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Abstract

We consider the question, what topologies of space-time are permitted by Einstein’s equations
as models of nonsingular stars. A number of results from the literature on singularity theorems
are drawn together here to give a clear answer to this question. If a star evolves from nearly
Newtonian initial conditions, of low densities and small space-time curvatures, to a nonsingular
final state, then the topology of the space-time representing the star must be R*, We also discuss
some topological constraints on models that are not nearly Newtonian in the past, but may have
evolved directly from the initial cosmic singularity.

I. Imtroduction

Professor Taub’s contributions to the study of relativistic
- fluid mechanics form an important foundation on which any fundamental
study of relativistic stellar structure must be based. We feel it is appropriate,
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therefore, to consider here another basic aspect of the study of relativistic
stars: the topology of the space—time manifold representing a stellar model.

The endproducts of stellar evolution can be divided into two classes:
those that contain space-time singularities and those that do not. If the
cosmic censorship hypothesis [1] is true, the singular endproducts of stellar
evolution are black holes. The final equilibrium black hole solutions to
Einstein’s equations are now completely understood due to the theorems of
Israel [2], Carter [3], Hawking [4], and Robinson [5]. Therefore, it is of
interest to inquire about the properties of the solutions to Einstein’s
equations that represent the nonsingular endpoints of stellar evolution.
While some properties of these solutions are known (see Lindblom [6],
for a review), there is much that is not known with certainty. We shall
consider here one of the most fundamental aspects of this inquiry: What
space-time topologies are possible for nonsingular solutions to Einstein’s.
equations that represent stellar models?

Geometric theories of gravitation, such as general relativity, allow (in
principle) a very large and diverse set of possible space-time topologies.
One can imagine, for example, configurations of matter that have nontrivial
spatial topologies such as those depicted in Fig. 1. One would like to know
whether configurations of this sort are possible models for nonsingular
stars. Is it possible that in regions of high space-time curvature, such as the
" inside of a neutron star, the topology of space—time there might be a “worm-
hole” as in Fig. 1a? What effect would such nontrivial topology have on
the theorems that give an upper limit to the possible mass of a neutron star?
Another nontrivial possibility is illustrated in Fig. 1b, and unlimited other
possibilities exist. We argue here that configurations such as those in Fig. 1
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Fig. 1 Possible spatial topologies for stellar models. (a) represents a stellar model con-

taining a nonsimply connected «wormhole” within it. The shaded line represents the surface
of the star. (b) represents a model having two asymptotic regions connected by a “ wormhole.”
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are not possible general relativistic stellar models having no singularities.
We consider two separate cases. The first case corresponds to stars that
originated from nearly Newtonian configurations that had low densities
and small space-time curvatures. This case corresponds to the usual picture
of the early stages of stellar evolution. For models of this type, we assume
that past regions of the space-time have many of the asymptotic features
of flat Minkowski space. These assumptions are justified for the description
of normal stellar evolution because the effects of the overall curvature of
our universe are quite small on distance-time scales that are still very large
compared to the size-age of any star. However, it is possible that some
primordial condensations of matter could have occurred very early in the
history of our Universe. Perhaps these primordial stars now form the cores
of quasars or even stranger as yet undiscovered objects. The possible
topologies of these primordial stars represent the second case we wish to
consider here.

II. The Topology of Initially Newtonian Stars

The first theorem that placed restrictions on the possible topology of
stars, which began under nearly Newtonian circumstances, was given by
Geroch [7]:

Theorem 1 If the space—time (M, g) is asymptotically simple and empty,
then M is homeomorphic to R*.

This theorem is extremely general and excludes nonstandard topologies
provided the star never becomes extremely compact. But for compact
objects, the assumption of asymptotic simplicity is stronger than is justifiable.
Asymptotic simplicity requires that every null geodesic in the space-time
begin and end at null infinity. This assumption would be violated by any
spherical star of radius less than 3M, because the exterior Schwarzschild
geometry has circular null geodesics at r = 3M. Since it is possible to con-
struct nonsingular models of radius smaller than 3M (see, e.g., Bondi [81), we
would hope to find results that would place restrictions on the topology
of these highly compact objects as well.

Another theorem of Geroch [9] gives some topological information about
a wider class of space-times than the asymptotically simple ones considered
in Theorem 1.

Theorem 2 If a space-time (M, g) admits a Cauchy surface S, then M must
be homeomorphic to R x S.
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In such a space-time, then, a star of initially trivial topology cannot change
its topology even if it later becomes highly compact. However, again the
assumptions on the space-time are stronger than are physically justifiable.
The existence of a Cauchy surface in a space-time not only rules out the
possibility of “naked singularities ” (an acceptable omission for our present
purposes) but also the possibility of other causal peculiarities such as closed
timelike lines. One should not exclude, a priori, the possibility of bizarre
causal behavior in a region of space-time having large curvatures and
possible nontrivial topological structure.

In the case of a star that begins as a highly diffuse cloud of gas and dust
(the usual picture), and which evolvesto a nonsingular endpoint, we can show
that bizarre causal behavior does not occur, ie., that a Cauchy surface
does exist. Early in the evolution of a star of this sort the density of matter is
very low, and the geometry of space-time is nearly that of flat Minkowski
space. For a space-time describing a star that begins in this way, it seems
reasonable to assume that the space-time begins and remains asymptotically
flat throughout the evolution of the star. Also, it seems reasonable to assume
that any bizarre causal behavior occurs only during the late stages of stellar
evolution when the densities and curvatures are high. Thus we assume the
space-time has at least a partial Cauchy surface at sufficiently early times.
The following theorem shows that a nonsingular stellar model that begins
in this way cannot develop bizarre causal behavior as it evolves:

Theorem 3 If a space-time (M, g) satisfies the following conditions:

(a) (M, g) is geodesically complete.

(b) The weak energy condition and Einstein’s equations hold on (M, g).

(c) The generic condition holds on (M, g).

(d) (M, g) is weakly asymptotically simple and empty.

(e) (M, g) is partially asymptotically predictable from a partial Cauchy
surface S.

Then S is a Cauchy surface for (M, g).

The proof of this result is virtually identical to the proof of a closely related
result by Tipler [10], and the interested reader is referred to the proof of
his Theorem 1. (Another related result is given by Tipler [11], Theorem 6.)
Assumptions (a)—(e) in our result are the technical restrictions that reflect
the physical situation described qualitatively above. The precise mathe-
matical meanings of these terms can be found in Hawking and Ellis [12]
and Tipler [10]. For the reader unfamiliar with the language of “global
techniques,” we describe qualitatively the meaning of each assumption:

(a) Geodesic completeness is the condition that the star have no
singularities.
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(b) The weak energy condition requires that the density of matter must
never be negative.

(c) The generic condition is a technical assumption that requires that
every geodesic observer feel some tidal force sometime during its history.
It is expected to be satisfied by physically realistic space-times.

(d) Weak asymptotic simplicity is the requirement that the space-time
behave asymptotically (near null finity) like flat Minkowski space.

(e) The existence of a partial Cauchy surface, from which the space-
time is partially asymptotically predictable, excludes any causal anomalies
from early times in the history of the stars and from the asymptotic region of
the space-time near spacelike infinity.

We can conclude from Theorems 2 and 3 that the space-time of a non-
singular star, which evolves from an initial state of low density, must have
the topology R x S. Moreover, we can determine what topology S must
have. Consider one of the partial Cauchy surfaces S, which occurs very early
in the evolution of the star when the densities are very low. It is reasonable to
assume that the past directed null geodesics leaving this surface all reach
past null infinity, since the space—time to the past of S is nearly the same as
Minkowski space. Such a partial Cauchy surface is said to have an asymp-
totically simple past (see Hawking and Ellis [12], p. 316). By the same
arguments used (by Geroch [7]) to prove Theorem 1, it follows that S must
be homeomorphic to R, and consequently M must be homeomorphic to
R*. Thus we have:

Theorem 4 If a space—time (M, g), having a partial Cauchy surface S with
an asymptotically simple past, satisfies the assumptions of Theorem 3, then
M is homeomorphic to R*.

Consequently, for any nonsingular stellar model in Einstein’s theory that
evolves from low density, nearly Newtonian, initial conditions must have
the trivial topology R*.

III. The Topology of Primordial Stars

We next consider the more difficult case of primordial stars, those (if
any) that were formed immediately after the initial singularity of our
universe, rather than from nearly Newtonian initial conditions. What
assumptions can we make about the asymptotic features of the space-
times describing these objects? The primordial objects, which we have in
mind, are those that look from a distance like the exteriors of ordinary stars
(clusters, or galaxies) but whose interiors might be bizarre, because they
arose from the early stages of our universe rather than from ncarly Newtonian
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conditions. Thus it is reasonable to assume that the asymptotic properties
of the manifold are weakly asymptotically simple and empty, except possibly
for some open neighborhood of past timelike infinity i_. It may be, for .
example, that past null infinity #~ in these models is not complete in the
past. Although there is no strong motivation for placing restrictions on
possible bizarre causal behavior that may have been associated with these
objects from the earliest times, it is reasonable to limit the spatial extent of
any such peculiarities. Since we do not observe causal anomalies in the
laboratory, any such anomalies associated with primordial stars should be
confined spatially to regions of space—time near the interiors of these objects.

While no restrictions on the topologies of primordial stars (which satisfy
only the above assumptions) have yet been found, some progress has been
made under more restrictive conditions.

Theorem 5 If a space-time (M, g) satisfies the assumptions of Theorem 3
and the chronology condition, and admits an asymptotically regular partial
Cauchy surface S, then M is homeomorphic to R x S, S is simply connected,
and the boundary of S is a single two-sphere.

This theorem is proved by combining the results of our Theorem 3 with the
work of Gannon [13,14]. (See also the work of Lee [15,16].) We have
introduced two new assumptions in this theorem. The chronology condition
assumes the nonexistence of closed timelike lines. The condition of asymp-
totic regularity of the surface S is a condition that requires that S be
“asymptotically flat” in an appropriate sense (see Gannon [13,14]). The
use of the asymptotic regularity of S and weak asymptotic simplicity in the
proof of this theorem involve only the properties of the space-time near
spacelike infinity i, and future null infinity #*. Consequently these as-
sumptions are acceptable for our purposes.

Theorem 5 shows that models of primordial stars, which are nonsingular
and devoid of causal anomalies, must be simply connected (thus ruling out
examples like Fig. 1a) and may have only one asymptotic region (thus
ruling out examples like Fig. 1b). If the Poincaré conjecture is true, these
restrictions on the topology of S are sufficient to show that S is homeomorphic
to R3. Even without the Poincaré conjecture, however, the result completely
determines the structure of the topological groups of S. It follows, for
example, that all of the homotopy groups are trivial: m(S) = 1, k = 0 (see
Hempel [17]). Furthermore, one can conclude that the integral singular
homology groups of S must be trivial: H,(S) = 0, k > 1 (use the Hurewicz
isomorphism theorem, see Spanier [18], p. 398). The remaining group H(S)
is isomorphic to the group of integers under addition, Hy(S) = Z. The
integral singular cohomology groups can then be computed using Lefschetz
duality and the singular cohomology (or homology) exact sequence (see
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Hu [19]). The resulting groups are H°(S) = Z and H*S) =0, k # 0.
Thus S has the same homotopy, homology, and cohomology structure as R3,

The weakness of Theorem 5, from the viewpoint of the study of primordial
stars, is the overly restrictive causal assumptions: the chronology condition
and the existence of a partial- Cauchy surface. The theorem does show,
however, that any nontrivial topology in these models must be accompanied
by bizarre causal behavior as well.
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