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Gravitational Wave Data Analysis
Gravitational wave signals are very weak.
Current generation of detectors are fairly noisy (compared to the
expected strengths of the signals.)
Weakest detectable signal has signal-to-noise ratio ρ ≈ 8.
Figures illustrate a ρ = 8 signal from a binary black hole merger,
compared to Initial LIGO noise.
High quality gravitational waveforms are needed to allow these
signals to be “seen” at all.
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Basic GW Data Analysis:
Data analysis identifies and then measures the properties of
signals in GW data by matching to model waveforms.

Think of a waveform h(t) as a vector, ~h, whose components are
the amplitudes of the waveform at each time, or equivalently at
each frequency:

h(f ) =

∫ ∞
−∞

h(t)e−2πi f tdt ≡ Ah(f )eiΦh(f )
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Basic GW Data Analysis II:

Let ~he = he(f ) denote the exact waveform for some source, and
let ~hm = hm(f ) denote a model of this waveform.

Define a waveform inner product that weights frequency
components in proportion to the detector’s sensitivity:

~he · ~hm = 〈he|hm〉 =

∫ ∞
−∞

h ∗e (f )hm(f ) + he(f )h ∗m(f )

Sn(f )
df ,

where Sn(f ) is the power spectral density of the detector noise.
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This inner product is normalized
so that ρ =

√
〈he|he〉 is the

optimal signal-to-noise ratio for
detecting the waveform ~he.
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Basic GW Data Analysis III:
Search for signals by projecting data onto model waveforms: ρm is
the signal-to-noise ratio for ~he projected onto ~hm:

ρm ≡ ~he · ĥm = 〈he|ĥm〉 =
〈he|hm〉√
〈hm|hm〉

.

normalized so that 〈ĥm|ĥm〉 = 1.

h
m

h e

A detection is made when ~he has a projected signal-to-noise ratio
ρm that exceeds a predetermined threshold.
Measured signal-to-noise ratio, ρm, is largest when the model
waveform ~hm is proportional to the exact ~he;
in this case ρm equals the optimal signal-to-noise ratio ρ:

ρm =
〈he|he〉√
〈he|he〉

=
√
〈he|he〉 = ρ =

√∫ ∞
−∞

2|he(f )|2
Sn(f )

df .
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Accuracy Standards for Detection

The measured signal-to-noise ratio ρm for detecting the signal he
is the projection of he onto ĥm:

ρm = 〈he|ĥm〉 =
〈he|hm〉
〈hm|hm〉1/2 .

Errors in model waveform, hm = he + δh, result in reduction
of ρm compared to the optimal signal-to-noise ratio ρ:

ρm = ρ (1− ε).

Evaluate this mismatch ε in terms of the waveform error:

ε =
〈δh⊥|δh⊥〉
2〈hm|hm〉

, where δh⊥ = δh − ĥm〈ĥm|δh〉.
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ρm = 〈he|ĥm〉 =
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Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/11/14–MSC Tsinghua U 6 / 22



Accuracy Standards for Detection II

If the maximum range for detecting a signal using an exact model
waveform is R, then the effective range for detections using an
inexact model waveform will be R(1− ε).

The rate of detections is proportional to the volume of space
where sources can be seen. So when model waveform errors
exist, the rate of detections is reduced by the amount:

R3 − R3(1− ε)3

R3 = 1− (1− ε)3 ≈ 3ε

The loss of detections can be limited to an acceptable level, by
limiting the mismatch ε to an acceptable range: ε < εmax.

Consequently model waveform accuracy must satisfy the
requirement for detection: 〈δh⊥|δh⊥〉 < 2εmaxρ

2.
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Accuracy Standards for Measurement
How close must two waveforms, he(f ) and hm(f ), be to each
other so that observations are unable to distinguish them?
Consider the one-parameter family of waveforms:

h(λ, f ) = he(f ) + λ[hm(f )− he(f )] = he(f ) + λδh(f )

The variance for measuring the parameter λ is given by

1
σ2
λ

=

〈
∂h
∂λ

∣∣∣∣∂h
∂λ

〉
= 〈δh|δh〉.

If the parameter distance between the two waveforms, (∆λ)2, is
smaller than the variance σ2

λ for measuring that parameter,
then the waveforms are indistinguishable.
So hm is indistinguishable from he if 1 = ∆λ2 < σ2

λ = 1/〈δh|δh〉,
i.e., if 1 > 〈δh|δh〉.
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Accuracy Requirements for Advanced LIGO
It is useful to define amplitude δχm and phase δΦm errors:
δhm = hee δχm+iδΦm − he ≈ he(δχm + iδΦm).

The basic accuracy requirements can be written as√
δχ2

m + δΦ2
m =

√
〈δh|δh〉
〈h|h〉

<

{
ηc/ρmax measurement,√

2εmax detection,

where the signal-weighted average errors are defined as

δχ2
m =

∫ ∞
−∞
δχ2

m
2|h |2

ρ2Sn
df , and δΦ2

m =

∫ ∞
−∞

δΦ2
m

2|h |2

ρ2Sn
df ,

and 0 < ηc ≤ 1 depends on the instrument calibration error.
For Advanced LIGO, ρmax could be as large as ρmax ≈ 100, and
calibration accuracy will (optimally) be comparable to model
waveform accuracy, making ηc ≈ 1/2, so√

δχ2
m + δΦ2

m <
ηc

ρmax
≈ 0.005 for measurement.
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Detection Accuracy Requirements for LIGO
Accuracy requirement for detection depends on the parameter
εmax, the maximum allowed mismatch between an exact waveform
and its model counterpart.
The maximum mismatch is chosen to assure searches miss only
a small fraction of real signals. The common choice εmax = 0.035
limits the loss rate to about 10%.

Real searches are more complicated:
comparing signals with a discrete
template bank of model waveforms.
For Initial LIGO, template banks are constructed with εMM = 0.03,
so εFF = εEFF − εMM = 0.035− 0.03 = 0.005.
To ensure this condition, εmax must be chosen so that
εmax ≤ 0.005.
Accuracy requirement for BBH waveforms for detection in LIGO:√

δχ2
m + δΦ2

m .
√

2εmax = 0.1 for detection.
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Overview

Spacetimes describing interesting souces of gravitational waves.
Binary black hole problem.
Gravitational waveform accuracy requirements for GW astronomy.
How and why to solve PDEs with spectral methods.
Einstein’s equations: hyperbolicity, constraints, gauge conditions,
boundary conditions.
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Numerical Solution of Evolution Equations
∂tu = Q(u, ∂xu, x , t).

Choose a grid of spatial points, xn.

x
n−1

x
n

x
n+1

Evaluate the function u on this grid: un(t) = u(xn, t).

Approximate the spatial derivatives at the grid points
∂xu(xn) =

∑
k Dn kuk .

Evaluate Q at the grid points xn in terms of the uk : Q̄(uk , xn, t).

Solve the coupled system of ordinary differential equations,

dun(t)

dt
= Q̄[uk (t), xn, t ],

using standard numerical methods (e.g. Runge-Kutta).
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Basic Numerical Methods
Different numerical methods use different ways of choosing the
grid points xn, and different expressions for the spatial derivatives

∂xu(xn) =
∑

k Dn kuk .

Most numerical groups use finite difference methods:
Uniformly spaced grids: xn − xn−1 = ∆x = constant.
Use Taylor expansions to obtain approximate expressions for the
derivatives, e.g.,

∂xu(xn) =
un+1 − un−1

2∆x
+O(∆x2).

Grid spacing decreases as the number of grid points N increases,
∆x ∼ 1/N . Errors in finite difference methods scale as N−p.
Most groups now use finite difference codes with p = 6 or p = 8.
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Basic Numerical Methods II

A few groups (Caltech/Cornell, Meudon) use spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1

k=0 ũk (t)eikx .
Choose grid points xn to allow efficient (and exact) inversion of the
series: ũk (t) =

∑N−1
n=0 wn u(xn, t)e−ikxn .

Obtain derivative formulas by differentiating the series:
∂xu(xn, t) =

∑N−1
k=0 ũk (t)∂xeikxn =

∑N−1
m=0 Dn m u(xm, t).

Errors in spectral methods are dominated by the size of ũN .
Estimate the errors (e.g. for Fourier series of smooth functions):

ũN =
1

2π

∫ π

−π
u(x)e−iNxdx ≤ 1

Np max
∣∣∣∣dpu(x)

dxp

∣∣∣∣ .
Errors in spectral methods decrease faster than any power Np.
This means that a given level of accuracy can be achieved using
many fewer grid points with spectral methods.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/11/14–MSC Tsinghua U 14 / 22



Basic Numerical Methods II

A few groups (Caltech/Cornell, Meudon) use spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1
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Comparing Different Numerical Methods

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
(x

,t)

0 π/2 π 3π/2 2π

N=200

t=0.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
(x

,t)
0 π/2 π 3π/2 2π

N=200

t=100.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
(x

,t)

0 π/2 π 3π/2 2π

N=200

t=200.0

Wave propagation with second-order finite difference method:

Wave propagation with spectral method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).
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Overview

Spacetimes describing interesting souces of gravitational waves.
Binary black hole problem.
Gravitational waveform accuracy requirements for GW astronomy.
How and why to solve PDEs with spectral methods.
Einstein’s equations: hyperbolicity, constraints, gauge conditions,
boundary conditions.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/11/14–MSC Tsinghua U 16 / 22



General Relativity Theory
Einstein’s theory of gravitation, general relativity theory, is a
geometrical theory in which gravitational effects are described as
geometrical structures on spacetime.
The fundamental “gravitational” field is the spacetime metric ψab, a
symmetric (ψab = ψba) non-degenerate (ψabvb = 0 ⇒ va = 0)
tensor field.
The tensor ψab is the inverse metric, i.e. ψacψcb = δa

b.
The metric and inverse metric are used to define the dual
transformations between vector and co-vector fields, e.g.
va = ψabvb and wa = ψabwb.
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General Relativity Theory II
The spacetime metric ψab is determined by Einstein’s equation:

Rab − 1
2 Rψab = 8πTab,

where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.

For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.
For spacetimes containing matter (like neutron-star binary
systems) a suitable matter model must be used, e.g. the perfect
fluid approximation Tab = (ε+ p)uaub + pψab.
The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,
where Γc

ab = 1
2ψ

cd (∂aψdb + ∂bψda − ∂dψab).
Einstein’s equations are second-order pde’s that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.
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General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine a unique solution to these equations?
The important fundamental ideas needed to understand these
questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler system in which these same
fundamental issues play analogous roles.
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Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equation can not be solved
without specifying suitable gauge conditions.

The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates be made. Gauge conditions are used to impose the
desired choice.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.
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Gauge Conditions in General Relativity
Specifying coordinates by the generalized harmonic (GH) method
is accomplished by choosing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Recall that the spacetime Ricci tensor is given by

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ).

The Generalized Harmonic Einstein equation is obtained by
replacing Γa = ψabΓb with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
the scalar wave equation:

0 = ∇a∇aΦ = ψab∂a∂bΦ + Q(∂Φ).
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