four dimensional volume element. We
see that the right hand side of eq. (9.55) is a divergence. But we
already knew that the integral of I vanished, therefore eq. (9.55) is
not really a useful one in our search for a proof that static stars are
spherical.

To conclude this chapter, let us describe a systematic approach
which this author has taken in the search for an appropriate divergence
identity. Each of the functions which appear in Einstein's equations
(9.38)-(9.41) can be classified by how many derivatives of the metric
tensor it represents. Thus the functions /E, W, and gAB are assigned
the order zero. The functions K,leB, DAW, etc. are assigned order one.
Similarly the fuctions 2R, P DADAW, avaB’ etc. have order two. And

finally, to make everything consistent, we assign to the function V the

order minus one. In terms of this classification scheme, we can observe



that Einstein's equations each have a well defined order: eq. (9.38)
has order one, while the egs. (9.39)-(9.41) each have order two.

We can now consider writing down divergences of the form
5, (/8 M) (9.56)

where A is a scalar function composed of the various functions of the
problem: W, K, ¢AB’ etc. We will attempt to write down all divergences
of this form, where X is a polynomial function of W, K, wAB and their
derivatives, and we will classify these divergences by the order of A
We use Einstein's equations to evaluate the derivative av in these
expressions. Since Einstein equations have definite order, the divergence
equations which are produced in this way will all have definite order.
The object of our approach is to produce all possible divergences of each
order. Then by taking linear combinations of the various divergences
within each order, we will attempt to find an equality between a
divergence and a definite signed quantity.

The possible expressions for the scalar A will now be given for

orders zero through three:

Order zero: W
Order one: WnK
Order two: Wn DAW DAW
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Order three: WnK DAW DAW

In these expressions n is an arbitrary constant. We note that there are
other expressions in some of these orders which when introduced into
expression (9.56), differ from those given here only by a divergence,
e.g. in second order the expression W DA DAW. These terms have not been

included in our list here. We use Einstein's equations to evaluate these

functions in expression (9.56):
Order zero:

2, (/8 W = (1-20) /g W%k + 8m Vg v W (ot3p) (9.57)
Order one:

3,(V8 WR) = (% N LAl G DA(w‘l/Z)

+ 8ra/g W TR(+3p) vV W Py, 6™ 4 n(ore) )
(9.58)

Order two:

3, (VE W piw D,W) = _2 ) Va2 ¢ iy DW - 2/g yo1/2 a8 D,W DW

+ 8ﬂn/§-VWn—l(p+3p)DAW DAW - 4/§-Wn+l/2 DAW DAK

(9.59)
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- - -1.2
3 (/g'wnKz) = 2/£'wn v 1 K2 - 2n/§-Wn 1/2 K3 + 8ﬂn/§-VWn 1K (p+3p)

_o/g Wk pp w12y 2/g WM Zx(yhB + 87 (p+p) }

Yan
(9.60)

o W, v = 2/g v g 0P - aany e Y gy o

AB -1/2
DA DB(W )

(9.61)

+ 8wn¢§'wn'lv'¢AB¢AB(p+3p) - 2/g Wy

BV(/E.Wnp) = (1—2n)/§-wn—l/2 Kp+ 8ﬂn/§-Wn—lp (p+3p)

- g v W otp) (9.62)

Order three:

av(/g'wnx D,W oAy = /g.v ! Wk ot WD, W - 4/§'wn+1/2K o'W D,H

n-1/2 AB 5 2
Vg W (v, b + 8n(otp) + (5 + 20) K 1w D, W

+ 8mnvg V Wn—lK(p+3p)DAW DV - Vg W DADA(W"I/%DBW DgW
- 2/§‘wn_l/2 g "B D,W Dy (9.63)
n  AB Y e § AB
3,(/g W'y DWDLW) = ~Vg ¥ Wy D,W D W

_a/g whTL/2 AB DV ¢AC DV + 8mvg VW L (p+3p)v™TD W D_W

A" 7B

/g Wt DADB(W—l/z)D WD.W+ /g WP D (w"l/z)DBw D_W
A" UM T 2 A B

—(3+2n)/§'wn'l/2K yAB D,W Dy - 4/§'wn+l/2¢AB D,W DK

(9.64)
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0, (Vg W K3y = 3/g v 1 3-(%+2n)/§wn“1/2 &

+ 8mn/g VW 1 K3(p+3p) -3 /g k? pp (w'l/2
A

n-1/2

-3 B W2y, v 4 o) ) (9.65)

1/2

n_ AB AB n AB -
av(/"wm V) = e W vk v wAB-z/g W ky™ D, DLW )

~/§- n-1/2 w w {w wCE + (%—+ 2n)K2+ 8m(p+p) }

AB -1/2

+8m/g VW K g, 0P 043p) - VR WY )

(9.66)

C
D DC(W

3, (/8 W D,W pPg) = Vg v I W D, W DK - 2vg Wit/ 2 pA DK

+% Vg W "3/2 ; K2 + wABw + 81r(p+p)}DAW D, W

n-1/2

~2(14n) Vg W K D.W D’k + 8mva W L(p+3p)D™W D K
A

A

1/2

—ovg w2 BB bk - Vg Wt D DA(DB D W D)

AY Dp
g w2 oAy p (Vg wBE) (9.67)
av(@w“Kp)=—/§ anK +(%—2n)@W—l/2K2p

g W2ty 0" + (o)) - /g W p D p, 7

)
+ 8mvg WLV Kp (o+3p) (9.68)

This approach was not pursued to fourth order for reasons that must be

obvious at this point.
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What good are all of these equations? Let us try to make a useful
expression from these by adjusting the value of the parameter n, and
also by taking suitable linear combinations of the various equations.
We note that the right hand sides of equations within the same order
tend to have the same sorts of terms. Thus by taking linear combinations
of expressions within each order we can eliminate some of the terms having
indefinite signs. The hope is to find an expression which is an equality
between a divergence and a definite signed quantity, which vanishes if and
only if the star is spherical.

Let us begin with order zero. Here we have only one equation, (9.57)
so we can only attempt to adjust the parameter n to obtain interesting

expressions. The obvious choice for n is n = 1/2.
1/2 -
>, (/g W 12y - g w2 (or3p) (9.69)

This equation is interesting. In the vacuum case this equation, (9.69),
is one of the divergences used in the proof that static black holes must
be spherical (see Israel 1967). The integral of eq. (9.69) gives an

expression for the total mass of the star as seen from infinity in terms

of the local energy densities:
-1/2
m = [ /g wt (o+3p) dVd’x (9.70)

In order one (eq. 9.58) the only obvious simplification is made by

choosing n = 1/4.

/4

1/4 vigy = - 2/g pt DA(W_l ) - 2n/g w4 K(p+3p)

av(./E W

~g vt w'l/4{¢AB¢AB + 5;— w2 phw D, W}

- SW/EVle qu/4(p+P)- (9.71)
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Although this equation does not appear to be useful in the fluid case,
the vacuum limit of this equation has precisely the correct form. 1In
fact, this is another of the divergences which are used to prove that
static black holes are spherical. Thus, it appears that our technique
is working somewhat, since we are able to recover the black hole results
so easily.

Moving on to second order, we have a larger number of equations to
work with. We take a general linear combination of eqs. (9.59)-(9.62),

and adjust the coefficients in this sum to eliminate terms which do not

A AB AB -1/2
. . . W
have a definite sign such as DK DA s P DAW DBW and ¢ DADB(W ).
The resulting expression is given by,
n n+2 AB
av(/gw D,W DAW) -8 BV(/g_W Vap¥ )
+ 8/g p, {(wt1/2 L O
A B
= 16/ WY w4 P sy i (or3p) o, o4
+ 4 /Ewn{v"l - %(n+l)w_l/2 K + 2n7 Vw"l(p+3p) }D, W b,
(9.72)

This expression appears quite encouraging. It almost has the correct
form. However, no choice of n gives all of the terms on the right hand
side the same sign so this equation is probably not useful in our search
for a proof that static stars are spherical.

The case of the third order divergences seems somewhat worse than
the case of the second order expressions. It is not possible to take
linear combinations of eqs. (9.63)-(9.67) and solve for the coefficients
in the sum by setting to zero those terms which have unknown sign. There
are too many terms with unknown sign, so it is not possible to set them

all to zero.
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The situation does not appear hopeful for going to higher order in
this way. At each level, the terms on the right hand side of the equation
will be of one higher order than those on the left. There appears to be
an ever increasing diversity of terms as one goes to higher order, thus
one never has enough equations to eliminate completely the terms of
unknown sign, and the situation appears to get worse and worse as the
order of the equations is increased. Perhaps the appropriate next step
would be to consider somewhat more complicated forms for the function A
in eq. (9.56). Instead of polynomials, perhaps one should try rational
fractions. Or perhaps what is needed is a really fresh new outlook on
the problem, a new method of performing these global proofs which does

not involve the divergence equals definite signed quantity comnstruction.
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§10 STATIONARY STARS ARE AXISYMMETRIC

10-1 Preliminaries

In this chapter we prove that stationary stellar models, which are
made of a viscous heat-conducting fluid, must be axisymmetric. This
theorem is an example of the "Multum Non Ex Parvo" theorems in general
relativity (see Wyler 1974): one assumes that the solutions of Einstein's
equations have a certain symmetry and then one finds that those solutions
must posess additional symmetries. An example of this kind of result is
Birkhoff's (1923) theorem: any spherically symmetric solution of the
vacuum Einstein equations must also be static. Other examples are Israel's
(1967) theorem that static black holes must be spherically symmetric, and
also Hawking's (1972) theorem that stationary black holes must be axi-
symmetric. T have always found this kind of result to be quite fascinating.

The proof of the "stationary stars are axisymmetric'" theorem was first
given by Lindblom (1976a). The precise statement of the theorem is as

follows.

THEOREM 10.1 - 4 stationary (non-static) general relativistic stellar model
composed of a viscous, heat-conducting fluid (having non-zero coefficients
of heat conduction and viscosity) which satisfies conditions i) and ii)

must be axisymmetric.

In addition to the assumptions included in our definition of a stellar
model in §6.3, we must make the following two assumptions:
i) The Killing vector field which defines the stationarity .of the spacetime
is C4.
ii) There exists an opén subset of the surface of the star which is a level

surface of an analytic function, f, of the stationary harmonic coordinates in

the exterior of the star with df # 0 on the surface of the star.
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This second condition is somewhat stronger than we should have liked,
however, in physics we generally describe nature with piecewise analytic
functions. This condition is much weaker than that.

The proof of this theorem is lengthy and somewhat
complicated. We present a summary of the proof here, and give the details
in the following sections. We begin by recalling Theorem 7.7 and Theorem 7.9.
These results show that the interior region of a stationary imperfect fluid

must have a Killing vector field which is proportional to the fluid velocity.

We have assumed the stellar model is stationary but not static. Theorem
9.1 shows that in this case the fluid velocity cannot be proportional

to the Killing vector field which defines the stationarity of the spacetime.
Therefore the interior of the fluid has two linearly independent Killing
vector fields.

The remaining portion of the proof extends the second Killing vector
field to the exterior of the stellar model, and shows that the symmetry
which the second Killing vector represents is a rotation. To extend the
Killing vector, Ea (which is proportional to the fluid velocity), into the
exterior of the star we apply several theorems from the literature of
partial differential equations to the Cauchy problem for the differential
equation VavagB = 0, on the surface of the star. This equation is
necessarily satisfied by any Killing vector field in the exterior region
of the star, thus it is a natural one to use for the extension of ga .

A portion of the surface of the star is used as the initial surface, on
which the Cauchy data (consisting of the values of the field g“ and their
first derivatives) are defined by continuity from the interior of the star.
The existence of this extension is guaranteed by the Cauchy-Kowalewsky

theorem. It is shown that an extension obtained in this way is a Killing vector

which commutes with the globally timelike Killing vector. Once extended a

short way past the boundary of the star, the field ga can be analytically
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continued to cover the remaindef of the exterior. In this way, the addi-
tional symmetry found in the interior of the star is extended to include
the entire spacetime.

The final problem is to show that the additional symmetry, which the
second Killing vector field represents, is a rotation. An heuristic
version of this argument is as follows. The spacetime near spacelike
infinity behaves asymptotically as flat Minkowski spacetime, whose
symmetries are elements of the Poincare group. A star is not invariant
under spacelike translations or velocity boosts. Thus, asymptotically
the star admits at most time translations and space rotations. The
additional symmetry, being linearly independent of the time translation
symmetry (defined by the stationarity of the space), must be some linear
combination of a rotation and a time translation. Therefore the star is
rotationally or axially symmetric. The rigerous proof of this point has
just recently been given by Ashtekar and Xanthopoulos (1978). We state
this result as Theorem 10.4, but the details of their proof are lengthy
and will not be included herg.

To present the rigorous proof of Theorem 10.1 we make use of several
theorems from the literature, whose proofs we will not give here. The
first is the Cauchy-Kowalewsky theorem, which guarantees the existence of
solutions to certain partial differential equations (see Courant and

Hilbert, 1962, p. 39).

THEOREM 10.2 -~ Consider a system of m partial differential equations, each of order

k, for the m functions ul, u2, <. u" of the ntl independent variables

t s Yyseeo V- If this system can be written in "normal form",
P u = fl(t,yj,at uJ, cee ak uJ/ByE ). (10.1)

where £ depends analytically on each of its arguments, then there exists



one and only ome solution (in some netghborhood of the point t = yJ = 0)

to eq. (10.1) which has prescribed analytic values of the functions
ut, atui, ...,ai"l ulon the surface t = 0.

We will use this theorem to prove the existence of an extension of the
Killing vector field ga into the exterior of the star.

The second theorem from the literature which we need to prove
Theorem 10.1 is a uniqueness theorem for the initial value problem. The
Cauchy-Kowalewski theorem (10.2) proves the uniqueness of analytic
solutions of this problem, but leaves open the question of non-analytic
solutions. The following theorem due to Holmgren (see Courant and Hilbert
1962 p. 23f) eliminates the possibility of multiple non-analytic solutions

also.

THEOREM 10.3 ~ If | .(u) is a linear differential operator with analytic
coefficients and if the Cauchy initial data vanish on a smooth noncharacter-
1s8tic surface So , then any solution u of | (u) = 0 with these initial data
vanishes identically in a suitably small neighborhood of any closed sub-

set of SO .

The third result which we need to complete the proof of the axi-
symmetry theorem classifies the possible symmetries of asymptotically flat
spacetimes. Ashtekar and Xanthopoulos (1978) prove that the isometry group
of any asymptotically flat spacetime must be a subgroup of the Poincare

group. Furthermore for stationary spacetimes they prove the following:
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THEOREM 10.4 - If a stationary asymptotically flat spacetime (having
not identically zero Bondi mass) admits a second independent Killing = .

vector field, then the spacetime is axisymmetric.

The definition of asymptotic flatness which this theorem uses is new and
somewhat stronger than the requirement of weak asymptotic simplicity.
The reader is advised, therefore, to check the definition given in
Ashtekar and Xanthopoulos (1978); (see also Geroch and Horowitz 1978

and §6.3 of this work).

10.2 Extending the Killing Vector

PROOF OF THEOREM 10.1: It follows from theorem 7.7, 7.9 and 9.1 that
the interior of the stellar model admits a second Killing vector field,

Ea, which is linearly independent of the timelike Killing vector, nu

|3
(which defines the stationarity of the spacetime). We will now prove
that Eu can be extended into the exterior of the star.

We extend g“ into the exterior of the star via an initial value

problem on the surface of the star. The propagation of g“ will be

determined by the differential equation
v v ef = o (10.2)

This equation is chosen to define the extension of Ea since it is satisfied
by any Killing vector field in the exterior of the star. The initial values
of the field, gu and au EB, will be specified on the surface of the star

by taking the limits of the corresponding quantities from the star's
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interior. These initial values plus the differential equation (10.2)
form a Cauchy initial value problem for ga on the surface of the star.
The mathematical tool which is used to show the existence of this ex-
tension of ga is the Cauchy-Kowalewsky theorem (10.2). This theorem
guarantees the existence of a solution of the Cauchy problem in a small
neighborhood of the initial surface if a) the differential equation de-
pends analytically on the unknown functions, their derivatives and on
the coordinates; and if b) the Cauchy data are analytic functions of the
coordinates on the initial surface. The theorem of Muller zum Hégen
(1970b) (Theorem 8.7) proves that the components of the metric tenmsor,
gaB’ are analytic functions in the exterior of the star; therefore,
condition a) of the Cauchy-Kowalewsky theorem is satisfied by eq. (10.2).
The next task is to show that the cdndition b), the analyticity of ga

and Bu EB, is satisfied on the surface of the star.

In order to show that the initial values of functiomns ga and aa EB
are analytic on the surface of the star, we have had to make a slightly
stronger assumption about the surface of the star than would normally have
been desirable. We have assumed that the surface of the star must be the
level sﬁrface of a C2 function of the external coordinates, and that in
a neighborhood of some point x on the surface of the star, the surface
is the level surface of an analytic function, f, of the external
stationary harmonic coordinates with df (x) 4 0. Given this restriction
on the surface of the star, we can show that Ea and Ba EB are analytic
functions on the surface in some neighborhood of the point x. Begin by

noting that the vector field £ , within the star, 1s a Killing vector
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not only of the four-geometry, but also of the three—geometry intrinsic

to each surface of constant pressure. To see this, let n” represent

the unit normal to the surfaces of constant pressure. (Note that gq

and 0 commute.) The metric tensor intrinsic to these surfaces is given
by YaB = gaB - D ng- Tts Lie derivative along Ea vanishes. Equivalently,
£ satisfies Killing's equation within the surface: Digj + ngi =0,

i,j = 0,2,3. Di represents the covariant derivative related to the
intrinsic geometry. Furthermore, since Ei is a Killing vector field,

it must satisfy (see Lemma 7.1),

p.pied = - &I £t (10.3)
1 1

Equation (10.3) must hold on each surface of constant pressure within the
star. In particular then, it must hold on the surface of the star.

We have assumed that a portion of the surface of the star is an
analytic function, f, of the stationary harmonic coordinates of the ex-
terior of the star. Since we have assumed that df(x) # 0 we can
choose f as one of the coordinates in a neighborhood of x. The trans-~
formation to these adapted coordinates will be analytic. Therefore, the
metric tensor will be an analytic function of these adapted coordinates
since Theorem 8.7 showed that the metric was an analytic function of the
stationary harmonic coordinates. Furthermore, the intrinsic metric on
each surface of constant f must be analytic. In particular, then the in-
trinsic metric of the surface of the star must be analytic in a neighbor-
hood of the point x. Therefore, in this region, eq. (10.3) is an analytic
equation for Ei. Lemma 8.6 proves that the solutions of eq. (10.3) must
be analytic functions in this case. Thus the functions Ea are analytic

on the surface of the star in some neighborhood of the point x.
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All that remains to establish condition b) of the Cauchy-Kowalewsky
theorem, is to show that the first derivatives aase are also analytic
functions on the surface gf the star. Let n® be the components of the
unit normal vector, and let e® be the components of an arbitrary
analytic vector field which is tangent to the surface of the star.

B

Since Ea are analytic functiomns, it follows that e“adg will also be
analytic. To learn about the derivatives of ga in the direction normal

to the surface, the four dimensional Killing equation is used:
u u u
0= 3 + 3 + 3 . 10.4
£3 8,8 T 8y, gt 8g, %45 ( )

The inner products of this equation with the vectors n% and &% give

expressions for the normal derivatives:

By 0 _ _1 apBu
D 0 BBE S g augaB s (10.5)

B, o _ _ & B.u - By O
e n BBE neet augaB n e BBE . (10.6)

The left hand side of eqs. (10.6) and (10.7) give all possible com-
ponents of the normal derivatives of ga. The right hand sides are
composed entirely of functions which are known to be analytic. Thus, we
conclude that the Cauchy data ga, BQEB are analytic functions on the
surface of the star. The Cauchy-Kowalewsky theorem therefore guarantees
the existence of a solution of eq. (10.2) with the initial data given
above. The vector field Ea is thereby extended, at least a small dis-

tance into the exterior of the star.
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10.3 Properties of the Extension

The vector field g“ has been extended a small way into the exterior

of the star in the previous section. It is now shown that this extension

is a Killing vector field which commutes with the globally timelike Killing

vector field na. The following identity is satisfied by any vector field

in a vacuum spacetime:

o o B
VaV (vugv + vau) + 2 (Va€ + Vv Ea)R y

o o
= vV +VVvVvy .
B B v Vu a gv v oo gu

(10.7)
When ga is extended using equation (10.2) the right hand side of equation
(10.7) vanishes. The left hand side then becomes an equation for
t = vag + vV & , the Killing tester (which vanishes if and only if ga

aB B S

is a Killing vector):
vt +2R%B ¢ =o. (10.8)

To prove thatga is a Killing vector field, it must be shown that the only
solution to eq. (10.8) which is consistent with the boundary conditions is

taB = 0, The boundary conditions, on the surface of the star, must there-
fore be examined so that the values of ta

and Bat may be evaluated.

B BY

It will now be shown that the tensor taB’ and its first derivatives,

3 t_ , vanish on the surface. This fact follows from the continuity re-

o By

quired by the juction conditioms at the surface of the star. The tensor ta

is a function of the vector ga, the metric gaB and their first derivatives:

TS U U
= + + . .
taB £ Bpgas gauasé gsuaai (10.9)

The metric and its first derivatives are required to be continuous by
Synge's juction conditions (see §6.3). The components of the vector field
o

g~ and its first derivatives aags were required to be continuous in the

. o ;
extensnion of g . Therefore t 8 must be continuous across the surface.
a

B
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Since t vanishes within the star, it must therefore vanish also on
o

8

the surface of the star.

The derivatives Bat must also be continuous across the surface of

BY

the star, but this is not as easily seen. These derivatives depend on

the metric, the vector field, plus their first and second derivatives:

U u u
= + + ) . 0.10
8octB\( aa(g augBY gBuB\(E guY BE ) (10.10)

The only term in eq. (10.10) involving second derivatives of the metric

is g“a 3.g . The vector field Ea is tangent to the surface. (This
a WoBY

follows from the fact that Ea is a Killing vector field within the star,
which implies that the gradient of the pressure is orthogonal to ga

u

3 Vu p = 0; therefore Ea must be tangent to the surface of the star.) The

Synge juction conditions require that only the second derivatives of the

8

a . e .
form n'n aaaBguv have discontinuities. None of these terms are present in

eq. (10.10) since Eu is tangent to the surface.

gY

It must also be shown that the second derivatives of the form 3&3

B

B

are continuous. The second derivatives of the form, e“aﬁaag will be

Mg tangent to the surface of the star. Only the

B

continuous whenever e

second derivatives of the form n’n BaBBEu need to be considered. These
derivatives are not determined by the juction conditions, but by the
differential equations governing Eq In the exterior of the star, Eu
satisfied eq. (10.2) by construction. Within the star Ea must satisfy

the equation
vmv"‘gB - - Reag“ , (10.11)

since it is a Killing vector field (see Lemma 7.1). Since the exterior of
the star is a vacuum region, eq. (10.11l) is equivalent to eq. (10.2); and

therefore eq. (10.11) is satisfied everywhere. The left hand side of
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eq. (10.11) can be written out in the following way

a, B B B

- o v uv_B
VaV £ R aE + g 3u3vg )

+e7 (8T -
+ 8%(z,9E,8,98) - (10.12)

B

The term B" is a function only if the quantities ga, gaB and their first

derivatives. Therefore BB is continuous across the surface of the star.

We use eqs. (10.11) and (10.12) to find the following expression

uv B _ _ o uv B _gB
g aua\)g = E 3a(g r u\)) B (E:agsg’ag)' (10-13)

The right hand side of eq. (10.13) is continuous across the surface of
star since the only second derivatives which occur are of the form

o . . . . o .
3 aaasguv. These second derivatives are continuous since £ is tangent

B

v .
to the surface of the star. Therefore gu auavg must be continuous

. . o .
across the surface. All of the second derivatives of £ are continuous

8 B

except n“nvauavg is continuous, it follows that

B

. HV
. Since g 3u3v£

n“nvauavg must be continuous also. This implies that all of the second

derivatives aaa Eu must be continuous. This completes our argument that

B

the functions ta and aat are continuous across the surface of the star.

B By

Since £* is a Killing vector field within the star, it follows that ta

B

and aat both must vanish on the surface of the star.

By

The functions taB and aat form Cauchy data for the linear differen-

By

tial eq. (10.8). 1In stationary vacuum spacetimes such as the exterior of
the star, the components of the metric tensor are analytic functions when
expressed in suitable coordinates. Therefore, eq. (10.8) forms a linear
system of partial differential equations with analytic coefficients, for

the quantities ta The theorem of Holmgren (Theorem 10.3) guarantees

8"

the uniqueness of the solutions of this Cauchy problem. Since ta =0

B

is a solution, it must be the unique solution., Thus, we finally conclude
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that when gu is extended according to eq. (10.2), the extension must be
a Killing vector field.

It is also useful to show that the extension of gu via eq. (10.2)
commutes with the timelike Killing vector nu. Let us define
a

o= nuv Ea - Euvpna , the commutator of ga and nu. Since na is a Killing
u

vector field, it is straightforward to show that,

v %8 = My (7% £B) - (7% My a® . (10.14)
o u a o u

The right hand side vanishes whenever eq. (10.2) is satisfied. It is
therefore possible to use eq. (10.14) and the initial values of g% and
its derivatives as a Cauchy problem on the surface of the star. The
initial value data 2* and Bals are functions of ga, nu and their first
and second derivatives. It has already been shown that g“ and its first
two derivatives are continuous at the surface. The vector field n® is

B

assumed to be C4. Thus both 2 and aaz must be continuous functions.
Fach vanishes within the star; therefore each must vanish on the surface
of the star. As before, Theorem 10.3 guarantees that 2* = 0 is the unique
solution of this problem. Thus, the extension of ga commutes with na.

The Killing vector £* has been shown to exist inside the star, and
in at least a small open neighborhood in the exterior. Since the exterior
geometry of the star is analytic, the components ga must also be analytic
functions (see Lemma 8.6). These can be extended to cover the entire
exterior spacetime by analytic continuation. Ashtekar and Xanthopulos'
theorem (10.4) completes the proof of Theorem 10.1 by showing that the

stellar model must be axisymmetric since it admits a second Killing vector

field. [ ]
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§11 STATIONARY AXISYMMETRIC STELLAR MODELS

11-1 Introduction

In this section we discuss the stationary and axisymmetric ideal
fluid stellar models in general relativity theory. 1In $10 we showed
that stationary viscous stellar models are necessarily axisymmetric.
Therefore, the stationary axisymmetric models are an important special
case of the general class of stationary ideal fluid models, which may
include non-axisymmetric objects analogous to the Dedekind ellipsoids
(see Chandrasekhar and Elbert 1974 and Friedman and Schutz 1975).

The majority of the work which is done on rotating stellar models
within general relativity theory is concerned with the properties of
stationary and axisymmetric models. This work takes place in three main
areas. The first area is the study of approximate solutions of Einsteins
equations. A great deal of work has been done, for example, on the study
of slowly rotating nearly spherical models (which may have strong gravi-
tational fields) by Hartle and Thorne (1968) (for a review see Thorne 1971).
Another type of approximate solution has weak fields and slow motions, but
need not be almost spherical: the post-~Newtonian theory of gravitation
(see Shapiro and Lightman 1976). The second major area is the search for
exact solutions to the full set of general relativistic field equations.

A comprehensive review of the known exact interior fluid solutions is given
by Krasinski (1975). Stationary axisymmetric vacuum solutiomns, which could
represent the exterior of a stellar model; are reviewed by Reina and

Treves (1976). None of the exact interior solutions has been successfully
matched onto an asymptotically flat exterior solution, however. A few
numerical solutions, which include both interior and exterior solutions,

have also been given, see for example Wilson (1973) and Butterworth (1976).
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The third major area is the study of the fundamental properties of
stationary axisymmetric stellar models, without reference to any particular
equation of state for the fluid, and without using any approximations.

.-In keeping with the main-theme ofwthis,dissertationjﬂwe~willﬁreviewﬁinﬁ
detail the fundamental properties of stationary axisymmetric models, while
neglecting completely the study of any particular models.

We begin by defining some important terms. A -spacetime will be
called axisymmetric if there exists a global spacelike Killing vector field,
&a, whose integral curves are diffeomorphic to circles (generically).

Carter (1970) has shown that an asymptotically flat axisymmetric spacetime
must contain a rotation axis. A rotation axis is a timelike two-surface

on which the rotational Killing vector field vanishes. Furthermore,

Carter (1970) (also Ashtekar and Xanthopoulos 1978) has shown that if a
spacetime is stationary and axisymmetric, then the rotationmal Killing vector

field, &a, necessarily commutes with the timelike Killing vector field, naf

tfn A v £ L g v n? = o. (11.1)

Whenever the two Killing vector fields,&a and na , commute it follows
from Frobenius' theorem (see for example Misner 1963) that there exists a
family of two-surfaces to which the vector fields, ga and na, are every-
where tangent. These two surfaces are called the surfaces of transitivity
of the symmetry group of the spacetime. Another interesting property which
a stationary axisymmetric spacetime may posess is a second family of two-
surfaces which are everywhere orthogonal to the surfaces of transitivity.
Such a spacetime is called orthogonally transitive, The conditions on

the Killing vector fields na and g“ which guarantee orthogonal transitivity
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are given by

aBuv
= 11.2
n Eg Vu n, = 0, and ( )

,nuBuv,na EB_VLi Ev = 0. . o Aty

These conditions follow from another application of Frobenius' theorem
(see for example Flanders 1963, p. 97).

A stationary axisymmetric spacetime, which is orthogonally trans—
sitive, admits a coordinate system (locally) which greatly simplifies the
form of the metric tensor. This special coordinate system can be constructed
in the following way. Consider one of the two-surfaces which is ortho-
gonal to the Killing vector fields na and Ea. On this two-surface pick
two tangent vector fields, Xl and X2’ which commute on the two-surface.

These two vector fields can be extended to a four-~dimensional neighborhood

of the original surface by Lie transport along the normal vector fields na

and ga:

= Q. (11.4)

It is easy to check that the vector fields X? and Xi when defined

according to eq. (11.4) have the following properties:

fx X, =0, and (11.5)
1
o = 3% = y° = x¢ =
Xl T]a = X2 na Xl ga X2 EOL 0. (11.6)

Equations (11.1), (11.4) and (11.5) show that the four linearly independent

vector fields nu’ ga s Xi and Xg commute with each other. It follows (see

1

Spivak 1970, p. 5-36) that one can find coordiantes (t,$, x, x2) locally

such that n = 3/3t, £ = 3/3¢, X, = 5/9x", i = 1,2. Because of eq. (11.6)
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the metric tensor has an extremely simple form when expressed in

these coordinates:

ds® = Adt? + B dt do + C do° + 844 dx" dxd; i, = 1,2 (11.7)

Furthermore, since the vectors na and Ea are Killing vector fields,
it follows that the functions A,B,C and gij depend only on the two

i . .
coordinates x . (We note that this form of the metric is preserved under

3’ = xj'(xi).)

coordinate transformations of the form x

Therefore, in a stationary axisymmetric spacetime, which is
orthogonally transitive, we can choose coordinates in which at least
four of the off diagonal components of the metric are zero, and the
remaining components depend on only two of the coordinates. Obviously,
this choice of coordinates vastly simplifies the resulting form of
Einstein's equations (see for example Bardeen 1973).

In a stationary axisymmetric spacetime we can consider the concept

of convection. We will call a spacetime convection free if

u
E[aﬂB RY] nu 0, and (11.8)

|
o

u
R = 11.
*la "1 By (11.9)
This definition is motivated by the notion of convection free motion of

a fluid, i.e. purely aximuthal motion,

Qo

o= 0 e

2+ g% . (11.10)

Conditions (11.8) and (11.9) for an ideal fluid spacetime are equivalent
to the condition (11.10) on the velocity field of the fluid. We will show
in §11.2 that the assumption of orthogonal tramsitivity is equivalent to

the assumption that a spacetime is convection free.
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Our discussion for the remainder of this chapter will proceed
as follows. Section 11.2 will derive a number of useful and interesting
identities for geometries which admit two linearly independent Killing
vector fields. Section 11.3 will write out Einsteins equations in a
useful and elegant form. We also show how coordinates may be chosen to
minimize the number of dependent variables in the convection free case.
The final section, 11.4, derives a number of properties of stationary
axisymmetric fluids: integral formulas for the total mass and angular
momentum of a stellar model; the generalization of Poincare's limit on
the angular velcity of a rotating star; the generalization of the theorem
that barotropic fluids must rotate on cylinders; and other constraints

and relationships among the functions which describe the stellar model.

11-2 More Killingvectorology

In this section we present a number of identities involving two
Killing vector fields. We present the statement of the results and
discussion at the beginning of the section, and leave the proofs to the
end. The results presented here are not new. They can be found
scattered through the literature. Most of the results are at least stated
in the works of Papapetrou (1966) and Carter (1973). We collect the
results together here, along with their proofs, because these Killing
vector identities form an invaluable toolbox for the future study of

stationary axisymmetric stellar models.

LEMMA 11.1 - Let n~ and £% be commuting Killing vector fields, then:

_ 2 u
} = 3 g[a RB] n . (11.11)

¥
Y {E[Y Y y

a "8l
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LEMMA 11,2 ~ Let nq and ga be commuting Killing vector fields, then:

Byuv - B LM v Y
Va{“ n &Y \7“ “v} 2 n n & R n' . (11.12)

B afuv Y

The next theorem is an important ome in the study of stationary axi-
symmetric spacetimes. The vacuum case of this theorem was proved by
Papapetrou (1966). The non-vacuum proof was given first by Kundt and

Trumper (1966) and independently by Carter (1969).

THEOREM 11.3 - 4 stationary axisymmetric asymptotically flat spacetime
ig convection free (i.e. eqs.11.8 and 11.9) if and only if it is ortho-

gonally transitive (i.e. eqs. 11.2 and 11.3).

A vacuum spacetime is automatically convection free according to eqs.
(11.2) and (11.3). Therefore, Theorem 11.3 proves that all stationary
axisymmetric vacuum spacetimes are orthogonally transitive.

The next five lemmas derive useful expressions for certain derivatives
of the Killing vector fields in an orthogonally transitive geometry. We
will use the notation YuB for the metric intrinsic to the surfaces of

transitivity. This intrinsic metric is given by the following formula:
a -2 a
R (Y e i B Gt N ORI Lt SN CEREE Y

2 . . . . ,
where ¢~ is the determinent of Yy in the coordinate system in which Ea

B

and na are coordinate vectors, i.e.
2 u 2 m v

o = - . 11.14

g )7 - (') V) (11.14)

. . (84 . .
Also, we will use the notation € 8 to denote the antisymmetric tensor on
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on the two-surfaces orthogonal to the surfaces of transitivity:

ag _ -1 _aBuv
€ =g n nU &V . (11.15)

The first lemma gives a useful expression for the gradient of one

of the Killing vector fields:

LEMMA 11.4 - If n” and £* are commuting, orthogonally transitive Killing

vector fields, then

_ =2 u v v u
v, ng = E[a {(n nu)VB](n &v)—(n EV)VB](n nu)}

+ 077 e 1R )T (V)= )T (En )T (11.16)

The next four lemmas compute expressions for certain components of

the four dimensional curvature tensor in terms of invariant scalars formed

from the Killing vector fields: nana, gaga, naga, etc.

LEMMA 11.5 ~ If n* and £% arve commuting, orthogonally transitive Killing

vector fields, then

hasuv E, V. n =~-0 eaBV and (11.17)

Wy=-4o P Elq RS]“ n (11.18)

where

-2
v, =0T LEE )T ()= (8" )V (€T ) T
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o

LEMMA 11.6 - If n and £ are commuting, orthogonally transitive Killing

vector fields, then

2B g -6 P and (11.19)
VWw =402 gf Mg R LR (11.20)

where

Wy = o LM )T ()= E T ()Y

o

LEMMA 11.7 - If n* and €% arve commuting, orthogonally transitive Killing

vector fields, then

0B

By - - 1.21
n [EBVunv nBVugv] 2 € VBG , and (11.21)

o af
= — . .22
VuV logo Y RaB (11.22)

o

LEMMA 11.8 - If n* and £% are commuting, orthogonally transitive Killing

vector fields, then

a, =2 H _ -2 a B
v {o Vu(n nu)} = - 20 Rg N M

o~ ) 17 (% )T, (PE )T ()Y PE Y L and (1.23)

a, =2 T _ -2 a _B
v{o va(g nu)} = - 20 RuB n £

~o (e )7 (e )T (e )T ("0 )7 (DT (11.24)

The metric tensor intrinsic to the surfaces of transitivity, YaB’
is independent of the coordinates t and ¢ defined by n = 3/3t and & = 3/¢ .
Therefore the intrinsic curvature of these surfaces is zero. The intrinsic

geometry of the two-surfaces orthogonal to the surfaces of transitivity is
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not flat, however. We denote by

ho o= - Vg (11.25)

B gaB

2
the intrinsic metric of the orthogonal two-surfaces and by Raguywthe

intrinsic curvature. The following lemma relates the components of the

two-dimensional curvature to the components of the four-curvature.

LEMMA 11.9 - In a stationary axisymmetric orthogonally transitive space-
time, the intrinsic curvatures of the two-surfaces with intrinsic metric

haB(see eq. 11.25) are given by

zRaBu\) = haY hBE huT hve R co . (11.26)
2 =h* nVrR +o0tn*n’v vo
aB o B wv a B u WV
3 0 (00 )V, (8% =T (0¥ )V (Ve )Y, (11.27)
2R B (huv _ Yuv)Ruv
+5 0w (" )PP -T (e T e ) (11.28)

These last five lemmas will be useful to us in our discussion of
Einstein's equations in the next section. Each of these lemmas has
related the derivatives of invariant scalar quantities such as o, nunLl ’

U . . . . .
£ nu , etc to certain components of the four-dimensional Riceci temsor.
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We now present the proofs of these results:

PROOF OF LEMMA 11.1: Explicitly write out the terms of the anti-

symmetrization indicated on the left hand side of eq. (11.11) and perform

the differentation to find:

+VEV A +VEY D}
o oy

Y R
v {g[Y Vo I ]} 3 te vaan Y B B

B B

1 oy _ Y Y
+ 3 {v ngan gav vYnB + gV vYna} . (11.29)

B B

The first three terms equal the Lie derivative of Van along the Killing

B
. o . . . . . o o
vector field £ . This Lie derivative vanishes because n and &
o, eqqs ,
commute, and because & 1is a Killing vector. The fourth term vanishes

a . .
because £ 1is divergenceless. The last two terms are transformed using

Lemma 7.1. The result is given by

Y _2 u
v {E[Y vanB]} I LT =

PROOF OF LEMMA 11.2: Consider the result of Lemma 7.3:

Y oV TRV
v v = .
[a{nB]Yuv n n '} Nyguy " R°, (11.30)

Contracting both sides of eq. (11.30) with the vector Ea , we find

B YH vy _ B U Y
va{nBYuv En'vnl=2 gy £ n" R .

B Y MV B YOV
+ v A - n §7 % . .
3 B{ YUV 1 n } v n BF, (ll 31)

The last two terms on the right hand side of eq. (11.31) are the commutator

o o Y . . a
of the vectors & and n nBVun . This commutator wvanishes because £

Buv
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. . a .
is a Killing vector field which commutes with n~ . The remaining terms

are equivalent to eq. (11.12). »

PROQOF OF THEOREM 11.3: 1In the proof of Lemma 11.2, no distinction was-.. —

made between the Killing vector fields na and Ea. Consequently it follows

that both of the following expressions are implied by Lemma 11.2:

Byuv - BLM oV Y
Va{” ”Bgyvu”v} 2 gy £ R Y n o, (11.32)

B u

va{nBY“v £ R“Yga i (11.33)

gEn Vv Ev} =2 Ny

By u Buv

If the spacetime is orthogonally transitive, the left hand sides of

eqs. (11.32) and (11.33) vanish. This implies that the right hand sides

must vanish also. These conditions are equivalent to the convection free
conditions, eqs. (11.8) and (11.9). If the spacetime is convection free,

egs. (11.32) and (11.33) imply that the two scalars

_ o _B_u v
cn =nE&EVn naBuv , and (11.34)

o = gansv“g“nasuv , (11.35)

are constants. OSince an asymptotically flat, stationary, axisymmetric
spacetime must have a rotation axis (see Carter 1970) the rotation Killing
vector field gv must vanish somewhere. Consequently, the constants cn

and c, must have the value zero. The vanishing of these constants is

€
equivalent to the orthogonal transitivity conditions eqs. (11.2) and (11.3).
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PROOF OF LEMMA 11.4: Since the vectors n° and £* are orthegenally

transitive, it follows that

vn,=mn V, *& W, +Xn &, o (

=

1.36) .

o o . o _.a
where v and w* are orthogonal to n and £ . Since n and & are

commuting Killing vector fields, it follows that X = 0 by contracting

the tensor Eans into both sides of eq. (11.36). Contracting nB and EB
successively into eq. (11.36) yields the two expressions:
=7 Pa) = GPapv. + Pe )W, and (11.37)
a B B "o PR e ?
v (fey = mPeav. + Peyw . (11.38)
o B - B” a B' o :

Equations (11.37) and (11.38) can be inverted to find expressions for Va

and W& is terms of va(anB) and Va(ntB). The resulting expressions are

given by
v, =02 ()T ('n) - &)Y "0 )3, and (11.39)
W, = o M )T (%) - ()Y ()Y (11.40)

Substituting eqs. (11.39) and (11.40) into eq. (11.36) gives the desired

result, eq. (11.16). -

PROOF OF LEMMA 11.5: Use eq. (11.16) from Lemma 11.4 to evaluate the left
hand side eq. (11.17). The resulting expression is equivalent to the
right hand side of eq. (11.17) when the definition of gaB (eq. 11.15) and
Va are used. Equation (11.18) is derived from eq. (11.11) of Lemma 11.1
Contract both sides of eq. (11.11) with the tensor ganB and rearrange

the terms somewhat:
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Ye,0 B - 2 ,a
vi{gn E[YvunB]} 3 &N [ 31",

+ {0 e%nP +EuVYnB}E[YVunB] (11.41)

Use Lemma 11.4 to evaluate the gradients of the Killing vector fields,

on both sides of eq. (11.41). The resulting expression is

Vvn, and V £
o

a B B
given by
1 vy, 2 _2 .0 w10 2
-2 v (o VY) =3 En E[u RB] Ll vy o, (11.42)
This equation (11.42) is easily transformed into eq. (11.18). [

The proof of Lemma 11.6 is exactly analogous to the proof just
given for Lemma 11.5, except that one uses Lemma 7.2 instead of Lemma 11.1.

Therefore, we will not outline the proof further here.

PROOF OF LEMMA 11.7: We begin by interchanging the vectors na and ga

in Lemma 11.5 to obtain the following expressions.

oBuv o
VE = i
n Ng UEV o€ UB’ and (11.43)

V U= -4 0'—2 naEBn[a RB]]‘l EU s (11044)

where U = o {("n )V (£'E )=(n"g DV, (nE )}

We can easily verify that

_ 2
Vu +U, == Va logo™ . (11.45)

We add eqs. (11.17) and (11.43) to obtain the expression:
naB”v{g Vn -n,VE} = -0 B v+ Ul (11.46)
By T Buy B B |

This expression (11.46) is equivalent to eq. (11.21) when eq. (11.45) is

used. Next, we add eqs. (11.18) and (11.44) to find

a 2 -2
AR L L R (11.47)
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When the antisymmetrizations indicated on the right hand side of
eq. (11.47) are written out, and the definition of YdB from eq. (11.13)

is recalled, we can see that eq. (11.47 1is equivalent to eq. (11.22). =N

PROOF OF LEMMA 11.8: We will use the vectors Va and Wa defined in
Lemmas 11.5 and 11.6 respectively. From the definitions of these

quantities it is easily seen that

u u u
Va(n nu) - (n nu)Va - (n Eu)Wa , and (11.48)

M H M
v (e ) = = (e )V, - (ETEDV (11.49)

We compute the divergences of these equations:
o, ~2 u -2 u o u o
v v = - v'v + VW
{o v (n nu)} o {(n nu) oG nu) o)
-2, a H o i
- +
o {v'v (n nu) wv (€ nu)}
o, d -2
+V(nn)lVvo (11.50)
ua

An analagous equation can be written down for v“{o"zva(g“nu)}. The

right hand side of eq. (11.50) is simplified by application of egs. (11.18),
(11.20) and the definitions of Va and Wa' After a bit of straightforeward
algebra, these divergence expressions can be put in the form of egs. (11.23)

and (11.24). =

PROOF OF LEMMA 11.9: Let Da denote the covariant derivative intrinsic to

. . Q . .
the surface whose metric is ha Let X denote an arbitrary vector field

8"

tangent to these surfaces. The intrinsic curvature to these surfaces can
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be computed from Ricci's identity:

2 U
- = - X . 11.51
D, DB xY DB D, XY R vag Xy ( )

. We now express the intrinsic covariant derivative Du in terms of the

full four-dimensional derivative Va:

a.b . .c Vv
- = VI[h h V X
Da DB XY DB Da XY ha hB hY{ a[ b B Vo v]

v n* n¥ - .52
vb[ha hC vu xv]}. (11.52)

The right hand side of eq. (11. ) can be expanded in the following way:

a.,b
h, hB b XC -V vy XC}

hi{v_ v
Y a
a.b._.c bV o oLV 53

+h hB hY{Va[hb hC ] Vb[ha h ]}vu X - (11.53)

The first term in expression (11.53) isaprojection of the four-dimensional

curvature tensor:

a.,b. . c _
ha hB hY{Va Vb XC - Vb Va Xc}
-2% . X n®nnt (11.54)
cab e "a B ¥ *

The second term in (11.53) has several pieces, each proportional to an
. a.b u
expression of the form ha hB Va hb .

form vanish. TUse the definition of hﬁ from eq. (11.25) to note that

We can show that terms' of this

by

a i a
= - . .55
ha hB a hb hu hB Va Yy, (11.55)

Now use the expression for yE given in eq. (11.13). Perform the differ-

. : a a . .
entiation, and remember that ha n, = ha ga = 0. The resulting expression
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is given by

a.b w_ _ -2 v v v u..a_ b
h, he Va h =-0 " [(n £,0n (n'n )& 1h, hy V. &y
-2 v u v u..a . b
o mof[me)e - g h hg Vomy . (A1.56)

When the equation for the gradients of na and Ea from Lemma 11.4 are used,
the right hand side of eq. (11.56) vanishes. Therefore, the right hand
side of eq. (11.52) reduces to the right hand side of eq. (11.54). This
establishes the validity of eq. (11.26).

To prove the validity of eqs. (11.27) and (11.28) we must perform

the contractions of eq. (11.26) with the tensor ha It follows that

8"
2 _.,a_ b _uv
RaB = ha hB h Raubv
"’ R -n¥ R YWV R (11.57)
o B pv o B apbv

We recognize the first term on the right hand side of eq. (11.5 ) as one
of the terms in eq. (11.27). The remaining task, therefore is to convert
the second term into the appropriate derivatives of the Killing vector
fields. The computation is rather lengthy, we will omit the details here.
The appropriate strategy is as follows. Use Lemma 7.1 to eonvert the

components of Yuv R into derivatives of the Killing vector fields.

oufv
Then repeatedly use Lemma 11.4 to evaluate the gradients Va nB and Va EB .
The resulting expression can be simplified to the form of eq. (11.27).

Deriving eq. (11.28) by contracting eq. (11.27) with the tensor haB is

a fairly straightforeward process, when one remembers to use Lemma 11.7. B

11-3 Einstein's Equations

In this section we discuss two approaches which have been taken in

the study of Einstein's equations in stationary and axisymmetric spacetimes.

These equations have been studied for many years because it was recognized
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that their solutions would represent rotating bodies in general relativity
theory. The field equations for a stationary axisymmetric orthogonally
transitive spacetime (eq. 11.7) were given by Andress (1930), and have

been studied by a large number of authors since then. The two approaches

which we present here are i) a covariant decomposition of the equations
in a way that utilizes the symmetries of the Killing vector fields to
simplify the equations and ii) an attempt to reduce the number of functions
which describe the metric by a clever choice of coordinates.

The first approach decomposes the geometry of the spacetime using qu,
the intrinsic metric on the surfaces of transitivity, and the coprojection

tensor ha Since YaB describes the intrinsic geometry of the surface of

g
transitivity of the Killing vector fields, all geometric quantities will
be constant on these surfaces. Consequently, all derivatives in Einstein's
equations can be expressed in terms of the intrinsic covarient derivative
defined by the projection tensor haB' This approach simplifies the equations
as much as possible by utilizing the available symmetries, yet it does this
in a completely coordinate independent fashion. This technique was de-
veloped by Geroch (1972) for the study of vacuum spacetimes, and was ex-—
tended for the study of ideal fluid spacetimes by Hansen and Winicour (1975).
The second approach, which we discuss here, attempts to minimize the
number of unknown functions, and the number of independent variables which
describe the gravitational field, by a suitable choice of coordinates.
Harrison (1970) constructs a coordinate system for rigidly rotating fluids
which reduces the number of functions describing the gravitational field
to three. TFor differentially rotating fluids the number of functions has
also been reduced to three, by Abramowicz and Muchotrzeb (1976), when the

form of the rotation law of the fluid is specified.
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We will now summarize how Einstein's equations are decomposed using

the projection tensors YGB and ha For simplicity we discuss only the

8"
orthogonally transitive case here. (The general equations have been worked
out in this.way by Hansen and Winieour (1975).) - We introduce  the-covarient --
derivative, Da’ which is intrinsic to the surfaces whose metric is haB'
This derivative acts only on vectors which satisfy x* = hg XB; for these
vector fields we define

TRV
= . 58
Da XB ha hB Vu Xv (11 )

Einstein's equations in a stationary axisymmetric orthogomnally transitive

spacetime are given as follows:

-lo, u a B, _u :
=-2 + ;s 1.5
o D [0 "D (n nu)] Rgnn+tn n, T (11,59)
-1l o, u - _ o B u
o) Da[o D (n gu)] 2 RaBE g +q gu T 5 (11.60)
-l U - - o B U
o) Du[o D (¢ gu)] 2 RaBE g+ EU T , and (11.61)
2p = @™ = y"Y)R  + E T ; where (11.62)
w207
- 2.0, vV, \_pn0,.H v
T =0 "{D°(n nu)Du(a £,) D (e nu)Da(a n,) I (11.63)

Equations (11.59)-(11.62) along with the Bianchi identities
v &% -2 & r = o0 (11.64)

are sufficient to determine the gravitational field. Equations (11.59)-
(11.61) determine the Killing scaleks nunu, Eunu and Eugu. Equation (11.62)

determines the Gaussian curvature of the two-surfaces whose metric is huB
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Consequently eq. (11.62) determines the metric huB' Equations (11.59)-
(11.61) represent the YuuYBv Ruv components of the Ricci tensor, while
eq. (11.62) represents the huvRuv component. The components of the form
hauvaR v vanish identically for an orthogonally transitive spacetime, as
. n, v 1 Hv
shown by Lemma 11.2. The other possible components ha hB Ruv - E-ha h™ 'R

B Hv
vanish whenever the Bianchi identity is satisfied. A more complete
discussion of these equations are given by Hansen and Winicour (1975).

We can verify that eqs. (11.59)-(11-62) are correct by converting
the four-dimensional covariant derivatives, Va, into intrinsic covariant
derivatives, Da’ in Lemmas 11.8 and 11.9. The following lemma establishes
the needed relationship:

LEMMA 11.10 - Dax"‘ =g va{Elx"‘ . (11.65)

PROOF: We take the trace of eq. (11.58) and use eq. (11.25) for the

tensor ha The resulting equation can be put into the following form:

8"
B

o (6] a
. -
DX =VX + XBU Y (11 66)

Now compute the divergence of YaB with the aid of eq. (11.13). The

result is given by

VaYuB = - VBlogo . (11.67)

Equations (11.66) and (11.67) together imply eq. (11.65). .
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For the special case of a convection free ideal fluid spacetime,

the Ricci tensor is related to the fluid variables by

-1 .
Ry~ 4ﬂ(p—p)gw - 81 (pt+p)Y [nu+QEu] [n €1, (11.68)

2

By substituting eq. (11.68) into egs. (11.59)-(11.64) we see that the
Einstein equations reduce to equations on a two-dimensional surface, I ,

for the scalar functions nu

nu, nugu, Eugu, P, p and Q as well as the
intrinsic metric of the surface haB' The equations as we have written
them are invariant under changes of coordinates within the surface I.
Consequently, we are free to choose these coordinates in any way which
will simplify the equations. We will discuss some simplifying choices of
coordinates later in this section.

Before considering simplifications of the coordinate, however, it is
possible to make certain simplification in the system of equations
(11.59)-(11-64). For example, by taking linear combinations of eqgs.

(11.59)-(11.61) the following simpler expression can be obtained (see

Lemma 11.7):

ol o gy P =
DaD c oY RaB 16mop. (11.70)

The second equality applies only to the ideal fluid spacetimes, eq. (11.68).
The other equations, which can be cast in a simple form for convection free
fluids, are the Bianchi identities. Part of this simplification has been
done in §6.2 where the Bianchi identities were related to Euler's equation

(6.32) and the conservation of energy equation (6.28). The conservation
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of energy equation is identically satisfied for stationary axisymmetric

convection free fluids, while Fuler's equation has the simple form:

1 B -1, u LU - _ -1
> Dulogtp v " (n Eu + Qg Eu)DmQ (o+p) Dp- (11.71)

This concludes our discussion of the covariant decomposition of
Finstein's equations for general stationary axisymmetric convection free
fluids. ©Next, we focus our attention on the special case of rigidly
rotating fluids. We show how the covariant equations can be considerably
simplified in this case, and how coordinates can be chosen to reduce the
number of unknown functions to three.

In a rigidly rotating stellar model, the fluid velocity is pro-
portional to a Killing vector field (this follows from Lemma 7.6). For
the stationary axisymmetric convection free fluids considered here, the
fluid velocity is givenly eq. (11.10), and the rigidity condition is
equivalent to requiring that the function Q be a constant. Thus, the

vector field

W= *+ 0" (11.72)

is a Killing vector field which is linearly independent of ga. Further-
more, k¥ and Eu commute. Therefore, we could use the pair of Killing
. o ) . ) o .,
vector fields k= and & rather than the pair n and ¢ in all of our
discussions in this chapter. When we choose the pair k¥ and ga, the
field equations can be simplified considerably.
We note that the vector field k” is an eigenvector of the Ricci

tensor since it is proportional to the fluid velocity:

u

k[a RB] ku = 0. (11.73)
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This fact and Lemma 7.3 imply that the twist of k" is curl free,

Therefore, there exists a scalar functiom,w ,such that

Vw=n KBy . (11.74)
a aBuv

Furthermore, Lemmas 7.5 and 11.6 imply that w satisfies the differential

equation:
-2 _qa
Da{cw Dw} = 0. (11.75)
The scalers o and y are related to the Killing scalars by

v = kuku, and (11.76)

2 _ u 2 u
o (k au) v £ gu . (11.77)

The scalar w is related implicitly to the Killing scalers by the following

equation (see Lemma 11.6):

-1 2 «a
a

Duw= v e 8 Da(k“gu/w). (11.78)

o

Consequently we may use eq. (11.75) to replace one of Einstein's
equations (11.59)-(11.61). Another of the equations, (11.59), takes a
very simple form when the Killing vector k™ replaces na. The equivalent

expression is given by
-2 2.2
D {ow D% (v +w )} = 16mo(p+3p)- (11.79)

Therefore in terms of the three functions, Y, o and w defined in eqgs.
(11.76)-(11.78), Einstein's equations for a rigidly rotating stationary

axisymmetric ideal fluid spacetime reduce to the three simple equatioms.
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D“{c¢’2 Dwl=0, (11.80)
DaDaG = 16mop, (11.81)
D“{cw'z Da(w2+w2)} = 16mo (p+3p) , (11.82)

and the one not so simple equation

N

2R = 8n(p+p) + %-w_z Da¢Daw -1 y72 D“wDaw -yt D“wnac. (11.83)

The Bianchi identity (or Euler's equation) for this system is given by
1 -1 _ -1
> ¥ DY =~ (p*tp) " D p. (11.84)
The choice of potentials used here, o, ¥ and w, are essentially equivalent
to those introduced by Ernst (1968) in his study of the stationary axi-
symmetric vacuum equations.
We now turn to the problem of choosing coordinates on the two-

surfaces whose intrinsic metric tensor is ha Since these surfaces are

B8
two—-dimensional, one obvious choice of coordinates are the two-

dimensional harmonic coordinates:

b, dx dx® = e®M(ax? + ay%) (11.85)

The coordinates x and y can be any functions which satisfy the equations

a _ _ _ B
D Dax 0 and Day e, DBX' (11.86)

In this choice of coordinates, the left hand sides of egqs. (11.80)-(11.82)

each have the reasonably simple form

O _ =2y
Da(AD B) = e {BX(ABXB) + By(AayB)}. (11.87)
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Furthermore, the two dimensional Gaussian curvature is quite simple

in this choice of coordinates,
2 o
R=-2D Dau . (11.88)

Therefore, two-dimensional harmonic coordinates give us a system of
equations for the four functions ¢, u, ¥ and w which describe the
gravitational field.

The vacuum limit of Einstein's equations for stationary axisymmetric
spacetimes are unexpectedly simple in these coordiantes. The first
simplification comes from eq. (11.81) which implies that o is a harmonic
function. Consequently, 0, can be used as a coordinate, which reduces
the number of dependent functions needed to specify the geometry to w,
¢ and p. The second major simplification is that eqs. (11.80) and (11.82)
do not depend on the function u in the vacuum case. Consequently the
system of equations separates. The functions w and y are determined by
solving eqgs. (11.80){11.82) and then u is determined later by solving
eq. (11.83).

No one has found a way to simplify the fluid equations to the extent
that was possible for the vacuum equation. Harrison (1970) found that the
number of dependent functions can be reduced to three by a suitable choice
of coordinates however. The idea is to use some combination of the
functions o, w, Y and y as a coordinate, and therefore be able to eliminate
one dependent function. This can be accomplished by choosing w as one
coordinate. From eq. (11.78) it is clear that an appropriate choice for

-1

the second coordinate is £ = ¢ kugu . We also define

-2
DawDaw =e T . (11.89)



152

Consequently the two-dimensional metric has the form:

By axddx® = 27 {du? + o 2 ot ad?y. (11.90)

In these coordinates, the divergences on the left hand side of eqs. (11.80)-

(11.82) have the form:

-2 =27
e

Aoy _ -1 2 -2
p_(aD"B) = o P {a,(c y A3 B) +3 (00" A3 B)}.  (11.91)

The Gaussian curvature in these coordinates has the form:

-2 - - -2
2R = =20y 2e 2T{Bw(c lwzawr) + 32(0¢ Bzr)}

- 2072 T 8 (6T, (11.92)

We note that one of Einstein's equations (11.80) is automatically satisfied.
Therefore the three equations (11.81)-(11.83) determine the three functions
which describe the gravitational field: ¢, y and t.

The gravitational field of a differentially rotating fluid can also
be represented by three functions through a suitable choice of coordinates.
The analysis is qualitatively similar to that given here for the case of
rigid rotation, but the resulting field equations are not as simple. The
reader is referred to the work of Abramowicz and Muchotrzeb (1976) for

the details of the analysis.

11-4 Properties of Rotating Stellar Models

In this section we present the properties of stationary axisymmetric
general relativistic stellar models which have been derived to this date.
The picture of a general relativistic star which emerges from the results

presented here is far less complete than our view of Newtonian stars ob-
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tined from tﬁe results in Part I of this dissertation. Hopefully the
formal results which have been presented in this work will be useful in
future efforts to make this picture more complete.

The first property which we present is the general relativistic
analogue of Poincare's limit on the angular velocity of a rotating star
(Theorem 5.1). The result as presented here was derived by Abramowicz

(1973).

THEOREM 11.11 - The velocity field, W, of a stationary ideal fluid
stellar model which has expansion-free flow Vaua = 0, must satisfy the

following inequality
J /:E-waswas d3x < 16w J /:E'(p+3p)d3x
+ f /:g'oasoas a3y . (11.93)

Here, w*® and ouB are the rotation and shear of the velocity field (see
eqs. 6.14 and 6.15) and the integrals are performed on the intersection of

a spacelike surface with the world tube of the stellar model.

PROOF: We compute the divergence of the acceleration for an expansion free
congruence using eqs. (6.12)-(6.17) and (6.23). The result, often called

Raychandhuri's equation, is given by

o _ 1 aB 1 oR
Via =R uu +7 oaBG 4 Yp @ (11.94)

We use Euler's equation (6.32) to re-express the left hand side of eq.

(11.94) in terms of the fluid variables:

vWa = Va{(O+P)—qup}. (11.95)

- -
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We integrate eq. (11.95) over a finite length world tube formed by Lie
transporting the support of the fluid on a spacelike surface along the
integral curves of the timelike Killing vector field. Since the pressure

must be decreasing at the surface of the star it follows that
o 3 -1 o .3
\/—gVaadxdt=—v/—-_§(p+p) vpdx, > 0. (11.96)

Since the solution is stationary, we may perform the integral over t to

find that

J V=g Vaaa x> 0. (11.97)

Now integrate eq. (11.94) over one spacelike surface. Use eq. (11.97) and

the form of the Ricci tenmsor for a fluid, eq. (6.31), to obtain eq. (11.93).m
In the special case of a rigidly rotating stationary axisymmetric

stellar model, this theorem has a simpler and more useful form. In the

coordinate system intruduced in eq. (11.91), the rotation scalar is given by:

waBm = 2y

-2 =27
B e .

(11.98)

The shear vanishes for rigid rotation. Consequently, Theorem 11.11 for

this situation implies the following inequality:
2 2t
dfdw > 8w (p+3p) ve didw . (11.99)

The integrals here are performed over the intersection of one of the two-
surfaces orthogonal to the surfaces of transitivity, with the world tube
of the stellar model.

The next result gives equations for the total mass and angular momentum
of stationary and axisymmetric asymptotically flat spacetimes as three

dimensional integrals over spacelike surfaces. These formulae were derived
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originally by Komar (1959).

THEOREM 11.12- The total mass, M, and angular momentum, J, of a stationary
and axisymmetric spacetime, which is asymptotically flat and singularity

free, are given by the integrals
M = J/_R n®a%x , and - (11.100)
4 a
3o - | s, (11.101)

The integrals are performed over any asymptotically flat spacelike surface;
and n* and £* represent the stationary and axisymmetric Ki1lling vector

fields respectively.

PROOF: We integrate the gradients of the Killing wvector fields over the
boundary of the asymptotically flat spacelike surface. Since the spacetime
is singularity free this boundary is at spacelike infinity, so we can

use the asymptotic form of the metric given in §6.3 to show that

M = lmjg/_vn de,and (11.102)

[
{

= %»/_v“gs a®x . (11.103)

aB

Now we use Stokes theorem and Lemma 7.1 to convert these surface integrals
into the desired form. For example the integral for the stationary Killing

vector field can be transformed as follows:

§ /=g %P dzxaB J/:EvavanB a3x (11.104)

B

i

- J/—_g RBan“ d3xB . (11.105)

A similar transformation on the axisymmetric Killing vector field gives

eq. (11.101) from eq. (11.103). [
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For the case of a spacetime which contains only convection-free ideal
fluid, the expressions for the total mass and angular momentum have the

following forms:

M - J-—/;_g—c’—— o +3p -2 o+ +a%lg ) dx,  (11.106)
e

ugu)l/Z ¥
7 = -[ R R LT S e (11.107)
e ) ¢

These expressions are obtained by using the form of the Ricci tensor given
by eq. (11.68) with Theorem 11.12 and integrating over a t = constant
surface.

The next two properties of rotating stellar models which we present
are derived by applying the maximum principle which describes the
solutions to certain elliptic differential equations. We recall the needed
form of the maximum principle here without proof. A complete discussion
of this result, along with its proof may be found in Bers, John and
Schecter (1964). We need to consider the uniformly elliptic differential

operator
[ = alJBiBj + alai . (11.108)

. . ij i . . ‘e
The continuous functions a J and a’ must satisfy the following conditions.

In some bounded open set, I , there exist constants K > 0 and m > 0 such that
ad xx, > méJ xx,, and (11.109)
1] — 1]

- -
la™ | + a7 K, (11.110)

for all vectors Xi.
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THEOREM 11.13- If L is a uniformly elliptic differential operator on the
bounded open set T, and if L(uw) > 0 in T, then u does not have a maximum

in T or u 18 a constant.

The next two theorems set limits on the possible values which may be
taken by the functions describingstationary axisymmetric convection-
free stellar models. The first theorem, proved by the author and independently
by Hansen and Winicour (1977), shows that the "frame dragging' angular
velocity, —Eunulivgv, (see for example Cohen and Brill 1968 or Lindblom
and Brill 1974) is always positive whenever the angular velocity of the
fluid is positive. Note that this result does not require the fluid to

rotate rigidly.

THEOREM 11.14- A stationary axisymmetric convection-free ideal fluid
stellar model in which the fluid rotates with positive angular velocity,
Q >0 (see eq. 1L.10), must have negative Killing scalar, Eana < 0,

with equality only on the rotation axis.

PROOF: Rewrite eq. (11.20) of Lemma 11.6 using the Ricci tensor for an

ideal fluid eq. (11.68) and Lemma 11.10. The result is given by
o™ n 0D [0 P 1) = <lerae + pav T + 0™, . (11.11D)

The vector field na + QEG is timelike and future directed since it is
proportional to the fluid velocity. Consequently we have the following

inequalities:
b= "+ +9E) < 0, and (11.112)

(n” + Qéa)na < 0. (11.113)
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Since the fluid angular velocity, Q,_is assumed positive it follows that

the right hand side of eq. (11.111) is negative, therefore

DOL{cr_l(nunu)2 D, [ n\)zi\)/nsnB 1} < o. (11.114)

Equation (11.114) is defined on the two-surfaces orthogonal to the surfaces
of transitivity of the Killing vector fields. The boundaries of this
two-surface are the rotation axis and spacelike infinity (since the
stellar model is singularity free by assumption). The function nvgv/nunU
vanishes both on the rotation axis and at spacelike infinity. We now
apply Theorem 11.13 to eq. (11.114) for the function nvgv/nunu. It

follows that this function has no minimum except on the boundary. Since

the function vanishes on the boundary, it follows that
v i .
> 0. 11.115
nf,\/_/nn]J > ( )

From the stationarity of the spacetime it follows that nvnv < 0 everywhere,
consequently nvgv <0. -
The next theorem also gives inequalities on the Killing scalars, but
only for the case of rigidly rotating stellar models. One of the scalars,
(n9 + an)ga, determines the sign of the angular momentum density of
Theorem 11.12 (see eq. 11.107). Thus, this theorem demonstrates that the
angular momentum density of a uniformly rotating stellar model has the
same sign (everywhere) as the angular velocity of the fluid. The proof
of this result is given by Hansen and Winicour (1975). Attempts to prove
generalizations of this theorem for differentially rotating fluids have
been made by Hansen and Winicour (1977); their preliminary results contain

unphysical assumptions, however.
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THEOREM 11.15- A stationary axisymmetric convection-free rigidly rotating
fluid stellar model, having positive fluid angular velocity Q > 0, must

satisfy the following inequalities everywhere in the spacetime:
o* +aghe, > 0,  and (11.116)
(n* +9tMHn, < 0, (11.117)

with equality holding only on the rotation axis.

PROOF: We will introduce, as in §11.3, the Killing vector field =

na + QEa. We take the curl of eq. (11.78) to show that
o, -1 2 u
D {c Y Da( k gu/w Y} = 0. (11.118)

Theorem 11.13 shows that the function kugu/w cannot have any maxima or
minima in the regions where eq. (11.118) is a uniformly elliptic equation.
This equation fails to be uniformly elliptic whenever o = 0, the rotation
axis, or where ¢y = 0, the '"'speed of light cylinder" where the vector K

is null. Consider the region "inside" of the speed of light cylinder, where
Y < 0., This region is bounded by the rotation axis, pieces at spacelike
infinity, and the speed of light cylinder. On the rotation axis k”gu

. . a ., . . .
vanishes since £ is zero there. At spacelike infinity k”gu is positive:

k“gu = qugu > 0. On the speed of light cylinder ¢ = 0, consequently
k”gu = % Q_l(QZEUEU - nunu) >0. Therefore, the function k“gu/w is negative

everywhere on the boundary of the interior of the speed of light cylinder.
Since it can have no maxima or minima in this region because of eq. (11.118)
it follows that kugu > 0 in this region, with equality only on the rotation

axis. A similar argument for the "exterior" of the speed of light cylinder,
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¢ > 0 also gives k“gu > 0 in this region. This establishes eq. (11.116).
Equation (11.117) is automatically satisfied within the speed of light

cylinder, since k% is a future directed vector field there. Outside

of the light cylinder is necessarily a vacuum region of the spacetime

since the orbits of k¥ are spacelike there. In a vacuum region the following

identity follows from an applecation of Lemma 11.6
%o y2 D, ( k“nu/w )} = 0. (11.119)

Thus, the function kunu/w canhave no maxima or minima in this region. An
analysis similar to that given above for k“gu, implies that kunu <0

everywhere. n

The next theorem is the general relativistic generalization of the
Newtonian "rotation on cylinders" theorem (3.7). The proof of the
relativistic theorem has been given in various forms by a number of

people: Boyer (1965)(1966), Thorne (1971), Abramowicz (1971) (1973).

THEOREM 11.16- Consider a stationary axisymmetric convection-free ideal
fluid spacetime. If the fluid rotates rigidly, then the fluid is
barotropic, and the level surfaces of the density function coincide

with the level surfaces of the function v (see eq. 11.69). If the fluid
is barotropic, then the level surfaces of the angular velcoity of the

fluid coincide with the level surfaces of w_l(na + an)aa.

PROOF: The results follow trivially by taking the curl of eq. (11.71)
and applying the definition of a barotropic fluid, eq. (6.34). n
Abramowicz attempts to extend this theorem by proving that the level

surfaces of @ must have the topology of cylinders. It appears to me,
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however, that his analysis is faulty. He uses results derived by Carter
(1973) for vacuumspacetimes, and incorrectly applies them to fluid
spacetimes.

The final result which we present here classifies the convection-
free stationary axisymmetric spacetimes according to their Petrov type.
The proof, given by Glass and Wilkinson (1978), involves the analysis
of the curvature tensors, of a convection-free spacetime, in the null
tetrad formalism of Newman and Penrose (1962). Since we have not

introduced the null tetrad formalism here, we will omit the proof.

THEOREM 11.17- A stationary axisymmetric convection-free spacetime is

either Petrov type I or D.

This concludes our review of the properties of rotating stellar
models in general relativity theory. The picture which we present is
incompiete. One would expect to find that relativistic stellar models
must have some sort of mirror symmetry in analogy with the Newtonian
models, Theorem 4.6. But no proof of this has yet been found. As we
discussed in §9, one would expect to find that static general relativistic
stellar models must be spherical, but no proof has yet been found. We
hope that this review will help us to comprehend the present state of
knowlege of relativistic stars, and that it will inspire us to further

insights.
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APPENDIX I,

ON THE EVOLUTION OF THE HOMOGENEQOUS ELLIPSOIDAL FIGURES+

By Steven L. Detweiler and Lee Lindblom

I. INTRODUCTION

In this paper we examine some of the effects of viscosity and of gravitational radiation on the homogeneous
ellipsoidal figures. When an astrophysical system undergoes gravitational collapse (e.g., to form a white dwarf or
a neutron star), the resulting compact object may be rapidly rotating so that the secular instabilities caused by the
dissipative forces could cause evolution away from an axisymmetric state. The purpose of this paper is to examine
how that evolution actually occurs, within the approximation of the homogeneous ellipsoidal figures.

The analysis of the secular instabilities of the Maclaurin spheroids illustrates how important the combined effects
of viscosity and gravitational radiation can be on the homogeneous ellipsoidal figures. Chandrasekhar (1969
[bereafter referred to as E.F.E.], 1970a) demonstrates that the presence of either viscosity or gravitational radiation
reaction induces a secular instability in the Maclaurin spheroids beyond the point of bifurcation of the Jacobi and !
Dedekind sequences. More recently, Lindblom and Detweiler (1977 [Paper I]) show that the presence of both
viscosity and gravitational radiation reaction moves the point of the onset of secular instability beyond the point
of bifurcation to a point determined by the ratio of the strengths of the dissipative forces. And, for a spheroid of
given mass and density, one specific value of the viscosity of the fluid will cause the Maclaurin sequence to be
stable all the way to the point of the onset of dynamical instability. Thus, the presence of both gravitational radia-
tion reaction and viscosity drastically changes the discussion of the stability of the Maclaurin spheroids from the
case where only one or the other of the dissipative forces is acting.

In the present work we find similar qualitative changes in the evolution of the slowly varying ellipsoids when
both dissipative effects are included. In § II we review briefly the general equations of motion which govern the
evolution of the ellipsoidal figures, including the effects of viscosity and gravitational radiation reaction.

Miller (1974) and, and Press and Teukolsky (1973) have studied numerically the evolution of the ellipsoidal
figures including the effects of gravitational radiation and viscosity, respectively. Their analyses show that a
perturbed Maclaurin spheroid, which lies in the region of secular instability, will evolve through a sequence of
ellipsoids which lie near the Riemann .S family. We use this qualitative feature of their results to derive an approxi-
mation scheme which allows the economical large-scale integration of the equations of motion. When the effects
of viscosity and gravitational radiation are weak, the general motion of an ellipsoid will consist of (i) a large-scale
motion from one place to another along the Riemann S surface, and (ii) small-scale hydrodynamical oscillations
about the quasi-equilibrium Riemann S configurations. The second of these effects, although of secondary interest,
causes the numerical integration of the equations of motion to be very inefficient. The time step size must be kept
small with respect to the oscillation period in order to maintain numerical accuracy. We develop in § III an approxi-
mation scheme which suppresses the oscillations, and therefore allows for a quick and efficient integration of the
large-scale effects of dissipation on the evolution.

In § IV the results of the numerical integration of the equations of motion for the slowly varying ellipsoidal
figures are presented. We illustrate the qualitative features of the evolution (over most of the Riemann .S surface)
for ellipsoids having varying amounts of viscosity and gravitational radiation reaction. In particular, we illustrate
the evolution in the limiting cases of purely viscous or purely radiative evolution. We also examine the critical case
where the Maclaurin sequence is stabilized all the way to the point of the onset of a dynamical instability. Several
intermediate cases are also examined.

t Reprinted from "On the Evolution of the Homogeneous Ellipsoidal Figures'" in
the Astrophysical Journal 213, 193-199 (1977).
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1. THE EQUATIONS OF MOTION

The uniform density ellipsoidal figures are described by the 10 time-dependent parameters a;, Q;, A (i = 1,2, 3),
and p, (see E.F.E.). The functions g, are the lengths of the principal axes of the ellipsoid, €, represents the angular
velocity of the principal axes with respect to 2 nonrotating inertial reference frame, A, measures the internal motion
of the fluid as seen by an observer in the principal axis frame, p, represents the central pressure of the fluid, and p
is the uniform and time-independent mass density. The Riemann-Lebovitz equations describe the hydrodynamical
evolution of these functions. They are conveniently written as

H;=0. 0))
The elements H,, are defined by cyclically permuting the subscripts 1, 2, 3 in equations (2a, b, ¢):
2
By = D5 0@ + 02 + AR+ A + Aaahos + GoAi0) + 2rGpdiey — e, @
dA dQ da da
.ng = al Tta - aa 'd—ts + 2(A37t1 - QS 7:) + alAlAz + 029192 - 203A192 Y (2b)
dQ dA da da
.H13 = ag —d—t2 — al —‘de + 2(927?‘ b A2 —dTl) + 039391 + a1A3A1 —_ 2a293A1 . (20)

In equations (2) the Newtonian gravitational potentials 4, are given by the integral expression,

® a,a.az du
A= fo (a® + wl(a® + L)(az2 + u)(as® + w? €))

(note that 4, + A + As = 2). To the nine equations of motion represented by equation (1) an additional con-
straint must be added, corresponding to the conservation of mass. Since the mass density is assumed to be a
constant, this additional constraint reduces to

a,a,a; = @ = constant . @

The unit of length for this paper will be scaled so that @ = 1.

Equation (1) describes the hydrodynamical and the Newtonian gravitational effects on the evolution of the
ellipsoid. In this discussion, the effects of viscosity and of gravitational radiation reaction will be of interest;
therefore terms which describe those effects must be added to equation (1). The terms which describe the viscous
interaction were first written for these ellipsoidal objects by Rosenkilde (1967) and later in a notation more closely
related to the one used here by Press and Teukolsky (1973). We describe the effects of viscosity with the average
viscosity of the ellipsoid » and the matrix ¥j;:

10 da,

=3 (52)
_3(n_%

Va=2 (2-2)a, (5)
_3(B_a

Vis = aa (01 as)Aa . (5¢)

The other elements of ¥y can be obtained from equations (5) by cyclically permuting the subscripts 1, 2, 3.

The terms describing gravitational radiation reaction for the ellipsoidal figures were derived by Chandrasekhar
(1970a, b) and modified to the form employed here by Miller (1974). This interaction employs the coupling constant
@ = 2GM/25¢® and the matrix G, defined by

S S 5 ds—aan -8
Gu = Zo szo C aCanRBm —d;m‘ R lkAlj’ ’ 6)

where
C% =alfl(c — BBl and A4, = diag(ay, a2 @) -

The quantity Q,, is defined by
Qu = AlkAkj - ‘}SuAklAm ’
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and is proportional to the quadrupole tensor for the ellipsoids. Lowercase Latin indices take the values 1, 2, 3,
and summation is implied for repeated indices. The rotation matrices are defined by

d
R%; = 8 and Rt = (su 7 fumgm)R“u .

In terms of the quantities defined above, the complete description of the evolution of the ellipsoidal figures is
given by
Hil + VVvu + gGﬁ = 0 . (7)

III. AN APPROXIMATION TO THE EQUATIONS OF MOTION

Equation (7) forms a set of ordinary differential equations which, in principle, may be integrated in a straight-
forward manner. However, in practice there is a major drawback: these equations govern not only the long-
time-scale evolution of an ellipsoid due to the dissipative forces, but also the short-time-scale hydrodynamical
oscillations of an ellipsoid which is not in perfect equilibrium. Thus, while we are primarily interested in the long-
time-scale evolution near the stationary Riemann S ellipsoids, a numerical integration of equation (7) necessitates
an extremely short time step size to refrain from losing information about the hydrodynamical oscillations.

In the derivation of equation (7) it is necessarily assumed that the effects of radiation reaction and of viscosity
are small, but cumulative. We are led, therefore, to seek solutions to the equations of motion which are slowly
evolving from one quasi-equilibrium configuration to another. Thus, in the equations of motion we assume that
the velocities d(a;, Q,, A;)/dt and the dissipative coefficients » and & are small, and subsequently drop terms which
are higher than first order in these small quantities. These assumptions are equivalent to assuming as an initial
configuration an ellipsoid which lies very near the Riemann S surface, and whose subsequent evolution consists
of a slow cumulative motion in addition to small amplitude oscillations.

We now expand the terms in equation (7) to first order in the small quantities: », ¢, and d(a;, Qi, Ay)/dt. The
initial configuration is taken to be near the Riemann § surface; in particular we take A; = Ap = Q) = Q3 =0
initially (we set Q3 = Q, A3 = A). The nonzero components of the viscous and radiative matrices to this order are

given by

4 Via = a1Vailag = 5(a;® — ‘122)1&/‘11,‘122 s ®
an
G12 = a;Gafa; = 16Q%ay(a,® — a5®) . ®
The resulting equations of motion are the following:
Hy = —a(A? + Q%) + 2a,AQ + 27Gpas 4, — 2p./pa, = 0, (10a)
Hyy = —ay(A? + Q%) + 2a,AQ + 2aGpazA; — 2po/paz = 0, (10b)
Hys = 2nGpazA; — 2pc/pas = 0, (10c)
dA dQ da da a,? — a?
Hy; + vVia + gGlg = al-d—t‘ — ath + 2ATtl —_ 2Q—d—tg + SVAl—alEzz—z + 16?9502(012 - a22) = 0,
4 (11a)
an
dQ dA da da a? — a?
Hy + vVa + ngl = alw — ag—dT + 29# - 2AT: + SvA —l‘ma‘ + 16?95(11(012 - 022) =0.
(11b)
The off diagonal equations,
Hy3 = Hg = Hy3 = Hyy = 0, 12

guarantee that the vorticity and the rotation axes maintain their orientation (A; = A; = Q; = Q; = 0) as the
ellipsoid evolves. _
Equations (10) may be solved for A, Q, and p, in terms of the values of a;:

— O) = @Ad; + ayd; as’4s
(A - Q) 211'Gp[ 2, t a 2y | (13a)
— 2
(A + QP = 2770,)[“1"1 84 | G A"] , (13b)
a; — a4y a,qy

and
2p./p = 2nGpag®4s . (13¢c)
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The relationships illustrated in equations (13) are identical to those of a Riemann S-type ellipsoid. Thus to the
zeroth order in the small quantities the ellipsoid is instantaneously of Riemann S type; and to the first order in
the small quantities the evolution of the ellipsoid is governed by equations (11). ‘

The equations of evolution may be cast in a more useful form. To accomplish this, the equations relating A and
Q to a; and a, (egs. [13a, b]) may be differentiated with respect to time to obtain expressions for dA/dt and dQ/dt
as linear combinations of da,/df and da,/dt. These expressions can then be used to eliminate dA/dt and dQ/dt from
the equations of motion (11) and the resulting relationships solved to obtain equations for da,/dt and da,/dt. The
final form of these equations are given by

da,

d—t=vb,+gc4, i=1,273. (14)

The quantities b, and ¢, are functions of a;, @, @;, A, and Q; thus, these equations can be easily integrated numeri-
cally to explore the orbits of the slowly varying ellipsoidal figures. The precise expressions for the coefficients b,
and ¢, are given by

S e .
b= A b =TT O heB T s
by = —-aa(% + 2—2) , (15¢)
et - o G S 00 M )
ot - o = o LY.
cs = —a;,(%l1 + 2—1) , | (16c)

In equations (15) and (16) we have made use of the symbols Q(c, €) which are defined by

=G axa ay A, + eazA
Q(a, E) = A —’:Q I:Aa + aaAa'a + EaﬁAB,a - asAa,a —_ Zaﬂ Aﬁ,a — —ll—aiT;é—z
ay’ 2
+ (G)‘z aagaﬁ (a1 + Gag)(sAa + aaAa'a - aaAa'a) + 7T—Gp‘ (A —_ 69)2] ’ (17)

withe, B = 1,2; « # B; € = +1; and A4, ; = 94,/%a,.

The Riemann S algebraic constraints, equations (13), along with the evolution equations (14), form the complete
description of the slowly varying ellipsoidal figures. The evolution equations are rather complicated ; however, the
form in which they are presented allows them to be integrated numerically in a straightforward manner. We have
performed these integrations and discuss the results in § IV.

IV. NUMERICAL RESULTS

The evolution of the slowly varying ellipsoidal figures is described by equations (14). From these equations it is
clear that the evolutionary trajectory of a given initial ellipsoid is determined solely by the ratio of the viscous
time scale to the radiation-reaction time scale. (The rate at which the ellipsoid evolves along the trajectory is
proportional to the magnitudes of both dissipative time scales, however.) Thus, as in Paper I, it is convenient to
introduce a dimensionless constant ’

_125(1 — e v
- 20,7 GMa s’

where Q, and e, are the angular velocity and the eccentricity of the Maclaurin spheroid at the point of the onset
of the dynamical instability; so that

QufnGp = 044022 and e, = 0.95289.

X (18)
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Fic. 1.—The evolutionary paths of the slowly varying ellipsoids for X = 0 (only radiation reaction) or for X = oo (only viscosity).
The Jacobi alad Dedekind sequences are RP and PS; the stable Maclaurin sequence is OP, and the secularly unstable Maclaurin
sequence is PQ.

The constants appearing in equation (18) are chosen such that if X = 1, then (as discussed in Paper I) the entire
Maclaurin sequence is stable up to the point of the onset of a dynamical instability, point Q in Figure 1. X isa
certain ratio of the viscous to the gravitational radiation time scale; thus, the trajectories of the ellipsoids are
determined simply by specifying X. The evolution of the ellipsoid will tend to be viscosity dominated if X > 1 and
radiation reaction dominated if X < 1. )

We have examined the evolution of the slowly varying ellipsoidal figures by numerically integrating equations °
(14). As a test of the approximation discussed in § III we compared some of our trajectories with those tabulated
by Miller (1974) and found, as expected, that her ellipsoids performed small oscillations about a sequence of
Riemann S-type ellipsoids which satisfied equations (14). As a second check we evolved ellipsoids with either the
viscosity or the radiation reaction forces absent, and found that either the circulation or the angular momentum,
respectively, were conserved as required for these interactions (see E.F.E. and Miller 1974).

The results of our numerical analysis are presented in Figures 1-5. For different choices of the parameter X the
evolutionary tracks effectively cover the Riemann S surface. Figure 1 serves the dual roles of illustrating the
evolution of an ellipsoid with X either zero or infinite. For X = 0 the evolution is caused solely by the radiation
reaction: in this case Type A corresponds to the Dedekind-like (|Q] < | A]) ellipsoids, Type B to the Jacobi-like
(jQ| > |A]); the trajectories are contours of constant circulation; all of the evolution is directed either toward
the stable portion of the Maclaurin sequence, OP, or toward the Dedekind sequence, RP. Similarly for X = oo, the
evolution is caused solely by the viscosity; Type A corresponds to the Jacobi-like ellipsoids and Type B to the
Dedekind-like; the trajectories are contours of constant angular momentum; all of the evolution is directed either
toward OP or toward the Jacobi sequence, RP.

Figures 24 illustrate the evolutionary tracks for values of X ranging from 10~* to 50. For X = 50 (Fig. 5) the
typical evolution may proceed as follows: starting below the Dedekind sequence on the left half of the diagram, the
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FiG. 2.—The evolutionary paths for X = 104, The point P is the point of bifurcation of the Jacobi and Dedekind sequences.
The stable Maclaurin spheroids are OT; the seculatly unstable Maclaurin spheroids are TQ.
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ellipsoid is driven up and toward the Maclaurin sequence nearly along a contour of constant angular momentum.
If it approaches the Maclaurin sequence below the point T, the point of the onset of secular instability, it will be
evolving toward an unstable Maclaurin spheroid. In a physically realistic situation a small perturbation is now
needed to move the ellipsoid across the Maclaurin sequence into the Jacobi-like region. The evolution continues
then toward the Jacobi sequence (PS in Fig. 1); the circulation decreases because of viscous dissipation, and the
quadrupole moment increases as the ellipsoid tends toward a “rotating cigar” configuration. Eventually viscosity
ceases to play the dominant role in the evolution—not because of the lack of viscosity but rather because the
ellipsoid is nearly rigidly rotating. With a large rotating quadrupole moment, the ellipsoid now loses angular
momentum in the form of gravitational radiation and the evolution proceeds back toward a stable member of the
Maclaurin sequence. Analogous evolutionary scenarios describe each of the other figures.
. For a choice of viscosity such that X = 1 (Fig. 4) all of the evolutionary tracks lead directly toward the Maclaurin
sequence implying that the entire line OQ is in stable equilibrium. If a Maclaurin spheroid anywhere along the line
0Q is displaced slightly, it simply evolves back toward the Maclaurin sequence.

Figures 1-5 clearly illustrate the results of Paper I. A Maclaurin spheroid which lies on the sequence OT is stable;
if perturbed slightly, it simply evolves back toward the Maclaurin sequence. On the other hand, a spheroid on the
sequence TQ is unstable; if it is perturbed, it evolves away from the Maclaurin sequence. For the limiting cases
of purely viscous or purely radiative dissipation, Figure 1 shows that the point T, the onset of secular instability,
coincides with the bifurcation point P. Figure 3 illustrates the case X = 1, showing that the point T coincides with
Q, the point of dynamical instability.

We thank Professor S. Chandrasekhar for suggesting this research and Dr. Bahram Mashhoon for many helpful
discussions. The research reported in this paper has been supported by the National Science Foundation under
grants GP-43708X and GP-25548 and by the Computer Science Center of the University of Maryland.
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APPENDIX TII.

ON THE SECULAR INSTABILITIES OF THE MACLAURIN SPHEROIDS?

BY Lee Lindblom and Steven L. Detweiler

The secular instability of the Maclaurin spheroids due to viscosity or gravitational radiation reaction (Chandra-
- sekhar 1969, 1970a) is by now well understood ; and similar instabilities of more general classes of stellar models are
. known to exist (Ostriker and Bodenheimer 1973; Miller 1973). The overall effect of such a secular instability is to
- place an upper limit on the ratio of the rotational kinetic energy, T, to the gravitational potential energy, W. This

upper limit occurs at the point of bifurcation where the value of |, W| is given approximately by 0.14. After
exhausting its nuclear fuel, a star may collapse to a state having |7/W| > 0.14, if it is rotating rapidly enough. In
" such a case it was thought that gravitational radiation reaction and viscosity would force the star to evolve through
. nonaxisymmetric configurations wherein T would be dissipated until |T/W| approached 0.14.

We find that for Maclaurin spheroids this picture is not correct in the presence of both viscous and radiation
reaction forces. Rather, we find that the secular instabilities caused by viscosity and by gravitational radiation tend
to cancel each other. The particular point at which the secular instability actually sets in depends on X (see eq. [6]),
the ratio of the strengths of the viscous and the gravitational forces. For a particular choice of X the stable portion
of the Maclaurin sequence can be extended all the way to the point of the onset of dynamical instability, corre-
sponding to |T/W| = 0.274.

The cancellation of the secular instabilities occurs because viscous dissipation and radiation reaction cause
different modes to become unstable. In particular, the mode which is not unstable to a particular dissipative
force is in fact stabilized by that force. Thus, for example, the mode which is unstable to radiation reaction is
stabilized by viscosity. For a suitable choice of the ratio of the strengths of the dissipative forces, the stabilizing
terms dominate in both modes.This results in stable Maclaurin spheroids past the point of bifurcation.

To show precisely how the cancellation of instabilities occurs, we must examine the perturbations of the Maclaurin
spheroids. This subject has been discussed at length by Chandrasekhar (1969, 19706); we adopt the notation of
that work, and refer the reader thereto for the method of derivation of the equations which we employ.

We have examined all of the ““ second harmonic modes” of the Maclaurin spheroids, and find that only the toroidal
modes have instabilities which are induced by the dissipative effects. The perturbation is déscribed (in the corotating
frame of the fluid) by a Lagrangian displacement of the form £,(x)e!”*. The equations for the toroidal modes are
expressed in terms of the quantity

Vy = J; p(€xs + Epx)dx . 1)

It is a straightforward matter to generalize the work of Chandrasekhar to obtain the equations governing the
toroidal modes, with the inclusion of the effects of viscosity and gravitational radiation reaction. These equations
are

[—o% + 2Q2By; — Q%) + 10iov/a,® + 2DQ,(V1y — Vaa) — 4[icQ — 3DQ5]V12 =0, (22)
and

[—0? + 2(2By; — Q%) + 10iov/a;® + 2DQ:]V1z + [i0Q — 1DQ,)(V1 — Vaa) = 0. (2b)

+ Reprinted from “On the Secular Instabilities of the Maclaurin Spheroids"
in the Astrophysical Journal 211, 565-567 (1977).
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In these equations we have used the symbols:
v, viscosity;
D = (nGp)*'*GMa,?/5¢°, gravitational radiation;
a;, a,, equatorial and polar radii of spheroid;

Q, angular velocity of spheroid;
By, =J. a,2ax(a® + u)~%as® + u)?udu;
[}

0, = —2io(c? + 12Q%)(Q? — 2Byy) — 3io® — 8io®Q? + 16i0Q*;
0, = 8Q(30? + 4Q3)(Q* — 2By;) + 84*Q — 128Q5/5 .
Equations (2) have nontrivial solutions if and only if the frequency, o, satisfies the characteristic equation,
0 = o? — 20Q — 2(2B;; — ©7) — 10ivo/a,® + 4iD(2Q — 0)°[2By; — Q2 + 1(2Q — o)4Q + 30)]. (3

In the nondissipative limit (i.e., D = v = 0) the solutions to equation (3) for the characteristic frequencies of the
toroidal modes are given by

oo = Q — (4By; — QA2 (4a)
and '
0o® = Q + (4By; — Q3. (4b)

When the effects of viscosity and gravitational radiation reaction are small (an assumption used in the derivation
of eq. [2]), equation (3) may be solved approximately. Let o % oo + Acrepresent the solution to equation (3) where
Ao is considered to be small. It follows that

_2DQ2Q — 00)® Svay

o =3C""0)  ~ a¥es — O O

Equation (5) can be written in a more convenient form by defining X, the ratio of the strengths of the dissipative
forces:

X = 25¢(1 — €®)*?[[2a,> DQoH(nGp)~¥*(1 — €?)*°]. (©)

The quantity Q, is the angular velocity of the Maclaurin spheroid having e, = 0.95289, the point of dynamical
instability (Qo2/nGp = 0.44022). When X is defined as in equation (6), it is a function only of the total mass,

average radius, and average viscosity of the ellipsoid (see eq. [8]). Equation (5) can be rewritten as

) 2D 1 — e2 2/3

Ao = _m [(00(2))5 — XQpt0o® %1'—_%2)7'3] s (7a)
and

) 2D 1 — 2)2/3

Ao® = ~5aB, — oy [(00(1))5 — XQ4t0,® (%Tei-z))ﬁ] . (70)

These equations (7a, b) give expressions for the imaginary part of the characteristic frequencies of the toroidal
modes. If either expression is positive, an instability occurs.

We have evaluated these equations (3) and (7) numerically for various values of the eccentricity (€2 = 1 — a5%/a,%)
of the spheroids and the ratio of the dissipative strengths, X. Figure 1 illustrates the results of these computations.
This figure depicts the critical eccentricity (where instability first sets in) as a function of X. The entire region below
the curve is stable. Note that for very large or very small values of X the critical eccentricity approaches 0.81267,
the bifurcation point; this corresponds to the limiting cases with pure viscosity or pure radiation reaction. Also
note that for X = 1, the region of stability is extended all the way toe = 0.95289, the point of dynamical instability.
For values of X < 1 the spheroid is radiation-reaction dominated, and it is the 0,*® mode which becomes unstable;
for X > 1, viscosity dominates and the o, mode is unstable.
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Fic. 1.—The eccentricity of the Maclaurin spheroid at the onset of secular instability is illustrated for given values of the ratio
of the viscous force to the gravitational radiation reaction force. .

To relate the scale of the parameter X to a more astrophysically relevant set of units, we note that equation (6)
may be written in the form

R\2({My\2
— -3 2.-n 2| 1222} .
X = 5.863 x 107 3%(cm?®s )(Re) (M) ®)
The average radius of the ellipsoid is R and its mass is M. The maximum stabilizing effect occurs when X = 1. For
a star of given mass and given average radius, we define the critical viscosity to be the one for which X = 1,

v = 170.6(%)2(1‘%)3(ch s-1). ©)

Table 1 lists the estimated actual viscosity, », along with the critical viscosity ». for different types of stars. The actual
viscosity of the Sun is estimated to be very close to the critical value; however, the time scales for both the viscous
and the gravitational radiation induced evolution are so long in this case as to be ignorable. The compact objects
(white dwarfs and neutron stars) are listed as having very small actual viscosities. Those estimates are based on the
viscosity of a degenerate gas, and ignore the possibility of a crystalline structure which could increase the real values
by many orders of magnitude. :

We are most grateful to Professor S. Chandrasekhar for stimulating our interest in this and related problems. The
research reported in this paper has been supported by the National Science Foundation under grants GP-43708X
and (l}P-25548, by the Center for Theoretical Physics, and by the Computer Science Center of the University of
Maryland.

TABLE 1
CRITICAL VISCOSITIES FOR VARIOUS TYPES OF STARS
Estimated Actual Critical
Type of Star Viscosity (cm? s~1) Viscosity (cm®s~1)
Sun*.........c00iienen 1< v< 102 ve = 170
White dwarfst.......... 10-* < »v< 10 10 < v, < 10°
Neutron stars}.......... vl 10" < v, < 104
* Kopal 1968.
+ Durisen 1973.
$ Ruderman 1968.
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