
Solving Einstein’s Equations
for Binary Black Hole Spacetimes

Lee Lindblom

Theoretical Astrophysics, Caltech

University of Wisconsin at Milwaukee
Department of Physics Colloquium

14 October 2011

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 1 / 32



History of Numerical Solution of the BBH Problem:
First Axisymmetric Head-On — Hahn & Lindquist (1964).
Better Axisymmetric Head-On — Eppley & Smarr (1975-77).
Good Axisymmetric Head-On — Seidel NCSA group (1993-94).

Full 3D one orbit, no merger – Brügmann Penn State (2003-04).
First full inspiral + merger + ringdown – Pretorius (2005).
Moving puncture method – UT Brownsville + Goddard (2005).
Unequal masses – Goddard + Penn State groups (2006).
Non-zero spins – Brownsville + AEI (2006-07).
Post merger recoils (up to ∼ 4000 km/s)

– Jena + AEI + Rochester (2007).
Large mass ratios (1:10) – Jena (2009).
Generic spins with precession – Rochester (2009).
High precision inspiral + merger + ringdown waveforms

– AEI + Caltech/Cornell (2009).
Very large mass ratios (1:100) – Rochester (2010).
Very high spins (χ ≈ 0.95) – Caltech/Cornell (2010).
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Outline of Talk:
Brief History of the BBH Problem.
Fundamental Einstein Equation Issues.
Numerical Method Issues.
Sample of Interesting BBH Evolution Results.
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General Relativity Theory

Einstein’s theory of gravitation, general relativity theory, is a
geometrical theory in which gravitational effects are described as
geometrical structures on spacetime.
The fundamental “gravitational” field is the spacetime metric ψab
— a non-degenerate symmetric tensor field.

Coordinates xa are used to label points in spacetime.
The spacetime metric determines the physical lengths of curves
xa(λ) in spacetime, L2 = ±

∫
ψab

dxa

dλ
dxb

dλ dλ.
Coordinates xa can be chosen in any convenient way.
For example xa can be chosen at any point in spacetime so that
ds2 = ψabdxadxb = −dt2 + dx2 + dy2 + dz2 at that point.
In these special coordinates the second-order differential operator
ψab∂a∂b reduces to the standard wave operator:

ψab∂a∂b = −∂2
t + ∂2

x + ∂2
y + ∂2

z

.
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General Relativity Theory II
The spacetime metric ψab is determined by Einstein’s equation:

Rab − 1
2 Rψab = 8πTab,

where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.

For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.
The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,

where Γc
ab = 1

2ψ
cd (∂aψdb + ∂bψda − ∂dψab).

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 5 / 32



General Relativity Theory II
The spacetime metric ψab is determined by Einstein’s equation:

Rab − 1
2 Rψab = 8πTab,

where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.
For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.

The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,

where Γc
ab = 1

2ψ
cd (∂aψdb + ∂bψda − ∂dψab).

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 5 / 32



General Relativity Theory II
The spacetime metric ψab is determined by Einstein’s equation:

Rab − 1
2 Rψab = 8πTab,

where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.
For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.
The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,

where Γc
ab = 1

2ψ
cd (∂aψdb + ∂bψda − ∂dψab).

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 5 / 32



General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine unique solutions to these equations?
The important fundamental ideas needed to understand and then
answer these questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler (and more familiar) system in
which these same fundamental issues play analogous roles.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 6 / 32



General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine unique solutions to these equations?

The important fundamental ideas needed to understand and then
answer these questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler (and more familiar) system in
which these same fundamental issues play analogous roles.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 6 / 32



General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine unique solutions to these equations?
The important fundamental ideas needed to understand and then
answer these questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler (and more familiar) system in
which these same fundamental issues play analogous roles.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 6 / 32



General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine unique solutions to these equations?
The important fundamental ideas needed to understand and then
answer these questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler (and more familiar) system in
which these same fundamental issues play analogous roles.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 6 / 32



Gauge and Hyperbolicity in Electromagnetism
Maxwell’s equations split into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

Introduce Maxwell tensor, Fab with components are ~E and ~B. The
Maxwell equations then reduce to ∇aFab = 0 and ∇[aFbc] = 0.

Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
This form of the equations can be made hyperbolic by choosing
the gauge correctly, e.g., let ∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.

Hyperbolic equations (like Maxwell’s) can be solved by giving
values of the fields, Aa and ∂tAa, at an initial time t = 0, and
integrating to determine the fields Aa for future times t > 0.
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Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equations can not be solved
without specifying suitable gauge conditions.

The gauge freedom in general relativity theory is the freedom to
choose any coordinates xa on spacetime. Solving the equations
requires some specific choice of coordinates be made.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc.
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Einstein’s Equation with the GH Method
The spacetime Ricci tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc .

The Generalized Harmonic Einstein equation is obtained by
replacing Γa with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
Maxwell’s equation:

∇c∇cAa = ψcd∂c∂dAa + Qa(A, ∂A) = ∇bH.
Einstein’s equations can be solved by specifying initial values of
ψab and ∂tψab (subject to the constraints Ca = Γa + Ha = 0 and
∂tCa = ∂tΓa + ∂tHa = 0) at t = 0, and then integrating to find the
solutions for t > 0.
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The Constraint Problem

Fixing the gauge in an appropriate way makes the Einstein
equations hyperbolic, so the initial value problem becomes
well-posed mathematically.
In a well-posed representation, the constraints, C = 0, remain
satisfied for all time if they are satisfied initially.

There is no guarantee, however, that constraints that are “small”
initially will remain “small”.
Constraint violating instabilities were one of the major problems
that made progress on binary black hole solutions so slow.
Special representations of the Einstein equations are needed that
control the growth of any constraint violations.
Constraints play a similar role in Maxwell’s equation, so we will
discuss that simpler case first.
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Constraint Damping in Electromagnetism
Electromagnetism is described as the hyperbolic evolution
equation ∇a∇aAb = ∇bH .
Where have the usual ~∇ · ~E = ~∇ · ~B = 0 constraints gone?

Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a
(
∇bAb − H

)
= ∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes effect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Generalized Harmonic Evolution System
A similar constraint damping mechanism exists for the GH
evolution system:

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa plays the role of a constraint. Without
constraint damping, these equations are very unstable to
constraint violating instabilities.

Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to Ca:

0 = Rab −∇(aCb) + γ0

[
t(aCb) − 1

2ψab tc Cc

]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the basic hyperbolic structure of the system.
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Constraint Damping Generalized Harmonic System

Evolution of constraints Ca follow from the Bianchi identities.

Apply them to the (trace reversed) Pretorius evolution system,

0 = Rab − 1
2ψabR −∇(aCb) + 1

2ψab∇cCc + γ0t(aCb),

to obtain

0 = ∇c∇cCa−2γ0∇c[t(c Ca)
]

+ Cc∇(cCa)− 1
2γ0 ta CcCc.

This damped wave equation for Ca drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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Numerical Tests of the GH Evolution System

3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = 1.

Bad Old BBH Movie
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Outline of Talk:
Brief History of the BBH Problem.
Fundamental Einstein Equation Issues.
Numerical Method Issues.
Sample of Interesting BBH Evolution Results.
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Numerical Solution of Evolution Equations
∂tu = Q(u, ∂xu, x , t).

Choose a grid of spatial points, xn.

x n−1 x n x n+1

Evaluate the function u on this grid: un(t) = u(xn, t).

Approximate the spatial derivatives at the grid points
∂xu(xn) =

∑
k Dn kuk .

Evaluate Q at the grid points xn in terms of the uk : Q(uk , xn, t).

Solve the coupled system of ordinary differential equations,

dun(t)

dt
= Q[uk (t), xn, t ],

using standard numerical methods (e.g. Runge-Kutta).
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Basic Numerical Methods
Different numerical methods use different ways of choosing the
grid points xn, and different expressions for the spatial derivatives

∂xu(xn) =
∑

k Dn kuk .

Most numerical groups use finite difference methods:
Uniformly spaced grids: xn − xn−1 = ∆x = constant.
Use Taylor expansions to obtain approximate expressions for the
derivatives, e.g.,

∂xu(xn) =
un+1 − un−1

2∆x
+O(∆x2).

Grid spacing decreases as the number of grid points N increases,
∆x ∼ 1/N . Errors in finite difference methods scale as N−p.
Most groups now use finite difference codes with p = 6 or p = 8.
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Basic Numerical Methods II

A few groups (Caltech/Cornell, Meudon) use spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1

k=0 ũk (t)eikx .
Choose grid points xn to allow efficient (and exact) inversion of the
series: ũk (t) =

∑N−1
n=0 wn u(xn, t)e−ikxn .

Obtain derivative formulas by differentiating the series:
∂xu(xn, t) =

∑N−1
k=0 ũk (t)∂xeikxn =

∑N−1
m=0 Dn m u(xm, t).

Errors in spectral methods are dominated by the size of ũN .
Estimate the errors (e.g. for Fourier series of smooth functions):

ũN =
1

2π

∫ π

−π
u(x)e−iNxdx ≤ 1

Np max
∣∣∣∣dpu(x)

dxp

∣∣∣∣ .
Errors in spectral methods decrease faster than any power Np.
This means that a given level of accuracy can be achieved using
many fewer grid points with spectral methods.
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Comparing Different Numerical Methods
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Wave propagation with second-order finite difference method:

Wave propagation with spectral method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).
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Moving Black Holes in a Spectral Code

Spectral: Excision boundary is a smooth analytic surface.

Cannot add/remove individual grid points when hole move.
Straightforward method: re-grid when holes move too far.
Problems:

Re-gridding/interpolation is expensive.
Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.

x

Horizon

Horizon
Outside

t
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Horizon Tracking Coordinates
Coordinates must be used that track the motions of the holes.
This can be implemented by using a coordinate transformation
from inertial coordinates, x̄ i , to co-moving coordinates x i ,
consisting of a translation followed by a rotation followed by an
expansion:

x i = a(̄t) R(z) i
j [ϕ(̄t)] R(y) j

k [ξ(̄t)]
[
x̄k − ck (̄t)

]
,

t = t̄ .

This transformation keeps the holes fixed in co-moving
coordinates for suitably chosen a(̄t), ϕ(̄t), ξ(̄t), and ck (̄t).
Motions of the holes are not known a priori, so a(̄t), ϕ(̄t), ξ(̄t), and
ck (̄t) must be chosen dynamically and adaptively.
A simple feedback-control system has been used to choose a(̄t),
ϕ(̄t), ξ(̄t), and ck (̄t) by fixing the black-hole positions, even in
evolutions with precession and “kicks”.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 21 / 32



Horizon Tracking Coordinates
Coordinates must be used that track the motions of the holes.
This can be implemented by using a coordinate transformation
from inertial coordinates, x̄ i , to co-moving coordinates x i ,
consisting of a translation followed by a rotation followed by an
expansion:

x i = a(̄t) R(z) i
j [ϕ(̄t)] R(y) j

k [ξ(̄t)]
[
x̄k − ck (̄t)

]
,

t = t̄ .

This transformation keeps the holes fixed in co-moving
coordinates for suitably chosen a(̄t), ϕ(̄t), ξ(̄t), and ck (̄t).
Motions of the holes are not known a priori, so a(̄t), ϕ(̄t), ξ(̄t), and
ck (̄t) must be chosen dynamically and adaptively.
A simple feedback-control system has been used to choose a(̄t),
ϕ(̄t), ξ(̄t), and ck (̄t) by fixing the black-hole positions, even in
evolutions with precession and “kicks”.

Lee Lindblom (Caltech) Binary Black Holes UW Milwaukee 10/14/2011 21 / 32



Horizon Distortion Maps

Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

If the holes become significantly distorted – relative to the
spherical excision surface – bad things happen:

Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.
When the horizons move relative to the excision boundary points,
the excision boundary can become timelike, and boundary
conditions are then needed there.
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Horizon Distortion Maps II
Adjust the placement of grid points near each black hole using a
horizon distortion map that connects grid coordinates x i to points
in the black-hole rest frame x̃ i :

θ̃A = θA, ϕ̃A = ϕA,

r̃A = rA − fA(rA, θA, ϕA)
L∑
`=0

∑̀
m=−`

λ`mA (t)Y`m(θA, ϕA).

Adjust the coefficients λ`mA (t) using
a feedback-control system to keep
the excision surface the same shape
and slightly smaller than the horizon,
and to keep the boundary spacelike.
Choose fA to scale linearly from
fA = 1 on the excision boundary, to
fA = 0 on cut sphere.
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Caltech/Cornell Spectral Einstein Code (SpEC):
Multi-domain pseudo-spectral evolution code.

Lovelace, Scheel, & Szilágyi (2010) high spin evolution grids.

Constraint damped “generalized harmonic” Einstein equations:
ψcd∂c∂dψab = Qab(ψ, ∂ψ).

Dual frame evolutions with horizon tracking and distortion maps.
Constraint-preserving, physical and gauge boundary conditions.
Spectral AMR. Event Horizon Movie
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Outline of Talk:
Brief History of the BBH Problem.
Fundamental Einstein Equation Issues.
Numerical Method Issues.
Sample of Interesting BBH Evolution Results.
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Accurate Long Waveform Simulations
Numerical waveforms must be accurate enough to satisfy LIGO’s
data analysis requiements.
Numerical waveforms must be long enough to allow matching
onto PN or EOB waveforms without loss of accuracy.

Recent Caltech/Cornell:
accurate aligned-spin
waveforms, Pan, et al. (2010).

AEI/LSU: accurate
non-spinning waveforms,
Pollney, et al. (2010).
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Post-Merger Recoils
Mergers of asymmetric binaries (unequal masses and/or unequal
or nonaligned spins) emit gravitational waves asymmetrically.
Resulting single black hole has a “kick” velocity relative to the
pre-merger center of mass.

Kicks in
asymmetric
non-spinning
binaries first
studied by the
Penn State and
Jena groups
(2006-07).
Figure from
González,
Sperhake, and
Brügmann (2009).
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Post-Merger Recoils with Spin
Mergers of spinning black-hole binaries can result in large recoils.
Maximum kicks are produced by mergers with anti-parallel spins
tangent to the orbital plane.

Campanelli, et al. (2007): Kick
velocities as function of orbital
phase for black holes with spin
χ ≈ 0.5.

Brügmann, et al. (2007):
Analogous results for black
holes with spin χ ≈ 0.72.

Maximum kick velocity vmax ≈ 4000 km/s predicted for maximum
spin, χ1 = −χ2 = 1, equal-mass black-hole mergers.
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Very High Mass Ratios
Numerical simulation of high mass-ratio binaries is very difficult:

Very high spatial resolution needed near the smaller black hole.
Time steps set by the smallest spatial resolution (explicit schemes).
Radiation reaction timescale proportional to mass ratio
M/m� 1, so many orbits required to achieve merger.

Jena group performed M/m ≈ 10 simulations (2009), RIT group
later performed M/m ≈ 100 simulations (2010).
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High Spin Evolutions

Lovelace, Scheel, & Szilágyi (2010) use high spin conformal initial
data from superimposed boosted Kerr-Schild black holes.

Spins χ ≈ 0.95
anti-aligned
with orbital
angular
momentum.
Evolve through
12.5 orbits,
merger, and
ringdown.
High accuracy
gravitational
waveform
extracted.
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High Spin Evolutions II

Lovelace, Boyle, Scheel, & Szilágyi (2011) evolve initial data with
high spins, χ ≈ 0.97, aligned with orbital angular momentum, for
about 25.5 orbits followed by merger and ringdown.
Comparisons of numerical waveforms with PN waveforms:
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Summary

The NR community has made great progress on a number of
fundamental problems:

Hyperbolic representations of GR: GH and BSSN and ...
Constraint violating instabilities controlled.
Plus several others (that there wasn’t time to talk about), e.g. good
gauge conditions, outer boundary conditions, ...

Great progress on numerical and code development issues:
Higher order FD and spectral numerical methods.
Methods of controlling boundaries inside black holes: Excision plus
dual-frame dynamical horizon-tracking coordinates using
feedback-control.
Plus several others, e.g. Moving Puncture method, Adaptive Mesh
Refinement (AMR), ...

Interesting physical results:
Long acccurate waveforms for GW data analysis.
Large astrophysically interesting post-merger kicks.
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