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Why Equation of State Representations?

Neutron-star models are solutions of Einstein’s equations,
dm
dr

= 4πr 2ε,

dp
dr

= −(ε + p)
m + 4πr 3p
r(r − 2m)

,

which require a knowledge of the equation of state, ε = ε(p).
Neutron-star matter can not be duplicated in the laboratory, so its
equation of state is not well known.

Accurate representations of the equation of state, ε = ε(p, λk ),
are needed to construct accurate stellar models.
Some equation of state parameters, λk , should be measurable
from neutron-star observations.

Lee Lindblom (Caltech) Spectral Equations of State MWRM 11/5/2011 2 / 7



Why Equation of State Representations?

Neutron-star models are solutions of Einstein’s equations,
dm
dr

= 4πr 2ε,

dp
dr

= −(ε + p)
m + 4πr 3p
r(r − 2m)

,

which require a knowledge of the equation of state, ε = ε(p).
Neutron-star matter can not be duplicated in the laboratory, so its
equation of state is not well known.
Accurate representations of the equation of state, ε = ε(p, λk ),
are needed to construct accurate stellar models.
Some equation of state parameters, λk , should be measurable
from neutron-star observations.

Lee Lindblom (Caltech) Spectral Equations of State MWRM 11/5/2011 2 / 7



Parametric Representations of Equations of State
Parametric
representations
ε = ε(p, λk ) can be
constructed by
connecting simple
power law curves: p

lo
g
 ε

Approximations of this kind have errors that scale with the number
of parameters, N , as N−1 (for large N).

Neutron-star equations of state can be represented with
reasonable accuracy in this way using only a few (3 or 4)
parameters (Vuille & Ipser 1999, Read, et. al 2009).
Spectral methods provide a more efficient way to construct
parametric representations: ε(p) =

∑
k λk Φk (p).

Spectral expansions of smooth functions typically converge
exponentially (errors scale as e−κN for large N), so fewer
parameters are typically needed for given accuracy.
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Faithful Spectral Representations
Physical equations of state, ε = ε(p), are positive
monotonic-increasing functions.
Simple spectral representations, ε = ε(p, λk ) =

∑
k λk Φk (p),

require complicated conditions on λk to enforce positivity, etc.
Faithful representations are needed: where every choice of λk
corresponds to a possible physical equation of state, and every
equation of state can be represented by such an expansion.

The adiabatic index Γ(p) must be positive, but need not be
monotonic. log Γ(p) is unrestricted, and so standard spectral
expansions are faithful:

Γ(p) =
ε + p

p
dp
dε

= exp
[∑

k

λk Φk (p)

]
.

The equation of state ε(p) is determined by solving
dε(p)

dp
=
ε(p) + p
p Γ(p)

,

once the adiabatic index Γ(p) is specified.
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How to Construct Faithful Representations
Given a spectral expansion for log Γ(p) =

∑
k λk Φk (p), a faithful

parametric representation of the equation of state is therefore,

ε(p) =
ε0

µ(p)
+

1
µ(p)

∫ p

p0

µ(p′)
Γ(p′)

dp′,

µ(p) = exp
[
−
∫ p

p0

dp′

p′Γ(p′)

]
.

What choice of spectral basis functions Φk (p) provide efficient
representations of realistic neutron-star equations of state?

The following simple expansion works well (for p ≥ p0),

Γ(p) = exp

{
N∑

k=0

λk

[
log
(

p
p0

)]k
}
.

For a given eos {εi ,pi} choose the parameters λk that minimize

∆2
ε =

1
N

N∑
i=1

{[
log
(
ε(p i , λk )

εi

)]2
}
.
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How Well Do They Work?
Test effectiveness of spectral representations for realistic
equations of state. Fix the λk by minimizing

∆2
ε =

1
N

N∑
i=1

{[
log
(
ε(p i , λk )

εi

)]2
}
.
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Summary
Spectral representations of 34 neutron-star equations of state
were constructed using N = {2,3,4,5} spectral parameters.

The average values of ∆2
ε = 1

N
∑N

i=1

{[
log
(
ε(p i ,λk )

εi

)]2
}

for these

fits were ∆ε = {0.029,0.015,0.011,0.008}.
Graph showing residuals for individual equation of state fits:
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