
Mathematical Aspects of General Relativity

o There is a choice of projective parameter on these conformal geodesics so
that the singularity is at a finite distmce.

o The conformal factor dictated by ihis choice makes the rescaled fluid ex-
pansion flnite.

o The conformal (tractor) curvatures are finite in the conformally-propa-
gated frame.

Then ihe inltial singularity is a conformal gauge singularity.
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A new generalircd humonic evolution system

LEE LINDBLOM

(joint work with M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne)

This report describes recent work on finding a formulation of the Eimtein equa-
tions suitable for constructing stable numerical evolutions. The formulation stud-
ied here specifies the coordinate degrees of freedom with a generalized harmonic
gauge source function rather than with the usual lapse and shift. This type of
fornulation appears to have played a critical role in the very impressive binary
black hole evolutions performed recently by Pretorius [1, 2]. This report analyzes
why this type of formulation is so effective for numerical work, describes a recent
extension of the system that makes it possible to construct bounclary conditions
which prevent the influ of constraint violations, and describes numerical tests
that demonstrate the effectiveness of the new equations and boundary conditions.

The gauge source function fI" is defined as the action ofthe scalar-wave operator
on the coordinate functions r":
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(t) H"(r)  = r / ,"6V'Voxb --  -( ,b" lob. + - ln,

where ry'o6 is the spacetime metric and f"6" is the usual Chrisiofiel symbol. The
coordinates are fixed in this approach by requiring that f, : g", for a prescribed
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I1". The existence of solutions to the inhomogeneous wave Eq. (1) guarantees
the existence of such coordinates. Choosing the coordinates ln this way has two
important consequences. The first is well known: the vacuum Einstein equations,

(2) 0:Roo-Vr,Car,

where Co : 11. + f", are manifestly hyperbolic since the principal part of the
equations is jtst, t!'dE"Ea{"6 for any value of the gauge source function [3]. The
second consequence is less widely appreciated: The constraints of the system are
profoundly transformed. The condition C. : 0 is the primary constraint of this
system, while ihe standard Hamiltonian and momentum constraints M" : G.ttb
(where t" is the unit normal to a Cauchy surface) are determined by the derivatives
of Co: M" : tb(YOCat - +rl '"bV'C"). This means ihat the primary constraints
depend on the firsi but not the second derivatives of the metric

Adding multiples of the constraints to the Einstein equations is known to have a
significant effect on the growth rates of constraint-violating solutions [4]. However,
multiples of the Hamiltonian and momentum constraints can be added only in
very restricted ways consistent wiih the hyperbolic structure of the equations;
this is became the addition of these constraints changes the principal part of
the equations. In contrast, ilbitrary multiples of the gauge constraint Co can be
added to the system, Eq. (2), without effecting the hyperbolic structure at all.
Pretorius [2], bmed on the suggestion of Gundlach, et al. [b], used a modified
evolution system that included the following additional gauge constraint terms
designed to suppress the growth of the constraints:

(3) 0: R.o - V,"C6, t  hlt ,^C6t - l , l .of C.1.

The Bianchi ldentities then imply that C" satisfiei the damped wave equation,

(4) 0 :  v"v"c" -z16Yblt1&"11+cbY6cr1 - l .rct"coco,

which exponentially suppresses all small short-wavelength constraint violations
when the parameter ?0 is positive [5]. This constraint-suppressing feature of the
modified generalized harmonic system, Eq. (3), contributed significantly to ihe
success of Pretorius' impressive binary black-hole evolutions 12].

We have recently extended the modified generalized harmonic evolution system,
Eq. (3), to a first-order svmmetric-hvperbolic form. (See Rel [6] for ihe details.)
This new system is linearly degenerate, so shocks do not form from smooth initial
data. This system also includes new constraints that arise when additional fields
are added to make the system first order. Appropriate terms (proportional to the
constraints times a second constralnt-damping parameter .y2) are added io suppress
the growth of these new constraints. Constraint-preserving and physical boundary
conditions are also presented, and the well-posedness of the new evolution system
with these boundary conditions is analyzed.

We tested the new evolution system by evolving initial data for a Schwarzschild
black hole. In these evolutions we "freeze" the values ofthe incoming characteristic
fields on the boundaries. We performed these numerical evolutions using spectral
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FIcuRE 1. Evolution of Schwarzschild initial data.
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FIGURE 2. Evolution of pertubed Schwarzschild

methods m described in Ref. [?] for a range of numerical resolutions specified by

1{. (the highest order radial bmis function) and -L*"* (the highesi order spherical-

harmonic). Figure I shows the time dependence of the constraint norm llCll for

several values of the constraint-damping parameters 10 and 12. These tests show

ihat without constraint damping ihe extended evolution system is extremely un-

stable, but with constraint damping the evolutions of the Schwarzschild spacetime

are completely stable up to r:10,000M (and forever, we presume). These tests

also illustrate that both the 76 and the'y2 constraint damping terms are essential.

We also tested our new boundary conditiom by evolving a black hole per-

turbed by an incoming gravitational wave (GW) pulse. We perturb Schwarz-

schild initial data by iniecting a GW pulse through the boundary with time profile

f  ( t \ :  Ae-A+p)"/-"  and "4:10-3,  tp:60M, and u:10M. Figure 2 shows

the evolution of llCl for both constraint-preserving boundary conditions (dmhed

curves) and simple boundary conditions that freeze all the incoming chmacteristic

fields (solid curves). These results illustrate that the new boundary conditions in-

cleed prevent ihe inflw of constraint violations Figure 2 also illustrates the time

tN_,L. . - )={e.7)
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dependence of the Weyl tensor comporent Va averaged over the outer bound-
ary of the computational domain. The dashed curve (using constraint-preserving
boundary conditions) shows black-hole quasi-nornal oscillations with the correct
complex frequency, while the solid curve (using freezing boundary conditions)
is completely unphysical. These results show that proper constraint-preserving
boundary conditions are essential if accurate gravitational waveforms are needed.
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dation to Caltech and Cornell, by NSF grants PHY-0099568, PHY-0244906 and
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0312072, PHY-0354631, and NASA grant NNG05GG51G at Cornell.
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The redshift effect and decay rates for the wave equation on a
Schwrzschild exterior

MIHALIS DAFERMOS

(joint work with Igor Rodnianski)

We consider the following problem: Lef (M, g) denote the maximally extended
Schwarzschild spacetime [7] with parameter M > 0. Let ,S denote a complete
Cauchy surface, and consider locally Co solutions of the wave equation

( i )  !e@: o

on ,M, such ihat /ls and V/l.s decay sufficiently rapidly at spatial infinity. (We
do nol assume / vanishes at the sphere of bifurcation of the event horizon.) The
main result presented in this talk is a set of decay ratre&r_{ mgjlg Tergy flu
in the closue of the domain of outer communications J+(7-) n J- (I+) c M, In
particular, the decay rates apply along the event horizon 7l+.

To state precisely the result, let us introduce some notation: By z and u, we
mean standard Eddington-Finkelstein retarded and advanced time coordinates on


