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Representations of arbitrary 3-manifolds.
Boundary conditions for elliptic and hyperbolic PDEs.
Numerical tests for solutions of simple PDEs.
Boundary conditions for Einstein’s equation.
Simple numerical Einstein evolutions.
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Representations of Arbitrary 3-Manifolds

Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R × Σ.

Every 3-manifold admits a triangulation (Moire 1952), i.e. can be
represented as a set of tetrahedrons, plus a list of rules for gluing
their faces together.

Cubes make “better” computational domains than tetrahedrons.
Can arbitrary 3-manifolds be “cubed”, i.e. represented as a set of
cubes plus a list of rules for gluing their faces together?
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“Cubed” Representations of Arbitrary 3-Manifolds
Every triangulation can be refined to a ”cubed” representation:
divide each tetrahedron into four “distorted” cubes.

Every 3-manifold can therefore be represented as a set of cubes,
plus maps that identify their faces in the appropriate way.
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Solving PDEs on Cubed Manifolds
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Solve PDEs in each cubic block region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For second-order strongly elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

uA = uB ∇nB uB = −∇nAuA.

For first-order symmetric hyperbolic systems: set incoming
characteristic fields with outgoing characteristics from neighbor,

ũ−A = ũ+
B ũ−B = ũ+

A .
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A .

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies 4 / 18



Mapping Boundary Data: Scalars
Choose the cubic-block coordinate patches to have uniform
(coordinate) size and orientation.
Maps ΨAα

Bβ between boundary faces are linear:

x i
A = c i

Aα + C Aα i
B β k (xk

B − ck
B β),

where C Aα i
B β k is a rotation-reflection matrix, and c i

Aα is the center
of the α face of block A.

y

x

z

y

x

z

B

α

β

Ψ Bβ
Αα

A

This map provides the needed boundary transformation law for
scalar fields: ūA(x i

A) ≡ uB(xk
B), where x i

A and xk
B are related by

the coordinate boundary map.
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Mapping Boundary Data: Tensors

Jacobian of the boundary coordinate map gives the appropriate
transformation law for vectors tangent to the boundary surface:

v̄p
A(x i

A) ≡ C Aα p
B β qvq

B(xk
B).

In general the normal coordinate basis vector ∂Aσ is not the
smooth extension of ∂B σ, so a more complicated transformation
law is needed for generic vectors.

The outward directed geometrical normals, na
A and nb

B, can be
used to define the natural transformation law for smooth vectors,
v̄a

A(x i
A) ≡ J Aα a

B β b vb
B(xk

B), with J Aα a
B β b = C Aα a

B β c (δc
b − nc

BnBb)− na
AnBb.
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Testing the Elliptic PDE Solver
Solve the elliptic PDE, ∇i∇iψ − c2ψ = f where c2 is a constant,
and f is a given function.

Use the co-variant derivative ∇i for the round metric on S2 × S1:

ds2 = R2
1dχ2 + R2

2

(
dθ2 + sin2 θ dϕ2

)
,

=

(
2πR1

L

)2

dz2 +

(
πR2

2L

)2
(1 + X 2

A)(1 + Y 2
A )

(1 + X 2
A + Y 2

A )2

×
[

(1 + X 2
A) dx2 − 2XAYA dx dy + (1 + Y 2

A ) dy2
]
.

where XA = tan [π(x − cx
A)/2L] and YA = tan

[
π(y − cy

A)/2L
]

are “local” Cartesian coordinates in each cubic-block.

Let f = −(ω2 + c2)ψA, where ψA = <
[
eikχY`m(θ, ϕ)

]
. The

angles χ, θ and ϕ are functions of the coordinates x , y and z.

The unique, exact, analytical solution to this problem is ψ = ψA,
when ω2 = `(` + 1)/R2

2 + k2/R2
1 .
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Testing the Elliptic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the residual RN ≡ ∇i∇iψN − c2ψN − f , and its norm:

ER =
√∫

R2
N
√

gd3x∫
f 2√gd3x .

Second, with the solution error, ∆ψ = ψN − ψA, and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2

A
√

gd3x .

All these numerical tests were
performed by implementing
the ideas described here into
the Spectral Einstein Code
(SpEC) developed originally
by the Caltech/Cornell
numerical relativity
collaboration.
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Testing the Hyperbolic PDE Solver
Solve the equation ∂2

t ψ = ∇i∇iψ with given initial data.
Convert the second-order equation into an equivalent first-order
system: ∂tψ = −Π, ∂tΠ = −∇iΦi and ∂tΦi = −∇iΠ
with constraint Ci = ∇iψ − Φi .

Use the co-variant derivative ∇i for the round metric on S3:

ds2 = R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

=

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

Choose initial data with ψt=0 = <[Yk`m(χ, θ, ϕ)],
Πt=0 = −<[iωYk`m(χ, θ, ϕ)] and Φi t=0 = <[∇iYk`m(χ, θ, ϕ)]
where ω2 = k(k + 2)/R2

3 .

The unique, exact, analytical solution to this problem is
ψ = ψA = <[eiωtYk`m(χ, θ, ϕ)], Π = −∂tψA, and Φi = ∇iψA.
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Testing the Hyperbolic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the solution error, ∆ψ = ψN − ψA, and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2√gd3x .

Second, with the constraint error, Ci = Φi −∇iψ, and its norm:

EC =
√ ∫

g ijCiCj
√

gd3x∫
g ij (Φi Φj +∇iψ∇jψ)

√
gd3x .
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Boundary Conditions for Einstein’s Equation
Einstein’s equation can be written as a first-order symmetric
hyperbolic system: ∂tuα + Ak α

β(u)∂kuβ = Fα(u), where uα
includes both spacetime metric ψab and derivatives ∂cψab.

Incoming characteristic fields must be specified on each
boundary.
At internal multi-cube boundaries, incoming fields are determined
by the outgoing fields of neighbors.

For the Einstein system, characteristic fields depend on the
spacetime metric ψab and its derivatives ∂cψab.
ψab and its derivatives ∂cψab must be mapped between
cubic-block regions to construct the needed boundary conditions.
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Mapping Boundary Data for Einstein’s Equation
The cubic-block boundary maps have the form

tA = tB, x i
A = c i

Aα + C Aα i
B β k (xk

B − ck
B β),

where C Aα i
B β k is a rotation-reflection matrix.

The Jacobians needed to map tensor fields can be constructed
using the outward directed normals, ña

A and ñb
B:

J Aα a
B β b = C Aα a

B β c (δc
b − ñc

BñBb)− ña
AñBb.

Assume there exists a smooth (time independent) “reference”
metric, whose representation g̃ab is known in terms of the global
cubic-block Cartesian coordinates. Use this metric to construct the
normals ña

A, ñb
B and ñBb needed for these boundary Jacobians.
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B and ñBb needed for these boundary Jacobians.

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies 12 / 18



Mapping Boundary Data for Einstein’s Equation II
The physical spacetime metric ψab is a tensor mapped across
region boundaries using the (inverse) boundary Jacobians:

ψ̄Aab = J B β c
Aα a J B β d

Aα b ψBcd .

Continuity of the metric across boundaries means ψAab = ψ̄Aab.

The derivatives of the physical spacetime metric ∂cψab are
mapped across region boundaries using the covariant derivative
∇̃c associated with the smooth reference metric g̃ab.
The covariant derivative of the physical spacetime metric ∇̃cψab is
a tensor mapped by the (inverse) boundary Jacobians:

∇̃Acψ̄Aab = J B β d
Aα c J B β e

Aα a J B β f
Aα b∇̃BdψBef .

The derivatives of the physical metric needed to construct the
characteristic fields of the Einstein system are then determined
from ∇̃Acψ̄Aab:

∂Acψ̄Aab = ∇̃Acψ̄Aab + Γ̃d
Acaψ̄Adb + Γ̃d

Acbψ̄Aad .
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Testing the Einstein Solver: Non-Linear Gauge Wave
This simple test evolves the non-linear gauge wave solution,

ds2 = ψAabdxadxb = −(1 + F )dt2 + (1 + F )dx2 + dy2 + dz2,

for the case F = 0.1 sin[2π(2x − t)], on a manifold with spatial
topology T 3.

Monitor how well the numerical solutions satisfy the Einstein
system by evaluating the norm of the various constraints:

EC =
√ ∫ ∑

|C|2√gd3x∫ ∑
|∂i u|2

√
gd3x .

Monitor the accuracy of the numerical solution by evaluating the
norm of its error, ∆ψab = ψNab − ψAab:

Eψ =
√∫ ∑

ab |∆ψab|2
√

gd3x∫ ∑
ab |ψab|2

√
gd3x .
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Testing the Einstein Solver: Static Universe on S3

Metric initial data is taken from the “Einstein Static Universe”
geometry:

ds2 = −dt2 + R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

= −dt2 +

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S3.
Evolution of these initial data is the static universe geometry, if the
cosmological constant is chosen to be Λ = 1/R2

3 , and the
complex scalar field is ϕ = ϕ0e iµt with µ2|ϕ0|2 = 1/4πR2

3 .
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Testing the Einstein Solver: Static Universe on S3 II
Monitor how well the numerical solutions
satisfy the Einstein system by evaluating
the norm of the various constraints:

EC =
√ ∫ ∑

|C|2√gd3x∫ ∑
|∂i u|2

√
gd3x .

Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,
∆ψab = ψNab − ψAab:

Eψ =
√∫ ∑

ab |∆ψab|2
√

gd3x∫ ∑
ab |ψab|2

√
gd3x .

Monitor the accuracy of numerical scalar
field solution by evaluating norm of its
error, ∆ϕ = ϕN − ϕA:

Eϕ =
√∫

|∆ϕ|2√gd3x∫
|ϕ|2√gd3x .
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Testing the Einstein Solver: Static Universe on S3 III
What is going on? Clues:

The constraints are well satisfied for t . 25. So the evolutions
represent real solutions to the Einstein-Klein-Gordon system.

The physical volume evolves
exponentially away from the static
universe value V0 = 2π2R3

3 :
growing in some evolutions,
contracting in others.

The metric, volume and scalar field all evolve exponentially,∝ e t/τ ,
away from the static solution at the same rate 1/τ ≈ 1.1/R3 .

The norm of the spatial gradient
of the scalar field remains small.

These solutions appear to be unstable, spatially uniform (k = 0)
modes of the static Einstein-Klein-Gordon system.
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Summary

We have developed a simple and flexible multi-block numerical
method for solving partial differential equations on manifolds with
arbitrary spatitial topology.

Each new spatial topology requires:

A cubic-block representation of the topology, i.e. a list of cubic-block
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this cubic-block representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

These methods have also been tested by finding simple solutions
to Einstein’s equation on several compact manifolds.
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