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ABSTRACT

This paper describes the properties of the Israel-Stewart
theory of dissipative relativistic fluids. The conditions
needed to guarantee the stability, hyperbolicity and
causality of the evolution of fluctuations about an
equilibrium state are described. An unexpected relatiomship
between these conditions is revealed: the stability
conditions are satisfied if and only if the hyperbolicity and
causality conditions hold. The manner in which the
complicated (14 degrees of freedom) dynamics of an Israel-
Stewart fluid reduces in appropriate limits to the familiar
(5 degrees of freedom) dynamics of a relativistic ideal fluid
or a Navier—Stokes—Fourier fluid is described.

I. INTRODUCTION. The original attempts to include the effects of
viscosity and thermal conductivity in a relativistic fluid theory were
made by Eckartl) and Landau and LifshitZZ). These theories are the
simplest Lorentz covariant gemeralizations of the Navier-Stokes-
Fourier theory. Unfortunately, these theories are extremely
pathologicals). They admit no stable equilibrium states; they do not
have hyperbolic evolution equations; and they violate causality“.

In this paper we describe the properties of a more complicated
theory of dissipative relativistic fluids proposed by Israel and

5-8)

Stewart that overcomes many of the problems found in the original

theories.

II. THE ISRAEL-STEWART THEORY, The dynamical variables of an Israel-

Stewart fluid include the familiar variables of an ideal relativistic
fluid: the particle number demsity n, the emnergy demnsity p, the
pressure p, the temperature T, the entropy per particle s, and the
four—velocity u? (with ut"ua = -1). In addition, however, these fluids
also have as dynamical variables the scalar stress T, the heat flux

vector qa (with qaua = 0) and the spatial stress tensor -cab (with 'l:”'b
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: b .
symmetric, traceless and < u, = 0). These variables are related to

the particle number current N? and the stress energy tensor Tab by:

N = n ®, (1)
Tab =p nanb + (p + t)qab + tab + qaub + qbna, (2)
where qab = gab + uaub and gab is the metric temsor which is used to

raise and lower indices. The evolution equations for these fluids

include the conservation laws for these quantities:

VNt = VTP -, (3)

In an ideal fluid (where <t = ¢® = 3 = 0) these conservation laws

together with an equation of state, s = s(p,n), and the first law of
thermodynamics,

dp = nT ds + [(p + p)/n] dn, (4)

would be sufficient to determine the evolution of the fluid. In an
Israel—-Stewart fluid, however, these equations must be supplemented
with evolution equations for the new dynamical variables <, qa, and

tab. Their equations for these quantities are the following:

T = —g[Vaua + BouaVar - aOVaqa - yquaVa(ao/T) + %tTVa(Boua/T)], (5)
a _ _ ab c ¢ c c
q¢ = —«TIq [(VbT)/T + u Vc“b + Blu chb - aOVbr - alvcr bt 72V[buc]q
- (1- - (1~ ¢ 1 c
(17 ) Te¥, (ag/T) = (1-yITe®,V (ay/T) + 3Tq ¥ (B0%/D ], (6)
b bd db 2 ab cd
8 = n(g*q”" + ¢* ¢ - ;qa q° )[chd + BzueVercd -a chd
B} 1 e e
¥ Ta Vy(a,/T) + 3Tc ¥ (B,u/T) + v,V u jv o- )

In these equations ¢, n, and x are the viscosity coefficients and the
thermal conductivity; the a, Bi’ and Y; are mew "second order"
coefficients to be computed from a microscopic theory of the fluid
(e.g., kinetic theory6’7’9)) or determined empirically. This choice of
equations is motivated by the need to enforce the second law of

thermodynamics. If the entropy current, s?, is defined by,
Ts® = a a_1 2 b be a a a b

s snTu® + q z(ﬁor + qu q + ﬁzr tbc)u + a,tq + T pe (8)
then it follows from the evolution equations (3) — (7) that the total

entropy of the fluid will be a non-decreasing function of time, since
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T 5" = w2/ + a%q/(xT) + rabrab/(Zn)- | (9

The equilibrium states (those satisfying \7asa = 0) of a fluid
satisfying these equations are identical to the equilibrium states of
the simpler Eckart and Landau-Lifshitz theories. In particular, the
vector field u®/T must be a Killing vector field, each of the
thermodynamic variables must be constant along the integral curves of
u®, and the thermodynamic variable, 8 = —s + (p + p)/nT, must have

vanishing gradient.

III. STABILITY, CAUSALITY AND HYPERBOLICITY. To determine whether or

not the Israel-Stewart theory suffers from the same problems found in
the Eckart and the Landau-Lifshitz theories, we undertook a systematic
study of the evolution of small perturbations about an arbitrary

10). To investigate the stability of these

equilibrium state
perturbations, an energy functional was constructed. By diagonalizing
this functional, we determined that certain conditionms, ‘DA > 0, are
necessary and sufficient for the stability of these perturbations; the

®, are defined by:

A
@, = (ap/ap) (10) ®, = (3p/3s)_(3p/ds)g, (1)
‘I’s = BO' (12) ‘1’4 = 52, (13)
B = (p + p)(1 - @) - [1/By + 2/(3p,) + */e.1, (14)
@, =p +p- [26, + 2a, + B, 1/ (28,8, - (ap?1, (15)
o, =B, - [lag)2/By + 2(a)?/ (38 + (3T/2s)_/(aTH]1, (16)
where K =1 +ag/B, + 20,/(3B,) — (a/T)(3T/3n) . an

Therefore, by restricting the values of the second order coefficients
o, and ﬁi and by imposing the usual thermodynamic constraints on the
specific heats, etc., implied by eqs. (10) and (11) it is possible to
have stable equilibrium configurations in the Israel-Stewart theory.

We also investigated the conditions under which the equations
governing the evolution of the perturbations are hyperbolic. The
following conditions are sufficient (perhaps not necessary) to assure

that the perturbation equations are a symmetric hyperbolic system:
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" (3n/80)1 > 0, (18) (3p/3T)g > O, (19)
(3p/3T)_ > 0, (20) By > O (21)
B, > 0, (22) B,(p +p) > 1, (23)

For a hyperbolic system of equations, the propagation of
information is controlled by the characteristic velocities of the
differential operator. We computed the characteristic velocities for
the equations governing the perturbations away from an equilibrium
state. Six characteristic velocities are zero, four characteristic

velocities are given by (each occurs twice),
2 2
(vp)* = [(p + p)(a)” + 20, + B,1/(2p,[B,(p + p) - 11}, (24)

and four more are given by the roots of the gquartic equation,

4 2 _
A(vL) + B(vL) +C=0, (25)
where A= BOBZ[Bl(p + p) - 17, (26)
_ 2
B = A(¢7/51 -2) + B0ﬁ2[51¢5 + (B4K - @7) /(ﬁl¢7)], (27)
C==-A-B+Bp,00,. (28)

The perturbations are guaranteed to propagate causally as long as these
characteristic velocities are less than the speed of light (ome in our
units) and the system of equations is symmetric hyperbolic.

A remarkable relationship exists between the conditions for the
stability, causality and hyperbolicity of these perturbation equations.
The stability conditions for these perturbations, eqs. (10) - (16), are
satisfied if and only if both the hyperbolicity conditioms, egqs. (18)-
(23), are satisfied and the characteristic velocities are real and less
than the speed of lightlo). A slightly stronger proposition is false.
The stability conditions are not equivalent to the characteristic

velocities being real and less than the speed of lightll).

IV. THE CLASSICAL FLUID LIMIT. A potential difficulty for the Israel-

Stewart theory is the embarrassing complexity of its dynamical
structure. These fluids have fourteen dynamical fields, while an ideal
relativistic fluid or a non-relativistic Navier—Stokes—Fourier fluid
have only five. If this theory is capable of describing ordinary

laboratory fluids, how do these additional degrees of freedom
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disappear? To understand this question we have analyzed the dispersion
relations for the plane wave perturbation solutions to the Israel-
Stewart theory4). When these dispersion relations are examined in the
wclassical” (i.e., long wavelength compared to the mean free path)
1imit we find that nine of the modes are strongly damped at lowest

order in the wavenumber k:

: 0 =~ i/(gﬁo), (29) 0y 6 =" i/(ZnBZ), (30)

Wy g =~ ilp + p)/{xT[Bl(p + p) - 11}, (31)

The remaining five modes have dispersion relations which are simply -the
relativistic generalizations of the five modes of a Navier—Stokes—

Fourier fluid in this long wavelength limit:

1/2 1. 2[4 2,2 -1
= ik(aplap)s/ -3 ik [5“ +g +x(8p/8p)s(8plas)p/n T](p+p) , (32)

by, = - ixk2(3T/3s) /(nT), (33)
P

“10,11

- iri?
®13 14 =" ink“/(p + p). (34)

Thus the complicated dynamical structure of an Israel-Stewart fluid

% does reduce to the familiar dynamics of ordinary fluid mechanics in the:
4 !

! regime where experimental data are most prevalent.
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