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Methods of Specifying Spacetime Coordinates

The lapse N and shift N i are generally used to specify how
coordinates are layed out on a spacetime manifold:
∂t = N~t + Nk∂k .

An alternate way to specify the coordinates is through the
generalized harmonic gauge source function Ha:

Let Ha denote the function obtained by the action of the scalar
wave operator on the coordinates xb:

Ha ≡ ψab∇c∇cxb = −Γa,

where ψab is the 4-metric, and Γa = ψbcΓabc .

Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(x , ψ), and requiring that Ha(x , ψ) = −Γa.
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Important Properties of the GH Method
The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Rab = −1
2
ψcd∂c∂dψab +∇(aΓb) + Fab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc . The vacuum
Einstein equation, Rab = 0, has the same principal part as the
scalar wave equation when Ha(x , ψ) = −Γa is imposed.
Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by the derivatives of the gauge constraint Ca:

Ma ≡ Gabtb = tb
(
∇(aCb) −

1
2
ψab∇cCc

)
.
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Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
t(aCb) −

1
2
ψab tc Cc

]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c
[
t(cCa)

]
+ Cc∇(cCa)−

1
2
γ0 taCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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First Order Generalized Harmonic Evolution System

Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order
form for the generalized-harmonic evolution system:

∂tψab − Nk∂kψab = −N Πab,

∂tΠab − Nk∂kΠab + Ngki∂kΦiab ' 0,
∂tΦiab − Nk∂kΦiab + N∂iΠab ' 0,

where Φkab = ∂kψab.

This system has two immediate problems:

This system has new constraints, Ckab = ∂kψab − Φkab, that tend
to grow exponentially during numerical evolutions.

This system is not linearly degenerate, so it is possible (likely) that
shocks will develop (e.g. the shift evolution equation is of the form
∂tN i − Nk∂kN i ' 0).
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A ‘New’ Generalized Harmonic Evolution System

We can correct these problems by adding additional multiples of
the constraints to the evolution system:

∂tψab − (1 + γ1)Nk∂kψab = −NΠab−γ1NkΦkab,

∂tΠab − Nk∂kΠab + Ngki∂kΦiab−γ1γ2Nk∂kψab ' −γ1γ2NkΦkab,

∂tΦiab − Nk∂kΦiab + N∂iΠab−γ2N∂iψab ' −γ2NΦiab.

This ‘new’ generalized-harmonic evolution system has several
nice properties:

This system is linearly degenerate for γ1 = −1 (and so shocks
should not form from smooth initial data).

The Φiab evolution equation can be written in the form,
∂tCiab − Nk∂kCiab ' −γ2NCiab, so the new constraints are
damped when γ2 > 0.

This system is symmetric hyperbolic for all values of γ1 and γ2.
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Constraint Evolution for the New GH System
The evolution of the constraints,
cA = {Ca, Ckab,Fa ≈ tc∂cCa, Cka ≈ ∂kCa, Cklab = ∂[kCl]ab} are
determined by the evolution of the fields uα = {ψab,Πab,Φkab}:

∂tcA + Ak A
B(u)∂kcB = F A

B(u, ∂u) cB.
This constraint evolution system is symmetric hyperbolic with
principal part:

∂tCa ' 0,
∂tFa − Nk∂kFa − Ng ij∂iCja ' 0,

∂tCia − Nk∂kCia − N∂iFa ' 0,
∂tCiab − (1 + γ1)Nk∂kCiab ' 0,

∂tCijab − Nk∂kCijab ' 0.
An analysis of this system shows that all of the constraints are
damped in the WKB limit when γ0 > 0 and γ2 > 0. So, this
system has constraint suppression properties that are similar to
those of the Pretorius (and Gundlach, et al.) system.
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Numerical Tests of the New GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.

These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Boundary Condition Basics

Boundary conditions are imposed on first-order hyperbolic
evolutions systems, ∂tuα + Ak α

β(u)∂kuβ = F α(u) in the
following way (where in our case uα = {ψab,Πab,Φkab}):
Find the eigenvectors of the characteristic matrix nkAk α

β at each
boundary point:

eα̂
α nkAk α

β = v(α̂)eα̂
β,

where nk is the outward directed unit normal.
For hyperbolic evolution systems the eigenvectors eα̂

α are
complete: det eα̂

α 6= 0. So we define the characteristic fields:

uα̂ = eα̂
αuα.

A boundary condition must be imposed on every incoming
characteristic field (i.e. every field with v(α̂) < 0), and must not be
imposed on any outgoing field (i.e. any field with v(α̂) > 0).
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Evolutions of a Perturbed Schwarzschild Black Hole

A black-hole spacetime is
perturbed by an incoming
gravitational wave that excites
quasi-normal oscillations.

Use boundary conditions that
Freeze the remaining
incoming characteristic fields.

The resulting outgoing waves
interact with the boundary of
the computational domain and
produce constraint violations.

Lapse Movie Constraint Movie
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Constraint Preserving Boundary Conditions

Construct the characteristic fields, ĉÂ = eÂ
AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
ĉ = {ĉ−, ĉ+}.

The incoming characteristic fields mush vanish on the boundaries,
ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
derivatives). We find that ĉ− for the GH system can be expressed:

ĉ− = d⊥û− + F̂ (u,d‖u).

Set boundary conditions on the fields û− by requiring

d⊥û− = −F̂ (u,d‖u).
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d⊥û− = −F̂ (u,d‖u).

Lee Lindblom (Caltech) Generalized Harmonic System AEI 2006 11 / 14



Numerical Tests of Constraint Preserving BC
Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems.
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Evolutions using these new constraint-preserving boundary
conditions are still stable and convergent.
The Weyl curvature component Ψ4 shows clear quasi-normal
mode oscillations in the outgoing gravitational wave flux when
constraint-preserving boundary conditions are used.
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Dual-Coordinate-Frame Evolution Method

Single-coordinate frame method uses the one set of coordinates,
x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
and the same coordinates to determine these components by
solving Einstein’s equation: uᾱ = uᾱ(x ā).

Dual-coordinate frame method uses a second set of coordinates,
xa = {t , x i} = xa(x ā), to determine the original representation of
the dynamical fields, uᾱ = uᾱ(xa), by solving the transformed
Einstein equation:

∂tuᾱ +

[
∂x i

∂ t̄
δᾱ

β̄ +
∂x i

∂x k̄
Ak̄ ᾱ

β̄

]
∂iuβ̄ = F ᾱ.
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Testing Dual-Coordinate-Frame Evolutions
Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:

Single Frame Evolution Dual Frame Evolution

Dual-frame evolution shown here uses a comoving frame with
Ω = 0.2/M on a domain with outer radius r = 1000M.
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