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Representations of Arbitrary Three-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds Σ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R × Σ.

Every two- and three-manifold admits a triangulation (Radó 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus a list of rules for gluing their edges (or faces)
together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary two- and three-manifolds be “cubed”, i.e.
represented as a set of squares or cubes plus a list of rules for
gluing their edges or faces together?
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“Multi-Cube” Representations of Three-Manifolds
Every two- and three-dimensional triangulation can be refined to a
“multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:

Every two- or three-manifold can be represented as a set of
squares or cubes, plus maps that identify their edges or faces.
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Boundary Maps: Fixing the Topology
Multi-cube representations of topological manifolds consist of a
set of cubic regions, BA, plus maps that identify the faces of
neighboring regions, ΨAα

Bβ(∂βBB) = ∂αBA.

Choose cubic regions to have uniform size and orientation.
Choose linear interface
identification maps ΨAα

Bβ:
x i

A = c i
Aα + C Aα i

B β k (xk
B − ck

B β),

where C Aα i
B β k is a rotation-

reflection matrix, and c i
Aα is

center of α face of region A.
Examples:
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Fixing the Differential Structure
The boundary identification maps,
ΨAα

Bβ, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

∂
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∂
X
1

∂
2Y

∂
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1
Y

Y
2

X
1

X
2

=

Smooth tensor fields expressed in multi-cube Cartesian
coordinates are not (in general) even continuous at the interfaces.

Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.
The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.
Multi-cube manifolds need an
additional layer of infrastructure:
e.g., overlapping domains DA ⊃ BA
with transition maps that are smooth
in the overlap regions.
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Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another.

Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A
If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A
A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 6 / 25



Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another.
Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A

If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A
A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 6 / 25



Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another.
Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A
If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A

A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 6 / 25



Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another.
Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A
If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A
A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 6 / 25



Fixing the Differential Structure III
Let g̃Aij and g̃Bij be the components of a smooth reference metric
in the multi-cube coordinates of regions BA and BB that are
identified at the faces ∂αBA ↔ ∂βBB.

Use the reference metric to define the outward directed unit
normals: ñAαi , ñi

Aα, ñBβi , and ñi
Bβ.

The needed Jacobians are given by
JAαi

Bβk = CAαi
Bβ`

(
δ`k − ñ`BβñBβk

)
− ñi

AαñBβk ,

J∗Bβk
Aαi =

(
δ`i − ñAαi ñ`Aα

)
CBβk

Aα` − ñAαi ñk
Bβ.

These Jacobians satisfy:

ñi
Aα = −JAαi

Bβk ñk
Bβ, ñAαi = −J∗Bβk

Aαi ñBβk

ui
Aα = JAαi

Bβkuk
Bβ = CAαi

Bβkuk
Bβ, δAi

Ak = JAαi
Bβ`J

∗Bβ`
Aαk .

Require that a smooth reference metric g̃ab be provided as part of
the multi-cube representation of any manifold.
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AαñBβk ,

J∗Bβk
Aαi =

(
δ`i − ñAαi ñ`Aα
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Solving PDEs on Multi-Cube Manifolds
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Solve PDEs in each cubic region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, û−, with
outgoing characteristics, û+, from neighbor,

û−A = 〈û+
B 〉A û−B = 〈û+

A 〉B.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 8 / 25



Solving PDEs on Multi-Cube Manifolds

x

z

y

1 3 42

5

6

S2 S1Χ

y

1 3 4

z

x
8

7
6

5

S3

Solve PDEs in each cubic region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, û−, with
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B 〉A û−B = 〈û+
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Solving Einstein’s Equation on Multi-Cube Manifolds
Multi-cube methods were designed to solve first-order hyperbolic
systems, ∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), where the dynamical
fields uα are tensors that can be transformed across interface
boundaries using the Jacobians JAαi

Bβk , etc.

The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

The usual choice of dynamical fields,
uα = {ψab,Πab = −tc∂cψab,Φiab = ∂iψab} are not tensor fields.
The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of Πab, Πab = −tc∂cψab, and the
one that comes from preserving the constraint Ciab = Φiab − ∂iψab,
tc∂cCiab = −γ2Ciab.

Our attempts to construct the transformations for non-tensor
quantities like ∂iψab and Φiab across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.
A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation
Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.

A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative ∇̃a:

Rab = − 1
2ψ

cd∇̃c∇̃dψab +∇(a∆b) − ψcd R̃e
cd(aψb)e

+ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)
,

where ∆abc = ψad

(
Γd

bc − Γ̃d
bc

)
, and ∆a = ψbc∆abc .

A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: ∆a = −Ha(ψcd ).
The vacuum Einstein equations then become:

ψcd∇̃c∇̃dψab = −2∇(aHb) + 2ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)

−2ψcd R̃e
cd(aψb)e + γ0

[
2δc

(atb) − ψabtc
]

(Hc + ∆c) .
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Covariant Representations of Einstein’s Equation
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Covariant Representations of Einstein’s Equation II
A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields:

uα = {ψab,Πab = −tc∇̃cψab,Φiab = ∇̃iψab},
which are tensors with respect to spatial coordinate
transformations.

The first order equation that arises from the definition of Πab,
tc∇̃cψab = −Πab is now covariant, as is the equation for tc∇̃cΦiab
that follows from the covariant constraint evolution equation,
tc∇̃cCiab = −γ2Ciab, where Ciab = Φiab − ∇̃iψab.
The resulting first-order Einstein evolution system,
∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.
The expressions for the characteristic speeds and fields of this
covariant system have the same forms as the standard ones in
terms of uα = {ψab,Πab,Φiab}. These fields are now tensors, so
the values of the characteristic fields are somewhat different.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 11 / 25



Covariant Representations of Einstein’s Equation II
A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields:

uα = {ψab,Πab = −tc∇̃cψab,Φiab = ∇̃iψab},
which are tensors with respect to spatial coordinate
transformations.
The first order equation that arises from the definition of Πab,
tc∇̃cψab = −Πab is now covariant, as is the equation for tc∇̃cΦiab
that follows from the covariant constraint evolution equation,
tc∇̃cCiab = −γ2Ciab, where Ciab = Φiab − ∇̃iψab.

The resulting first-order Einstein evolution system,
∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.
The expressions for the characteristic speeds and fields of this
covariant system have the same forms as the standard ones in
terms of uα = {ψab,Πab,Φiab}. These fields are now tensors, so
the values of the characteristic fields are somewhat different.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 11 / 25



Covariant Representations of Einstein’s Equation II
A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields:

uα = {ψab,Πab = −tc∇̃cψab,Φiab = ∇̃iψab},
which are tensors with respect to spatial coordinate
transformations.
The first order equation that arises from the definition of Πab,
tc∇̃cψab = −Πab is now covariant, as is the equation for tc∇̃cΦiab
that follows from the covariant constraint evolution equation,
tc∇̃cCiab = −γ2Ciab, where Ciab = Φiab − ∇̃iψab.
The resulting first-order Einstein evolution system,
∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.
The expressions for the characteristic speeds and fields of this
covariant system have the same forms as the standard ones in
terms of uα = {ψab,Πab,Φiab}. These fields are now tensors, so
the values of the characteristic fields are somewhat different.

Lee Lindblom (CASS UCSD) Solving Einstein’s Equation Numerically 2014/12/11–MSC Tsinghua U 11 / 25



Testing the Einstein Solver: Static Universe on S3

The simplest solution to Einstein’s equation on S3 is the “Einstein
Static Universe”.

The geometry of this spacetime is described by the standard
round metric on S3:

ds2 = −dt2 + R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

= −dt2 +

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

This metric solves Einstein’s equation with cosmological constant
Λ = 1/R2

3 and pressure-less matter with density ρ = 1/4πR2
3 on a

manifold with spatial topology S3.
Dynamical evolutions of “dust” generically develop shell crossing
singularities, making it a poor choice to use in tests of our spectral
evolution code.
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Testing the Einstein Solver: Static Universe on S3 II
The scalar field φ = φ0eiµt satisfies the Klein-Gordon equation
∇a∇a φ = µ2φ on the Einstein static universe geometry.
This solution has energy density ρ = µ2|φ0|2 and no pressure.
This could be used as the matter in the Einstein static universe by
requiring ρ = µ2|φ0|2 = 1/4πR2

3 .

Couple Einstein’s equation to a complex scalar field with stress
energy tensor:
Tab = 1

2 (∇aφ∇bφ
∗ +∇bφ∇aφ

∗)− 1
2ψab

(
ψcd∇cφ∇dφ

∗ + µ2|φ|2
)
.

Choose initial data corresponding to the Einstein-Klein-Gordon
static universe solution:

ψab = ψ0
ab, Πab = 0, Φiab = 0,

φ = φ0, Πφ = −iµφ0, Φφ
i = 0.

Choose the scalar field amplitude and cosmological constant to
have the Einstein Static universe values: Λ = 1/R2

3 and
µ2|φ0|2 = 1/4πR2

3 .
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Testing the Einstein Solver: Static Universe on S3 III
Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,
∆ψab = ψNab − ψAab:

Eψ =
√∫ ∑

ab |∆ψab|2
√

gd3x∫ ∑
ab |ψab|2

√
gd3x .

Monitor the accuracy of numerical scalar
field solution by evaluating the norm of its
error, ∆φ = φN − φA:

Eφ =
√∫

|∆φ|2√gd3x∫
|φ|2√gd3x .

Monitor how well the numerical solutions
satisfy the Einstein system by evaluating
the norm of the various constraints:

EC =
√ ∫ ∑

|C|2√gd3x∫ ∑
|∂i u|2

√
gd3x .
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Testing the Einstein Solver: Static Universe on S3 IV

The constraints are well satisfied for t . 25, so these are good
(approximate) solutions for early times.

The instability seen in the static Einstein-Klein-Gordon evolutions
is caused by two unstable modes: one k = 0 and one k = 1 mode.
The numerically determined growth rates of these modes are
1/τ0

N = 1.100501(1) and 1/τ1
N = 0.6180(1) respectively.

Eddington (1930) predicted the k = 0 instability.
Analytical perturbation theory reveals exactly two unstable modes.
One k = 0 and one k = 1 mode with frequencies

ω2
0R2

3 = 2(µ2R2
3 − 1)− 2

√
(µ2R3

3 − 1)2 + µ2R2
3

ω2
1R2

3 = −1
4

(
µGR3 −

√
4 + µ2

GR2
3

)2

The values of these growth rates for the parameters used in the
numerical evolutions are: 1/τ0 = 1.1005010 and 1/τ1 = 0.618034.
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Mode Damping
Can we test long term numerical stability by damping out the
unstable modes while leaving the other dynamics untouched?
Add small unphysical mode damping forces to the Einstein and
Klein Gordon evolution systems:

∂tψab = fab +Dfab, ∂t Πab = Fab +DFab,

∂tφ = fφ +Dfφ, ∂t Π
φ = Fφ +DFφ.

All modes of the system (including the unstable modes) have
specific spatial structures, best expressed in terms of tensor
harmonics on S3.
Define the spherical harmonic projection Q̄k`m(t) of a scalar
quantity Q(t ,x) by

Q̄k`m(t) =

∫
Y ∗k`mQ(t ,x)

√
g̃ d 3x .

Construct the unphysical damping forces, e.g. Dfab, to suppress
any growth in those structures corresponding to the unstable
modes of the system, i.e. the k = 0 and k = 1 harmonics.
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Mode Damping II

Example mode damping force for the ψtt evolution equation:

∂tψtt = ftt −
[
f̄ k`m
tt + ηψ̄k`m

tt

]
Y k`m/R3

3 .

Multiply the modified evolution equations by Y ∗k`m and integrate,
to obtain the modified evolution of the damped mode. For the ψtt
equation shown above you get:

∂t ψ̄
k`m
tt = f̄ k`m

tt −f̄ k`m
tt − ηψ̄k`m

tt = −ηψ̄k`m
tt .

Apply mode damping to the Einstein-Klein-Gordon static evolution:
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Mode Damping III
Measure the constraint norm C, and the norm of the unphysical
mode damping forces ED:

Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions therefore converge to
solutions of the physical Einstein-Klein-Gordon system!
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Testing the Einstein Solver: Perturbed Static S3

Construct a more interesting and challenging test problem by
examining the perturbed Einstein-Klein-Gordon static universe
solution. First, find the normal modes of the perturbed system
analytically, e.g., δψtt = <

(
AttY k`meiωt), ....

The frequencies of the “scalar” modes of this system for k ≥ 2 are
given by ω2

0R2
3 = k(k + 2) and

ω2
±R2

3 = k(k + 2) + 2(µ2R2
3 − 1)

±
√

(µ2R2
3 − 1)2 + [k(k + 2) + 1]µ2R2

3 .

Use the solutions of the perturbation equations to construct
analytical metric and scalar fields: ψA

ab = ψ0
ab + δψab and

φA = φ0eiµt + δφ.
Evolve initial data constructed from fifteen superimposed normal
modes for 2 ≤ k ≤ 6 with one mode for each value of k from each
frequency class ω0 and ω±.
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Testing the Einstein Solver: Perturbed Static S3 II
Create initial data with mode
amplitudes smaller than 10−6 to
insure non-linear terms will be of
order 10−12.
Visualize the perturbations in δψtt on
the equatorial χ = π/2 two-sphere.

Compare non-linear evolution with analytical perturbation solution.
Measure field error norms: ∆ψab = ψA

ab − ψN
ab and ∆φ = φA − φN .
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Testing the Einstein Solver: Perturbed Static S3 III
Norms of the constraints, C, and the unphysical mode damping
forces, ED, for the perturbed Einstein-Klein-Gordon evolution:

Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions also converge to
solutions of the physical Einstein-Klein-Gordon system!
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Testing the Einstein Solver: Tensor Modes on S3

Next examine the perturbed Einstein-Klein-Gordon static universe
solution numerically with perturbations in the ’‘tensor” modes of
the system that represent the gravitational wave degrees of
freedom:

δψab = <
(

Ak`m
T (4)Y

k`m
(4)abeiωT t + Ak`m

T (5)Y
k`m
(5) abeiωT t

)
,

with frequencies ω2
T = k(k + 2)/R2

3 , where R3 is the radius of the
Einstein-Klein-Gordon static solution.
Use the solutions of the perturbation equations to construct
analytical metric and scalar field solutions: ψA

ab = ψ0
ab + δψab

and φA = φ0eiµt .
Evolve initial data constructed from the analytical solutions for ten
superimposed normal modes with 2 ≤ k ≤ 6, with one mode for
each value of k from each of the transverse-traceless tensor
harmonics Y k`m

(4) ab and Y k`m
(5) ab.
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Testing the Einstein Solver: Tensor Modes on S3 II
Create tensor mode initial data with
amplitudes smaller than 10−6 to
insure non-linear terms will be of
order 10−12.
Visualize

√
δψabδψab on the

equatorial χ = π/2 two-sphere.

Compare non-linear evolution with analytical perturbation solution.
Measure field error norms: ∆ψab = ψA

ab − ψN
ab and ∆φ = φA − φN .
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Testing the Einstein Solver: Tensor Modes on S3 III
Norms of the constraints, C, and the unphysical mode damping
forces, ED, for the tensor mode Einstein-Klein-Gordon evolution:

Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions also converge to
solutions of the physical Einstein-Klein-Gordon system!
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Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:

A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.
A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.
These methods have been tested successfully for Einstein
evolutions by finding simple solutions numerically on compact
manifolds using our new covariant Einstein evolution system.
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