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Characteristic Fields for the Einstein System

@ The characteristic fields u® = efu” for the generalized harmonic

version of the Einstein evolutlon equahons Iook very much like

their scalar field counterparts: u® = {uab, o u,ab} given by
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = efu” for the generalized harmonic
version of the Einstein evolutlon equahons Iook very much like

their scalar field counterparts: u® = {uab, o u,ab} given by

uab - 1/)8b7
i+ k

Uy = Nap N Puap—y2vap,
5 k Kk

Ugp = (67 —n"n;)®gap,

@ The coordinate characteristic speeds associated with these fields
also have the same forms as those for the scalar field system:

Vio) = —(171)nN* for the fields U0y Vi) = —nFNi + N for the

fields '+, and Vz) = —nkN* for the fields w2,
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = e u” for the generalized harmonic
version of the Einstein evolutlon equations Iook very much like

their scalar field counterparts: u® = {uab, o ulab} given by

uyp = Yab
i+ k
Uy = Nap N Puap—y2vap,
> k Kk
Ugp = (67 —n"n;)®gap,

@ The coordinate characteristic speeds associated with these fields
also have the same forms as those for the scalar field system:
Vo) = —(1+71)mN* for the fields 13y, v5.) = —n“Ni = N for the
fields uab ,and v = —ni N for the fields u2,.

@ A boundary condition must be imposed on each characteristic
field whose characteristic speed is negative on that boundary.

@ A boundary condition may not be imposed on any characteristic
field whose characteristic speed is non-negative on that boundary.
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, eA = eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.

Lee Lindblom (CASS UCSD) 2014/12/5-MSC Tsinghua U 3/23



Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.

@ The constraints depend on the primary evolution fields (and their
derivatives). We find that ¢~ for the GH system can be expressed:

¢ =dil + F(u, dju).
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.

@ The constraints depend on the primary evolution fields (and their
derivatives). We find that ¢~ for the GH system can be expressed:

¢ =d.U + F(u,dju).
@ Set boundary conditions on the fields &/~ by requiring
d 0~ = —F(u, dju).
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Constraint Characteristic Fields

@ The characteristic fields associated with the constraint evolution
system, and their associated characteristic speeds for the
first-order Einstein system are:

FaF N*Cha = t°0cCa T MOkCa,
Ca,

PXiCha ~ (6% — n¥n;)okCa,
Ciab,

Cijab = 20(jCijap,
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Constraint Characteristic Fields

@ The characteristic fields associated with the constraint evolution
system, and their associated characteristic speeds for the
first-order Einstein system are:

Ciab

4
Cijab

FaF M'Ca = t°06Ca F N OkCa,
Ca,

P¥iCa ~ (6% — n*nj)0xCa,
Ciab

Cijab = 20[iCijab,

i

K
0+) = —nkN + N,
i =0

Vs = —neNK,

(2 —
Via) = —(1 +71)nka:

V(a) = —nka.

@ The constraint characteristic fields 02*, c,%b and ¢’ have the

ijab

same characteristic speeds as the principal dynamical fields u;tj,

ugb and u,-éab respectively. These constraint fields will be incoming
under the same conditions as these dynamical fiels.
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Constraint Characteristic Fields Il

@ Fortunately, the incoming constraint characteristic fields, cg’*, c

. iab
and cj_,, can be expressed in terms of the corresponding
principal dynamical characteristic fields:

Q= V2 kCyD, — Tkap®| d uly,
k -3 N 0

N Ciap =~ diUgp,

k 4 - >

N Ciap =~ dLUgp,

where k2 = (12 — n?)/+/2 is the ingoing null vector.
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Constraint Characteristic Fields Il

o Fortunately, the incoming constraint characteristic fields, cJ -, c%b

and cf;‘(ab, can be expressed in terms of the corresponding
principal dynamical characteristic fields:

Cgf ~ V2 |kCyd, - %kaq/)Cd dlu;;,
ka3 0
N Ciap = diUgp,
k 4 - >
N Cyigp = A1 Ujgp,
where k% = (12 — n?)//2 is the ingoing null vector.

@ Setting these incoming characteristic constraint fields to zero
therefore provides boundary conditions on the normal derivatives
d, u® = e*3n* o, u” of some of the primary dynamical
characteristic fields.
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Physical Boundary Conditions
@ The Weyl curvature tensor C,,y satisfies a system of evolution
equations from the Bianchi identities: V[aCbc]de =0.
@ The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:
Wi = (P.°Pp® — 1 PpP)(t° F n®)(t" = n") Coear,
where {9 is a unit timelike vector, n? a unit spacelike vector
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Physical Boundary Conditions

@ The Weyl curvature tensor C,,y satisfies a system of evolution
equations from the Bianchi identities: V[aCbc]de =0.

@ The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:

W;E - (PaCPbd - %PabPCd)(te + ne)(tf + nf)Ccedfa

where {9 is a unit timelike vector, n? a unit spacelike vector
(with 17n; = 0), and Pap = Vap + oty — Nalp.

@ The incoming field W, can be expressed in terms of the
characteristic fields of the primary evolution system:

Wy, = diuls + Fa(u, dju).

@ We impose boundary conditions on the physical graviational wave
degrees of freedom then by setting:

dyufy = ~Fan(u, dju) + o
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬂ dJ_U = dJ_U |BC
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬁ dJ_ dJ_U&|BC.

@ The characteristic field projections of the evolution equations are:
dtU& = e&“g@tuﬁ = edg(—Ak‘ﬁvakU’Y + F’B) = DtUd.
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬁ dJ_ dJ_U&|BC.

@ The characteristic field projections of the evolution equations are:
dtU& = e&“g@tuﬁ = edg(—Ak‘ﬁvakU’Y + F’B) = DtUd.

@ The spatial derivatives of 1" in this expression can be re-written:
e%Akﬁﬂ,Oku“/ = v(&)eaw,nk(?ku”’ + edgA[‘BA/((Skg — nkng)(?kuv.

Lee Lindblom (CASS UCSD) 2014/12/5-MSC Tsinghua U 7/28



Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
ed‘gnkakuﬁ = dJ_U& = dJ_U&|BC.
@ The characteristic field projections of the evolution equations are:
dtU& = e&;gatuﬁ = edg(—Ak‘ﬁvakU’y + F’B) = DtUd.
@ The spatial derivatives of 1" in this expression can be re-written:
G&QAK‘BT,@;(U«/ = v(d)eaw,nk(?ku”’ + edgA[‘HA/((Skg — nkng)(?ku”.

@ We impose these Neumann-like boundary conditions by changing
the appropriate components of the evolution equations at the
boundary to:

diu® = D™ + viay (dLu® — d % [se).
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Gauge Boundary Conditions

@ Constraint preserving and physical boundary conditions discussed
above place conditions on some (but not all) of the components of

the incoming characteristic field u;g:
@ Constraint preserving boundary conditions place conditions on

PG iuly = (3PasP™ — 24Py k?) + lalpk®k?) o uly
@ Physical boundary conditions place conditions on

PEdiuly = (PaPo? — §ParP™) diuly
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Gauge Boundary Conditions

@ Constraint preserving and physical boundary conditions discussed
above place conditions on some (but not all) of the components of

the incoming characteristic field u;g:
@ Constraint preserving boundary conditions place conditions on

PG iuly = (3PasP™ — 24Py k?) + lalpk®k?) o uly
@ Physical boundary conditions place conditions on
PEdiuly = (PaPo? — §ParP™) diuly

@ Additional “gauge” boundary conditions are needed for the
remaining components of u_

Ged, 1— cs d Ccd Pcd
PGty = (92°05" — PSS — PEAY) uly.
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Gauge Boundary Conditions Il

@ These boundary conditions control certain boundary values of the
gauge degrees of freedom of the equations, consequently the
particular choice of condition is not that important physically.
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Gauge Boundary Conditions Il

@ These boundary conditions control certain boundary values of the
gauge degrees of freedom of the equations, consequently the
particular choice of condition is not that important physically.

@ We first tried just freezing these boundary degrees of freedom:

Gedy , 01— _
Pab dtucd —0

These conditions are mathematically well posed, but they tend to
generate a lot of boundary reflections of the gauge degrees of
freedom. These conditions do not produce solutions that converge
rapidly with increasing numerical resolution.
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Gauge Boundary Conditions Il

@ These boundary conditions control certain boundary values of the
gauge degrees of freedom of the equations, consequently the
particular choice of condition is not that important physically.

@ We first tried just freezing these boundary degrees of freedom:
PS&aul; = o.

These conditions are mathematically well posed, but they tend to
generate a lot of boundary reflections of the gauge degrees of
freedom. These conditions do not produce solutions that converge
rapidly with increasing numerical resolution.

@ Better, less reflective, gauge boundary conditions can be obtained
by imposing what amount to Sommerfeld conditions on these
gauge degrees of freedom:

Ged i— —1y,,0
P at|usy + (v2 —r ugy| = 0.
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Outer Boundary Conditions for the Einstein System

@ The combined constraint preserving boundary conditions, plus the
simple “no incoming W,” physical gravitational wave boundary
conditions for the first-order generalized harmonic Einstein
evolution system are given by:

dud, = Dl — (1 +‘/1)”/Nj”k02ab»
dufy = PEEDwly — (N+mN) (g —12n'chy)]
—(v2 — r YPEXal, + PSEDu
+V2(N + mN) [ aPp)® — 1Papl® — L1alpk®] 2™,
A, = Dily —mN'n P/kc,/ab

The quantity P, in these expressions is the projection tensor,
Pap = ap + taty — nanp, the incoming null vector k4 is defined by
k@ = (12 — n?)/+/2, and the outgoing null vector /2 is defined by
12 = (12 4+ n?)/V/2.
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Tests of Constraint Preserving and Physical BC

@ Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems.

14 Freezing BC ||C|| Freezing BC 4 Better BC

Lee Lindblom (CASS UCSD) 2014/12/5-MSC Tsinghua U 11/23



Tests of Constraint Preserving and Physical BC
@ Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems.
14 Freezing BC ||C|| Freezing BC 4 Better BC 4 Better BC
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@ Evolutions using new BC are stable and convergent.
@ The Weyl curvature W, shows quasi-normal mode oscillations
when new BC are used.
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Tests of Constraint Preserving and Physical BC |l

@ Evolve a perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems. Compare results of evolutions on a
small domain with R = 41.9M with results from a large domain
with R = 961.9M. Compare results using constraint preserving
BC (dotted lines), with other possible outer boundary treatments
(solid lines), see Rinne, et. al (2007) for details.

Freezing Sommerfeld Kreiss-Winicour
0
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.
@ Straightforward method: re-grid when holes move too far.
@ Problems:
o Re-gridding/interpolation is expensive.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.

@ Straightforward method: re-grid when holes move too far.

@ Problems:

o Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.

@ Straightforward method: re-grid when holes move too far.

@ Problems:

o Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.
o Causality trouble at leading edge of horizon.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.
@ Straightforward method: re-grid when holes move too far.
@ Problems:
o Re-gridding/interpolation is expensive.

o Difficult to get smooth extrapolation at trailing edge of horizon.
o Causality trouble at leading edge of horizon.

At

Horizon

Outside
Horizon

X
o
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.

@ Straightforward method: re-grid when holes move too far.
@ Problems:

o Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.
o Causality trouble at leading edge of horizon.
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Moving Black Holes Using Spectral Methods

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.
@ Straightforward method: re-grid when holes move too far.
@ Problems:
o Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.
o Causality trouble at leading edge of horizon.
@ Solution:
Choose coordinates that smoothly
track the location of the black hole.

t

Horizon

For a black hole binary this means
using coordinates that rotate with ﬁ

respect to inertial frames at infinity. Outside

Horizor

X
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Evolving Black Holes in Rotating Frames

@ Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.

@ Evolutions of Schwarzschild in rotating coordinates are unstable.

10°® : : : @ Evolutions shown use a
computational domain that
extends to r = 1000M.

10 @ Angular velocity needed to

icl track the horizons of an equal

mass binary at merger is

10" about Q ~ 0.2/M.
| @ Problem caused by asymptotic
0 =0.002/M behavior of metric in rotating

-14 1 1 1 H [ ~ 202

10 05 10° ' 10 15 coordinates: 1y ~ @w=Q*,
t/M Yii ~ w8, Y~ 1.
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x2 = {1, x"}, to define field components, u® = {1z5, Mz, .25},
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

agua + Akag((),‘(uﬂ = F<.
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x2 = {1, x"}, to define field components, u® = {1z5, Mz, .25},
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

(()}Ua + Ak&g(‘),;u‘g = F“.

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {t, x'} = x?(x?), to represent these
components as functions, u® = u®(x?).
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x2 = {1, x"}, to define field components, u® = {1z5, Mz, .25},
and the same coordinates to determine these components by
solving Einstein’s equation for u = u®(x?):

O7u + ARG 9u0 = FB.

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {, x'} = x%(x?), to represent these
components as functions, u® = u(x@).

@ These functions are determined by solving the transformed
Einstein equation:

- [ox" . ox' . - .
QU™ + | =65 + —— A5 9u” = F?.
: ot 7 axk P
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Testing Dual-Coordinate-Frame Evolutions

@ Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:
Dual Frame Evolution

-4

10 T T T
N, =9
_6 | _
10 N, =11
ICIl F— 1
10°F 1
10°F
-12

1079200 400 600 800 1000 10

t/M

10°®

10—10

Nl §

10"

14

Single Frame Evolution

w
Q=02/M

B Q=0.02/M
N\

Q=0.0002/M |
N

0 =0.002/M
1

t/M

@ Dual-frame evolution shown here uses a comoving frame with
Q2 = 0.2/M on a domain with outer radius r = 1000 M.

Lee Lindblom (CASS UCSD)

2014/12/5-MSC Tsinghua U

10°  10° 10" 100 10°

16/23



Horizon Tracking Coordinates

@ Coordinates must be used that track the motions of the holes.

@ The coordinate transformation from inertial coordinates, (x, y, z),
to co-moving coordinates (x, y, z),

X [ cosp(t) —sinp(t) 0 X
( y ) = g0 ( sinp(f) cose(f) O ) ( ) :
z 0 0 1

with ¢ = , is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(t) and (7).

@ Since the motions of the holes are not known a priori, the
functions a(t) and (1) must be chosen dynamically and
adaptively as the system evolves.

NI I X
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Horizon Tracking Coordinates |l _
RO

e

X

@ Measure the comoving centers of the holes: x.(t) and y(f), or
equivalently Q*(t) = [xc(t) — xc(0)]/xc(0) and QY (t) = ye(t)/xc(1).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY (t) small.
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Horizon Tracking Coordinates |l _
RO

e

X

@ Measure the comoving centers of the holes: x.(t) and y(f), or
equivalently Q*(t) = [xc(t) — xc(0)]/xc(0) and Q¥ (t) = ye(t)/xc(1).

@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY (t) small.

@ Changing the map parameters by the small amounts, da and d,
results in associated small changes in 6Q* and §Q”:

Q@ = —da, QY = —dp.
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Horizon Tracking Coordinates |l _
RO

e

X

@ Measure the comoving centers of the holes: x.(t) and y(f), or
equivalently Q*(t) = [xc(t) — xc(0)]/xc(0) and Q¥ (t) = ye(t)/xc(1).

@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY (t) small.

@ Changing the map parameters by the small amounts, da and d,
results in associated small changes in 6Q* and §Q”:

Q@ = —da, QY = —dp.
@ Measure the quantities Q”(t), dQ”(t)/dt, d?QY(t)/di?, and set
a3 dQY d2Qy  d3qQY
— 2 =23QY +3)2—=— 13\ =— .
R A dte

The solutions to this “closed-loop” equation for Q7 have the form
QY(t) = (At?> + Bt + C)e !, so QY always decreases as t — oc.
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Horizon Tracking Coordinates |l
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = ;.
@ Inthetimeinterval t; < t < t;, 1 we set:

dei (t— t,‘)2 d?y;

+ 5 A a2 + A ot +A 3 |

where Q*, QY, and their derivatives are measured at { = {;, s0O
these maps satisfy the closed loop
equation at f = {;.
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Horizon Tracking Coordinates
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = ;.

@ Inthe timeinterval f; < t < t;, 1 we set:
Vdei | (E— )7 dPy

(M TN T )

where Q%, QY, and their derivatives are measured att=1,so

these maps satisfy the closed loop " v
equation at t = f;. ) T XO

1x10 | ]

@ This works! We are now able
to evolve binary black holes using 0 1
horizon tracking coordinates until g= 20O
just before merger. 1x107 ’
/M, om
210" 550" 2000 3000 4000
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Horizon Tracking Coordinates

@ Coordinates must be used that track the motions of the holes.

@ This can be implemented by using a coordinate transformation
from inertial coordinates, x’, to co-moving coordinates x/,
consisting of a translation followed by a rotation followed by an
expansion:

X = e RE (o] RVIe®)] [3F - () .

t = L
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Horizon Tracking Coordinates

@ Coordinates must be used that track the motions of the holes.

@ This can be implemented by using a coordinate transformation
from inertial coordinates, x’, to co-moving coordinates x/,
consisting of a translation followed by a rotation followed by an
expansion:

X = e RA (@] RYIe(D)] [%F - (D).
t = t

@ This transformation keeps the holes fixed in co-moving
coordinates for suitably chosen a(1), ¢(7), £(7), and ¢* ().

@ Motions of the holes are not known a priori, so a(t), ¢(1), £(t), and
¢ () must be chosen dynamically and adaptively.

@ A simple feedback-control system has been used to choose a(1),
o(1), £(1), and ¢(1) by fixing the black-hole positions, even in
evolutions with precession and “kicks”.
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Horizon Distortion Maps

@ Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:
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Horizon Distortion Maps

@ Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

@ If the holes become significantly distorted — relative to the
spherical excision surface — bad things happen:
@ Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.

Lee Lindblom (CASS UCSD) 2014/12/5-MSC Tsinghua U 21/23



Horizon Distortion Maps

@ Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

@ If the holes become significantly distorted — relative to the
spherical excision surface — bad things happen:

@ Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.

@ When the horizons move relative to the excision boundary points,
the excision boundary can become timelike, and boundary
conditions are then needed there.
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Horizon Distortion Maps Il

@ Adjust the placement of grid points near each black hole using a
horizon distortion map that connects grid coordinates X' to points
in the black-hole rest frame Xx':

0n = 0Oa, Oa = pa,

L l
fa = ra— fA(rA,GA./@A Z Z Y m Yém Oa, @A)

(=0 m=—¢
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Horizon Distortion Maps Il

@ Adjust the placement of grid points near each black hole using a
horizon distortion map that connects grid coordinates X' to points
in the black-hole rest frame Xx':

Op = 0O, DA = Qa,

L ¢
Fa = ra—1a(ra,0a,04) > > AX()Yim(0a, 0a)-
=0 m=
@ Choose f4 to scale linearly from
fa = 1 on the excision boundary, to
fa = 0 on cut sphere.

@ Adjust the coefficients \J"(t) using
a feedback-control system to keep
the excision surface the same shape
and slightly smaller than the horizon,
and to keep the boundary spacelike.
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Caltech/Cornell Spectral Einstein Code (SpEC):

@ Multi-domain pseudo-spectral evolution code.

I//////IIIII//IIII &

lmlll i
S

Lovelace, Scheel, & Szilagyi (2010) high spin evolution grids.

@ Constraint damped “generalized harmonic” Einstein equations:
deacadwab - Qab(wa 87/})

@ Dual frame evolutions with horizon tracking and distortion maps.

@ Constraint-preserving, physical and gauge boundary conditions.

@ Spectral AMR.
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