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Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equation can not be solved
without specifying suitable gauge conditions.

The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates be made. Gauge conditions are used to impose the
desired choice.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.
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Gauge Conditions in General Relativity
Specifying coordinates by the generalized harmonic (GH) method
is accomplished by choosing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Recall that the spacetime Ricci tensor is given by

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ).

The Generalized Harmonic Einstein equation is obtained by
replacing Γa = ψabΓb with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
the scalar wave equation:

0 = ∇a∇aψ = ψab∂a∂bψ + Q(∂ψ).
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ADM 3+1 Approach to Fixing Coordinates

Coordinates must be chosen to label points in spacetime before
the Einstein equations can be solved. For some purposes it is
convenient to split the spacetime coordinates xa into separate
time and space components: xa = {t , x i}.

Construct spacetime foliation
by spacelike slices.

Choose time function with
t = const. on these slices.

Choose spatial coordinates,
xk , on each slice.

~t = ∂τ
∂t

∂k(t , xk )

(t + δt , xk )

Decompose the 4-metric ψab into its 3+1 parts:

ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The unit vector ta normal to the t =constant slices depends only
on the lapse N and shift N i : ~t = ∂τ = ∂xa

∂τ
∂a = 1

N∂t − Nk

N ∂k .
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ADM Approach to the Einstein Evolution System
Decompose the Einstein equations Rab = 0 using the ADM 3+1
coordinate splitting. The resulting system includes evolution
equations for the spatial metric gij and extrinsic curvature Kij :

∂tgij − Nk∂kgij = −2NKij + gjk∂iNk + gik∂jNk ,

∂tKij − Nk∂kKij = NR(3)
ij + Kjk∂iNk + Kik∂jNk

−∇i∇jN − 2NKikK k
j + NK k

kKij .
The resulting system also includes constraints:

0 = R(3) − KijK ij + (K k
k )2,

0 = ∇kKki −∇iK k
k .

System includes no evolution equations for lapse N or shift N i .
These quanties can be specified freely to fix the gauge.
Resolving the issues of hyperbolicity (i.e. well posedness of the
initial value problem) and constraint stability are much more
complicated in this approach. The most successful version is the
BSSN evolution system used by many (most) codes.
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Dynamical GH Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.

The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black hole mergers.
This failure seems to occur because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – also works well during the long inspiral phase,
but fails when the black holes begin to merge.
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Dynamical GH Gauge Conditions II
Some of the extraneous gauge dynamics could be removed by
adding a damping term to the harmonic gauge condition:

∇a∇axb = Hb = µta∂axb = µtb = −µNψtb.

This works well for the spatial coordinates x i , driving them toward
solutions of the spatial Laplace equation on the timescale 1/µ.

For the time coordinate t , this damped wave condition drives t to a
time independent constant, which is not a good coordinate.

A better choice sets taHa = −µ log
√

g/N2. The gauge condition
in this case becomes

ta∂a log
√

g/N2 = −µ log
√

g/N2 + N−1∂kNk

This coordinate condition keeps g/N2 close to unity, even during
binary black hole mergers (where it became of order 100 using
simpler gauge conditions).
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The Constraint Problem

Fixing the gauge in an appropriate way makes the Einstein
equations hyperbolic, so the initial value problem becomes
well-posed mathematically.
In a well-posed representation, the constraints, C = 0, remain
satisfied for all time if they are satisfied initially.

There is no guarantee, however, that constraints that are “small”
initially will remain “small”.
Constraint violating instabilities were one of the major problems
that made progress on solving the binary black hole problem so
slow.
Special representations of the Einstein equations are needed that
control the growth of any constraint violations.
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Constraint Damping in Electromagnetism
Electromagnetism is described by the hyperbolic evolution
equation ∇a∇aAb = ∇bH . Are there any constraints?
Where have the usual ~∇ · ~E = ~∇ · ~B = 0 constraints gone?

Gauge condition becomes a constraint: 0 = C ≡ ∇bAb − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a (∇bAb − H) = ∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes effect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Constraints in the GH Evolution System
The GH evolution system has the form,

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa plays the role of a constraint. Without
constraint damping, these equations are very unstable to
constraint violating instabilities.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by derivatives of the gauge constraint Ca:

Ma ≡
[
Rab − 1

2ψabR
]
tb =

[
∇(aCb) − 1

2ψab∇cCc

]
tb.
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Constraint Damping Generalized Harmonic System

Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c[t(cCa)
]

+ Cc∇(cCa)− 1
2γ0 taCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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Summary of the GH Einstein System

Choose coordinates by fixing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = ∇c∇cxa = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Gauge condition Ha = −Γa is a constraint: Ca = Ha + Γa = 0.

Principal part of evolution system becomes manifestly hyperbolic:

Rab −∇(a Cb) = − 1
2ψ

cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

Add constraint damping terms for stability:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.
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Numerical Tests of the GH Evolution System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = 1.

The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial analytical values.
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What Do We Mean By Hyperbolic?

We have argued that Einstein’s equation is “manifestly hyperbolic”
because its principal part is the same as the scalar wave equation.
Exactly what does this mean? Does this make sense?

From a pragmatic physicist’s point of view, hyperbolic means
anything that acts like the wave equation, i.e. any system of
equations having a well posed initial-boundary value problem.
Symmetric hyperbolic systems are one class of equations for
which suitable well-posedness theorems exist, and which are
general enough to include Einstein’s equations together with most
of the other dynamical field equations used by physicists.
Evolution equations of the form,

∂tuα + Ak α
β(u, x , t)∂kuβ = Fα(u, x , t),

for a collection of dynamical fields uα, are called symmetric
hyperbolic if there exists a positive definite Sαβ having the
property that SαγAk γ

β ≡ Ak
αβ = Ak

βα.
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Example: Scalar Wave Equation

Consider the scalar wave equation in flat space, expressed in
terms of arbitrary spatial coordinates:

0 = −∂2
t ψ +∇k∇kψ = −∂2

t ψ + gk`(∂k∂`ψ − Γn
k`∂nψ).

Define the first-order dynamical fields, uα = {ψ,Π,Φk}, which
satisfy the following evolution equations:

∂tψ = −Π, ∂t Π +∇k Φk = 0, ∂t Φk +∇k Π = 0.
The principal part of this system, ∂tuα + Ak α

β∂kuβ ' 0, is given:

∂t


ψ
Π

Φx
Φy
Φz

+


0 0 0 0 0
0 0 gxx gxy gxz

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂x


ψ
Π

Φx
Φy
Φz

+ ... ' 0
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Example: Scalar Wave Equation II
The symmetrizer for the first-order scalar field system is:

dS2 = Sαβduαduβ = Λ2dψ2 + dΠ2 + gmndΦmdΦn.

Check the symmetrization of the characteristic matrices:

SαγAx γ
β =


Λ2 0 0 0 0
0 1 0 0 0
0 0 gxx gxy gxz

0 0 gyx gyy gyz

0 0 gzx gzy gzz




0 0 0 0 0
0 0 gxx gxy gxz

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0



=


0 0 0 0 0
0 0 gxx gxy gxz

0 gxx 0 0 0
0 gyx 0 0 0
0 gzx 0 0 0

 = Ax
αβ
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