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This note describes recent work on finding a formulation of the Ein-
stein equations suitable for constructing stable numerical evolutions. The
formulation described here specifies the coordinate degrees of freedom with
a generalized harmonic gauge source function rather than with the usual
lapse and shift. This type of formulation appears to have played a critical
role in the very impressive binary black hole evolutions performed recently
by Pretorius. This note analyzes why this type of formulation is so effective
for numerical work, describes a recent extension of the system that makes it
possible to construct boundary conditions {including constraint-preserving
boundary conditions), and describes numerical tests that demonstrate the
effectiveness of the new equations and boundary conditions.

Two properties have made harmonic or generalized harmonic (GH) co-
ordinates an important tool throughout the history of general relativity
theory. The first property is well known: this method of specifying the
coordinates transforms the principal parts of the Einstein equations into
a manifestly hyperbolic form, in which each component of the metric is
acted on by the standard second-order wave operator. The second prop-
erty is not as widely appreciated: this method of specifying coordinates
fundamentally transforms the constraints of the theory. This new form of
the constraints makes it possible to modify the evolution equations in a
way that prevents small constraint violations from growing during numeri-
cal evolutions—without changing the physical solutions of the system and
without changing the fundamental hyperbolic structure of the equations.
The purpose of this note is to explore these important properties and to
describe how the GH evolution system has been extended in a way that
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makes it very useful for numerical computations.

Coordinates are fixed in the generalized harmonic (GH) method by spec-
ifying a gauge source function Hg, defined as the action of the scalar-wave
operator on the coordinate functions z*:

Ha = 1/)abvcval'b = _wbcrabc = —Fa) (1)

where 1qs is the spacetime metric and T'gp. is the usual Christoffel symbol.
The coordinates are fixed in this approach by requiring that 'y = —H,,
where H, = Hy(z,v) is a prescribed function of the coordinates z% and
the metric ¥g. The choice H; = 0 corresponds to standard harmonic co-
ordinates; the existence of solutions to the inhomogeneous wave equation,
Eq. (1), implies the existence of such coordinates more generally. Choosing
the coordinates in this way has two important consequences. The first is
well known: the vacuum Einstein equations have a simple manifestly hy-
perbolic structure when expressed in GH coordinates. The Ricci curvature
tensor can be written as

1
Rap = —§¢6d6c8d¢ab + V(al-‘b) + ¢Cd¢6f (6e¢ca8f wdb - 1-\ar:el-‘bdf);
(2)

in any coordinate system, where V,I's = 0,y — ¥°Tqslq. In GH coor-
dinates, I, = —Hj, so the only second-derivative term remaining in the
Ricci tensor is ¥°%8,04%as. Therefore, in GH coordinates the vacuum Ein-
stein equations, Rg = 0, form a manifestly hyperbolic system,

804906 = —2V (s H o) + 299 (0e¥eaOs¥ab — Taceloar),  (3)

for any choice of guage source function H,.!

The second consequence of using GH coordinates is less widely appreci-
ated: The constraints of the system are profoundly transformed. The vac-
wum Einstein equations, Eq. (3), can also be written in the more covariant
form

0= Rgp— V(acb): (4)

where C; = Hy+T,;. The condition C; = 0 is the primary constraint of this
system, while the standard Hamiltonian and momentum constraints Mg =
Gabt® (where t* is the unit normal to a Cauchy surface) are determined by
the derivatives of Cq: M, = tb(V(aCb) - %dlachCc). This means that the
primary constraints depend on the first but not the second derivatives of
the metric.
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Adding multiples of the constraints to the Einstein equations is known
to have a significant effect on the growth rates of constraint violating
solutions.? However, adding multiples of the Hamiltonian and momentum
constraints has not been found to be very effective in controlling the growth
of constraint violating solutions. This is because the addition of those con-
straints changes the principal part of the equations, so constraints can be
added only in very restricted ways consistent with the hyperbolic structure
of the equations. In contrast, arbitrary multiples of the gauge constraint C,
can be added to the system, Eq. (4), without effecting the hyperbolic struc-
ture at all. Pretorius,® based on the suggestion of Gundlach, et al.,4 used
a modified evolution system that included the following additional gauge
constraint terms designed to suppress the growth of the constraints:

1
0= Ras — V(aCo) + 70 [t(aCo) — o Vab t°C.|. (5)

The Bianchi identities then imply that C, satisfies the damped wave equa-
tion,

0 = V°V.Ca — 270V [t(sCa)] + €OV (aCo) — %70 1,C°Cs, (6)

which exponentially suppresses all small short-wavelength constraint vi-
olations when the parameter 5o is positive.* This constraint suppress-
ing feature of the modified generalized harmonic system, Eq. (5), con-
tributed significantly to the success of Pretorius’ impressive binary black-
hole evolutions.®

We have recently extended the modified generalized harmonic evolution
system, Eq. (5), to a first-order symmetric-hyperbolic form. (See Ref. ©
for the details.) The vacuum Einstein system expressed in this new GH

first-order form is given by

atwab - (1 + 71)Nkak¢ab = =Nz — 71Niq>iaba (7)
O¢Ilap — Nk@kﬂab + N8, ®iap — 1172 N*Okthab

= 2NY (g ®ica®jap — Meallap — V¥ TaceToar)
1 y
—2NV (o Hy) — 5NtCt‘*Hcdnab — Nt°Ti g7 @jas

+N7o [256(atb) - I,babtc] (He+T¢) — 71'7’2Niq>£ab; (8)
8:®iap — N*0k®igo + NOillas — Nv20itab
1 .
= §Nt°td¢,-cdl"lab + Ng@*t°®;;c®rab ~ Ny2®Piab, (9)

where the dynamical field I, is defined by Eq. (7), and ®;ap is defined
by ®;ap = Sitbes. We use the lapse N, shift N‘, and spatial metric g;; (the
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standard functions of ¥45) to simplify the principal parts of Egs. (N-(9).
The terms on the right sides of Eqgs. (7)—(9) are algebraic functions of the
dynamical fields. The connection terms Lcas appearing on the right side of
Eq. (8) are computed using the standard definition of T 45, with the partial
derivatives of 9,5 determined from the dynamical fields by

at"pab - _Nna.b + Ni(pia.b: (10)
Oivab = Piab. (11) .

The parameter v that appears in these expressions is the one used by
Pretorius in Eq. (5). The parameter 7, was introduced to control the char-
acteristic speed of the field ¥qs. And the parameter y; was introduced to
suppress the growth of the new constraint Crab = Oxtap —Pigp that arises in
this first-order form of the equations. Choosing the parameter 7o > 0 causes
the constraint C, to be exponentially suppressed via Eq. (6). Choosing the
parameter y; = —1 makes the new system linearly degenerate, so shocks
do not form from smooth initial data.” Choosing the parameter y2 > 0 in
this new system causes the constraint Cizb to be exponentially suppressed,®
because the modified Eq. (9) implies an evolution equation for Ciab having
the form 8:Ciap — Nkakc,'ab ~ —~3NCigp-

Boundary conditions for hyperbolic evolution systems are applied to the
characteristic fields of those systems. The characteristic fields for the new
GH evolution system, Egs. (7)-(9), are given by

Ugp = Yab, (12)
U,l,f = g + niQiab — Y2¥ab, (13)
i = Pi*®ras, (14)

where n; is the outgoing unit normal at a point on the boundary, and Pk =
§;% —n;n*. The characteristic fields ugb have coordinate characteristic speed
-1+ '71)nka, the fields uig: have speed —nx N*¥ + N, and the fields u?ab
have speed —ngx N*. Characteristic fields with negative characteristic speeds
propagate into the computational domain, so boundary conditions must
be imposed on each characteristic field that has a negative characteristic
speed. The simplest boundary condition that enforces the physical idea
of no incoming waves sets each incoming characteristic speed to zero at
the boundary. A similar condition, which we often find useful, freezes each
incoming characteristic field to its initial value. We have also derived a set
of rather more complicated constraint preserving and physical boundary
conditions for this system (see Ref. ©).
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Fig. 1. Evolution of Schwarzschild initial data using different values of the constraint
damping parameters yp and y2.

The well-posedness of the initial-boundary value problem can be an-
alyzed using the Fourier-Laplace technique® for the complicated physical
and constraint preserving boundary conditions that we use. We have ana-
lyzed the well-posedness of this system for high-frequency perturbations of
any spacetime in any GH gauge. Applying the Fourier-Laplace technique to
this case yields a necessary (but not sufficient) condition for well-posedness,
the so-called determinant condition;? failure to satisfy this condition would
mean the system admits exponentially growing solutions with arbitrarily
large growth rates. We have verified that this determinant condition is sat-
isfied for the GH system using the combined set of physical and constraint
preserving boundary conditions that we use.

We tested this new evolution system by evolving initial data for a
Schwarzschild black hole. In these evolutions we “freeze” the values of the
incoming characteristic fields on the boundaries. We performed these nu-
merical evolutions using spectral methods as described in Ref. 10 for a
range of numerical resolutions specified by N, (the highest order radial ba-
sis function) and Lz (the highest order spherical harmonic). Figure 1
shows the time dependence of the constraint norm ||C|| for several val-
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Fig. 2. Evolution of Schwarzschild initial data with 49 = 42 = 1 show stability and
convergence for several numerical resolutions. ’

ues of the constraint damping parameters 4o and 72. These tests show that
without constraint damping the extended evolution system is extremely un-
stable. But Figure 2 illustrates that with constraint damping, y0 = 72 = 1,
the evolutions of the Schwarzschild spacetime are completely stable up to
t = 10,000M (and forever, we presume). These tests illustrate that both
the 70 and the v, constraint damping terms are essential.

We also tested our new constraint-preserving boundary conditions by
evolving a black hole perturbed by an incoming gravitational wave (GW)
pulse. We perturb Schwarzschild initial data by injecting a GW pulse
through the outer boundary of the computational domain with time profile
F(t) = Ae~(=t)l/v” and 4 = 1073, ¢, = 60M, and w = 10M. Fig-
ure 3 shows the evolution of ||C|| using constraint-preserving boundary
conditions (dashed curves) and simple freezing boundary conditions (solid
curves). These results illustrate that the new boundary conditions are ef-
fective in preventing the influx of constraint violations. Figure 4 illustrates
the time dependence of the Weyl tensor component |¥4} averaged over the
outer boundary of the computational domain. The dashed curve (using
constraint-preserving boundary conditions) shows black-hole quasi-normal
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Fig. 3. Evolution of perturbed Schwarzschild spacetime. Solid curves use boundary
conditions that freeze all the incoming characteristic fields, while dashed curves use
constraint preserving and physical boundary conditions.

oscillations with the correct complex frequency, while the solid curve (us-
ing freezing boundary conditions) is completely unphysical. These results
show that proper constraint preserving boundary conditions are essential if
accurate gravitational waveforms are needed.
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Fig. 4. Evolution of the Weyl curvature component [¥4] in a perturbed Schwarzschild
spacetime. Solid curves use boundary conditions that freeze all the incoming character-
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