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Representations of Arbitrary Three-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds ¥ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R x %.
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@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds ¥ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R x %.

@ Every two- and three-manifold admits a triangulation (Radé 1925,
Moire 1952), i.e. can be represented as a set of triangles (or

tetrahedra), plus a list of rules for gluing their edges (or faces)
together.
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Representations of Arbitrary Three-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds ¥ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R x %.

@ Every two- and three-manifold admits a triangulation (Radé 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus a list of rules for gluing their edges (or faces)
together.

@ Cubes make more convenient computational domains for finite
difference and spectral numerical methods.

@ Can arbitrary two- and three-manifolds be “cubed”, i.e.
represented as a set of squares or cubes plus a list of rules for
gluing their edges or faces together?
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“Multi-Cube” Representations of Three-Manifolds

@ Every two- and three-dimensional triangulation can be refined to a
“multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:
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“Multi-Cube” Representations of Three-Manifolds

@ Every two- and three-dimensional triangulation can be refined to a
“multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:

@ Every two- or three-manifold can be represented as a set of
squares or cubes, plus maps that identify their edges or faces.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, V5% (938g) = 0.5x.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, ng(agBB) = 0y Ba.

@ Choose cubic regions to have uniform size and orientation.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a

set of cubic regions, B4, plus maps that identify the faces of

neighboring regions, ng;(&)gBB) = 0,Ba.

@ Choose cubic regions to have uniform size and orientation.

@ Choose linear interface
identification maps W4:
P Aai(vk Ak
Xa = Caq +‘CB§k(XB — Cgp);
where C4¢/ is a rotation-

reflection matrix, and ¢/, , is
center of « face of region A.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, W‘éﬁ;(&gb’g) = 0,B4.

@ Choose cubic regions to have uniform size and orientation.

@ Choose linear interface

. o . A . z z
identification maps Wi3: Wi
i A A ( vk K
X/I‘\_ Cj‘\(,x +‘CB§/I((XB_CB;3’)7 B
where C7 4} is a rotation- “© |y P
reflection matrix, and Q’qa is X A B
center of « face of region A.
@ Examples: ‘
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Fixing the Differential Structure
@ The boundary identification maps,
W22, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multi-cube Cartesian
coordinates are not (in general) even continuous at the interfaces.
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Fixing the Differential Structure

@ The boundary identification maps,
W43, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multi-cube Cartesian
coordinates are not (in general) even continuous at the interfaces.

@ Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.

@ The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.

@ Multi-cube manifolds need an <
additional layer of infrastructure:
e.g., overlapping domains Dy O Ba < >
with transition maps that are smooth
in the overlap regions. <
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Fixing the Differential Structure I
@ All'that is needed to define continuous tensor fields at interface
boundaries is the Jacobian Jg‘g; and its dual Jj\ffk that transform

tensors from one multi-cube coordinate region to another.
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Fixing the Differential Structure I
@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian J3%, and its dual Jj\ffk that transform
tensors from one multi-cube coordinate region to another.
@ Define the transformed tensors across interface boundaries:

BBk
<VB>A - Jé(gy;( Vg, <WBi>A = Jz\u,)' wpk-

@ Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

Vi\ = <Vf3>A-, Wai = (Wgi)A
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Fixing the Differential Structure I

@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian Jz3; and its dual J*Bdk that transform
tensors from one multi-cube coordinate region to another.

@ Define the transformed tensors across interface boundaries:

(VB)a = JB5LVE, (Wai)a = Ji2 wgy.

@ Tensor fields are continuous across interface boundaries if they

are equal to their transformed neighbors:

Vi\ = <Vf3>A-, Wai = (Wgi)A

@ If there exists a covariant derivative V; determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

Vaiva= (Vgvp)a,  Vawai = (VgWwai)a
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Fixing the Differential Structure I

@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian Jz3; and its dual J*Bdk that transform
tensors from one multi-cube coordinate region to another.

@ Define the transformed tensors across interface boundaries:

(VB)a = JB5LVE, (Wai)a = Ji2 wgy.

@ Tensor fields are continuous across interface boundaries if they

are equal to their transformed neighbors:

Vi\ = <Vf3>A-, Wai = (Wgi)A

@ If there exists a covariant derivative V; determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

Vaiva= (Vgvp)a,  Vawai = (VgWwai)a

@ A smooth reference metric g; determines both the needed
Jacobians and the smooth connection.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 5 that are
identified at the faces 0,84 <> 038p.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 5 that are
identified at the faces 0,84 <> 038p.

@ Use the referenqe metric to define the outward directed unit
normals: Ma.i, 1y, NBsi, and h}gﬁ.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 5 that are
identified at the faces 0,84 <> 038p.

@ Use the referenqe metric to deﬂne the outward directed unit
normals: Ma.i, 1y, NBsi, and F’ba-

@ The needed Jacobians are given by

Aai A sp S
Jgok = Ch% ( annBSK) — M, NBsK:
*Bpk 0 Bk = =~k
Jnai = (08 = Aaaifia,) Cany — NAaiNpg-
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 5 that are
identified at the faces 0,84 <> 038p.

@ Use the referenqe metric to deﬂne the outward directed unit
normals: Ma.i, 1y, NBsi, and F’ba-

@ The needed Jacobians are given by

Aai A sp S
Jgok = Ch% ( - ”BS”BSK) — M, NBsK:
*Bpk 0 Bk = =~k
Jnai = (08 = Aaaifia,) Cany — NAaiNpg-

@ These Jacobians satisfy:

o Aai 3 ~

Mao = —, ”k”g% nAui = JA(Y, NBak
i jAai Aai |k Aai +BBL

Upo = JBakUBﬂ— ChskUps; Ak = Jg5eJdpak -

@ Require that a smooth reference metric g, be provided as part of
the multi-cube representation of any manifold.
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Solving PDEs on Multi-Cube Manifolds
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@ Solve PDEs in each cubic region separately.
@ Use boundary conditions on cube faces to select the correct

smooth global solution.
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Solving PDEs on Multi-Cube Manifolds
s,

3 4

1 25 4
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@ Solve PDEs in each cubic region separately.

@ Use boundary conditions on cube faces to select the correct
smooth global solution.

@ For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, &, with
outgoing characteristics, &, from neighbor,

Uy = (Ug)a Ug = (Uy)s.
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u“ are tensors that can be transformed across interface
boundaries using the Jacobians J35;, etc.
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u“ are tensors that can be transformed across interface
boundaries using the Jacobians J33;, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® = {vap, Nap = —t°0cthap, Piap = Ji1bap } are not tensor fields.

e The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of N, My, = —°0.1)4p, and the
one that comes from preserving the constraint Cizp = ®jap — i1 2p,
t¢0cCiab = —72 Ciabp-
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u™ are tensors that can be transformed across interface
boundaries using the Jacobians J53/, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® = {vap, Nap = —t°0cthap, Piap = Ji1bap } are not tensor fields.

e The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of N, M, = — 10145, and the
one that comes from preserving the constraint Cizp = ®jap — i1 2p,
t°0¢cCiab = —72Ciap-

@ Our attempts to construct the transformations for non-tensor
quantities like d;1 4, and @4, across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.

@ A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation

@ Let ¢, denote a smooth reference [netric on the manifold R x %
For convenience we choose ds? = 1,,dx@dx? = —dt? + g;ax’adx/,
where gj is the smooth multi-cube reference three-metric on .
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Covariant Representations of Einstein’s Equation

@ Let ¢, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = ,pdxdx? = —dit? + gjax'ax/,
where gj is the smooth multi-cube reference three-metric on .

@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V :

Ry = *%IZ)Cd@c@d?/Jab + V(alp) — deﬁ?ecd(awb)e
%9 (VetreaV tbab — Daceloar)

Where Aabc - wad (l—gc - fgc), and Aa — UbCAabc.
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Covariant Representations of Einstein’s Equation
@ Let ¢, denote a smooth reference [netric on the manifold R x %
For convenience we choose ds? = 1,,dx@dx? = —dt? + g;ax’adx/,
where gj is the smooth multi-cube reference three-metric on .
@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V ;:
Rap = *%?/)Cd@c@dﬁ’ab + v(aAb) - ““/'Cdﬁ?ecd(aﬂ)b)e
ap©dapet (@e’l/Jca@ﬂ/)ab - AaceAbdf> ;

where A pe = Yag (I'gC — l:gc), and A, = VPN e

@ A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: A, = —Hz(1¢g).

@ The vacuum Einstein equations then become:

’Q/}Cdﬁcﬁd’L/)ab = —ZV(aHb) + 2/¢deef (@ewca@f@'ab - AaceAbdf)
*Zde'E?ecd(awb)e + 7% {25(Catb) - d}abtc} (He + Ac).
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Covariant Representations of Einstein’s Equation Il
@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )
u® = {thap, Map = —t°Veap, Piab = Vitbap},
which are tensors with respect to spatial coordinate
transformations.

Lee Lindblom (CASS UCSD) 2014/12/11-MSC Tsinghua U 11/25



Covariant Representations of Einstein’s Equation Il

@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )

u® = {thap, Map = —t°Vetap, Piap = Vithap},
which are tensors with respect to spatial coordinate
transformations.

@ The first order equation that arises from the definition of I,
eV et ap = —4p is NOW covariant, as is the equation for (V4
that follows from the covariant constraint evolution equation,
t°V¢Ciap = —72Ciap, Where Cigp = ®iap — Vithap.
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Covariant Representations of Einstein’s Equation Il

@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )

u® = {thap, Map = —t°Vetap, Piap = Vithap},
which are tensors with respect to spatial coordinate
transformations.

@ The first order equation that arises from the definition of I,
eV et ap = —4p is NOW covariant, as is the equation for (V4
that follows from the covariant constraint evolution equation,
t°V¢Ciap = —72Ciap, Where Cigp = ®iap — Vithap.

@ The resulting first-order Einstein evolution system,

Opu” + A 4(u)Vu® = F(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.

@ The expressions for the characteristic speeds and fields of this
covariant system have the same forms as the standard ones in
terms of u® = {1 ap, MNap, Piap}. These fields are now tensors, so
the values of the characteristic fields are somewhat different.
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Testing the Einstein Solver: Static Universe on S®

@ The simplest solution to Einstein’s equation on S° is the “Einstein
Static Universe”.

@ The geometry of this spacetime is described by the standard
round metric on S°:

ds® = —dff + R2|dy® +sin?y (d92+sin29d<p2>} ,
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Testing the Einstein Solver: Static Universe on S®

@ The simplest solution to Einstein’s equation on S° is the “Einstein
Static Universe”.

@ The geometry of this spacetime is described by the standard
round metric on S°:

P2 P2
ds? = —dt? + RS [dxz + sin® x <d02 + sin® ¢ dapzﬂ ,
2 (TR XD+ YDA+ ZD [+ XDA+ YA+ 2D o (YD +XE+2Z0) o
o (E) (1+ X2+ Y2+ 22) Grva 1z T T AR+ )
A A A A A A A
A+Z)(1+X3+Y3) , _ 2XpVa oy 2X4Z, oo 2YaZ, dydz]
(1+X3)(1+Y3) 1+ 24 1+ Y2 1+ X3

Lee Lindblom (CASS UCSD) 2014/12/11-MSC Tsinghua U 12/25



Testing the Einstein Solver: Static Universe on S®

@ The simplest solution to Einstein’s equation on S° is the “Einstein
Static Universe”.

@ The geometry of this spacetime is described by the standard
round metric on S°:

P2 P2
ds? = —dt? + RS [dxz + sin® x <d02 + sin® ¢ dtpzﬂ ,
5 TRN2 (1 + XA+ YA+ Z) [+ XA+ Y2 +22) o, (1+YDHA+X2+22) ,
= —ad+ (—) TR ) 3 2 Xt 2 2
2L (1+ X3+ Y3 +23) 1+ Y31 +2Z3) (1+Xx3)(1 +23)
A+Z)(1+X3+Y3) , _ 2XaYp o — 2XaZ, dear 2YaZ, oy az).
(1+X3)(1+Y3) 1+ 24 1+ Y2 1+ X3

@ This metric solves Einstein’s equation with cosmological constant
A = 1/R3 and pressure-less matter with density p = 1/47R5 on a
manifold with spatial topology S°.
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Testing the Einstein Solver: Static Universe on S®

@ The simplest solution to Einstein’s equation on S° is the “Einstein
Static Universe”.

@ The geometry of this spacetime is described by the standard
round metric on S°:

: 2 $ 2
ds? = —dt? + RS [dxz + sin® x <d92 + sin® ¢ da,ozﬂ ,
5 TRN2 (1 + XA+ YA+ Z) [+ XA+ Y2 +22) o, (1+YDHA+X2+22) ,
= —adt+ (7> 2 v2 . 722 2 2 X+ 2 7 d
2L (1 +X3+Y5+23) (1+Y2)(1 +2%) (1+ X300 + Z3)
A+Z)(1+X3+Y3) , _ 2XaYp o — 2XaZ, dear 2YaZ, oy az).
(1+X3)(1+Y3) 1+ 24 1+ Y2 1+ X3

@ This metric solves Einstein’s equation with cosmological constant
A = 1/R3 and pressure-less matter with density p = 1/47R5 on a
manifold with spatial topology S°.

@ Dynamical evolutions of “dust” generically develop shell crossing
singularities, making it a poor choice to use in tests of our spectral
evolution code.
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Testing the Einstein Solver: Static Universe on S° ||

@ The scalar field ¢ = ¢pe'"! satisfies the Klein-Gordon equation
V4V, ¢ = ;¢ on the Einstein static universe geometry.

@ This solution has energy density p = 1:?|#o|? and no pressure.
This could be used as the matter in the Einstein static universe by
requiring p = 12|¢o|* = 1/47R3.
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Testing the Einstein Solver: Static Universe on S° ||

@ The scalar field ¢ = ¢pe'"! satisfies the Klein-Gordon equation
VaV, ¢ = ;¢ on the Einstein static universe geometry.

@ This solution has energy density p = 1:?|#o|? and no pressure.
This could be used as the matter in the Einstein static universe by
requiring p = 12|¢o|* = 1/47R3.

@ Couple Einstein’s equation to a complex scalar field with stress
energy tensor:

Tap = § (Va0V0" + VooVat") — 3tab (¥*IVcoVad" + 12l6f)
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Testing the Einstein Solver: Static Universe on S° ||

@ The scalar field ¢ = ¢pe'"! satisfies the Klein-Gordon equation
VaV, ¢ = ;¢ on the Einstein static universe geometry.

@ This solution has energy density p = 1:?|#o|? and no pressure.
This could be used as the matter in the Einstein static universe by
requiring p = 12|¢o|* = 1/47R3.

@ Couple Einstein’s equation to a complex scalar field with stress
energy tensor:

Tap = § (Va0V0" + VooVat") — 3tab (¥*IVcoVad" + 12l6f)

@ Choose initial data corresponding to the Einstein-Klein-Gordon
static universe solution:

bab = Vap, Map =0, Piap = 0,
6 = do. N’ =—iugo, & =0.
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Testing the Einstein Solver: Static Universe on S° ||

@ The scalar field ¢ = ¢pe'"! satisfies the Klein-Gordon equation
V4V, ¢ = ;¢ on the Einstein static universe geometry.

@ This solution has energy density p = 1:?|#o|? and no pressure.
This could be used as the matter in the Einstein static universe by
requiring p = 12|¢o|* = 1/47R3.

@ Couple Einstein’s equation to a complex scalar field with stress
energy tensor:

Tap = § (Va0V0" + VooVat") — 3tab (¥*IVcoVad" + 12l6f)

@ Choose initial data corresponding to the Einstein-Klein-Gordon
static universe solution:

Vab = V. Map =0, Pip =0,
¢ = do, N?=—ipgo, @) =0.
@ Choose the scalar field amplitude and cosmological constant to

have the Einstein Static universe values: A = 1/R5 and
1| bol® = 1/4m RS
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Testing the Einstein Solver: Static Universe on S° Il
@ Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,
Athap = Ynab — P aab:

& = )L Za|Aa|?/Gdx
¥ T30 [Wabl2/G0Px

@ Monitor the accuracy of numerical scalar
field solution by evaluating the norm of its

error, Ap = on — Oal
g, — ./ 11AdRV/gdx
¢V JIoPVadx

@ Monitor how well the numerical solutions
satisfy the Einstein system by evaluating
the norm of the various constraints:

e, — [ IZICPyadLx
¢ =\ T oupradx"
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Testing the Einstein Solver: Static Umverse on 83 1]

@ Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,

Atpap = VYnab — Y aab: ’,

o _ [T pBialVads
v T ap [0 P/GPX

10

@ Monitor the accuracy of numerical scalar
field solution by evaluating the norm of its .|

error, A¢ = oy — Oa: & SHE
g, — JTIBP /o s
» =\ TIoPvadx

@ Monitor how well the numerical solutions
satisfy the Einstein system by evaluating T
the norm of the various constraints:

£, — [ |c2/gd®x B
¢V X oupgdx- o
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Testing the Einstein Solver: Static Universe on S IV

@ The constraints are well satisfied for t < 25, so these are good
(approximate) solutions for early times.
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Testing the Einstein Solver: Static Universe on S IV

@ The constraints are well satisfied for t < 25, so these are good
(approximate) solutions for early times.

@ The instability seen in the static Einstein-Klein-Gordon evolutions
is caused by two unstable modes: one kK = 0 and one kK = 1 mode.

@ The numerically determined growth rates of these modes are
1/79 = 1.100501(1) and 1/7}, = 0.6180(1) respectively.
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Testing the Einstein Solver: Static Universe on S IV

@ The constraints are well satisfied for t < 25, so these are good
(approximate) solutions for early times.

@ The instability seen in the static Einstein-Klein-Gordon evolutions
is caused by two unstable modes: one kK = 0 and one kK = 1 mode.

@ The numerically determined growth rates of these modes are
1/75 =1.100501(1) and 1/7/, = 0.6180(1) respectively.
@ Eddington (1930) predicted the k = 0 instability.

@ Analytical perturbation theory reveals exactly two unstable modes.
One k = 0 and one k = 1 mode with frequencies

WBRE = 202R5 — 1) — 2,/ (42R — 1)2 + u2RE

1 2
w12:‘?32, = —Z ([LGRg — \/4 + /1%/?%)

@ The values of these growth rates for the parameters used in the
numerical evolutions are: 1/79 = 1.1005010 and 1 /7 = 0.618034.
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Mode Damping
@ Can we test long term numerical stability by damping out the
unstable modes while leaving the other dynamics untouched?
@ Add small unphysical mode damping forces to the Einstein and
Klein Gordon evolution systems:
Otab = fab + Dfap, ONap = Fap + DFap,
Or¢ = 1 + DI, 0N? = F* + DF?.
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Mode Damping

@ Can we test long term numerical stability by damping out the
unstable modes while leaving the other dynamics untouched?
@ Add small unphysical mode damping forces to the Einstein and
Klein Gordon evolution systems:
Othap = fap + Digp, 0tMap = Fap + DFyp,
orp = ¢ + Df?, oN? = F® + DF?.
@ All modes of the system (including the unstable modes) have
specific spatial structures, best expressed in terms of tensor
harmonics on S°.

@ Define the spherical harmonic projection Q““(¢) of a scalar
quantity Q(t,x) by

o (1) = / Y*RmQ(t, X) /G d3x.
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Mode Damping

@ Can we test long term numerical stability by damping out the
unstable modes while leaving the other dynamics untouched?
@ Add small unphysical mode damping forces to the Einstein and
Klein Gordon evolution systems:
Otab = fab + Dfap, ONap = Fap + DFap,
Orp = % + DI, 0N? = F® + DF?.

@ All modes of the system (including the unstable modes) have
specific spatial structures, best expressed in terms of tensor
harmonics on S°.

@ Define the spherical harmonic projection Q““(¢) of a scalar
quantity Q(t, x) by

QM (1) = / Y*KmQ(t, x)/g d3x.
@ Construct the unphysical d'amping forces, e.g. Df,p, to suppress

any growth in those structures corresponding to the unstable
modes of the system, i.e. the kK = 0 and k = 1 harmonics.
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Mode Damping Il

@ Example mode damping force for the 1;; evolution equation:
0tﬁ)n = fﬁ — [?;;Em + T]l;;;[m] kam/Rg

@ Multiply the modified evolution equations by Y** and integrate,
to obtain the modified evolution of the damped mode. For the
equation shown above you get:

). kém __ tkfm  tkém Tkém __ Tkfm
Oy " = fy " =F " =y = =y ™
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Mode Damping Il

@ Example mode damping force for the 1;; evolution equation:
0tﬁ)n = fﬁ — [?;;Em + T]l;;;[m] kam/Rg

@ Multiply the modified evolution equations by Y** and integrate,
to obtain the modified evolution of the damped mode. For the
equation shown above you get:

aﬂ;gfm _ ?fllfﬁmi?flgém o nujgém _ 7771;tl;ém.

@ Apply mode damping to the Einstein-Klein-Gordon static evolution:

10 T T T T
0k "
10°
- S : .
10°E &
g'v 10"
10"
10"
et ] g
ok 1 i
o
200 400 600 800 1000 200 400 600 800 1000

/R, t/R;
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Mode Damping Il

@ Measure the constraint norm C, and the norm of the unphysical
mode damping forces £p:

T T T T — T T T
10°E -
10°F s
10°F = .
107 ]
C )
7 gD
10 = - 10
10 m
10°% 3 102 e 1Y gl s g
[T R = R N S B T\ T T S T T
0 200 400 600 800 1000 0 200 400 600 800 1000
t/R 5 t/R ;

Lee Lindblom (CASS UCSD) 2014/12/11-MSC Tsinghua U 18/25



Mode Damping Il

@ Measure the constraint norm C, and the norm of the unphysical
mode damping forces £p:

T T T T T T T T T T T T T T T T

10°E -

10°F 5
10°5 = .

10°F .

C Sttt
7 gD

107 = .

10 10 -
10°E ] 10'12mwn"ﬁnmr‘nw ot WA o i
[T R = R N S B T\ T T S T T

0 200 400 600 800 1000 0 200 400 600 800 1000
1/R, 1/R,

@ Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions therefore converge to
solutions of the physical Einstein-Klein-Gordon system!
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Testing the Einstein Solver: Perturbed Static S3

@ Construct a more interesting and challenging test problem by
examining the perturbed Einstein-Klein-Gordon static universe
solution. First, find the normal modes of the perturbed system
analytically, e.g., 61 = R (A YKI1), L.

@ The frequencies of the “scalar” modes of this system for k > 2 are
given by wi RS = k(k + 2) and

WER: = Kk(k+2)+2(uPR2 —1)

/(2R —1)2 + [k(k +2) + 1]2R2.

@ Use the solutions of the perturbation equations to construct
analytical metric and scalar fields: v%, = 1'%, + 614, and
A = g€ + 5.

@ Evolve initial data constructed from fifteen superimposed normal
modes for 2 < k < 6 with one mode for each value of k from each
frequency class wp and w.
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Testing the Einstein Solver: Perturbed Static S° |I

@ Create initial data with mode
amplitudes smaller than 10~ to
insure non-linear terms will be of
order 1012,

@ Visualize the perturbations in ¢4 on
the equatorial y = 7/2 two-sphere.
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Testing the Einstein Solver: Perturbed Static S2 I

@ Create initial data with mode
amplitudes smaller than 10~ to
insure non-linear terms will be of
order 1012,

@ Visualize the perturbations in ¢ on
the equatorial y = 7/2 two-sphere.

@ Compare non-linear evolution with analytical perturbation solution.
Measure field error norms: Avz, = ¢4, — N and Ag = ¢* — ¢,

107 T T T T T T T T
107 n

102 T

1 L 1 1 1 1 1 1
200 400 600 800 1000 200 400 600 800 1000

t/R; t/R;

Lee Lindblom (CASS UCSD) 2014/12/11-MSC Tsinghua U 20/25



Testing the Einstein Solver: Perturbed Static S2 Il|

@ Norms of the constraints, C, and the unphysical mode damping
forces, &p, for the perturbed Einstein-Klein-Gordon evolution:

T T T T T T T T T T T T T T T T
10°E -
10°R 5
107 =
C 10°F .
A e T T e |
10'E 1 &
10 m
10°F .
1 (NRIRIRCTIY AR Y tPy T EAATR N
ot u,rwrmn‘mnﬂ'f"‘ i VL""\' ”*_".‘
1 B
10 " L L 1 L 1 L 1 L L L L 1 L L L L "
0 200 400 600 800 1000 0 200 400 600 800 1000
t/R, t/R,

@ Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions also converge to
solutions of the physical Einstein-Klein-Gordon system!
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Testing the Einstein Solver: Tensor Modes on S3

@ Next examine the perturbed Einstein-Klein-Gordon static universe
solution numerically with perturbations in the *tensor” modes of
the system that represent the gravitational wave degrees of
freedom:

an =R (AN Viime™ + ATE VR

with frequencies w% = k(k + 2)/R5, where Rs is the radius of the
Einstein-Klein-Gordon static solution.

@ Use the solutions of the perturbation equations to construct
analytical metric and scalar field solutions: 1%, = ¢9, + dta
and ¢ = ¢gpe'tl.

@ Evolve initial data constructed from the analytical solutions for ten
superimposed normal modes with 2 < k < 6, with one mode for

each value of k from each of the transverse-traceless tensor
; kfm kém
harmonics Y;)7%, and Y57,
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Testing the Einstein Solver: Tensor Modes on S8 I

@ Create tensor mode initial data with
amplitudes smaller than 10~ to
insure non-linear terms will be of
order 1012,

@ Visualize /514013 on the

equatorial x = 7/2 two-sphere.
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Testing the Einstein Solver: Tensor Modes on S8 I

@ Create tensor mode initial data with
amplitudes smaller than 10~ to
insure non-linear terms will be of

order 1012,

@ Visualize /514013 on the

equatorial x = 7/2 two-sphere.

@ Compare non-linear evolution with analytical perturbation solution.
Measure field error norms: Avz, = ¢4, — N and Ag = ¢* — ¢,
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Testing the Einstein Solver: Tensor Modes on S Il|

@ Norms of the constraints, C, and the unphysical mode damping
forces, &p, for the tensor mode Einstein-Klein-Gordon evolution:

T T T T T T T T
. -6 |
10 b 10
-6 i 8 i
C 10" rrmairp byt gt af e il ——
gD
10° 1 10" d
o R 13 |
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t/R, t/R,

@ Both the constraints and the unphysical mode damping forces
converge to zero. These numerical solutions also converge to
solutions of the physical Einstein-Klein-Gordon system!
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:
o A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:

e A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.

e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.

@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

@ A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:
e A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.
@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

@ A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.

@ These methods have been tested successfully for Einstein
evolutions by finding simple solutions numerically on compact

manifolds using our new covariant Einstein evolution system.
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