> Lee Lindblom Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

> New Frontiers in Numerical Relativity AEI, Golm – 17 July 2006

GH gauge conditions and constraint damping.

Boundary conditions for the GH system.

Dual-coordinate frame evolution method.

> Lee Lindblom Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

> New Frontiers in Numerical Relativity AEI, Golm – 17 July 2006

• GH gauge conditions and constraint damping.

Boundary conditions for the GH system.

Dual-coordinate frame evolution method.

> Lee Lindblom Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

> New Frontiers in Numerical Relativity AEI, Golm – 17 July 2006

GH gauge conditions and constraint damping.

- Boundary conditions for the GH system.
- Dual-coordinate frame evolution method.

> Lee Lindblom Caltech

Collaborators: Larry Kidder, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

> New Frontiers in Numerical Relativity AEI, Golm – 17 July 2006

- GH gauge conditions and constraint damping.
- Boundary conditions for the GH system.
- Dual-coordinate frame evolution method.

Methods of Specifying Spacetime Coordinates

- The lapse *N* and shift N^i are generally used to specify how coordinates are layed out on a spacetime manifold: $\partial_t = N\vec{t} + N^k \partial_k$.
- An alternate way to specify the coordinates is through the generalized harmonic gauge source function *H*_a:
- Let *H_a* denote the function obtained by the action of the scalar wave operator on the coordinates *x^b*:

$$H_a \equiv \psi_{ab} \nabla^c \nabla_c \mathbf{x}^b = -\Gamma_a,$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$.

• Specifying coordinates by the *generalized harmonic* (GH) method can be accomplished by choosing a gauge-source function $H_a(x, \psi)$, and requiring that $H_a(x, \psi) = -\Gamma_a$.

Methods of Specifying Spacetime Coordinates

- The lapse *N* and shift N^i are generally used to specify how coordinates are layed out on a spacetime manifold: $\partial_t = N\vec{t} + N^k \partial_k$.
- An alternate way to specify the coordinates is through the generalized harmonic gauge source function H_a:
- Let H_a denote the function obtained by the action of the scalar wave operator on the coordinates x^b:

$$H_{a} \equiv \psi_{ab} \nabla^{c} \nabla_{c} \mathbf{x}^{b} = -\Gamma_{a},$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$.

• Specifying coordinates by the *generalized harmonic* (GH) method can be accomplished by choosing a gauge-source function $H_a(x, \psi)$, and requiring that $H_a(x, \psi) = -\Gamma_a$.

Methods of Specifying Spacetime Coordinates

- The lapse *N* and shift N^i are generally used to specify how coordinates are layed out on a spacetime manifold: $\partial_t = N\vec{t} + N^k \partial_k$.
- An alternate way to specify the coordinates is through the generalized harmonic gauge source function *H*_a:
- Let H_a denote the function obtained by the action of the scalar wave operator on the coordinates x^b:

$$H_{a} \equiv \psi_{ab} \nabla^{c} \nabla_{c} \mathbf{x}^{b} = -\Gamma_{a},$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$.

 Specifying coordinates by the generalized harmonic (GH) method can be accomplished by choosing a gauge-source function H_a(x, ψ), and requiring that H_a(x, ψ) = −Γ_a.

Important Properties of the GH Method

• The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc}\Gamma_{abc}$. The vacuum Einstein equation, $R_{ab} = 0$, has the same principal part as the scalar wave equation when $H_a(x, \psi) = -\Gamma_a$ is imposed.

• Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $C_a = 0$, where

$$\mathcal{C}_a = H_a + \Gamma_a,$$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $M_a = 0$, are determined by the derivatives of the gauge constraint C_a :

$$\mathcal{M}_{a} \equiv \mathbf{G}_{ab} t^{b} = t^{b} \Big(\nabla_{(a} \mathcal{C}_{b)} - \frac{1}{2} \psi_{ab} \nabla^{c} \mathcal{C}_{c} \Big).$$

Important Properties of the GH Method

• The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc}\Gamma_{abc}$. The vacuum Einstein equation, $R_{ab} = 0$, has the same principal part as the scalar wave equation when $H_a(x, \psi) = -\Gamma_a$ is imposed.

• Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $C_a = 0$, where

 $C_a = H_a + \Gamma_a,$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $M_a = 0$, are determined by the derivatives of the gauge constraint C_a :

$$\mathcal{M}_{a} \equiv \mathbf{G}_{ab} t^{b} = t^{b} \Big(\nabla_{(a} \mathcal{C}_{b)} - \frac{1}{2} \psi_{ab} \nabla^{c} \mathcal{C}_{c} \Big).$$

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[t_{(a}C_{b)} - \frac{1}{2} \psi_{ab} t^c C_c \right],$$

where t^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

• Evolution of the constraints C_a follow from the Bianchi identities:

$$0 = \nabla^c \nabla_c \mathcal{C}_a - 2\gamma_0 \nabla^c [t_{(c} \mathcal{C}_{a)}] + \mathcal{C}^c \nabla_{(c} \mathcal{C}_{a)} - \frac{1}{2} \gamma_0 t_a \mathcal{C}^c \mathcal{C}_c.$$

This is a damped wave equation for C_a , that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_0 > 0$).

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[t_{(a}C_{b)} - \frac{1}{2} \psi_{ab} t^c C_c \right],$$

where t^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

• Evolution of the constraints C_a follow from the Bianchi identities:

$$0 = \nabla^{c} \nabla_{c} \mathcal{C}_{a} - 2\gamma_{0} \nabla^{c} [t_{c} \mathcal{C}_{a}] + \mathcal{C}^{c} \nabla_{(c} \mathcal{C}_{a}) - \frac{1}{2} \gamma_{0} t_{a} \mathcal{C}^{c} \mathcal{C}_{c}.$$

This is a damped wave equation for C_a , that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_0 > 0$).

First Order Generalized Harmonic Evolution System

 Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order form for the generalized-harmonic evolution system:

$$\begin{array}{rcl} \partial_t \psi_{ab} - N^k \partial_k \psi_{ab} &=& -N \Pi_{ab}, \\ \partial_t \Pi_{ab} - N^k \partial_k \Pi_{ab} + N g^{ki} \partial_k \Phi_{iab} &\simeq& 0, \\ \partial_t \Phi_{iab} - N^k \partial_k \Phi_{iab} + N \partial_i \Pi_{ab} &\simeq& 0, \end{array}$$

where $\Phi_{kab} = \partial_k \psi_{ab}$.

• This system has two immediate problems:

- This system has new constraints, $C_{kab} = \partial_k \psi_{ab} \Phi_{kab}$, that tend to grow exponentially during numerical evolutions.
- This system is not linearly degenerate, so it is possible (likely) that shocks will develop (e.g. the shift evolution equation is of the form $\partial_t N^i N^k \partial_k N^i \simeq 0$).

First Order Generalized Harmonic Evolution System

 Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order form for the generalized-harmonic evolution system:

$$\begin{array}{rcl} \partial_t \psi_{ab} - N^k \partial_k \psi_{ab} &=& -N \Pi_{ab}, \\ \partial_t \Pi_{ab} - N^k \partial_k \Pi_{ab} + N g^{ki} \partial_k \Phi_{iab} &\simeq& 0, \\ \partial_t \Phi_{iab} - N^k \partial_k \Phi_{iab} + N \partial_i \Pi_{ab} &\simeq& 0, \end{array}$$

where $\Phi_{kab} = \partial_k \psi_{ab}$.

- This system has two immediate problems:
 - This system has new constraints, $C_{kab} = \partial_k \psi_{ab} \Phi_{kab}$, that tend to grow exponentially during numerical evolutions.
 - This system is not linearly degenerate, so it is possible (likely) that shocks will develop (e.g. the shift evolution equation is of the form ∂_tNⁱ − N^k∂_kNⁱ ≃ 0).

A 'New' Generalized Harmonic Evolution System

 We can correct these problems by adding additional multiples of the constraints to the evolution system:

 $\partial_t \psi_{ab} - (1 + \gamma_1) N^k \partial_k \psi_{ab} = -N \Pi_{ab} - \gamma_1 N^k \Phi_{kab},$ $\partial_t \Pi_{ab} - N^k \partial_k \Pi_{ab} + N g^{ki} \partial_k \Phi_{iab} - \gamma_1 \gamma_2 N^k \partial_k \psi_{ab} \simeq -\gamma_1 \gamma_2 N^k \Phi_{kab},$ $\partial_t \Phi_{iab} - N^k \partial_k \Phi_{iab} + N \partial_i \Pi_{ab} - \gamma_2 N \partial_i \psi_{ab} \simeq -\gamma_2 N \Phi_{iab}.$

- This 'new' generalized-harmonic evolution system has several nice properties:
 - This system is linearly degenerate for $\gamma_1 = -1$ (and so shocks should not form from smooth initial data).
 - The Φ_{iab} evolution equation can be written in the form, $\partial_t C_{iab} - N^k \partial_k C_{iab} \simeq -\gamma_2 N C_{iab}$, so the new constraints are damped when $\gamma_2 > 0$.
 - This system is symmetric hyperbolic for all values of γ_1 and γ_2 .

A 'New' Generalized Harmonic Evolution System

 We can correct these problems by adding additional multiples of the constraints to the evolution system:

 $\partial_t \psi_{ab} - (1 + \gamma_1) N^k \partial_k \psi_{ab} = -N \Pi_{ab} - \gamma_1 N^k \Phi_{kab},$ $\partial_t \Pi_{ab} - N^k \partial_k \Pi_{ab} + N g^{ki} \partial_k \Phi_{iab} - \gamma_1 \gamma_2 N^k \partial_k \psi_{ab} \simeq -\gamma_1 \gamma_2 N^k \Phi_{kab},$ $\partial_t \Phi_{iab} - N^k \partial_k \Phi_{iab} + N \partial_i \Pi_{ab} - \gamma_2 N \partial_i \psi_{ab} \simeq -\gamma_2 N \Phi_{iab}.$

- This 'new' generalized-harmonic evolution system has several nice properties:
 - This system is linearly degenerate for $\gamma_1 = -1$ (and so shocks should not form from smooth initial data).
 - The Φ_{iab} evolution equation can be written in the form, $\partial_t C_{iab} - N^k \partial_k C_{iab} \simeq -\gamma_2 N C_{iab}$, so the new constraints are damped when $\gamma_2 > 0$.
 - This system is symmetric hyperbolic for all values of $\gamma_{\rm 1}$ and $\gamma_{\rm 2}.$

Constraint Evolution for the New GH System

• The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{F}_{a} \approx t^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} C_{l]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

$$\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B$$

• This constraint evolution system is symmetric hyperbolic with principal part:

 $\partial_t C_a \simeq 0,$ $\partial_t \mathcal{F}_a - N^k \partial_k \mathcal{F}_a - N g^{ij} \partial_i C_{ja} \simeq 0,$ $\partial_t C_{ia} - N^k \partial_k C_{ia} - N \partial_i \mathcal{F}_a \simeq 0,$ $\partial_t C_{iab} - (1 + \gamma_1) N^k \partial_k C_{iab} \simeq 0,$ $\partial_t C_{ijab} - N^k \partial_k C_{ijab} \simeq 0.$

• An analysis of this system shows that all of the constraints are damped in the WKB limit when $\gamma_0 > 0$ and $\gamma_2 > 0$. So, this system has constraint suppression properties that are similar to those of the Pretorius (and Gundlach, et al.) system.

Lee Lindblom (Caltech)

Constraint Evolution for the New GH System

• The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{F}_{a} \approx t^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} C_{l]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

$$\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B$$

 This constraint evolution system is symmetric hyperbolic with principal part:

 $\begin{array}{rcl} \partial_t \mathcal{C}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{F}_a - N^k \partial_k \mathcal{F}_a - N g^{ij} \partial_i \mathcal{C}_{ja} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ia} - N^k \partial_k \mathcal{C}_{ia} - N \partial_i \mathcal{F}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{iab} - (1 + \gamma_1) N^k \partial_k \mathcal{C}_{iab} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ijab} - N^k \partial_k \mathcal{C}_{ijab} &\simeq & \mathbf{0}. \end{array}$

• An analysis of this system shows that all of the constraints are damped in the WKB limit when $\gamma_0 > 0$ and $\gamma_2 > 0$. So, this system has constraint suppression properties that are similar to those of the Pretorius (and Gundlach, et al.) system.

Constraint Evolution for the New GH System

• The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{F}_{a} \approx t^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} C_{l]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

$$\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B.$$

 This constraint evolution system is symmetric hyperbolic with principal part:

 $\begin{array}{rcl} \partial_t \mathcal{C}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{F}_a - N^k \partial_k \mathcal{F}_a - N g^{ij} \partial_i \mathcal{C}_{ja} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ia} - N^k \partial_k \mathcal{C}_{ia} - N \partial_i \mathcal{F}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{iab} - (1 + \gamma_1) N^k \partial_k \mathcal{C}_{iab} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ijab} - N^k \partial_k \mathcal{C}_{ijab} &\simeq & \mathbf{0}. \end{array}$

 An analysis of this system shows that all of the constraints are damped in the WKB limit when γ₀ > 0 and γ₂ > 0. So, this system has constraint suppression properties that are similar to those of the Pretorius (and Gundlach, et al.) system.

Lee Lindblom (Caltech)

Numerical Tests of the New GH System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of our GH evolution system.
- These evolutions are stable and convergent when $\gamma_0 = \gamma_2 = 1$.

• The boundary conditions used for this simple test problem freeze the incoming characteristic fields to their initial values.

- Boundary conditions are imposed on first-order hyperbolic evolutions systems, ∂_tu^α + A^{kα}_β(u)∂_ku^β = F^α(u) in the following way (where in our case u^α = {ψ_{ab}, Π_{ab}, Φ_{kab}}):
- Find the eigenvectors of the characteristic matrix $n_k A^{k\alpha}{}_{\beta}$ at each boundary point:

$$\mathbf{e}^{\hat{\alpha}}{}_{\alpha} \mathbf{n}_{k} \mathbf{A}^{k \alpha}{}_{\beta} = \mathbf{V}_{(\hat{\alpha})} \mathbf{e}^{\hat{\alpha}}{}_{\beta},$$

where n_k is the outward directed unit normal.

For hyperbolic evolution systems the eigenvectors e^â_α are complete: det e^â_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}}=\mathbf{e}^{\hat{lpha}}{}_{lpha}u^{lpha}.$$

- Boundary conditions are imposed on first-order hyperbolic evolutions systems, ∂_tu^α + A^{kα}_β(u)∂_ku^β = F^α(u) in the following way (where in our case u^α = {ψ_{ab}, Π_{ab}, Φ_{kab}}):
- Find the eigenvectors of the characteristic matrix n_kA^{kα}_β at each boundary point:

$$\mathbf{e}^{\hat{\alpha}}{}_{\alpha} \mathbf{n}_{k} \mathbf{A}^{k \alpha}{}_{\beta} = \mathbf{v}_{(\hat{\alpha})} \mathbf{e}^{\hat{\alpha}}{}_{\beta},$$

where n_k is the outward directed unit normal.

For hyperbolic evolution systems the eigenvectors e^α_α are complete: det e^α_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}}=\mathbf{e}^{\hat{lpha}}{}_{lpha}u^{lpha}.$$

- Boundary conditions are imposed on first-order hyperbolic evolutions systems, $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u)$ in the following way (where in our case $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$):
- Find the eigenvectors of the characteristic matrix n_kA^{kα}_β at each boundary point:

$$\mathbf{e}^{\hat{\alpha}}{}_{\alpha} \mathbf{n}_{k} \mathbf{A}^{k \alpha}{}_{\beta} = \mathbf{V}_{(\hat{\alpha})} \mathbf{e}^{\hat{\alpha}}{}_{\beta},$$

where n_k is the outward directed unit normal.

For hyperbolic evolution systems the eigenvectors e^â_α are complete: det e^â_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}}=\mathbf{e}^{\hat{lpha}}{}_{\alpha}u^{lpha}.$$

- Boundary conditions are imposed on first-order hyperbolic evolutions systems, $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u)$ in the following way (where in our case $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$):
- Find the eigenvectors of the characteristic matrix n_kA^{kα}_β at each boundary point:

$$\mathbf{e}^{\hat{\alpha}}{}_{\alpha} \mathbf{n}_{k} \mathbf{A}^{k \alpha}{}_{\beta} = \mathbf{V}_{(\hat{\alpha})} \mathbf{e}^{\hat{\alpha}}{}_{\beta},$$

where n_k is the outward directed unit normal.

For hyperbolic evolution systems the eigenvectors e^â_α are complete: det e^â_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}} = {\mathbf{e}}^{\hat{lpha}}{}_{\alpha} u^{\alpha}.$$

Evolutions of a Perturbed Schwarzschild Black Hole

- A black-hole spacetime is perturbed by an incoming gravitational wave that excites quasi-normal oscillations.
- Use boundary conditions that *Freeze* the remaining incoming characteristic fields.
- The resulting outgoing waves interact with the boundary of the computational domain and produce constraint violations.

Lapse Movie Constraint Movie

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

Numerical Tests of Constraint Preserving BC

 Evolve the perturbed black-hole spacetime using the resulting constraint preserving boundary conditions for the generalized harmonic evolution systems.

- Evolutions using these new constraint-preserving boundary conditions are still stable and convergent.
- The Weyl curvature component Ψ_4 shows clear quasi-normal mode oscillations in the outgoing gravitational wave flux when constraint-preserving boundary conditions are used.

Lee Lindblom (Caltech)

Numerical Tests of Constraint Preserving BC

 Evolve the perturbed black-hole spacetime using the resulting constraint preserving boundary conditions for the generalized harmonic evolution systems.

• Evolutions using these new constraint-preserving boundary conditions are still stable and convergent.

 The Weyl curvature component Ψ₄ shows clear quasi-normal mode oscillations in the outgoing gravitational wave flux when constraint-preserving boundary conditions are used.

Numerical Tests of Constraint Preserving BC

 Evolve the perturbed black-hole spacetime using the resulting constraint preserving boundary conditions for the generalized harmonic evolution systems.

- Evolutions using these new constraint-preserving boundary conditions are still stable and convergent.
- The Weyl curvature component Ψ₄ shows clear quasi-normal mode oscillations in the outgoing gravitational wave flux when constraint-preserving boundary conditions are used.

Lee Lindblom (Caltech)

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, x^ā = {t̄, xⁱ}, to define field components, u^ā = {ψ_{āb}, Π_{āb}, Φ_{iāb}}, and the same coordinates to determine these components by solving Einstein's equation: u^ā = u^ā(x^ā).
- Dual-coordinate frame method uses a second set of coordinates, x^a = {t, xⁱ} = x^a(x^ā), to determine the original representation of the dynamical fields, u^ā = u^ā(x^a), by solving the transformed Einstein equation:

$$\partial_t u^{\bar{\alpha}} + \left[\frac{\partial x^i}{\partial \bar{t}} \delta^{\bar{\alpha}}{}_{\bar{\beta}} + \frac{\partial x^i}{\partial x^{\bar{k}}} A^{\bar{k}\bar{\alpha}}{}_{\bar{\beta}} \right] \partial_i u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, x^ā = {ī, xⁱ}, to define field components, u^ā = {ψ_{āb}, Π_{āb}, Φ_{īāb}}, and the same coordinates to determine these components by solving Einstein's equation: u^ā = u^ā(x^ā).
- Dual-coordinate frame method uses a second set of coordinates, x^a = {t, xⁱ} = x^a(x^ā), to determine the original representation of the dynamical fields, u^ā = u^ā(x^a), by solving the transformed Einstein equation:

$$\partial_t u^{\bar{\alpha}} + \left[\frac{\partial x^i}{\partial \bar{t}} \delta^{\bar{\alpha}}{}_{\bar{\beta}} + \frac{\partial x^i}{\partial x^{\bar{k}}} A^{\bar{k}\bar{\alpha}}{}_{\bar{\beta}} \right] \partial_i u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Testing Dual-Coordinate-Frame Evolutions

• Single-frame evolutions of Schwarzschild in rotating coordinates are unstable, while dual-frame evolutions are stable:

• Dual-frame evolution shown here uses a comoving frame with $\Omega = 0.2/M$ on a domain with outer radius r = 1000M.

Lee Lindblom (Caltech)