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STABILITY IN DISSIPATIVE RELATIVISTIC FLUID THEORIES

William A. Hiscock! and Lee Lindblom?

ABSTRACT. This paper examines the problem of finding
a theory that describes the effects of dissipation (viscosity
and thermal conductivity) in a fully relativistic fluid.
Several of the proposed theories, including those of Eckart,
Landau-Lifshitz, Havas-Swenson, and Israel-Stewart, are
examined. A number of difficulties have been identified
with these theories in the literature: non-causal propagation
of signals, poorly posed dynamical evolution of initial
data, and generic instability of the equilibrium states. This
paper describes how the stability of the equilibrium states
can be analyzed in this entire class of theories. It is shown
that all of the "first-order" theories (Eckart, Landau-
Lifshitz, and Havas-Swenson) have very short timescale
instabilities in every equilibrium state. These first-order
theories are consequently inadequate. The second-order
theories (Israel-Stewart) in contrast can have stable
equilibria. Furthermore, it is shown that the conditions
needed for these theories to have stable equilibrium states
are equivalent to the conditions needed to guarantee that
perturbations propagate causally via hyperbolic
differential equations. Thus the second-order theories
appear to be promising candidates for an acceptable theory
of dissipative relativistic fluids.
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1. INTRODUCTION

As is well-known, in the Fourier theory of heat flow,
temperature fluctuations propagate via a parabolic equation. Ip a
non-relativistic (Newtonian) theory this is acceptable, if somewhat
of a curiosity (Maxwelll was already concerned about the resulting
infinite propagation velocity in 1867), since Newtonian physics
does not possess a maximum velocity for the transmission of
information. It does hint, however, that it may be difficult to
create an acceptable theory of dissipative relativistic fluids, in
which all fluid variables obey hyperbolic equations, and all
transmission of information through the fluid occurs inside the
.light cone (i.e., at velocities less than the speed of light). The
purpose of this paper is to review recent work aimed at finding the
simplest acceptable truly relativistic theory of dissipative fluids.
The unifying theme of the present discussion is the question of the
stability of the equilibrium states in various proposed theories.
Many oi’ the theories have no stable equilibrium states at all!

The first attempts at creating a theory of relativistic
dissipative fluids are now called "first-order" theories; in these
theories the definition of the entropy current contains no terms of
higher than first order in the deviations from equilibrium (heat
flow, viscous stresses, etc.). The simplest such theories are those of
Eckart? and Landau and Lifshitz3, which are presented in many
textbooks on relativistic physics®#%. These theories are the simplest
covariant generalizations of the Navier-Stokes-Fourier theory of
Newtonian dissipative fluids. It is also possible to construct more
complicated theories which are still first-order in this sense; the
theory created by Havas and Swenson® may be the most general
such theory possible.

It is also possible to create either Newtonian or relativistic
second-order theories, where the entropy current definition is
extended to include terms quadratic in the deviations from
equilibrium. The kinetic theory version of such a Newtonian
second-order theory was first studied in 1949 by Grad”; the
associated second-order Newtonian phenomenological fluid theory
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was later developed by Miiller®, Around 1970, a number of workers
began to extend Grad’s work to the relativistic regime®l, The
first relativistic second-order phenomenological fluid theory was
described by Israel'® later work of Stewart!® and Isracll*-16
clarified the relation between the kinetic theory and
phenomenological approaches, and extended the theories to more
complicated situations. Section 2 of this paper reviews how the
first- and second-order theories are constructed.

It has been known for some time that there are definite
problems with the first-order theories. Under certain special
conditions, a parabolic equation may be obtained for the
propagation of thermal fluctuations in the simpler (Eckart and
Landau-Lifshitz) first-order theories!®, This raised serious doubts
as to whether the first-order theories should be considered truly
"relativistic", but in itself is not conclusive, for the following
reasons. First, an analysis of the propagétion‘ of fluctuations for
the complete theory (with both viscosity and thermal éonduct‘ivity
nonzero) has not been completed. Second, in the more complicated,
but still first-order, Havas-Swenson theory, thermal fluctuations
obey a hyperbolic equation!?, at least in the Newtonian limit.

The question of the stability of equilibrium states in fhe
Eckart theory has also been raised!®. It was shown that
instabilities driven by thermal conductivity exist in the Eckart
theory, but only for perturbations with length scales much smaller
than is physically meaningful (i.e., smaller than the interparticle
separation in the fluid).

While the results mentioned above are suggestive of serious
problems in the first-order theories, they are not conclusive. These
potential problems (the stability of equilibrium states, and the
causality of linear wave propagation) may be addressed by
studying the linearized equations of motion for small perturbations
about an equilibrium state of the fluid. Determining the speed at
which information can be transmitted through the fluid is a very
complicated problem. For all of the first-order theories, the system
of equations which govern the evolution of linear perturbations is
neither purely hyperbolic, nor parabolic, nor elliptic. Little seems
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to be known about the properties of such complicated systems!®, In
particular, it is not clear whether a well-posed initial value
- problem exists for this type of system of equations. As a result,
the analysis of signal propagation to determine the causal
properties of the first-order fluids is even more complicated than
in the dispersive, dissipative electromagnetic case?’. The stability
of equilibrium states, on the other hand, can be studied by a simple
plane-wave normal mode analysis of the perturbation equations.
Such an analysis has been performed and it has been found that all
of these first-order theories predict rapid evolution away from an
arbitrary equilibrium state?:22, In other words, every equilibrium
state in every first-order theory is unstable in the sense that small
spatially bounded departures from equilibrium at one instant in
time grow exponentially with time. The time scales for these
instabilities can be ridiculously short: for example, water at room
temperature and pressure has an instability with a growth time
scale of about 10-34 seconds in these theories. Since these theories
predict nonsensical behavior for phenomena which should be well
within their range of applicability, we feel that these first-order
theories are unacceptable. Section 3 of this paper reviews the
stability analysis of these theories.

" The stability of equilibrium states and the causality of signal
propagation in the second-order Israel-Stewart?® theory have also
been investigated. The major result of this study was that the
conditions necessary for  equilibrium states to be stable in the
second-order theories are equivalent to the conditions needed to
guarantee ‘that perturbations propagate causally and obey a
hyperbolic set of equations. Thus, stability implies causality and
hyperbolicity for perturbative waves. The converse is also true
(although a particular definition of hyperbolicity must be imposed);
any Israel-Stewart fluid with perturbations which propagate
causally and obey a set of hyperbolic equations will possess stable
equilibrium states. Section 4 of this paper reviews the stability and
causality analysis of the second-order theories.

In addition, several new results not contained in Ref. (23) are
discussed in Section 4 and an accompanying appendix. In Section 4



DISSIPATIVE RELATIVISTIC FLUIDS 185

we show that causality and a naive version of hyperbolicity do not
imply stability. In particular, it is not sufficient to simply assume
that the characteristic velocities are all real (a more naive notion
of hyperbolicity) and less than the speed of light; this is
demonstrated by explicitly constructing a counterexample in which
all the characteristic velocities are real and bounded between zero
and one (the speed of light in our units), yet the equilﬁarium states
are unstable. In an appendix we present a new result which widens
the class of equilibrium states of Israel-Stewart fluids for which
stability can be rigorously analyzed. Stability is analyzed via an
energy functional, quadratic in the perturbation variables, which
has a non-positive time derivative. In the appendix, we show that
any perturbation whicéh conserves the overall particle number of
the fluid, and the total momenta associated with any background
Killing vector fields of the spacetime, will grow without bound if
the energy functional for that perturbation is negative on some
spacelike surface. This result eliminates some assumptions about
the properties of the equilibrium states made in Ref. (23).

The combination of the main results, that the first-order’
theories are necessarily unstable, while the second-order theories
can be both stable and causal, strongly suggests to us that the
second-order theories should replace the first-order theories as the
standard theory of relativistic dissipative fluid mechanics. The
first-order theories can probably not be made causal; their
equilibrium states are all unstable; and it appears that the first-
order theories have no well-posed initial value problem. The Israel-
Stewart theory, on the other hand, possesses stable equilibrium
states, and has perturbations which propagate causally according to
hyperbolic equations.

2. THEORIES OF RELATIVISTIC DISSIPATIVE FLUIDS

(a) Constructing the Theories. The fundamental variables of a
relativistic theory of fluids are the stress-energy tensor, T2 and
the particle number current ‘N2, The fundamental equations of
motion are the conservation laws for these quantities:
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(1 v,T° =0,
a

(2) v,N? = 0.

The derivative operators in Eas. (1-2) are four-dimensional
covariant derivatives; no specialization to a fixed background
spacetime is to be assumed. In an equilibrium state these
fundamental tensors can be decomposed in terms of other familiar

fluid variables,
(3) T2 = pu*u® + pg®®,
(4) N® = nu®,

where u? is the four-velocity of the fluid, p is the energy density
(as measured by an observer co-moving with the fluid), p is the
pressure, n is the number density, and ¢®P is the projection tensor

orthogonal to u*
(5) qab - gab + uaub.

For a fluid which is not in an equilibrium state, it is also
customary to introduce a four-velocity vector field »* and a set of
thermodynamic variables p, p, n, $ (entropy per particle), T
(temperature), ¥ (chemical potential), etc. which are used to
supplement the description of the fluid contained in the
fundamental tensors T2 and N® There are, however, 2 variety of
ways of introducing these auxiliary fields. Different theories
adopt different rules for identifying these extra fields.

The four-velocity u?® of a fluid which is not in equilibrium can
be defined in terms of the fundamental tensors of the theory in a
variety of reasonable ways. In the Eckart? theory the four-velocity
is identified with the direction in spacetime in which the particles
of the fluid move, i.., the four-velocity is parallel to the particle

number current:

(6) u* = (— NPN) N2,
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In the Landau-Lifshitz® theory, on the other hand, the four-velocity
is identified with the spacetime direction of energy flow. Thus #?
is taken as the timelike eigenvector of 7P in the Landau-Lifshitz
theory:

@) qabTbcuc = 0.

Other choices are possible. In the Havas-Swenson theorye, and also
in a general class of theories which we have studied?!, the initial
choice of u® is only restricted by demanding that it be a unit
timelike vector field.

A great deal of freedom is also available in introducing the
thermodynamic variables p, p, n, etc. into the description of a fluid
which is not in equilibrium. It is customary to constrain the
thermodynamic variables by the "first law of thermodynamics",

ptp
n

(8) dp = nTds + dn

where dp, ds, and dn are one-forms. It is also customary.to take
over to the nonequilibrium theory the equation of state which
describes the equilibrium states of the fluid. The equation of state
defines the value of one of the thermodynamic variables (often s,
which is not generally considered to be directly observable) as a
function of two other observable thermodynamic variables, e.g., § =
s(p,;n). The given equation of state and the first law of
thermodynamics [Eq. (8)] then reduce the thermodynamic variables
to a space containing only two independent functions. These two
independent thermodynamic variables may be identified with the
fundamental tensors of the nonequilibrium theory in a variety of
ways. The thermodynamic energy density, p, could be defined as
the physical energy density,

€))] p= Tabuaub,

the thermodynamic pressure, p, could be defined as the average
physical pressure, '
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1 b
(10) p=73T"4q,,

~and the thermodynamic particle number density, n, could be
defined as the physical particle number density:

an n=—Nu,

Since the space of thermodynamic variables is only two-dimensional,
one cannot make all of these identifications [Egs. 9)-(11)] for an
arbitrary nonequilibrium state of the fluid. The most common
choice, made in the Eckart and Landau- Lifshitz theories, takes p and
n to be related to the fundamental tensors by Eqgs. (9) and (11). The
thermodynamic pressure, p, is then determined by Eq. (8) and the
"equation of state. It will in general not satisfy Eq. (10). A
nonequilibrium scalar stress, T, may then be defined as the difference
between the average physicél pressure and the thermodynamic
pressure: )

(12) T =1T%, - p. .

This is, however, not the only possible choice. One could take p
and p, or n and p, as being defined by Egs. (9)-(11) and then
introduce a nonequilibrium correction field to modify the third
equation [Eq. (11) or (9) respectively]. The Havas-Swenson theory
allows an.even more general identification of the thermodynamic
variables with the fundamental tensors. In this type of theory one
assumes that a procedure exists to measure two of the
thermodynamic functions (not necessarily n, p, or p), for example
the " temperature and the chemical potential, in an arbitrary
nonequilibrium state of the fluid. Given the values of these two
functions, the rest of the thermodynamic variables (in particular n,
p, and p) are determined by the equation of state and Eq. (8). In
this case additional nonequilibrium correction terms must be added
to each of Eags. (9)-(11). Finally, note that once a set of rules for
identifying the thcrmodynamlc variables with the fundamental
tensors is chosen, the particular values of the thermodynamic
variables for a given nonequilibrium state still depend strongly on
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the choice of four-velocity definition. .

To simplify the presentation in this paper, we will restrict
further consideration to theories of the Eckart type. This implies
that the four-velocity of the fluid be identified with the particle
number current vector as in Eq. (6). It further implies that p and n
be chosen as the fundamental observable thermodynamic variables,
to be identified with the physical energy dcnsityvand particle
number density as in Egs. (9) and (11), even for states which are
not in equilibrium. Readers desiring more details concerning the
Landau-Lifshitz theory, or other more general first-order theories,
such as the Havas-Swenson theory, are referred to Refs. (3), (6),
(21), and (22). The results concerning the stability of equilibrium
states are not qualitatively different for those other theories.

Using the Eckart choice of four-velocity, - u® and
thermodynamic variables p and n, the stress-energy tensor and the
number current vector can be dccomposebd in the following manner
for an arbitrary nonequilibrium state

(13) T = ou®u® + (p + T)g®® + g%uP + ¢®u® + T°,
(14) N* = nu®,

where

(15) Wlq, = wT, = T8 = T — 1% = 0,

The three fields 7, g% and 173P describe the deviations from local

equilibrium in the fluid. The vector field ¢* describes the heat
flow, and T and 12P are nonequilibrium stresses in the fluid.

To complete the construction of the theory, equations to
determine T, g2, and 7*® must be given. The definitions of these
variables will be based on the need to satisfy the second law of
thermodynamics. The total entropy associated with a spacelike
surface E (i.e., at one instant in time) is obtained by integrating the
entropy current vector field over the surface:

(16) o s(n) = j‘z s*dt,
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The second law of thermodynamics requires this total entropy to be
a non-decreasing function of time for isolated systems. If another
spacelike surface £' lies to the future of L, then the second law
requires that

(17) S(£') - S(£) = [ Vs dV 30,

where the two surface integrals implied by Eq. (16) have been
converted into a volume integral by Gauss’ theorem. If the
second law holds in the form of Eq. (17) for all surfaces L' to
the future of L, then it is clear that the following inequality (a
local form of the second law) must also hold:

(18) v.s% 3 0.

The first-order (Eckart) theory of relativistic dissipative fluids
is obtained by modeling the entropy current, s®, by a sum of terms
no higher than first order in the deviations from equilibrium, T, q°,
and 72°. The entropy current must therefore have the form

(19) s® = sn u® + Bg?,

where B is an as yet unconstrained (zeroth-order) thermodynamic
function. A term linear in T multiplying 42 has been omitted as it
inevitably leads to a defining equation for T which is nonlinear.
The divergence of this entropy current can now be evaluated, using
the equations of motion for the fluid [Egs. (1)-(2)] to simplify the
resulting expressions; the following expression results:

20) TV s® = =TV, u® + g*(Tv,B - ubeua) - Tab<Vaub>,.
+ (TB — 1)V ¢

where the brackets < > which appear in Eq. (20) are defined by:

' _ 1 d - d
(21) <Aab> =2 qacqb (Acd + Adc) % qach Acd

for any second rank tensor. The simplest way to guarantee that
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Eq. (20) is consistent with the second law, Eq. (18), is to require
that the deviations from equilibrium be defined as follows:

(22) B=1/T,

(23) T=—{%u%

(24) gt = —nqab(VbT + Tu v u,),
(25) T, =" 2n<9_u, .

With these definitions the divergence of the entropy current takes
on its familiar quadratic form:

2 a ab

T q°q T
26 TV 52 = — + —2 + .
(26) 3 4 «T 2n

which is manifestly non-negative if the three thermodynamic
coefficients §, x, and n are required to be positive. These
coefficients may be identified with the familiar Newtonian
dissipation coefficients by examining the theory in the Newtonian
limit; one finds that { is the bulk viscosity, 7 is the shear viscosity,
and « is the thermal conductivity. The far more general
Havas-Swenson theory results from assuming that all of the non-
equilibrium fields (including non-equilibrium contributions to the
energy and number densities) are allowed to depend on all first
derivatives of the background equilibrium fields which have the
correct tensor rank. This results in eleven additional coefficients
in the theory; the constraints on these coefficients which result
from enforcing the second law of thermodynamics are quite
complicated and are described in the paper of Havas and Swenson®.

Equations (1), (2), and (22)-(25) form a complete set of
equations of motion for the dynamical variables n, p, u® T, g%, and
720 of the first-order Eckart theory constructed here. Gravitational
interactions may be taken into account (if desired) by including the
Einstein equations, ‘

@7 G, =8nT,
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for the spacetime metric, g,, coupled to the stress-energy tensor of
the fluid. -

The second-order Israel-Stewart theory results from adopting
an expression for the entropy current [Eq. (19)] which includes all
possible terms through second order in the deviations from

equilibrium. Specifically,

a l ua

(28) s3 = snu® + %; - E(BOT2 + qubqb + Bszchc) 7
a b
+ o T q—T' + o T% q-;:

The three new thermodynamic coefficicnts B model the deviations
of the physical entropy density from the thermodynamic e¢ntropy
density, sn. The other two new coefficients, o, represent changes
in the entropy current due to possible viscous-heat flux couplings.
The divergence of Eq. (28) may be computed and simplified, in
analogy to the treatment of Eq. (19), to yield

: B
(29) ijasa ) "'TI:Vau°+80uava-r_aovaqa_,yquava E‘:Q-] ¥ ETTV [}Q- a]]

’ 1 1 B
- q° [} VaT+ubeua+Blubqua—aOVaT—ozlvbT: + ETq aVb [—7-} ub]

—(l—“)‘o)TTVa E;Q'] - (1=, 7T, by [T ] + 7,V [ ub]qb]

B
ab [ - 2 .c
-T <Vaub+Bzu VT4V * > TTBb C[T u]

-7.749,% [.T] +73[ c]‘r ha

As in the first-order case, T, ¢, and 72P are defined in the simplest
fashion which will ensure that the second law holds in its
divergence form [Eq. (18)]. The simplest definitions which will
guarantcc the quadratic form [Eq. (26)] of the divergence of the
entropy current are

4 1 B,
(30) T=-¢ [Vaua+Bou“VaT--ocOVaq“—")'qu“Va [;-Q-] + 5 VAR [5;0- ua]],
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1
8 _ - ab| __ c c — — c
(31) ¢* = —xTq [T Vo T+uV u, +B,uV g, —o VY, T—o, V T,

1
+ 5 Tqch E‘L uc} - (1—’7‘0)TTVb [;Q-]

[o 4
- (lﬁl)TTbcvc [Z_.L] + 72V[buc]qc] s

1 B
(32) 7% = -2n<Vaub+BzuchTab—a1Vaqb + 5 TTach []—_2-14"]

- 71Tqavb [%L] + 7av[auc]ch >,

There are two new coefficients present in Egs. (30-32), 7, and 7,,
that appear because of ambiguity in factoring the cross-terms on
the right hand side of Eq. (29) which involve T¢* and Tabq". There
are also two new coefficients, 7, and 75> which couple the heat
flow vector and stress tensor to the vorticity of the fluid. Within
the phenomenological fluid theory, the magnitudes of the 7, are
unknown and could in principle be large compared to unity.
Equations (1), (2), and (30-32) form the complete set of
cquations of motion for the second-order Israel-Stewart theory,
written in the so-called "Eckart frame" in which the four-velocity
is chosen to be parallel to the particle number current. Israel and
Stewart!?-1% have also given the equations of motion for the second-
order theory in a frame with arbitrary four-velocity. Their more
general theory still adopts Egs. (9) and (11) to define p and n; no
one has yet had the tgmerity to construct the analogue of the

"Havas-Swenson theory at second order.

(b) Equilibrium states. Before the propagation of perturbations on
an equilibrium background, or the stability of the equilibrium
states can be studied, the nature of the equilibrium states
themselves must be determined. Equilibrium is defined by the
condition that the entropy of the fluid must not change with time;
this implies that the divergence of the entropy current must be
zero. Since the divergence of the entropy current is the sum of
positive terms [Eq. (26)], each of these terms must vanish in
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equilibrium. Thus, in both the first- and second-order theories, the
heat flow and viscous stresses must vanish in equilibrium:

(33) T=¢*=1"%=0.

The vanishing of these deviations from cqu111br1um applled to the
defining equations for these quantities [Egs. (23-25) for the first-
order theory, Egs. (30-32) for the second- order theory] imply the
following additional conditions on an equilibrium state:

(34) vu® =0,
(35) Vu,>=0,
(36) g*®(9,T + TuVu,) = 0.

Applying the conservation laws [Edgs. (1) and (2)] to a fluid which
satisfies these constraints yields

37 uaVan =0,
(38) uavap =0,
(39) qab[pr + (p + puVu]=0.

Equations (37) and (38) imply that all of the equilibrium
thermodynamic variables (e.g., s, T, p) must be constant along the
fluid flow lines (integral curves of u®), since each of these
variables depends only on p and n through the equation of state.
This result and Egs. (34) - (36) imply that the vector field u®/T is a
Killing vector field, i.c.,

(40) v[%h] . Vb[?] - 0.

The final equation, Eq. (39), combined with these other results, is
equivalent to the requirement that a certain thermodynamic
potential,




DISSIPATIVE RELATIVISTIC FLUIDS 195

p+p

(41) o= —

have vanishing gradient.

Notice that the conditions satisfied by the equilibrium states
are identical in the simple first- and sccond-ordcf theories. The
more general first-order Havas-Swenson theory allows the
possibility of more general "equilibrium" states; e.g., states with
nonzero heat flow or viscous stresses which possess unchanging
entropy.

3. STABILITY OF FIRST-ORDER DISSIPATIVE RELATIVISTIC
FLUIDS

In this section the dynamics of small perturbations about an
equilibrium state of the first-order (Eckart) fluid theory will be
studied. First the set of equations governing linear perturbations
about equilibrium in the Eckart theory are determined. Then the
exponential plane wave solutions to these equations of motion are
examined. At least one transverse and one longitudinal solution
are found to be growing exponentially in time. Finally, physically
acceptable perturbations are expressed as Fourier transforms of the
exponential plane waves. This shows that in the first-order Eckart
theory, equilibrium states are always unstable to physically
reasonable perturbations.

The perturbations about an equilibrium state will be analyzed
in the Eulerian framework in order to avoid the gauge ambiguities
present in the Lagrangian approachl®?4, The difference between
the actual nonequilibrium value of a field Q at a spacetime point
and the value of Q in the fiducial background equilibrium state
will be denoted by 8Q. Any field which does not include the
prefix & (e.g., p, n, u® ..) will henceforth refer to the fiducial
equilibrium state which satisfies the equilibrium conditions
outlined above in Egs. (33) - (41). In order to simplify the analysis,
only perturbations which leave the gravitational field fixed, i.e.,
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5g,, = 0, will be considered. This is appropriate for special
relativistic fluids or for short-wavelength perturbations of any
equilibrium state.

The perturbations 6Q are assumed to be small enough that their
evolution is adequately described by the equations of motion [Egs.
(1), (2), and (23) - (25)] linearized about the fiducial background
equilibrium state. For the purposes of deriving the linearized
equations of motion for the perturbations, no special symmetry of
the background equilibrium state is assumed; in particular, it could
include rapid rotation and/or strong gravitational fields. The
linearized equations of motion are then:

(42) v 8T = 0,
(43) v,6N° = 0,
(44) 8T = — {V, 5u®,
(45 8g® = —kTg*® |V T v § <y
) | 8gt = kT V| o |+ WDy, BN |
(46) 672 = —2n<VP6u® + BuuV P>,

where the linearly perturbed stress-energy tensor and particle
number current are given by

(47) 870 = (p+p)(5uuP+usuP) + Spuu® + (8p+8T)g>°
+ u®6g® + ubsg® + 572,

48) SN® = Bnu® + ndu®

The derivatives which appear in the linearized equations of motion
are covariant derivatives compatible with the background spacetime
metric g,,; indices are also raised and lowered with the background
metric. The linear perturbations satisfy the linearized versions of
the constraints outlined in Eq. (15):

(49)  uPdg, = BT, — {8T,, > = udu, = 0.

It will be sufficient to look for solutions to these equations
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possessing the following properties:

(1) The background spacetime is assumed to be flat Minkowski
space,

(2) The fiducial background equilibrium state is assumed to be
homogeneous, so that all background field variables have vanishing
gradients,

(3) The solutions represent exponential plane waves, i.e., they
have the form

(50) 8Q = 8Q.exp(Tt + ikx),

where 8Q, is constant, ¢ and x are two of the coordinates of the
background Minkowski space. The case where the background
equilibrium state is at rest in this coordinate system, i.c.,

(51) u*v_= g

a t°

will be considered first. After making these simplifying
assumptions, the equations of motion may be put into matrix form,

(52) MAsYB = 0,

where 5YB represents the list of linear perturbation fields, and MAB
is a 14 x 14 complex valued matrix which describes the linearized
equations.of motion, specialized to plane wave solutions with the
restrictions outlined above. The matrix takes on a particularly nice
block-diagonal form when the following 14 fields are chosen as the
perturbation variables (note that the order of the fields in this
equation defines the columns of the matrix MAB);

(53) &YB = (8p, &n, 8u*, 6T, 6%, 6T, 8uY, 8gY, 6T, 6u’, 8g°,
8T%, 8TY%, 6TV — 8T% ),

The matrix MAB then block diagonalizes as follows:
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(54) M=

=NeNole)
OOWO
OWOO
- o OO

where the submatrices Q, R, and I are defined as follows:

I 0 T ink 0 0 0
r 0 i(ptp)k O ik 0
i(8p/3dp) k i(ap/an)pk (p+p)T ik T ik
(55) Q= ,
0 0 ik 1/t O 0
L (ar/8p) k —(8T/8mgk T 0 1/xkT O
T T .
| 0 0 ik 0 0 3/4n |
(p+p)T T ik
(56) R = r 1/xT 0 |,
ik 0 1/n

and I is the 2 x 2 unit matrjx. It is immediately obvious that the
two components of the shear stress, sTYY — BT and &7Y% vanish
identically at linear order.

There exist exponential plane-wave solutions of Eg. (52)
whenever T and k have values which satisfy the dispersion relation,

(57 det M = 0.

The determinant of M is simply the product of the determinants of
its diagonal blocks, and thus the roots of Eq. (57) are simply the
collection of roots obtained by separately setting the determinants
of Q and R equél ‘to zero. The roots obtained by setting the
determinant of Q equal to zero are referred to as longitudinal
modes since the matrix Q involves only scalars and the combonents
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of the perturbation fields which are parallel to the direction of
spatial variation (x). The roots obtained by setting the determinant
of R equal to zero describe the propagation of transverse modes of
the fluid, since the matrix R involves only the components of the
perturbation fields which are orthogonal to the direction of spatial
variation (x) of a perturbation.

The determinant of the matrix R is

(58) —nkT det R = kTT2 - (p + p)T — nk? =
which can be solved for the frequency, T,

(59) I, = —ZI—T— ((p+p) £ [(p+p)? + 4nxTk*Y%),

The frequencies of these transverse modes, given by Eq. (59), are
purely real for real wave numbers k, and hence these modes do not
propagate. An observer at fixed coordinate x would observe only a
monotonically growing or decaying perturbation; there would be no
superimposed oscillation. The existence of a positive real root (r+)
implies the existence of a growing mode, and hence of an instability
in the f_‘luid (unless the thermal conductivity is zero). Since the
frequency r, is positive for all real wave numbers k, the fluid is
unstable to a growing transverse mode at all wavelengths. Note that as
the thermal conductivity approaches zero, the growth timescale
associated with the growing mode also approaches zero; the
dissipative fluid thus becomes more unstable the less dissipative it is.
The dispersion relation for the longitudinal modes, obtained by

setting det Q = 0, is a quartic polynomial in I:
4
(60) F(I) = 3 ngxT det Q

et (ol )] - e
- {(p+p) [Zp] t x [; + —n]kz[ 7] ]k’r

a /ey
w732 (5]
ap dsJp
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In the special case of a spatially homogeneous perturbation (k = 0),
the only nonzero root of Ea. (60) is

p+p
61) = —TT:_
a growing spatially homogeneous perturbation. Note that as the
limit of zero thermal conductivity is taken, xT = 0, the growth
timescale of this mode (1/T) approaches zero, as in the transverse
case. It is therefore clear that there exist growing longitudinal

’

modes for at least some neighborhood in k about k=0.

In the exceptional case where the thermal conductivity is zero,
it is possible to show that the transverse modes are still unstable as
seen by an observer moving with a nonzero constant velocity
relative to the background equilibrium state?!, as long as the shear
viscosity coefficient is not also equal to zero. In the even more
special case when both the thermal conductivity and shear viscosity
are zero (leaving the bulk viscosity as the only source of
dissipation), it is possible to show that at least long wavelength
longitudinal modes will ‘be unstable as seen by an observer moving
relative to the background state. A weaker version of this result,
which assumed the positivity of certain thermodynamic derivatives,
can be found in Ref. (21). _

This analysis has shown that the equilibrium states of the first-
order Eckart theory of dissipative relativistic fluids always possess
linear plane-wave perturbations which grow exponentially in time;
does this necessarily imply that physically reasonable perturbations
will grow exponentially in time also? The answer to this question
clearly depends to some extent on how one defines "physically
reasonable" perturbations. If square-integrable initial data (i.e., in
L? are defined as being physically reasonable, then these
perturbations do grow exponentially in time. Since the initial data
is taken to be in L% it has a well-defined spatial Fourier
transform; if it is a generic perturbation then its spatial Fourier
transform will ‘have non-zero support on the set of growing plane-
wave modes. It is then possible to show that the L? norm of the

perturbation will in fact diverge exponentially in timeZL




DISSIPATIVE RELATIVISTIC FLUIDS 201

Finally, it is important to estimate the growth timescales
associated with these instabilities to determine their relevance to
physics. If, for all imaginable conditions, the growth timescales
were absurdly large (e.g., greater than the age of the universe), then
one could claim that the instabilities were only of academic
interest; in any conceivable application the instabilities would be
undetectable in the dynamics of the fluid. In fact, the growth
timescales for these instabilities are absurdly short for nearly
Newtonian, weakly dissipative systems. For example, the frequency
for the transverse modes described by Eq. (59) is bounded below by

(pc? + p)c’
+ g kT
where the speed of light (¢) has been explicitly inserted into this

(62) ' r

9

equation. The characteristic growth time is given by T = 1‘;1, SO

T
(63) T ¢ —f— .
(pc® + p)c

This timescale 'is ridiculously short for everyday flﬁids; for
example, water at room temperature (¥ 300 K) and pressure (¥ 1
bar) has a growth timescale given by

(64) TS2x 10-34 sec.

4. STABILITY  AND CAUSALITY IN SECOND-ORDER
DISSIPATIVE RELATIVISTIC FLUIDS

In this section the stability of equilibrium states in the second-
order Israecl-Stewart theory of dissipative relativistic fluids is
examined. This analysis reveals that it is possible for all equilibria
in this theory to be stable, provided certain constraints on the
thermodynamic derivatives and second-order coefficients (the <«
and Bi) are satisfied. These stability conditions are shown to imply
that all linear perturbations propagate causally (i.e., subluminally)
and obey a symmetric hyperbolic system of equations. The
converse theorem 1is also shown to be true: if the linear
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perturbations propagate causally and obey a symmetric hyperbolic
(in a particular sense) system of equations, then all equilibria are
stable. The definition of hyperbolicity needed to establish the
converse theorem is rather strict ajhd cannot be replaced by a mor¢
naive definition. A new result .prcscntcd in this section is an
example of a fluid system in which all the characteristic velocities
are real and less than the speed of light, but which violates the
stability conditions, so that no equilibrium state is stable. This
shows that simple, naive ideas about hyperbolicity are insufficient
to establish stability.

(a) Stability. As in the previous section, the perturbations are
. analyzed here within the Eulerian framework, and only linear
departures from equilibrium are considered. The equations of
motion for the perturbations are obtained by linearizing the fluid’s
full set of equations of motion [Egs. (1), (2), and (30)-(32)] about a
fiducial equilibrium background state; the resulting equations of
motion for the linearized perturbations are given by Eq. (42), (43),
and

(65) 8T = —¢ [Va'éua + Byu?V 6T — CAR -V 70784%Y, [0—;0-]],

[}
(66) ©¢* = —ichab [Vb [—Tq + uV_ Buy + Bu°V u, + Blucvc'éqb

e 4
- ooV, 8T — o,V 6T — (177)T8TY, [5_0—]
- (1= )T6T%.9. [ L Y, u 16q°
N1 Tbve + 72 [buc] q-|s
(67) TP = —2n<PPeu® + 8uu°Y u® + B, UV 6T — o, V*8q°

- 71T8qavb[§-}] + 73v[“,u°1 8T 2>,

The approach to analyzing the stability of equilibrium states in the
second-order thcory is rather different than that used in the
previous section. In that case, the equilibrium states were unstable
and the aim was to identify some particular unstable perturbations.

i
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In this case, the aim is to find the necessary and sufficient set of
conditions which will imply the stability of all equilibrium states.
This will be done by constructing an energy functional for the
perturbations, i.e., a monotonically decreasing function of time
which depends quadratically on the perturbation variables. Such a
functional can be constructed for Israel-Stewart fluids in terms of
an energy current vector defined by

1 8T
(68) TE™ = 8T%5u" — (p+p)u6u’du, — o,BT8g" ~ & BT°,8¢" + - 84°

| dp 8p) (dp
oo« (5o )]
+E(p+p) [[ap]s( Py Os Jp0s e( s |
1
+3 [B,(8T)% + B,6¢P8q, + B,5T°6T, Ju®.

The total energy associated with a spacelike surface I (i.e., the
energy at one instant of time) is given by the integral of the
energy current over the surface:

(69) E(t) = j‘z E*dx.

From an argument analogous to that given for the entropy of the
fluid in Section 2, this energy will be a decreasing function of time
(for fluids with compact spatial support) as long as the divergence
of the energy current is negative. The divergence of this energy
current can be computed, and the resulting expression simplified
using the perturbation equations to yield:

8T)2 8¢%6 sT2PST
(70) VE®= —[( ) + 2 Za + ab ]
a Tt kT 2nT

The energy functional is thus a monotonically decreasing function
of time.

The motivation for constructing this energy functional for
Israel-Stewart fluids was to study their stability. Such a functional
is expected to provide a useful indication of stability because of
the following qualitative argument. If the energy functional were
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non-negative for all possible values of the perturbation variables,
then it would suggest that the equilibrium state is stable. The
energy of any perturbation would be bounded above by its initial
value and below by zero in this case. If, on the other hand,
perturbations exist having negative energy, then the energy is
unbounded below and could evolve towards negative infinity,
suggesting the presence of an instability. To establish a rigorous
connection between the sign of the energy functional and stability,
a detailed analysis of the equations of motion for the perturbations
is needed; such an analysis is supplied in the Appendix of Ref.
(23), where we prove the following two propositions:

. PROPOSITION A. The perturbations of an Israel-Stewart fluid will
not grow without bound (as measured by a square integral norm) if the

energy functional is non-negative for all perturbations.

PROPOSITION B. Consider an equilibrium state of an Israel-Stewart
fluid in which the thermod ynamic inequalities,

an 0 < [Z—:;—]s <1,
and ’
02 5.0

are satisfied. If there exist perturbations having negative energy, then
they will grow without bound as they evolve in time.

These two propositions demonstrate that a positive energy
functional is a sufficient condition for the stability of Isracl-
Stewart fluids, and that it is a necessary condition for the stability
of those equilibrium configurations that satisfy Eags. (71) and (72).
It has not yet been proven that a positive energy functional is
strictly necessary for the stability of these fluids; however, another
result which indicates that this is probably the case has been
established. In the appendix the following proposition is proven:

FUTIPR—
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PROPOSITION C. Any solution of the linearized Israel-Stewart fluid
perturbation equations which has vanishing variation in the conserved
particle number, 8N = 0, and vanishing variation of the conserved
momenta, SP(k*) = 0, for each Killing vector field k® of the
background spacetime, will grow without bound if the energy
functional for this solution is negative on some spacelike surface.

Proposition C applies to the stability of any equilibrium
configuration, including those which violate Eqs. (71) and (72). It
is limited, however, to the class of perturbations that leave the
conserved particle number and conserved momenta of the
background equilibrium configuration unchanged. Thus,
Propositions B and C are complementary; they establish that a
positive energy functional is a necessary condition for stability
under different circumstances.

The energy functional defined by Eqs. (68) and (69) is a
complicated function of the perturbation variables. Since the sign
of the energy determines which equilibrium states are stable, it is
desirable to factor the energy into a form which makes the
conditions necessary for it to be positive self-evident.

Let the vector (* be the future-directed unit normal to the
spacelike surface L upon which E is defined. Associated with (®
are several useful tensors. The vector )* is defined to be the
velocity of observers moving along 2 relative to the fluid

(73) = g o/t

It is easy to see that the norm of )® is bounded between zero and
one. The projection tensor associated with 2\ will also be useful:

(74) 7R = g% — VI

The expression for the energy can now be written in terms of
an energy density e, defined by

. b
(75) e —.TEata/u by
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so that the energy is given by

uB
(76) E(E) = j': e —dr,

The total energy E will then be positive for all possible
perturbations if and only if the energy density is also positive for
all perturbations at every point in the fluid. Fortunately, it is
possible to factor the energy density functional into the following
form:

1
(77) e = EE 0,(5Z,)%

where the Q, are the following functions of the thermodynamic
variables:

3p
= -1
(78) Q =(p+p [ap]s,

9p) (Op
= -1j.2= i
(79) 2 =(p+p [as}p[as]e’
ap 1 2 K?
- —y2|£ — |—— — — |\2
(80) Q"'—(p”)[l i [ap]s] [Bo " 38 +ﬂe]x’

2
2B, + (B, + 2x))?
— 222 .
28,8, — ajX

81) 0, =(p+p -
(82) 0 =B,

2 2 2
(83) QG=E-2L—[§Q-+_EL+_1_[_8}_] ]
A o 38, nT?8s)n
CX2

(84) Q, =B, ——1-)2%
128,

(85) 0, =B,

and the 8Z, represent certain linearly independent combinations of
the perturbation functions, given by .
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86 8Z, =86p + (p + )[ap] [xsul[ajlxsa]
+ — — | —
(86) 1 =80+ (p papsau ERA AL

DJs
87 8Z, = 85 + )[67] [as] \_5g°
=865+ (p+ || | s

(87) 2= 85+ 2(p pappapeaq
(88) 8Z5 = 1 su®,

b
(89) 82°, = 7°,6uP,

1 a_% y oa
(90) 8Zg = 8T + — ) 6u® — -1 ) _8¢°,

BO BO

a K a
on 8Z4 = )\, 8g% + o X, Bu?,

6
2B, + a, )2

2 8Z,% = 72 8q° + —2—L 3 g,b
(32) 7 T'p0e 2B,B, — afxz b°¥
1
(93) 875" = 8T%P + — (\®6uP> — L O328gbd,
BZ B2
where

1 2 0
(94) K=_2+3Q+_°‘L_"_[_Z]_
: Mo B, 38, T lons

The conditions necessary for E to be positive are then simply that the
Q, must all be positive. A number of the 2, depend on the choice of
spacelike surface because of their dependence on the parameter 3%
There is enough freedom in the choice of spacelike surface so that 22
can take on any value between zero and one at any point in the star.
The positivity of the Q, must therefore be imposed for all values of 22
in order to assure the positivity of the energy for all perturbations
and all choices of spacelike surface. It is possible to show?3 that the
most restrictive case is when 32 = 1, so that the conditions Q, ((\=1)>
0 imply 9, >0 forall 0 € 32 < 1.

Before proceeding further, it is worthwhile to note several
implications of the stability conditions Q, > 0. The first two
conditions are the usual stability conditions for a relativistic perfect
fluid; the positivity of Q, guarantees that the square of the "adiabatic
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sound speed" will be positive (note that there is no a priori theoretical
reason to believe that any perturbation will propagate at the adiabatic
sound speed in the dissipative fluid theory); the positivity of Q, is just
the relativistic Schwarzchild criterion for stability against con-
vection2®. The three new second-order thermodynamic coefficients,
B, are required to be positive by the conditions on Qg Q. and Qg and
are further bounded from below by B,> (p+ p)™L, By > (p+ P)™, -1 and B,
> §(p + p)! as a result of the positivity of Q. That the B, must be
positive confirms the expectation that the nonequilibrium entropy
density will be smaller in magnitude than the equilibrium value, sn.

(b) Causality and Hyperbolicity. The original motivation for
. constructing the second-order theory of relativistic dissipative
fluids!? was the desire to obtain a theory in which all
perturbations propagated causally. Stewart and Israell®14 have
investigated the extent to which the Israel theory succeeds in this
respect. They derived expressions for the characteristic velocities
for the system of perturbation equations [essentially, Eqgs. (42), (43),
and (65) - (67)]. These expressions are so complicated in form that
it is not possible to determine by inspection whether the velocities
are necessarily less than the speed of light, or whether they are
even all real. In order to proceed, Israel and Stewart then
specialized to the dilute gas limit where relativistic kinetic theory
can be used to obtain explicit expressions for the « and B, In this
limit, they were able to conclude that the characteristic velocities
for this system of equations were less than the speed of light. The
following analysis shows that perturbations propagate causally and
obey a set of hyperbolic equations in a far wider range of
circumstances, namely whenever the equilibrium states are stable.

The system of equations for the perturbations of an
equilibrium state of an Israel second-order fluid, Eqgs. (42), (43),
and (65) - (67), have the following general form:

(95) ' AAg2v YR + BASSYP = 0,

where 8YB represents the list of the fourteen perturbation
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variables, i.e., 6p, &n, su® &T, 6¢% 6T*°>. The index B runs over
these fourteen fields, while the index A runs over the fourteen
equations of motion for the perturbations. The matrices AABa and
BAB are functions of the wunperturbed equilibrium fluid
configuration.

A three dimensional surface is a characteristic surface for
these equations if the initial values of the fields §YB cannot be
freely specified on that surface. The characteristic surfaces
coincide with the level surfaces of a scalar function ¢ which
satisfies the equation (see, e.g., ref. (19), page 170);

(96) det( A 4527 9) = 0.

The characteristic velocities are the slopes of these surfaces. To
solve the characteristic equation [Eq. (96)], a Cartesian coordinate
system is chosen which is at some point in the fluid momentarily
co-moving with the fluid; further, the scalar field ¢ is chosen to
vary spatially only in the (arbitrarily chosen) x! direction. These
conditions may be summarized as follows: 4

(97) g*P3.8, = —(3,)% + ()% + (8,)* + (8,2,
(98) utd_ = 9,

and

(99) ¢ = ¢(x%x1).

These conditions do not restrict the background equilibrium state
in any way; it can be rotating, inhomogeneous, and in a curved

spacetime.

In this coordinate system the characteristic equation takes the
form
(100) ‘ det(v AAL0 — AAT) =,

where the characteristic velocity, v, is defined by
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(101) v = —8,¢/8,¢.

In analogy with the calculation in Section 3, the characteristic
equation matrices may be simplified by choosing the following set
of perturbation variables: '

: 8T
(102) sY® = {Tse, p— T, sul, 8ql, 5T, su?, 842, 6T2L, 8us, 8¢°,
6731, 8722 — 5733 81‘23}.

The characteristic matrix then block diagonalizes:

©(103) y A0 — Al =

© O O L0
© o mm o
ONOO
v © © O

where the submatrices Q, R, and S are defined as follows:

AL o o
Tlee)r Tls0)T "
v (9p dp
- — T — —
T[ae]T ’ [ar]e 0 Hetp) I 0
(104) Q = i
0 0 Byv -1 o 0
-n Hp+tp) 1 v(p+p) y -1
0 -1 o v Blv o
L 0 0 0 -1 o 3By
viptp) v -1
(105) R = v B,y o ,
-1 o 2B,y

and
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282v 0
(106) S=
0 Bzv

(108) det R = v{2B,[B,(p + p) — 1Iv? -1(p + p)ozl2 + 2a, + Bi]},

107) det Q = = y2[dvt + By? + C a"] ap]
( ) et Q= v[v+v+]l:[ae [aTe

(109) det S = 2(B,v)%

The functions 4, B, and C which appear in Eq. (107) are defined
by

(110) A = ByB,[B,(p + p) — 1]
(111) B=—(p+p)D—BlE—2F,
(112) C = (DE — F?)/B8,,

where D, E, and F are given by

(113) p-pg [, 2, ] [aT]]
= +
0 2130 38,  aT? (Bs)nl’
2

14 E = or| |

(114) 8082 [6] +‘30 + 382]’
o4 2« n(d

115 F=B88,|2 —L——[Y]]

(1) o215 "3, Tlon

The characteristic velocities are obtained by setting the
determinants of the submatrices separately to zero and solving for
v. The two characteristic velocities corresponding to the zeros of
det(S) are both zero. The matrix R, which describes transverse
perturbations of the fluid, has one characteristic velocity whichl is
zero, and two non-zero characteristic velocities, given by
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2
(116) ) 2=(p+p)c:z1 + 2a, + B,
T 2BB(p+p) 1]

The longitudinal matrix, Q, has two characteristic velocities which
are zero, and four nonzero characteristic velocities which are the
roots of the quartic polynomial

(117) P(® = Avt + Bv* + C = 0.

One of the pairs of roots of Eq. (117) should correspond in some
sense to the propagation of sound in an Israel-Stewart fluid, and
the other should correspond to the propagation of temperature
fluctuations (second sound). _
' The system of perturbation equations for the Israel-Stewart
fluid is called a symmetric system because the matrices A® are all
symmetric. The system would also be symmetric hyperbolic (see Ref.
(19), p. 593) if some linear combination of the A® is (positive)
definite. Other definitions of hyperbolicity, which impose
conditions on the characteristic velocities (such as reality) fail
when there are multiple characteristics having the same velocity.
Since this is always the case for the Israel-Stewart fluids, the
matrix condition given above is used to determine the hybcrbolicity
of the system.

The following may be shown to be the necessary and sufficient
conditions for the matrix A to be positive definite:

15}
(118) [ég]T > 0,
(119) [g—;%]e> 0,
(120) B. > 0,

1

for i = 1,2,3,

(121) Bp+p) —1>0,
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and

3
(122) [ﬁ]n > 0.

The perturbation equations for an Israel fluid will then form a
symmetric hyperbolic system if Eqgs. (118) - (122) are satisfied. It is
not known whether these are the weakest conditions that imply
that the system is symmetric hyperbolic or not.

The stability conditions, Q, > 0 [Egs. (78) - (85)] and the
conditions for the system of perturbation equations to be symmetric
hyperbolic [Eqs. (118) - (122)] are clearly related to one another.
Both sets of conditions imply that the B, must be positive, for
example. The final portions of this section establish the
relationships that exist between these conditions together with the
conditions that guarantee that the characteristic velocities are
subluminal. '

(c) Stability implies causality and hyperbolicity. One relationship
that exists between the stability and causality conditions is that
perturbations will propagate causally according to a symmetric
hyperbolic system of equations in any Israel-Stewart fluid that
satisfies the stability conditions. The proof of this relationship
follows.

Using the expression for the 2,(3%) [Egs. (78) - (85)], it is easy
to verify that the transverse characteristic velocities [given by Eq.
(116)] are constrained by

a,(1)a.(1)

(123) 1 =y 2 =-4=T—= 50,
0,(0)2,(0)
and
1 + 1 2 1
(124) vyt = [ i [oz1+ ] + ] > 0,
2B, 12,(0)2,(0) p+p p+p

which together guarantee that 0 < v.? < 1.

The longitudinal velocities are slightly more complicated to
handle. The longitudinal velocities will be real only if their
squares are real; their squares can be real only if the discriminant
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of the quartic polynomial in Eq. (117) is nonnegative. The
discriminant can be put into the following form using Egs. (110) -
(115):

1
2 _ R 2
(125) B* —44AC = Bp + 2) {[(p + P)D + B,E + 2B,(p + D)F]

+[By(p + p) = 1ll(p + P)D — B,ET"} > 0.

Thus, the squares of the longitudinal velocities are real if the stability
conditions are satisfied. The longitudinal velocities will then be real
and less than the speed of light if the zeroes of the quartic polynomial
lie between zero and one. The zeroes of the quartic polynomial can be
" located by using a geometrical argument. The coefficient of the
quartic term, 4, is positive if the stability conditions are satisfied;
therefore P(v?) will be positive for large v2. It is possible, after a fair
amount of algebra, to show that the stability conditions [Egs. (78) -
(85)] imply the following conditions on P:

(126) P0)=C> 0,
dP
(127) F(O) =B <0,
v
(128) Pl)=4+B+C>0,
dP
(129) ZVT(I)=2A+B>O.

These four conditions imply that the zeroes of P lie between zero
and one; i.e.,

(130) 0< sz < 1.

The conditions under which the perturbation equations form a
symmetric hyperbolic system [Egs. (118) - (122)] are easily shown to
be consequences of the stability conditions. Thus, we have shown
that the perturbations of a second-order Israel-Stewart fluid
propagate causally according to a symmetric hyperbolic set of
equations if the stability criteria (9, > 0) are satisfied. '
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(d) Causality and hyperbolicity imply stability. A fairly tedious and
complicated argument can also be made to prove the converse
theorem, namely that an Israel-Stewart fluid must be stable if
perturbations propagate causally and the perturbation equations
form a symmetric hyperbolic system [in the sense of Eqgs. (118) -
(122)]. The details of the proof of this theorem are given in Ref.
(23). The discussion here will be confined to an examination of
the necessity of making such a strong assumption about
hyperbolicity in this theorem.

It is interesting that it appears to be necessary to use the
definition of a hyperbolic system given in Eqs. (118) - (122) in
order to prove that causality plus hyperbolicity implies stability.
One might guess that causality plus the weaker (and more familiar)
requirement that the characteristic velocities all be real might be
enough to guarantee stability. A counterexample, however, exists
to that conjecture, in which the charactefistic'vclocitics are all real
and bounded between zero and one, so causality is assured, yet the
stability conditions are not satisfied.

Consider a fluid which has an equation of state such that

(131) 0 < [a_p]s <1

9p
5)
dsle’
These two thermodynamic constraints then imply that (8p/dn), > 0,
(aT/as)p > 0, and (ae/as)p < 0, as can be shown using the

thermodynamic identities derived in Ref. (23), Sec. III(¢c). Now
choose the second order coefficients to have the following values:

and

132 o< (%)

3
(133) Bo=_532=—1/(P+P),

(134) o

o, = ~1/(p + p),

b [ -B Yoo

(135) B,
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It is clear that the stability criteria are not all satisfied with these
choices; in particular, 9, = B0 is negative. Nevertheless, it is easy
to show that the transverse characteristic velocity, defined in Eq.
(116), is given by v Z = 3/4, so that 0 < v;? < 1. With the above
choices for the o, B, and thermodynamic derivative signs, it is also
possible to show that the coefficients 4, B, and C, defined in Egs.
(110) - (113), which determine the longitudinal velocities through
Eq. (117), satisfy the inequalities given in Egs. (125) - (129), so that
the longitudinal velocities also all satisfy 0 < sz < 1.

This then is a specific example demonstrating that it is possible
to have a second order Israel-Stewart fluid whose characteristic
velocities are all real and less than the speed of light, but which
nonetheless contains unstable equilibria. It does seem necessary,
therefore, to make the stronger assumption that the perturbation
equations form a symmetric hyperbolic system in the specific sense
of Eqs. (118) - (122) in order to conclude that causality plus
hyerbolicity implies stability.

APPENDIX

This appendix presents the proof of the following proposition
[see Ref. (26) for an analogous Newtonian result]:

PROPOSITION. Any solution of the linearized Israel fluid
perturbation equations whiéh has vanishing variation in the conserved
particle number, 8N = 0, and vanishing variation of the conserved
momenta, SP(k®) = 0, for each Killing vector field k®* of the
background spacetime, will grow without bound if the energy

functional for this solution is negative on some spacelike sur face.

Proof. Consider an equilibrium solution of the Israel-Stewart fluid
equations on a spacetime manifold M . Assume that M can be
foliated by spacelike surfaces L: M = {t} x L. Define the energy E(f)
associated with the solutions to the linearized perturbation
equations by .

o
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(Al) E() = —I E“tad}: .
E(t)

where E* is the energy current defined in Eq. (68), and ¢® is the
unit normal vector to the surface E(¢). The derivative of this
energy is determined by Eq. (70) to be:
dE 'I [(51)2 89269, . 8T2P8T
dt  ‘EWLLT kT? 2nT

(A2) ](—V‘tht)'l/ 2dE.

First show that the set of perturbations for which dE/dt
vanishes is a subset of the perturbations for which E itself
vanishes. From Eq. (A2) it follows that dE/dt = 0 implies that

(A3) 8T = 6¢% = 8T?P = 0.

Using these conditions, and the linearized perturbation equations
[Eqs. (42) - (43), and (65) - (67)], it is straightforward to show that
any such solution also has

(A4d) v, 86 = 0,
and the vector

(A5) £® = su®/T — 6Tu?/T?

must be a Killing vector field. The energy functional, Eq. (Al),
for this set of perturbations can now be evaluated. Using Eq. (81)
it follows that

(A6) E® = 18T, P + lse[nsu® + snu?),
so that

(A7) E(t) = 3 8P(t®) + 1 so8N
where

(A8) 8N = —Iz(t)[nSua + SnuJt dE



218 WILLIAM A. HISCOCK and LEE LINDBLOM

is the variation in the conserved particle number, and

(A9) 8P(§?) = —J‘E(t)sr*babtad;:

is the variation in the conserved momentum associated with the
Killing vector field &* For those perturbations where the
variations in these conserved quantities vanish, it follows that
E(t) = 0 from Eq. (A7). Thus, perturbations that are constrained by
8N = 8P(t*) = 0, which are clements of the kernel of dE/dt (ie.,
dE/dt = 0) are also elements of the kernel of E (ie., E = 0).

Next consider initial values of the perturbation functions on
some surface EL(f) for which the energy E < 0. This energy is
‘monotonically decreasing from Eq. (A2). Since the functionals E
and dE/dt are continuous (in an appropriate square integrable
norm) functionals of the perturbation solutions, it follows that any
perturbation having initially negative £ must remain outside an
open set containing the kernel of E. Since the kernel of dE/dt is a
subset of the kernel of E, it follows that dE/d: will also be
bounded away from zero as the fluid perturbations evolve. It
follows that E will decrease without bound. Since E can be
diagonalized as in Eq. (88), it follows that one of the perturbation
functions 8Z, associated with a negative eigenvalue, Q, < 0, of the
energy must grow without bound in this case.
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