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@ Representations of arbitrary 3-manifolds.

@ Boundary conditions for elliptic and hyperbolic PDEs.
@ Numerical tests for solutions of simple PDEs.

@ Boundary conditions for Einstein’s equation.

@ Simple numerical Einstein evolutions.
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Representations of Arbitrary 3-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds > with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R x .
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Representations of Arbitrary 3-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds > with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R x .

@ Every 3-manifold admits a triangulation (Moire 1952), i.e. can be

represented as a set of tetrahedrons, plus a list of rules for gluing
their faces together.
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hyperbolic PDEs on manifolds with topology R x .

@ Every 3-manifold admits a triangulation (Moire 1952), i.e. can be

represented as a set of tetrahedrons, plus a list of rules for gluing
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@ Cubes make “better” computational domains than tetrahedrons.

@ Can arbitrary 3-manifolds be “cubed”, i.e. represented as a set of
cubes plus a list of rules for gluing their faces together?
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“Cubed” Representations of Arbitrary 3-Manifolds

@ Every triangulation can be refined to a "cubed” representation:
divide each tetrahedron into four “distorted” cubes.
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“Cubed” Representations of Arbitrary 3-Manifolds

@ Every triangulation can be refined to a "cubed” representation:
divide each tetrahedron into four “distorted” cubes.

@ Every 3-manifold can therefore be represented as a set of cubes,
plus maps that identify their faces in the appropriate way.
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Solving PDEs on Cubed Manifolds

5%, 185
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@ Solve PDEs in each cubic block region separately.

@ Use boundary conditions on cube faces to select the correct
smooth global solution.
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Solving PDEs on Cubed Manifolds
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@ Solve PDEs in each cubic block region separately.
@ Use boundary conditions on cube faces to select the correct

smooth global solution.
@ For second-order strongly elliptic systems: enforce continuity on

one face and continuity of normal derivatives on neighboring face,

Uag = Up VnBUB = —VnAuA.
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Solving PDEs on Cubed Manifolds
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@ Solve PDEs in each cubic block region separately.
@ Use boundary conditions on cube faces to select the correct
smooth global solution.
@ For second-order strongly elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

Ua = Up VnBUB = —VnAuA.

@ For first-order symmetric hyperbolic systems: set incoming
characteristic fields with outgoing characteristics from neighbor,

~ o~ ~_ o~
U, = ug ug = uy.
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Mapping Boundary Data: Scalars

@ Choose the cubic-block coordinate patches to have uniform
(coordinate) size and orientation.

@ Maps ng,; between boundary faces are linear:

P Aaifuk Ak
Xp = Cpo + Cg5k(Xg — CBp),

where C4¢/ is a rotation-reflection matrix, and ¢}, , is the center

of the « face of block A. - A 2
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@ This map provides the needed boundary transformation law for

scalar fields: Ua(x}) = ug(xg), where x), and x% are related by
the coordinate boundary map.
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Mapping Boundary Data: Tensors

@ Jacobian of the boundary coordinate map gives the appropriate
transformation law for vectors tangent to the boundary surface:

—_ ; . A
Va(xa) = Cpj5qVe(X5)-
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Mapping Boundary Data: Tensors

@ Jacobian of the boundary coordinate map gives the appropriate
transformation law for vectors tangent to the boundary surface:

“P(viy — ~Aap ar .k
Va(Xa) = Cgi34Va(X5)-
@ In general the normal coordinate basis vector d,, is not the

smooth extension of Jg,, so a more complicated transformation
law is needed for generic vectors.
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Mapping Boundary Data: Tensors

@ Jacobian of the boundary coordinate map gives the appropriate
transformation law for vectors tangent to the boundary surface:
—_ ; o A
Va(xa) = Cq34Va(xs)-
@ In general the normal coordinate basis vector d,, is not the
smooth extension of Jg,, so a more complicated transformation
law is needed for generic vectors.

@ The outward directed geometrical normals, n% and n2, can be
used to define the natural transformation law for smooth vectors,
Ta(vi\ — JAaab( vk . Aca __ Aaa(sc c a
Vi(xy) = JngVB(XB)ﬂ with J55 5 = Cp3 (05 — NgNeb) — NaNab.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V ;1) — ¢®) = f where ¢? is a constant,
and f is a given function.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V i) — ¢®1) = f where ¢? is a constant,
and f is a given function.
@ Use the co-variant derivative V; for the round metric on S? x S':

ds? = R2dy2 + R? <d82+sin29d¢2>,
_ (2R e, (7R (1 XD+ YE)
L 2L ) (1+ X2+ Y2)2
x [(1 + X2) dx? — 2XaYadxdy + (1 + Yj)dyﬂ_

where X, = tan [r(x — c¢})/2L] and Y = tan [7(y — c})/2L]
are “local” Cartesian coordinates in each cubic-block.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V ;1) — ¢®) = f where ¢? is a constant,
and f is a given function.

@ Use the co-variant derivative V; for the round metric on S? x S':
ds? = R2dy2 + R? <d92 +sin?0 dg02> ,
~ (27TR1 >2 o2 (mz)z (1+X3)(1 + Y2)
L 2L ) (1+ X2+ Y2)2
x [(1 + X3) dx®2 — 2XYadxdy + (1 + Y2) dyﬂ _

where X, = tan [r(x — c¢})/2L] and Y = tan [7(y — c})/2L]
are “local” Cartesian coordinates in each cubic-block.

o Letf = —(w? + C%)p, where g = R [*XY,(0, ¢)]. The
angles y, ¢ and ¢ are functions of the coordinates x, y and z.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V i) — ¢®1) = f where ¢? is a constant,
and f is a given function.
@ Use the co-variant derivative V; for the round metric on S? x S':

ds? = R2dy2 + R? <d82+sin29d¢2>,
_ (2R e, (7R (1 XD+ YE)
- UL 2L ) (1+ X2+ Y2)2
x [(1 + X2) dx? — 2XaYadxdy + (1 + Yj)dyﬂ_

where X, = tan [r(x — c¢})/2L] and Y = tan [7(y — c})/2L]
are “local” Cartesian coordinates in each cubic-block.

o Letf = —(w? + C%)p, where g = R [*XY,(0, ¢)]. The
angles y, ¢ and ¢ are functions of the coordinates x, y and z.

@ The unique, exact, analytical solution to this problem is 1) = 4,
when w? = /(¢ +1)/R5 + k*/ R2.

Lee Lindblom (Caltech) 7/18



Testing the Elliptic PDE Solver Il

@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
o First, with the residual Ry = V'V iy — ¢y — f, and its norm:

_ [TFao
&R =\ TR g

e Second, with the solution error, Avy) = 1)y — 14, and its norm:

£ — T A¢2/gdPx
v =\ TR adx
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@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
o First, with the residual Ry = V'V iy — ¢y — f, and its norm:

_ [TFao
&R =\ TR g

e Second, with the solution error, Avy) = )y — 14, and its norm:

. = [ A2, /gdBx
vV T e
10° ‘ ‘ ‘ ‘ ‘ @ All these numerical tests were
. performed by implementing
10°¢ 1 the ideas described here into
o e . &y | the Spectral Einstein Code
° (SpEC) developed originally
w2k . i by the Caltech/Cornell
&r e % numerical relativity
e e e collaboration.
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Testing the Hyperbolic PDE Solver

@ Solve the equation 0?1 = V,V'¢) with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d; and 0P, = -V,
with constraint C; = Vi) — ®;.
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Testing the Hyperbolic PDE Solver

@ Solve the equation 0?1 = V,V'¢) with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d; and 0P, = -V,
with constraint C; = Vi) — ®;.

@ Use the co-variant derivative V/; for the round metric on S°:

ds? = RZ[dy?+sin’x (d6® +sin® 0 di?)|

A+XDA+YE+28) o, (+YH(I+X3+238) ,

(@)2 (1+X3)(1 + Y3 (1 + Z3)

2L (1+ X2+ Y24+ 22)2 1+ Y2)(1 +23) (1 +X2)(1 +22)
14221+ X3+ Y2 2X,Y, 2X4Z, 2Y,Z,
( A)(2 A > ) 2 TTA 2 X dy — A gdxdz— A ':dydz .
(1+X3)(1+ v2) 1+ 2% 1+ Y2 1+ X2
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Testing the Hyperbolic PDE Solver

@ Solve the equation 0?1 = V,V'¢) with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d; and 0P, = -V,
with constraint C; = Vi) — ®;.

@ Use the co-variant derivative V; for the round metric on S°:
ds? = R? [dXZ +sin?y <d€2 +sin?¢ d&)} ,

(WFfa)z T+ XD+ YDA+ Z) [A+ XA+ YE+2Z8) o (1 YD+ X3+ 2ZR) o

2L (1+ X2+ Y24+ 22)2 1+ Y2)(1 +23) (1 +X2)(1 +22)
14221+ X3+ Y2 2X,Y, 2X4Z, 2Y,Z,
( A)(2 A 2A) 2 _ Ag X dy — Agdxdz— A':dydz.
(1+X3)(1+ v2) 1+ 2% 1+ Y2 1+ X2

@ Choose initial data with ¢;—o = [ Yikem(x, 0, ©)],
Mi—o = —R[iw Ykem(x, 0, ¢)] and ®;—o = R[V; Yiem(X, 0, ©)]
where w? = k(k + 2)/Rs.
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Mi—o = —R[iw Ykem(x, 0, ¢)] and ®;—o = R[V; Yiem(X, 0, ©)]
where w? = k(k + 2)/Rs.

@ The unique, exact, analytical solution to this problem is
U =a = R[E“Yiem(x, 0, 9)], 1 = —0r)a, and &; = Viha.
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Testing the Hyperbolic PDE Solver Il
@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
e First, with the solution error, Ay = 1)y — 14, and its norm:

.= J Ay2,/gd3x

e Second, with the constraint error, C; = ®; — V1), and its norm:

g o fg’/C,C,-\/gd3x
€7V T 90 +ViuV9) /adx-
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Testing the Hyperbolic PDE Solver Il

@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:

e First, with the solution error, Ay = 1)y — 14, and its norm:

.= J Ay2,/gd3x

e Second, with the constraint error, C; = ®; — V1), and its norm:
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Boundary Conditions for Einstein’s Equation

@ Einstein’s equation can be written as a first-order symmetric
hyperbolic system: 0,u” + Ak (U)o u” = F*(u), where u®
includes both spacetime metric ¢/, and derivatives 0.1 .
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Boundary Conditions for Einstein’s Equation

@ Einstein’s equation can be written as a first-order symmetric
hyperbolic system: 0,u” + Ak (U)o u” = F*(u), where u®
includes both spacetime metric ¢/, and derivatives 0.1 .

@ Incoming characteristic fields must be specified on each

boundary.
@ At internal multi-cube boundaries, incoming fields are determined
by the outgoing fields of neighbors. z
y going o g L S,
] . 2 1 T 4
1 2‘ 3 4 ! 3 4
t 5 T t 5 y
X X \;8
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Boundary Conditions for Einstein’s Equation

@ Einstein’s equation can be written as a first-order symmetric
hyperbolic system: 0,u” + Ak (U)o u” = F*(u), where u®
includes both spacetime metric ¢/, and derivatives 0.1 .

@ Incoming characteristic fields must be specified on each

boundary.
@ At internal multi-cube boundaries, incoming fields are determined
by the outgoing fields of neighbors. z
y going o g L S,
] . 2 1 T 4
1 2‘ 3 4 ! 3 4
t 5 T t 5 y
X X \;8

@ For the Einstein system, characteristic fields depend on the
spacetime metric 1,5 and its derivatives 0.1 4p.

@ 14, and its derivatives J.1),, must be mapped between
cubic-block regions to construct the needed boundary conditions.
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Mapping Boundary Data for Einstein’s Equation

@ The cubic-block boundary maps have the form

j ' Aaigok Ak
fa = g, X3 = Cpo + Cg5x(X5g — Cj),

where C4¢ is a rotation-reflection matrix.
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Mapping Boundary Data for Einstein’s Equation

@ The cubic-block boundary maps have the form

j ' Aaigok Ak
fa = g, X3 = Cpo + Cg5x(X5g — Cj),

where C4¢ is a rotation-reflection matrix.

@ The Jacobians needed to map tensor fields can be constructed
using the outward directed normals, 72 and 73:
Aaa _ ~Aaa(sc _ HCF 24

Jgsh = Cg52(05 — Nghew) — NNy

Zl lpgg z
B

y y

¥'x
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Mapping Boundary Data for Einstein’s Equation
@ The cubic-block boundary maps have the form

- ' Aai(uk Ak
fa = 1B, X3 = Cpo + Cg5x(X5g — Cj),

where C4¢ is a rotation-reflection matrix.

@ The Jacobians needed to map tensor fields can be constructed
using the outward directed normals, 72 and 73:
J35 = C552(0F — Mihep) — N3 Mep.

Zl lpgg z
B

y y

@ Assume there exists a smooth (time independent) “reference”
metric, whose representation g, is known in terms of the global
cubic-block Cartesian coordinates. Use this metric to construct the
normals 712, 1% and g, needed for these boundary Jacobians.
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Mapping Boundary Data for Einstein’s Equation Il

@ The physical spacetime metric ¢4, is a tensor mapped across
region boundaries using the (inverse) boundary Jacobians:

" BBc |BBd
WYaab — JAanAab YBed-

@ Continuity of the metric across boundaries means V4., = @5Aab.
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Mapping Boundary Data for Einstein’s Equation Il

@ The physical spacetime metric ¢4, is a tensor mapped across
region boundaries using the (inverse) boundary Jacobians:

Vaab = Jfﬁijgf;’chd.

@ Continuity of the metric across boundaries means V4., = @5Aab.

@ The derivatives of the physical spacetime metric 0.1/, are
mapped across region boundaries using the covariant derivative
@C associated with the smooth reference metric J.p. B

@ The covariant derivative of the physical spacetime metric V.14, is
a tensor mapped by the (inverse) boundary Jacobians:

~ n BsBd jBBe jBAf oy
Vacaab = JpocdanadanpVedlser-
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Mapping Boundary Data for Einstein’s Equation Il

@ The physical spacetime metric ¢4, is a tensor mapped across
region boundaries using the (inverse) boundary Jacobians:

Vpab = J,?ff;’JAB;fSchd.

@ Continuity of the metric across boundaries means V4., = @5Aab.

@ The derivatives of the physical spacetime metric 0.1/, are
mapped across region boundaries using the covariant derivative
@C associated with the smooth reference metric J.p. B

@ The covariant derivative of the physical spacetime metric V.14, is
a tensor mapped by the (inverse) boundary Jacobians:

~ n BsBd jBBe jBAf oy
Vac¥ass = JpacdnaadaanVsd¥ser

@ The derivatives of the physical metric needed to construct the
characteristic fields of the Einstein system are then determined
from vAc@Aab:

Oactaab = V acthaab + [ Geatbacy + [ iaad-
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Testing the Einstein Solver: Non-Linear Gauge Wave

@ This simple test evolves the non-linear gauge wave solution,
ds? = Yaapdx?dx® = —(1 + F)dt? + (1 + F)dx? + dy? + dz?,

for the case F = 0.1 sin[27(2x — )], on a manifold with spatial
topology T°.
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Testing the Einstein Solver: Non-Linear Gauge Wave

@ This simple test evolves the non-linear gauge wave solution,
ds? = hapdx@dx? = —(1 + F)dt? + (1 + F)dx? + dy? + dz?,
for the case F = 0.1 sin[27(2x — )], on a manifold with spatial
topology T°.

@ Monitor how well the numerical solutions satisfy the Einstein
system by evaluating the norm of the various constraints:
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Testing the Einstein Solver: Non-Linear Gauge Wave

@ This simple test evolves the non-linear gauge wave solution,
ds? = hapdx@dx? = —(1 + F)dt? + (1 + F)dx? + dy? + dz?,
for the case F = 0.1 sin[27(2x — )], on a manifold with spatial
topology T°.

@ Monitor how well the numerical solutions satisfy the Einstein
system by evaluating the norm of the various constraints:

&, — [ JEIC’/adx e
¢ = VT oupr /gdx"

0340 8 8 100
t

@ Monitor the accuracy of the numerical solution by evaluating the

norm of its error, At)ap = Vnap — Y aab: 12 EE

[ a0 |AYab|2/9d%x . Ej?

S > ap [Vanl?/gd®x 10_5?//
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t
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Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”
geometry:

ds? = —df + RZ|dy? +siny (a? + sin®0 d?) | |
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Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [df +sin?y <d62 +sin?6 d902>] ,
o+ (@)2 (I XD+ YD+ ZD [+ XD+ YE+2Z0) o 1+ YD +XF+2Z0) o
2L (1+ X2 + Y2+ 232 1+ Y1 +2%) (1+X2)(1 + 22)

14+22) 1+ X2 +v2 2X,Y, 2XsZ, 2Y,Z,
( A)(Z A ZA)d227 AR dxdy — A A dxdz AA dy dz|.
(1+XA)(1+YA) 1+ZA 1+YA 1+XA
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Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [dx2+sun X <d02 +sin ngozﬂ ,
R <LF’3>2 A+XD0+ YDA+ ZD) [+ XD+ Ya+28) o 1+ YD +XE+20) »
2L (1+ X2 + Y2+ 232 (1+Y2)(1 + 22) (1+X2)(1 + 22)
(1 +Z)(1+ X5+ Yj)dz2 C2XaVa . 2XaZa . 2YaZa dydz]
(1+X3)(1+ ¥2) 1+ 22 1+v2 1+ X2

@ This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S°.
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Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [dx2+sun X <d02 +sin 9d<p2>} ,
o+ <’i’3>2 (I XD+ YD+ ZD [+ XD+ YE+2Z0) o 1+ YD +XF+2Z0) o
2L (1+ X2 + Y2+ 232 (1+Y2)(1 + 22) (1+X2)(1 + 22)
(1 +Z)(1+ X5+ Yg)dz2 C2XaVa . 2XaZa . 2YaZa dydz]
(1+X3)(1+ ¥2) 1+ 22 1+v2 1+ X2

@ This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S°.

@ Evolution of these initial data is the static universe geometry, if the
cosmological constant is chosen to be A = 1/R5, and the
complex scalar field is o = ¢oe’™! with 1%[pg|* = 1/47RS.
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions | =%
satisfy the Einstein system by evaluating " S

the norm of the various constraints: & iz —/
£ — [ [ IClP/adx 0° 1

o I |ou2y/gdix” 107

0 5 10 15 20 25
t
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions '’
10°

satisfy the Einstein system by evaluating

the norm of the various constraints: & o

¢, _ [T a
¢ = fZ \‘(),vu|2\/§d3x' 10

@ Monitor the accuracy of numerical metric  ¢f

solution by evaluating the norm of its error,

10"
Athap = thnab — Paab: e,
: 10"
& = )L Xa|Ava? /X
v S 2 ap Wan?v/Ga%x 10
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions '’
satisfy the Einstein system by evaluating  “

10

. . 107
the norm of the various constraints: & o

¢, _ [T a ;
- J 2 |oiu?/gaéx” 105

@ Monitor the accuracy of numerical metric  ¢f

solution by evaluating the norm of its error,
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@ Monitor the accuracy of numerical scalar  «'f
field solution by evaluating norm of its ol
error, Ap = pn — ©a: £,
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Testing the Einstein Solver: Static Universe on S° Il

@ What is going on? Clues:

e The constraints are well satisfied for { < 25. So the evolutions
represent real solutions to the Einstein-Klein-Gordon system.
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Testing the Einstein Solver: Static Universe on S° Il

@ What is going on? Clues:

e The constraints are well satisfied for { < 25. So the evolutions
represent real solutions to the Einstein-Klein-Gordon system.

e The physical volume evolves 10’
exponentially away from the static . VWV ”//
universe value Vo = 273 v ///
growing in some evolutions, " ///
contracting in others.
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e The metric, volume and scalar field all evolve exponentially, o< et/
away from the static solution at the same rate 1/7 ~ 1.1/R;5.
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@ What is going on? Clues:

e The constraints are well satisfied for { < 25. So the evolutions
represent real solutions to the Einstein-Klein-Gordon system.

e The physical volume evolves 10’
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e The metric, volume and scalar field all evolve exponentially, o< et/
away from the static solution at the same rate 1/7 ~ 1.1/R;5.

@ The norm of the spatial gradient
of the scalar field remains small.
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@ What is going on? Clues:

e The constraints are well satisfied for { < 25. So the evolutions
represent real solutions to the Einstein-Klein-Gordon system.

e The physical volume evolves 1o’ =
exponentially away from the static et //%
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contracting in others. e L

e The metric, volume and scalar field all evolve exponentially, o< et/
away from the static solution at the same rate 1/7 ~ 1.1/R;5.

@ The norm of the spatial gradient
of the scalar field remains small.
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@ These solutions appear to be unstable, spatially uniform (k = 0)
modes of the static Einstein-Klein-Gordon system.
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Summary

@ We have developed a simple and flexible multi-block numerical
method for solving partial differential equations on manifolds with
arbitrary spatitial topology.
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arbitrary spatitial topology.

@ Each new spatial topology requires:
@ A cubic-block representation of the topology, i.e. a list of cubic-block
regions and a list of boundary identification maps.
o A smooth reference metric g.» to define the global differential
structure on this cubic-block representation of the manifold.
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Summary

@ We have developed a simple and flexible multi-block numerical
method for solving partial differential equations on manifolds with
arbitrary spatitial topology.

@ Each new spatial topology requires:
@ A cubic-block representation of the topology, i.e. a list of cubic-block
regions and a list of boundary identification maps.
o A smooth reference metric g.» to define the global differential
structure on this cubic-block representation of the manifold.
@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

@ These methods have also been tested by finding simple solutions
to Einstein’s equation on several compact manifolds.
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