Gauge conditions are specified in the GH Einstein system by the gauge source function $H^a \equiv \nabla^c \nabla_c x^a$.

How do you choose H^a corresponding to the familiar gauge conditions of numerical relativity — without destroying the hyperbolicity of the system?
The principal parts of the GH Einstein equations may be written as

$$\psi^{cd} \partial_c \partial_d \psi_{ab} = \nabla_a H_b + \nabla_b H_a + Q_{ab}(\psi, \partial \psi),$$

where ψ_{ab} is the spacetime metric.

These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: $H^a = H^a(x, \psi)$.

In this case the principal parts of the GH Einstein system are simple wave operators on each component of ψ_{ab}:

$$\psi^{cd} \partial_c \partial_d \psi_{ab} = \hat{Q}_{ab}(x, \psi, \partial \psi).$$
Imposing Useful Gauge Conditions

Specifying the gauge source function H^a places constraints on the derivatives of the spacetime metric:

$$H^a = \nabla^c \nabla_c x^a = \psi^{bc} \Gamma^a_{bc} \equiv \Gamma^a.$$

where Γ^a_{bc} is the Christoffel symbol.

The quantity Γ^a depends on the time derivatives of the lapse N and shift N^i. For example,

$$\Gamma^t = N^{-3} \left(\partial_t N - N^k \partial_k N + N^2 K \right),$$

where K is the trace of the extrinsic curvature.

One could impose the slicing condition $\partial_t N - N^k \partial_k N = -2NK$, for example, by setting $H^t = N^{-2}(N - 2)K$.

Unfortunately this choice has the form $H^a = H^a(x, \psi, \partial \psi)$ which destroys the hyperbolicity of the GH Einstein system.
Elevate H_a to the status of a dynamical field (Pretorius) and evolve it along with the spacetime metric ψ_{ab}:

$$\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$$

$$\psi^{cd} \partial_c \partial_d \psi_{ab} = Q_{ab}(x, H, \partial H, \psi, \partial \psi),$$

Any gauge driver of this form produces a symmetric hyperbolic combined evolution system.

Choose Q_a so that H_a evolves toward the desired gauge target F_a as the system evolves: $H_a \rightarrow F_a$.

For example, consider the simple gauge driver:

$$\psi^{cd} \partial_c \partial_d H_a = Q_a = \mu^2 (H_a - F_a) + 2\mu N^{-1} \partial_t H_a.$$

For constant F_a, this gauge driver causes $H_a \rightarrow F_a + O(e^{-\mu t})$.

Lee Lindblom (Caltech)
Improved Gauge Driver Equations

- In the time independent (but spatially inhomogeneous) limit, the simple gauge driver evolution equation reduces to,

\[\psi^{jk} \partial_j \partial_k H_a = \mu^2 (H_a - F_a) \]

so this equation does not achieve \(H_a \rightarrow F_a \) unless \(\partial_k H_a = 0 \).

- The system can be improved by adding a time averaging field,

\[\partial_t \theta_a + \mu \theta_a = \psi^{jk} \partial_j \partial_k H_a, \]

which is used to modify the gauge driver:

\[\psi^{cd} \partial_c \partial_d H_a = Q_a = \mu^2 (H_a - F_a) + 2 \mu N^{-1} \partial_t H_a + \mu \theta_a. \]

- The resulting gauge driver system is symmetric hyperbolic for all \(F_a = F_a(x, \psi, \partial \psi) \), has solutions \(H_a \) that exponentially approach any time independent \(F_a \) when the background geometry is fixed, and reduces to \(H_a = F_a \) in any time independent state.
Decoupled Gauge Driver Test:

- Test the gauge driver equation on a fixed (flat) background spacetime. Use a time and space dependent gauge target:

\[F = \left[3 + e^{-(t-10)^2/9} \right] \sin(10x). \]
Fully Coupled Gauge Driver Test:

- Test the gauge driver equation (with a conformal gamma driver target F_a) coupled to the GH Einstein equations for a perturbed Schwarzschild spacetime: $\delta N^i = 0.01 \hat{r}^i Y_{30} e^{-(r-15)^2/9}$.