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Characteristic Fields for the Einstein System
The characteristic fields uα̂ = eα̂βuβ for the generalized harmonic
version of the Einstein evolution equations look very much like
their scalar field counterparts: uα̂ = {u0̂

ab,u
1̂±
ab ,u

2̂
iab}, given by

u0̂
ab = ψab,

u1̂±
ab = Πab ± nk Φkab−γ2ψab,

u2̂
iab = (δk

i − nkni)Φkab,

The coordinate characteristic speeds associated with these fields
also have the same forms as those for the scalar field system:
v(0̂) = −(1+γ1)nkNk for the fields u0̂

ab, v(1̂±) = −nkNk ± N for the

fields u1̂±
ab , and v(2̂) = −nkNk for the fields u2̂

iab.
A boundary condition must be imposed on each characteristic
field whose characteristic speed is negative on that boundary.
A boundary condition may not be imposed on any characteristic
field whose characteristic speed is non-negative on that boundary.
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Constraint Preserving Boundary Conditions

Construct the characteristic fields, ĉÂ = eÂ
AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
ĉ = {ĉ−, ĉ+}.
The incoming characteristic fields mush vanish on the boundaries,
ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
derivatives). We find that ĉ− for the GH system can be expressed:

ĉ− = d⊥û− + F̂ (u,d‖u).

Set boundary conditions on the fields û− by requiring

d⊥û− = −F̂ (u,d‖u).
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Constraint Characteristic Fields
The characteristic fields associated with the constraint evolution
system, and their associated characteristic speeds for the
first-order Einstein system are:

c0̂±
a = Fa ∓ nkCka ≈ tc∂cCa ∓ nk∂kCa, v(0̂±) = −nkNk ± N,

c1̂
a = Ca, v(1̂) = 0,

c2̂
ia = Pk

iCka ≈ (δk
i − nkni)∂kCa, v(2̂) = −nkNk ,

c3̂
iab = Ciab, v(3̂) = −(1 + γ1)nkNk ,

c4̂
ijab = Cijab = 2∂[jCi]ab, v(4̂) = −nkNk .

The constraint characteristic fields c0̂−
a , c3̂

iab and c4̂
ijab have the

same characteristic speeds as the principal dynamical fields u1̂−
ab ,

u0̂
ab and u2̂

iab respectively. These constraint fields will be incoming
under the same conditions as these dynamical fiels.
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Constraint Characteristic Fields II

Fortunately, the incoming constraint characteristic fields, c0̂−
a , c3̂

iab

and c4̂
ikab, can be expressed in terms of the corresponding

principal dynamical characteristic fields:

c0̂−
a ≈

√
2
[
k (cψd)

a − 1
2kaψ

cd
]

d⊥u1̂−
cd ,

nkc3̂
kab ≈ d⊥u0̂

ab,

nkc4̂
kiab ≈ d⊥u2̂

iab,

where ka = (ta − na)/
√

2 is the ingoing null vector.

Setting these incoming characteristic constraint fields to zero
therefore provides boundary conditions on the normal derivatives
d⊥uα̂ = eα̂βnk∂kuβ of some of the primary dynamical
characteristic fields.
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Physical Boundary Conditions
The Weyl curvature tensor Cabcd satisfies a system of evolution
equations from the Bianchi identities: ∇[aCbc]de = 0.
The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:

ŵ±ab = (Pa
cPb

d − 1
2PabPcd )(te ∓ ne)(t f ∓ nf )Ccedf ,

where ta is a unit timelike vector, na a unit spacelike vector
(with tana = 0), and Pab = ψab + tatb − nanb.

The incoming field ŵ−ab can be expressed in terms of the
characteristic fields of the primary evolution system:

ŵ−ab = d⊥u1̂−
ab + F̂ab(u,d‖u).

We impose boundary conditions on the physical graviational wave
degrees of freedom then by setting:

d⊥u1̂−
ab = −F̂ab(u,d‖u) + ŵ−ab|t=0.
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Imposing Neumann-like Boundary Conditions

Consider Neumann-like boundary conditions of the form

eα̂βnk∂kuβ ≡ d⊥uα̂ = d⊥uα̂|BC.

The characteristic field projections of the evolution equations are:

dtuα̂ ≡ eα̂β∂tuβ = eα̂β
(
−A kβ

γ∂kuγ + F β
)
≡ Dtuα̂.

The spatial derivatives of uγ in this expression can be re-written:

eα̂βAk β
γ∂kuγ = v(α̂)eα̂γnk∂kuγ + eα̂βA` β

γ(δk
` − nkn`)∂kuγ.

We impose these Neumann-like boundary conditions by changing
the appropriate components of the evolution equations at the
boundary to:

dtuα̂ = Dtuα̂ + v(α̂)

(
d⊥uα̂ − d⊥uα̂|BC

)
.
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Gauge Boundary Conditions
Constraint preserving and physical boundary conditions discussed
above place conditions on some (but not all) of the components of
the incoming characteristic field u1̂−

ab :
Constraint preserving boundary conditions place conditions on

PC cd
ab d⊥u1̂−

cd ≡
(

1
2PabPcd − 2l(aPb)

(ckd) + lalbkckd
)

d⊥u1̂−
cd .

Physical boundary conditions place conditions on

PP cd
ab d⊥u1̂−

cd ≡
(

Pa
cPb

d − 1
2PabPcd

)
d⊥u1̂−

cd .

Additional “gauge” boundary conditions are needed for the
remaining components of u1̂−

ab :

PG cd
ab u1̂−

cd ≡
(
δa

cδb
d − PC cd

ab − PP cd
ab

)
u1̂−

cd .
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Gauge Boundary Conditions II
These boundary conditions control certain boundary values of the
gauge degrees of freedom of the equations, consequently the
particular choice of condition is not that important physically.

We first tried just freezing these boundary degrees of freedom:

PG cd
ab dtu1̂−

cd = 0.

These conditions are mathematically well posed, but they tend to
generate a lot of boundary reflections of the gauge degrees of
freedom. These conditions do not produce solutions that converge
rapidly with increasing numerical resolution.
Better, less reflective, gauge boundary conditions can be obtained
by imposing what amount to Sommerfeld conditions on these
gauge degrees of freedom:

PG cd
ab dt

[
u1̂−

cd + (γ2 − r−1)u0̂
cd

]
= 0.
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Outer Boundary Conditions for the Einstein System
The combined constraint preserving boundary conditions, plus the
simple “no incoming Ψ0” physical gravitational wave boundary
conditions for the first-order generalized harmonic Einstein
evolution system are given by:

dtu0̂
ab = Dtu0̂

ab − (1 + γ1)njN jnkc3̂
kab,

dtu1̂−
ab = PP cd

ab
[
Dtu1̂−

cd − (N + njN j)(ŵ−cd − γ2nic3̂
icd )
]

−(γ2 − r−1)PG cd
ab dtu0̂

cd + PC cd
ab Dtu1̂−

cd

+
√

2(N + njN j)
[
l(aPb)

c − 1
2Pablc − 1

2 lalbkc]c0̂−
c ,

dtu2̂
kab = Dtu2̂

kab − nlN lniP j
kc4̂

ijab.

The quantity Pab in these expressions is the projection tensor,
Pab = ψab + tatb − nanb, the incoming null vector ka is defined by
ka = (ta − na)/

√
2, and the outgoing null vector la is defined by

la = (ta + na)/
√

2.
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Tests of Constraint Preserving and Physical BC

Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems.
ψ4 Freezing BC ||C|| Freezing BC ψ4 Better BC

Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems.
ψ4 Freezing BC ||C|| Freezing BC ψ4 Better BC ψ4 Better BC

Evolutions using new BC are stable and convergent.
The Weyl curvature Ψ4 shows quasi-normal mode oscillations
when new BC are used.
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Tests of Constraint Preserving and Physical BC II
Evolve a perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems. Compare results of evolutions on a
small domain with R = 41.9M with results from a large domain
with R = 961.9M. Compare results using constraint preserving
BC (dotted lines), with other possible outer boundary treatments
(solid lines), see Rinne, et. al (2007) for details.
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Moving Black Holes Using Spectral Methods

Spectral: Excision boundary is a smooth analytic surface.

Cannot add/remove individual grid points.
Straightforward method: re-grid when holes move too far.
Problems:

Re-gridding/interpolation is expensive.
Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.

x

Horizon

Horizon
Outside

t
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Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.
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Evolving Black Holes in Rotating Frames

Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.
Evolutions of Schwarzschild in rotating coordinates are unstable.
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Evolutions shown use a
computational domain that
extends to r = 1000M.
Angular velocity needed to
track the horizons of an equal
mass binary at merger is
about Ω ≈ 0.2/M.
Problem caused by asymptotic
behavior of metric in rotating
coordinates: ψtt ∼ $2Ω2,
ψti ∼ $Ω, ψij ∼ 1.
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Dual-Coordinate-Frame Evolution Method

Single-coordinate frame method uses the one set of coordinates,
x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
and the same coordinates to determine these components by
solving Einstein’s equation for uᾱ = uᾱ(x ā):

∂ t̄u
ᾱ + Ak̄ ᾱ

β̄∂k̄uβ̄ = F ᾱ.

Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, xa = {t , x i} = xa(x ā), to represent these
components as functions, uᾱ = uᾱ(xa).

These functions are determined by solving the transformed
Einstein equation:

∂tuᾱ +

[
∂x i

∂ t̄
δᾱβ̄ +

∂x i

∂x k̄
Ak̄ ᾱ

β̄

]
∂iuβ̄ = F ᾱ.
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x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
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Testing Dual-Coordinate-Frame Evolutions
Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:

Dual Frame Evolution Single Frame Evolution
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Dual-frame evolution shown here uses a comoving frame with
Ω = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.
The coordinate transformation from inertial coordinates, (x̄ , ȳ , z̄),
to co-moving coordinates (x , y , z), x

y
z

 = ea(̄t)

 cosϕ(̄t) − sinϕ(̄t) 0
sinϕ(̄t) cosϕ(̄t) 0

0 0 1

 x̄
ȳ
z̄

 ,

with t = t̄ , is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(̄t) and ϕ(̄t).
Since the motions of the holes are not known a priori, the
functions a(̄t) and ϕ(̄t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates II

x

δϕ y

c

c

Measure the comoving centers of the holes: xc(t) and yc(t), or
equivalently Qx (t) = [xc(t)− xc(0)]/xc(0) and Qy (t) = yc(t)/xc(t).
Choose the map parameters a(t) and ϕ(t) to keep Qx (t) and
Qy (t) small.

Changing the map parameters by the small amounts, δa and δϕ,
results in associated small changes in δQx and δQy :

δQx = −δa, δQy = −δϕ.
Measure the quantities Q y (t), dQ y (t)/dt , d 2Q y (t)/dt2, and set

d 3ϕ

dt3 = λ3Q y + 3λ2 dQ y

dt
+ 3λ

d 2Q y

dt2 = −d 3Q y

dt3 .

The solutions to this “closed-loop” equation for Q y have the form
Q y (t) = (At2 + Bt + C)e−λt , so Q y always decreases as t →∞.
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Horizon Tracking Coordinates III
In practice the coordinate maps are adjusted only at a prescribed
set of adjustment times t = ti .
In the time interval ti < t < ti+1 we set:

ϕ(t) = ϕi + (t − ti)
dϕi

dt
+

(t − ti)2

2
d 2ϕi

dt2

+
(t − ti)3

2

(
λ

d 2Q y
i

dt2 + λ2 dQ y
i

dt
+ λ3 Q y

i
3

)
,

where Q x , Q y , and their derivatives are measured at t = ti , so
these maps satisfy the closed loop
equation at t = ti .
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This works! We are now able
to evolve binary black holes using
horizon tracking coordinates until
just before merger.
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Horizon Tracking Coordinates
Coordinates must be used that track the motions of the holes.
This can be implemented by using a coordinate transformation
from inertial coordinates, x̄ i , to co-moving coordinates x i ,
consisting of a translation followed by a rotation followed by an
expansion:

x i = ea(̄t) R(z) i
j [ϕ(̄t)] R(y) j

k [ξ(̄t)]
[
x̄k − ck (̄t)

]
,

t = t̄ .

This transformation keeps the holes fixed in co-moving
coordinates for suitably chosen a(̄t), ϕ(̄t), ξ(̄t), and ck (̄t).
Motions of the holes are not known a priori, so a(̄t), ϕ(̄t), ξ(̄t), and
ck (̄t) must be chosen dynamically and adaptively.
A simple feedback-control system has been used to choose a(̄t),
ϕ(̄t), ξ(̄t), and ck (̄t) by fixing the black-hole positions, even in
evolutions with precession and “kicks”.
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Horizon Distortion Maps

Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

If the holes become significantly distorted – relative to the
spherical excision surface – bad things happen:

Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.
When the horizons move relative to the excision boundary points,
the excision boundary can become timelike, and boundary
conditions are then needed there.
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Horizon Distortion Maps II
Adjust the placement of grid points near each black hole using a
horizon distortion map that connects grid coordinates x i to points
in the black-hole rest frame x̃ i :

θ̃A = θA, ϕ̃A = ϕA,

r̃A = rA − fA(rA, θA, ϕA)
L∑
`=0

∑̀
m=−`

λ`mA (t)Y`m(θA, ϕA).

Choose fA to scale linearly from
fA = 1 on the excision boundary, to
fA = 0 on cut sphere.
Adjust the coefficients λ`mA (t) using
a feedback-control system to keep
the excision surface the same shape
and slightly smaller than the horizon,
and to keep the boundary spacelike.
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Caltech/Cornell Spectral Einstein Code (SpEC):
Multi-domain pseudo-spectral evolution code.

Lovelace, Scheel, & Szilágyi (2010) high spin evolution grids.

Constraint damped “generalized harmonic” Einstein equations:
ψcd∂c∂dψab = Qab(ψ, ∂ψ).

Dual frame evolutions with horizon tracking and distortion maps.
Constraint-preserving, physical and gauge boundary conditions.
Spectral AMR.
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