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Rotating stars are subject to a secular instability driven by the emission of
gravitational radiation.! This instability is generic: all rotating stars composed of
perfect fluid are unstable in general relativity theory.2? However, sufficiently slowly
rotating stars composed of a viscous fluid are stable.%® The calculation then of
exactly which rotating neutron stars are stable is delicate. Such a calculation must
determine the relative strengths of the destabilizing gravitational radiation and the
stabilizing viscosity effects on the relevant modes of these stars.®7

Below about 10°K neutron star matter is expected to undergo a phase transition
into a superfluid state.®® In this state the protons and neutrons in the core of the
neutron star are expected to behave as a complicated superconducting-superfluid
mixture. The dynamical and dissipative properties of this mixture are expected to
be significantly different from those of a perfect fluid. Thus it is necessary to consider
anew the secular stability of rotating neutron stars using superfluid hydrodynamics.
We present here new estimates of the effects of the superfluid dissipation mechanism
“mutual friction” on the secular stability of rotating neutron stars.

The oscillations of a rotating superfluid neutron star can be described by just
three scalar potentials: §U, 58, and §&.1° The scalar §% is the Newtonian gravitational
potential, while the remaining potentials describe the thermodynamic state of the
fluid: 8U = 6p/p+6% is related to the pressure perturbation while 68 is the deviation of
the fluid state from g-equilibrium. These scalars are determined by three coupled
second-order (typically elliptic) differential equations plus appropriate boundary
conditions. Here we use simple analytical solutions to these equations that describe
the oscillations of spatially homogeneous non-rotating neutron star matter.! In
this simple case the potentials are separable: .the radial dependences are suitable
linear combinations of »* and the spherical Bessel functions j; while the angular
dependences are the spherical harmonics Y-

The effects of dissipation on these oscillations are conveniently analyzed in terms
of an energy functional E: a real integral of a quadratic form in the three potentials
§U, 68, and 6&. A suitable energy functional has been found for this superfluid hydro-
dynamic system.!? Its time derivative (which vanishes in the absense of dissipation)
is given by another functional, dE/dt, that describes the effects of gravitational radia-
tion, viscosity, and the purely superfluid dissipative effect “mutual friction.” Mutual
friction in superfluid neutron star matter is caused by the scattering of electrons off
the cores of the superfluid vortices. Using these functionals it is possible to evaluate
the imaginary part of the frequency of any mode: Im(w) = (1/2E)(dE/dt) = —1/7. The
contributions of the dissipative effects to 1/r are denoted: 1/75s for gravitational
radiation, 1/r, for viscosity, and 1/7.» = (2/9)(1/7xr) for mutual friction, where
Q is the angular velocity of the rotating star and Q, = vxGp. We use our simple
analytical expressions for sU, 68, and 6@ to estimate these damping times for the
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relevant modes. Table 1 gives these quantities for the 2 <I=m < & modes for a
uniform density model with p = 4 x 101 gm/cm® and a radius of R=15km.

Table 1. Fundamental Frequencies and Damping Times

1 é’; TarSlo TarSlo Tv§lo | %

2 1.406 2.680 x 10° 1.480 x 10% 7.222 x 1011 0.115
3 1.808 1.301 x 105 2.290 x 10% 2.852 x 1011 0.089
4 2.141 5.699 x 10° 3.319 x 10* 1.538 x 10! 0.072
5 2.430 2.609 x 10® 4.561 x 10% 9.621 x 10%° 0.060
6 2.689 1.289 x 10%° 6.017 x 104 6.581 x 101° 0.052

We wish to estimate the critical values of the angular velocity of a star where
the imaginary part of the frequency changes sign from negative (stable) to positive
(unstable): 1/7(Qc) = 0. In analogy with the analysis of perfect fluid stars”? these
critical angular velocites may be estimated by solving the equation

Q. ~ lw Tor , Sk Tor 1/@)

Q,,NIQ,,[1+(TV +n‘,f.,,,) S ()
We have solved this equation numerically for the 2<1<6 modes using the frequen-
cies and damping times from Table 1. We find that the smallest solution (the I =2
mode) is Q. ~ 1.22,. This is unphysical since it is larger than the maximum value
of the angular velocity Qu.x = 0.70, for which there exists an equilibrium stellar
model. Since the magnitude of |63} is larger in these simple solutions than in more
realistic ones'® (by a factor of about 10?) we expect that the magnitude of #.» given
here may be too small (by a factor of about 10%) and hence that the supression of the
gravitational radiation instability is too large. We also solved Eq. (1) using values
of 7. Which are 10° times the values given Table 1. Even in this case the smallest
critical angular velocity (in the I = 3 mode in this case) exceeds 0.7Q,. Thus, we
conclude that mutual friction will suppress the gravitational radiation driven sec-
ular instability in all rotating neutron stars cooler than the superfluid transition
temperature.
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