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Methods of Specifying Spacetime Coordinates
We often decompose the 4-metric into its 3+1 parts:
ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The lapse N and shift N i specify how coordinates are laid out on
a spacetime manifold: ~n = ∂τ = (∂t − Nk∂k)/N .

An alternate way to specify the coordinates is through the gauge
source function Ha:

Let Ha denote the function obtained by the action of the covariant
scalar wave operator on the coordinates xa:

Ha ≡ ∇c∇cxa = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(x , ψ) = ψabHb, and requiring that
Ha(x , ψ) = −Γa = −ψabψ

cdΓb
cd .
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Important Properties of the GH Method
The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Rab = −1
2
ψcd∂c∂dψab +∇(aΓb) + Fab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc . The vacuum
Einstein equation, Rab = 0, has the same principal part as the
scalar wave equation when Ha(x , ψ) = −Γa is imposed.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by the derivatives of the gauge constraint Ca:

Ma ≡
[
Rab −

1
2
ψabR

]
nb =

[
∇(aCb) −

1
2
ψab∇cCc

]
nb.
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Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
n(aCb) −

1
2
ψab nc Cc

]
,

where na is a unit timelike vector field. Since Ca = Ha + Γa

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c
[
n(cCa)

]
+ Cc∇(cCa)−

1
2
γ0 naCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).

Lee Lindblom (Caltech) Generalized Harmonic BBH Evolutions AMS New Orleans – 1/7/2006 4 / 14



Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
n(aCb) −

1
2
ψab nc Cc

]
,

where na is a unit timelike vector field. Since Ca = Ha + Γa

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c
[
n(cCa)

]
+ Cc∇(cCa)−

1
2
γ0 naCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).

Lee Lindblom (Caltech) Generalized Harmonic BBH Evolutions AMS New Orleans – 1/7/2006 4 / 14



First Order Generalized Harmonic Evolution System

Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order
form for the generalized-harmonic evolution system:

Φkab = ∂kψab,

∂tψab − Nk∂kψab = −N Πab,

∂tΠab − Nk∂kΠab + Ngki∂kΦiab ' 0,
∂tΦiab − Nk∂kΦiab + N∂iΠab ' 0.

This system has two immediate problems:

This system has new constraints, Ckab = ∂kψab − Φkab, that tend
to grow exponentially during numerical evolutions.

This system is not linearly degenerate, so it is possible (likely) that
shocks will develop (e.g. the shift evolution equation is of the form
∂tN i − Nk∂kN i ' 0).
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Improved First-Order GH Evolution System

We can correct these problems by adding additional multiples of
the constraints to the evolution system:

∂tψab − (1 + γ1)Nk∂kψab = −NΠab−γ1NkΦkab,

∂tΠab − Nk∂kΠab + Ngki∂kΦiab−γ1γ2Nk∂kψab ' −γ1γ2NkΦkab,

∂tΦiab − Nk∂kΦiab + N∂iΠab−γ2N∂iψab ' −γ2NΦiab.

This improved GH evolution system has several nice properties:

This system is linearly degenerate for γ1 = −1 (and so shocks
should not form from smooth initial data).

The Φiab evolution equation can be written in the form,
∂tCiab − Nk∂kCiab ' −γ2NCiab, so the new constraints are
damped when γ2 > 0.

This system is symmetric hyperbolic for all values of γ1 and γ2.
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Numerical Tests of the First-Order GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.

These evolutions are stable and convergent when γ0 = γ2 = 1.

0 100 20010
-10

10
-8

10
-6

10
-4

10
-2

t/M

|| C ||

γ0 = γ2 = 1.0

γ0 = 1.0,
γ2 = 0.0

γ0 = 0.0, γ2 = 1.0

γ0 = γ2 = 0.0

0 5000 1000010
-10

10
-8

10
-6

10
-4

10
-2

t/M

|| C ||
{N

r
, L

max
} = {9, 7}

{11, 7}

{13, 7}

The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Boundary Conditions
Boundary conditions are straightforward to formulate for first-order
hyperbolic evolutions systems,

∂tuα + Ak α
β(u)∂kuβ = F α(u).

For the GH system uα = {ψab,Πab,Φkab}.

Find the eigenvectors of the characteristic matrix skAk α
β at each

boundary point:
eα̂

α skAk α
β = v(α̂)eα̂

β,

where sk is the outward directed unit normal to the boundary.

For hyperbolic evolution systems the eigenvectors eα̂
α are

complete: det eα̂
α 6= 0. So we define the characteristic fields:

uα̂ = eα̂
αuα.

A boundary condition must be imposed on each incoming
characteristic field (i.e. every field with v(α̂) < 0), and must not be
imposed on any outgoing field (i.e. any field with v(α̂) > 0).
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Evolutions of a Perturbed Schwarzschild Black Hole

A black-hole spacetime is
perturbed by an incoming
gravitational wave that excites
quasi-normal oscillations.

Use boundary conditions that
Freeze the remaining
incoming characteristic fields.

The resulting outgoing waves
interact with the boundary of
the computational domain and
produce constraint violations.
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Constraint Evolution for the First-Order GH System
The evolution of the constraints,
cA = {Ca, Ckab,Ma ≈ nc∂cCa, Cka ≈ ∂kCa, Cklab = ∂[kΦl]ab} are
determined by the evolution of the fields uα = {ψab,Πab,Φkab}:

∂tcA + Ak A
B(u)∂kcB = F A

B(u, ∂u) cB.

This constraint evolution system is symmetric hyperbolic with
principal part:

∂tCa ' 0,
∂tMa − Nk∂kMa − Ng ij∂iCja ' 0,

∂tCia − Nk∂kCia − N∂iMa ' 0,
∂tCiab − (1 + γ1)Nk∂kCiab ' 0,

∂tCijab − Nk∂kCijab ' 0.
An analysis of this system shows that all of the constraints are
damped in the WKB limit when γ0 > 0 and γ2 > 0. So, this
system has constraint suppression properties that are similar to
those of the Pretorius (and Gundlach, et al.) system.
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Constraint Preserving Boundary Conditions

Construct the characteristic fields, ĉÂ = eÂ
AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
ĉ = {ĉ−, ĉ+}.

The incoming characteristic fields mush vanish on the boundaries,
ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
derivatives). We find that ĉ− for the GH system can be expressed:

ĉ− = d⊥û− + F̂ (u,d‖u).

Set boundary conditions on the fields û− by requiring

d⊥û− = −F̂ (u,d‖u).
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ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
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More Boundary Condition Issues
Constraints can not provide BCs for all incoming fields.
Physical gravitational-wave degrees-of-freedom must have BCs
determined by the physics of the situation:

Isolated systems (no incoming gravitational waves) are modeled by
imposing a BC that sets the time-dependent part of the incoming
components of the Weyl tensor to zero: ∂tΨ0 = 0.
This condition is translated into a BC by expressing Ψ0 in terms of
the incoming characteristic fields: Ψ0 = d⊥û− + F̂ (u,d‖u).

Initial-boundary problem for first-order GH evolution system is
well-posed for algebraic boundary conditions on ûα.
Constraint preserving and physical boundary conditions involve
derivatives of ûα, and standard well-posedness proofs fail.
Oliver Rinne (2006) used Fourier-Laplace analysis to show that
these BC satisfy the Kreiss (1970) condition which is necessary
for well-posedness (but not sufficient for this type of BC).
Help Wanted! New analysis methods are needed to prove (or
disprove) complete well-posedness for this type of BC.
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Constraint preserving and physical boundary conditions involve
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Numerical Tests of Boundary Conditions
Compare the solution obtained on a “small” computational domain
with a reference solution obtained on a “large” domain where the
boundary is not in causal contact with the comparison region.

Solution Differences Constraints

Solutions using “Freezing” BC (dashed curves) have differences
and constraints that do not converge to zero.
Solutions using constraint preserving and physical BC (solid
curves) have much smaller differences and constraints that
converge to zero.

Lee Lindblom (Caltech) Generalized Harmonic BBH Evolutions AMS New Orleans – 1/7/2006 13 / 14



Summary
Generalized Harmonic method produces manifestly hyperbolic
representations of the Einstein equations for any choice of
coordinates.

Constraint damping makes the modified GH equations stable for
numerical simulations.

Constraint preserving boundary conditions have been
implemented and tested for the GH system.

Binary black hole simulations have been successfully performed
using GH methods by several groups using very different
numerical methods.
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