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e There is a choice of projective parameter on these conformal geodesics so
that the singularity is at a finite distance.

e The conformal factor dictated by this choice makes the rescaled fluid ex-
pansion finite.

e The conformal (tractor) curvatures are finite in the conformally-propa-
gated frame.

Then the initial singularity is a conformal gauge singularity.
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A new generalized harmonic evolution system
Lee LINDBLOM
(joint work with M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne)

This report describes recent work on finding a formulation of the Einstein equa-
tions suitable for constructing stable numerical evolutions. The formulation stud-
ied here specifies the coordinate degrees of freedom with a generalized harmonic
gauge source function rather than with the usual lapse and shift. This type of
formulation appears to have played a critical role in the very impressive binary
black hole evolutions performed recently by Pretorius (1, 2]. This report analyzes
why this type of formulation is so effective for numerical work, describes a recent
extension of the system that makes it possible to construct boundary conditions
which prevent the influx of constraint violations, and describes numerical tests
that demonstrate the effectiveness of the new equations and boundary conditions.

The gauge source function H, is defined as the action of the scalar-wave operator
on the coordinate functions z%:

(1) Ho(2) = PasV°Vaz® = —¢*Tape = — T,

where )4 is the spacetime metric and T'ypc is the usual Christoffel symbol. The
coordinates are fixed in this approach by requiring that I, = — H,,, for a prescribed
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H,. The existence of solutions to the inhomogeneous wave Eq. (1) guarantees
the existence of such coordinates. Choosing the coordinates in this way has two
important consequences. The first is well known: the vacuum Einstein equations,

(2} 0= Ru — V(L,Cm,

where C, = H, + Iy, are manifestly hyperbolic since the principal part of the
equations is just y°¢0.041pas for any value of the gauge source function [3]. The
second consequence is less widely appreciated: The constraints of the system are
profoundly transformed. The condition C, = 0 is the primary constraint of this
system, while the standard Hamiltonian and momentum constraints M, = Gpt?
(where ¢* is the unit normal to a Cauchy surface) are determined by the derivatives
of Cai Mo = t8(V(4Co) — 31asVEC,). This means that the primary constraints
depend on the first but not the second derivatives of the metric.

Adding multiples of the constraints to the Einstein equations is known to have a
significant effect on the growth rates of constraint-violating solutions [4]. However,
multiples of the Hamiltonian and momentum constraints can be added only in
very restricted ways consistent with the hyperbolic structure of the equations;
this is because the addition of these constraints changes the principal part of
the equations. In contrast, arbitrary multiples of the gauge constraint C, can be
added to the system, Eq. (2), without effecting the hyperbolic structure at all.
Pretorius [2], based on the suggestion of Gundlach, et al. [5], used a modified
evolution system that included the following additional gauge constraint terms
designed to suppress the growth of the constraints:

1
(3) 0= Rap — V(aCs) + 70 [t@Co) — 5Wa 0.
The Bianchi identities then imply that C, satisfies the damped wave equation,
1
(4) 0 = VVLa—2%V[teCa) +COV (ol — 30 000,

which exponentially suppresses all small short-wavelength constraint violations
when the parameter vy is positive [5]. This constraint-suppressing feature of the
modified generalized harmonic system, Eq. (3), contributed significantly to the
success of Pretorius’ impressive binary black-hole evolutions [2].

We have recently extended the modified generalized harmonic evolution system,
Eq. (3), to a first-order symmetric-hyperbolic form. (See Ref. [6] for the details.)
This new system is linearly degenerate, so shocks do not form from smooth initial
data. This system also includes new constraints that arise when additional fields
are added to make the system first order. Appropriate terms (proportional to the
constraints times a second constraint-damping parameter ;) are added to suppress
the growth of these new constraints. Constraint-preserving and physical boundary
conditions are also presented, and the well-posedness of the new evolution system
with these boundary conditions is analyzed.

We tested the new evolution system by evolving initial data for a Schwarzschild
black hole. In these evolutions we “freeze” the values of the incoming characteristic
fields on the boundaries. We performed these numerical evolutions using spectral
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FIGURE 2. Evolution of perturbed Schwarzschild.

methods as described in Ref. [7] for a range of numerical resolutions specified by
N, (the highest order radial basis function) and Lmax (the highest order spherical-
harmonic). Figure 1 shows the time dependence of the constraint norm lic]| for
several values of the constraint-damping parameters o and ;. These tests show
that without constraint damping the extended evolution system is extremely un-
stable, but with constraint damping the evolutions of the Schwarzschild spacetime
are completely stable up to ¢t = 10,000M (and forever, we presume). These tests
also illustrate that both the o and the -y, constraint damping terms are essential.
We also tested our new boundary conditions by evolving a black hole per-
turbed by an incoming gravitational wave (GW) pulse. We perturb Schwarz-
schild initial data by 1n]ecting a GW pulse through the boundary with time profile
F(t) = Ae=(t=t)"/w" and A = 1073, t, = 60M, and w = 10M. Figure 2 shows
the evolution of ||C|| for both comtralnt~preserv1ng boundary conditions (dashed
curves) and simple boundary conditions that freeze all the incoming characteristic
fields (solid curves). These results illustrate that the new boundary conditions in-
deed prevent the influx of constraint violations. Figure 2 also illustrates the time
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dependence of the Weyl tensor component ¥4 averaged over the outer bound-
ary of the computational domain. The dashed curve (using constraint-preserving
boundary conditions) shows black-hole quasi-normal oscillations with the correct
complex frequency, while the solid curve (using freezing boundary conditions)
is completely unphysical. These results show that proper constraint-preserving
boundary conditions are essential if accurate gravitational waveforms are needed.
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The redshift effect and decay rates for the wave equation on a
Schwarzschild exterior
MiHALIS DAFERMOS
(joint work with Igor Rodnianski)

We consider the following problem: Let (M, g) denote the maximally extended
Schwarzschild spacetime [7] with parameter M > 0. Let S denote a complete
Cauchy surface, and consider locally C® solutions of the wave equation

(1) Dg¢ =0

on M, such that ¢|s and V¢|s decay sufficiently rapidly at spatial infinity. (We
do not assume ¢ vanishes at the sphere of bifurcation of the event horizon.) The
main result presented in this talk is a set of decay rates for ¢ and its energy flux
in the closure of the domain of outer communications J*(Z=)NJ=(Z+) c M. In
particular, the decay rates apply along the event horizon H*.

To state precisely the result, let us introduce some notation: By u and v, we
mean standard Eddington-Finkelstein retarded and advanced time coordinates on



