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History of Numerical Solution of the BBH Problem:
First Axisymmetric Head-On — Hahn & Lindquist (1964).
Better Axisymmetric Head-On — Eppley & Smarr (1975-77).
Good Axisymmetric Head-On — NCSA group (1993-94).

Full 3D one orbit, no merger – Penn State group (2003-04).
First full inspiral + merger + ringdown – Pretorius (2005).
Moving puncture method – Brownsville + Goddard (2005).
Unequal masses – Goddard + Penn State groups (2006).
Non-zero spins – Brownsville + AEI (2006-07).
Post merger recoils (up to ∼ 4000 km/s)

– Jena + AEI + Rochester (2007).
Large mass ratios (1:10) – Jena (2009).
Generic spins with precession – Rochester (2009).
High precision inspiral + merger + ringdown waveforms

– AEI + Caltech/Cornell (2009).
Very large mass ratios (1:100) – Rochester (2010).
Very high spins (χ ≈ 0.95) – Caltech/Cornell (2010).
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Outline of Talk:

Fundamental Einstein Equations Issues.
Specifying the Gauge in Einstein’s Equations.
Making Einstein’s Equations Hyperbolic.
Constraints and Constraint Damping.
“Good” Gauge Conditions for Binary Black Holes.

Numerical Method Issues.
Solving Evolution Equations.
Horizon Tracking Coordinates.
Dual-Frame Evolution.
Horizon Distortion Maps.
Spectral AMR.

A Sample of Recent BBH Evolution Results.
Post-Merger Recoils.
Accurate Long Waveforms.
Very High Mass Ratios.
Very High Spins.

Lee Lindblom (Caltech) Binary Black Holes MESGW 2010 3 / 35



Traditional ADM Gauge Conditions
Construct a foliation of
spacetime by spatial
slices.
Choose a time function
with t = const. on these
slices.
Choose spatial coordinates,
xk , on each slice.
Decompose the 4-metric ψab into its 3+1 parts:
ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The lapse N and shift N i measure how coordinates are laid out on
spacetime: ~n = ∂τ =

∂xa

∂τ
∂a =

∂t
∂τ
∂t +

∂xk

∂τ
∂k ,

=
1
N
∂t −

Nk

N
∂k .

Spacetime coordinates are determined in the traditional ADM
method by specifying the lapse N and shift N i .

~n = ∂τ
∂t

∂k(t , xk )

(t + δt , xk )
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ADM Evolution System

When the gauge is determined by specifying the lapse N and shift
Nk , the Einstein equations becomes a set of evolution equations
for the spatial metric gij and extrinsic curvature Kij :

∂tgij = −2NKij + Eij(g,N, ∂xg, ∂xN),

∂tKij = Fij(g,K ,N, ∂xg, ∂xK , ∂xN, ∂x∂xg, ∂x∂xN).

The Einstein equations also include constraints:

0 = Mt ≡ Mt (g,K , ∂xg, ∂x∂xg),

0 = Mi ≡ Mi(g,K , ∂xg, ∂xK ).

Einstein’s equations do not determine the time derivatives of the
lapse N and shift N i .
This traditional form of the Einstein equations is not hyperbolic,
and numerical solutions are non-convergent.
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Generalized Harmonic Gauge Conditions
An alternate way to specify the gauge (i.e. coordinates) in the
Einstein equations is through the gauge source function Ha:

Let Ha denote the function obtained by the action of the covariant
scalar wave operator on the coordinates xa:

Ha ≡ ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(x , ψ), e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = −Γa = ∂b

(√
−ψψab

)
/
√
−ψ.
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Einstein’s Equation with the GH Method
The spacetime Ricci tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Fab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc .

The Generalized Harmonic Einstein equation is obtained by
replacing Γa with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Fab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
the scalar wave equation:

0 = ∇a∇aΦ = ψab∂a∂bΦ + F (∂Φ).
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Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional notation: ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations can then be re-expressed in terms of a vector
potential Fab = ∇aAb −∇bAa :

∇a∇aAb −∇b∇aAa = 0.
This form of Maxwell’s equations is manifestly hyperbolic as long
as the gauge is chosen correctly, e.g., let ∇aAa = H(x , t ,A),
giving:

∇a∇aAb ≡
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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The Constraint Problem

Fixing the gauge in an appropriate way makes the Einstein
equations hyperbolic, so the initial value problem becomes
well-posed mathematically.
In a well-posed representation, the constraints, C = 0, remain
satisfied for all time if they are satisfied initially.

There is no guarantee, however, that constraints that are “small”
initially will remain “small”.
Constraint violating instabilities were one of the major problems
that made progress on binary black hole solutions so slow.
Special representations of the Einstein equations are needed that
control the growth of any constraint violations.
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Constraint Damping in Electromagnetism
Electromagnetism is described as the hyperbolic evolution
equation ∇a∇aAb = ∇bH .
Where have the usual ~∇ · ~E = ~∇ · ~B = 0 constraints gone?

Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes effect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Generalized Harmonic Evolution System
A similar constraint damping mechanism exists for the GH
evolution system:

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa. Without constraint damping, these equations
are very unstable to constraint violating instabilities.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by the derivatives of the gauge constraint Ca:

Ma ≡
[
Rab −

1
2
ψabR

]
nb =

[
∇(aCb) −

1
2
ψab∇cCc

]
nb.
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Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
n(aCb) −

1
2
ψab nc Cc

]
,

where na is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c[n(cCa)
]

+ Cc∇(cCa)−
1
2
γ0 naCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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Numerical Tests of the GH Evolution System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Dynamical Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.
The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black hole mergers.
We think this failure occurs because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.
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Dynamical Gauge Conditions II

Some of the extraneous gauge dynamics could be removed by
adding a damping term to the harmonic gauge condition:

∇a∇axb = Hb = µna∂axb = µnb = µψbt/
√
−ψtt .

This works well for the spatial coordinates x i , driving them toward
solutions of the spatial Laplace equation on the timescale 1/µ.

For the time coordinate t , this damped wave condition drives t to a
time independent constant, which is not a good coordinate.
A better choice sets Ht proportional to µ log

√
−det gij/ψtt . This

time coordinate condition keeps the ratio det gij/ψ
tt close to unity,

even during binary black hole mergers where it becomes of order
100 using our simpler gauge conditions.
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Numerical Solution of Evolution Equations
∂tu = F (u, ∂xu, x , t).

Choose a grid of spatial points, xn.

x n−1 x n x n+1

Evaluate the function u on this grid: un(t) = u(xn, t).

Approximate the spatial derivatives at the grid points
∂xu(xn) =

∑
k Dn kuk .

Evaluate F at the grid points xn in terms of the uk : F (uk , xn, t).

Solve the coupled system of ordinary differential equations,

dun(t)

dt
= F [uk (t), xn, t ],

using standard numerical methods (e.g. Runge-Kutta).
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Basic Numerical Methods

Different numerical methods use different ways of choosing the
grid points xn, and different expressions for the spatial derivatives

∂xu(xn) =
∑

k Dn kuk .

Most numerical groups use finite difference methods:
Uniformly spaced grids: xn − xn−1 = ∆x = constant.
Use Taylor expansions to obtain approximate expressions for the
derivatives, e.g.,

∂xu(xn) =
un+1 − un−1

2∆x
+O(∆x2).

Grid spacing decreases as the number of grid points N increases,
∆x ∼ 1/N . Errors in finite difference methods scale as N−p.
Many NR groups with finite difference codes now use 6th or 8th

order codes.
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Basic Numerical Methods II

A few groups (Caltech/Cornell, Meudon) use spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1

k=0 ũk (t)eikx .
Choose grid points xn to allow efficient (and exact) inversion of the
series: ũk (t) =

∑N−1
n=0 wn u(xn, t)e−ikxn .

Obtain derivative formulas by differentiating the series:
∂xu(xn, t) =

∑N−1
k=0 ũk (t)∂xeikxn =

∑N−1
m=0 Dn m u(xm, t).

Errors in spectral methods are dominated by the size of ũN .
Estimate the errors (e.g. for Fourier series of smooth functions):

ũN =
1

2π

∫ π

−π
u(x)e−iNxdx =

1
2π

(−i
N

)∫ π

−π

du(x)

dx
e−iNxdx

=
1

2π

(−i
N

)p ∫ π

−π

dpu(x)

dxp e−iNxdx ≤ 1
Np max

∣∣∣∣dpu(x)

dxp

∣∣∣∣ .
Errors in spectral methods decrease faster than any power of N.
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Estimate the errors (e.g. for Fourier series of smooth functions):
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Comparing Different Numerical Methods
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Wave propagation with second-order finite difference method:

Wave propagation with spectral method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).
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Moving Black Holes in a Spectral Code

Spectral: Excision boundary is a smooth analytic surface.

Cannot add/remove individual grid points.
Straightforward method: re-grid when holes move too far.
Problems:

Re-gridding/interpolation is expensive.
Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.
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Horizon

Horizon
Outside

t
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.
This can be implemented by using a coordinate transformation
from inertial coordinates, x̄ i , to co-moving coordinates x i ,
consisting of a rotation followed by an expansion:

x i = a(̄t) R(z) i
j [ϕ(̄t)] R(y) j

k [ξ(̄t)] x̄k ,

t = t̄ .

This transformation keeps the holes fixed in co-moving
coordinates for suitably chosen a(̄t), ϕ(̄t) and ξ(̄t).
Motions of the holes are not known a priori, so a(̄t), ϕ(̄t), and ξ(̄t)
must be chosen dynamically and adaptively.
A simple feedback-control system has been used to choose a(̄t),
ϕ(̄t) and ξ(̄t) by fixing the black-hole positions, even in evolutions
with precession.
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Evolving Black Holes in Rotating Frames

Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.
Evolutions of Schwarzschild in rotating coordinates are unstable.
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Evolutions shown use a
computational domain that
extends to r = 1000M.
Angular velocity needed to
track the horizons of an equal
mass binary at merger is
about Ω ≈ 0.2/M.
Problem caused by asymptotic
behavior of metric in rotating
coordinates: ψtt ∼ ρ2Ω2,
ψti ∼ ρΩ, ψij ∼ 1.
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Dual-Coordinate-Frame Evolutions
Evolve inertial frame components of tensors using a rotating
frame coordinate grid.

Dual Frame Evolution Single Frame Evolution
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Dual-frame evolution shown here uses a comoving frame with
Ω = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Distortion Maps

Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

If the holes become significantly distorted – relative to the
spherical excision surface – bad things happen:

Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.
When the horizons move relative to the excision boundary points,
the excision boundary can become timelike, and boundary
conditions are then needed there.
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Horizon Distortion Maps II
Adjust the placement of grid points near each black hole using a
horizon distortion map that connects grid coordinates x i to points
in the black-hole rest frame x̃ i :

θ̃A = θA, ϕ̃A = ϕA,

r̃A = rA − fA(rA, θA, ϕA)
L∑
`=0

∑̀
m=−`

λ`mA (t)Y`m(θA, ϕA).

Adjust the coefficients λ`mA (t) using
a feedback-control system to keep
the excision surface the same shape
and slightly smaller than the horizon,
and to keep the characteristic
speeds from becoming ingoing.
Choose fA to scale linearly from
fA = 1 on the excision boundary, to
fA = 0 on cut sphere.
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Spectral AMR (As Implemented by Belá Szilágyi)

Measure the truncation error in each sub-domain by comparing
the power in the lowest spectral coefficients with the highest:

E =
Power in high order modes
Power in low order modes

.

Add more spectral coefficients when/where E gets too large.
Remove spectral coefficients when/where E gets too small.

High spin evolutions of Lovelace, Scheel, & Szilágyi (2010)
required AMR to achieve successful merger.
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Caltech/Cornell Spectral Einstein Code (SpEC):
Multi-domain pseudo-spectral evolution code.

Lovelace, Scheel, & Szilágyi (2010) high spin evolution grids.

Constraint damped “generalized harmonic” Einstein equations:
ψcd∂c∂dψab = Fab(ψ, ∂ψ).

Dual frame evolutions with horizon tracking and distortion maps.
Spectral AMR.
Constraint-preserving, physical and gauge boundary conditions.
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Outline of Talk:

Fundamental Einstein Equation Issues.
How Gauge is Specified.
Making Einstein’s Equation Hyperbolic.
Constraints and Constraint Damping.
Good Gauge Conditions.

Numerical Method Issues.
Solving Evolution Equations.
Horizon Tracking Coordinates.
Dual-Frame Evolution.
Horizon Distortion Maps.
Spectral AMR.

A Sample of Recent BBH Evolution Results.
Post-Merger Recoils.
Accurate Long Waveforms.
Very High Mass Ratios.
Very High Spins.

Lee Lindblom (Caltech) Binary Black Holes MESGW 2010 29 / 35



Post-Merger Recoils
Mergers of asymmetric binaries (unequal masses and/or unequal
or nonaligned spins) emit gravitational waves asymmetrically.
Resulting single black hole has a “kick” velocity relative to the
pre-merger center of mass.

Kicks in
asymmetric
non-spinning
binaries first
studied by the
Penn State and
Jena groups
(2006-07).
Figure from
González,
Sperhake, and
Brügmann (2009).
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Post-Merger Recoils with Spin
Mergers of spinning black-hole binaries can result in large recoils.
Maximum kicks are produced by mergers with anti-parallel spins
tangent to the orbital plane.

Campanelli, et al. (2007): Kick
velocities as function of orbital
phase for black holes with spin
χ ≈ 0.5.

Brügmann, et al. (2007):
Analogous results for black
holes with spin χ ≈ 0.72.

Maximum kick velocity vmax ≈ 4000 km/s predicted for maximum
spin, χ1 = −χ2 = 1, equal-mass black-hole mergers.
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Accurate Long Waveform Simulations
Numerical waveforms must be accurate enough to satisfy LIGO’s
data analysis requiements.
Numerical waveforms must be long enough to allow matching
onto PN or EOB waveforms without loss of accuracy.

Recent Caltech/Cornell:
accurate aligned-spin
waveforms, Pan, et al. (2010).

Recent AEI/LSU: accurate
non-spinning waveforms,
Pollney, et al. (2010).
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Very High Mass Ratios
Numerical simulation of high mass-ratio binaries is very difficult:

Very high spatial resolution needed near the smaller black hole.
Time steps set by the smallest spatial resolution (explicit schemes).
Radiation reaction timescale proportional to mass ratio
M/m� 1, so many orbits required to achieve merger.

Jena group performed M/m ≈ 10 simulations (2009), RIT group
recently announced M/m ≈ 100 simulations (2010).
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High Spin Evolutions
Lovelace, Scheel, & Szilágyi (2010) use high spin conformal initial
data from superimposed boosted Kerr-Schild black holes.
Spins χ ≈ 0.95
anti-aligned
with orbital
angular
momentum.
Evolve through
12.5 orbits,
merger, and
ringdown.
High accuracy
gravitational
waveform
extracted.
Lovelace, et al.
Spin Movie.
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Summary
The NR community has made great progress on a number of
fundamental problems:

Numerous hyperbolic representations of GR: BSSN and GH and ...
Constraint violating instabilities controlled.
Inner boundary problems controlled: moving puncture or excision.
Effective gauge conditions: 1+log, Γ-driver, damped harmonic, ...
Effective outer boundary conditions: outgoing physical gw,
constraint preserving, ...

Great progress on numerical and code development issues:
Higher order FD and spectral numerical methods.
AMR for FD and spectral methods.
Moving puncture methods.
Excision plus dual-frame dynamical horizon-tracking coordinates
using feedback-control.

Interesting physical results:
Large astrophysically interesting post-merger kicks.
Accurate emperical post-merger parameter estimation.
Long acccurate waveforms for GW data analysis.
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