Solving Einstein's Equations for Binary Black Hole Spacetimes

Lee Lindblom

Theoretical Astrophysics, Caltech

University of Wisconsin at Milwaukee Department of Physics Colloquium 14 October 2011

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On Seidel NCSA group (1993-94).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On Seidel NCSA group (1993-94).
- Full 3D one orbit, no merger Brügmann Penn State (2003-04).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On Seidel NCSA group (1993-94).
- Full 3D one orbit, no merger Brügmann Penn State (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On Seidel NCSA group (1993-94).
- Full 3D one orbit, no merger Brügmann Penn State (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).
- Moving puncture method UT Brownsville + Goddard (2005).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On Seidel NCSA group (1993-94).
- Full 3D one orbit, no merger Brügmann Penn State (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).
- Moving puncture method UT Brownsville + Goddard (2005).
- Unequal masses Goddard + Penn State groups (2006).
- Non-zero spins Brownsville + AEI (2006-07).
- $\bullet\,$ Post merger recoils (up to ~ 4000 km/s)

- Jena + AEI + Rochester (2007).

- Large mass ratios (1:10) Jena (2009).
- Generic spins with precession Rochester (2009).
- High precision inspiral + merger + ringdown waveforms
 AEI + Caltech/Cornell (2009).
- Very large mass ratios (1:100) Rochester (2010).
- Very high spins ($\chi \approx 0.95$) Caltech/Cornell (2010).

Outline of Talk:

- Brief History of the BBH Problem.
- Fundamental Einstein Equation Issues.
- Numerical Method Issues.
- Sample of Interesting BBH Evolution Results.

- Einstein's theory of gravitation, general relativity theory, is a geometrical theory in which gravitational effects are described as geometrical structures on spacetime.
- The fundamental "gravitational" field is the spacetime metric ψ_{ab} — a non-degenerate symmetric tensor field.

- Einstein's theory of gravitation, general relativity theory, is a geometrical theory in which gravitational effects are described as geometrical structures on spacetime.
- The fundamental "gravitational" field is the spacetime metric ψ_{ab} a non-degenerate symmetric tensor field.
- Coordinates *x^a* are used to label points in spacetime.
- The spacetime metric determines the physical lengths of curves $x^{a}(\lambda)$ in spacetime, $L^{2} = \pm \int \psi_{ab} \frac{dx^{a}}{d\lambda} \frac{dx^{b}}{d\lambda} d\lambda$.

- Einstein's theory of gravitation, general relativity theory, is a geometrical theory in which gravitational effects are described as geometrical structures on spacetime.
- The fundamental "gravitational" field is the spacetime metric ψ_{ab} — a non-degenerate symmetric tensor field.
- Coordinates *x^a* are used to label points in spacetime.
- The spacetime metric determines the physical lengths of curves $x^{a}(\lambda)$ in spacetime, $L^{2} = \pm \int \psi_{ab} \frac{dx^{a}}{d\lambda} \frac{dx^{b}}{d\lambda} d\lambda$.
- Coordinates x^a can be chosen in any convenient way. For example x^a can be chosen at any point in spacetime so that $ds^2 = \psi_{ab} dx^a dx^b = -dt^2 + dx^2 + dy^2 + dz^2$ at that point.

- Einstein's theory of gravitation, general relativity theory, is a geometrical theory in which gravitational effects are described as geometrical structures on spacetime.
- The fundamental "gravitational" field is the spacetime metric ψ_{ab} — a non-degenerate symmetric tensor field.
- Coordinates *x^a* are used to label points in spacetime.
- The spacetime metric determines the physical lengths of curves $x^{a}(\lambda)$ in spacetime, $L^{2} = \pm \int \psi_{ab} \frac{dx^{a}}{d\lambda} \frac{dx^{b}}{d\lambda} d\lambda$.
- Coordinates x^a can be chosen in any convenient way. For example x^a can be chosen at any point in spacetime so that $ds^2 = \psi_{ab}dx^a dx^b = -dt^2 + dx^2 + dy^2 + dz^2$ at that point.
- In these special coordinates the second-order differential operator $\psi^{ab}\partial_a\partial_b$ reduces to the standard wave operator:

$$\psi^{ab}\partial_a\partial_b = -\partial_t^2 + \partial_x^2 + \partial_y^2 + \partial_z^2$$

• The spacetime metric ψ_{ab} is determined by Einstein's equation: $R_{ab} - \frac{1}{2}R\psi_{ab} = 8\pi T_{ab},$

where R_{ab} is the Ricci curvature tensor associated with ψ_{ab} , $R = \psi^{ab} R_{ab}$ is the scalar curvature, and T_{ab} is the stress-energy tensor of the matter present in spacetime.

• The spacetime metric ψ_{ab} is determined by Einstein's equation: $R_{ab} - \frac{1}{2}R\psi_{ab} = 8\pi T_{ab},$

where R_{ab} is the Ricci curvature tensor associated with ψ_{ab} , $R = \psi^{ab} R_{ab}$ is the scalar curvature, and T_{ab} is the stress-energy tensor of the matter present in spacetime.

• For "vacuum" spacetimes (like binary black hole systems) $T_{ab} = 0$, so Einstein's equations can be reduced to $R_{ab} = 0$.

• The spacetime metric ψ_{ab} is determined by Einstein's equation: $R_{ab} - \frac{1}{2}R\psi_{ab} = 8\pi T_{ab},$

where R_{ab} is the Ricci curvature tensor associated with ψ_{ab} , $R = \psi^{ab} R_{ab}$ is the scalar curvature, and T_{ab} is the stress-energy tensor of the matter present in spacetime.

- For "vacuum" spacetimes (like binary black hole systems) $T_{ab} = 0$, so Einstein's equations can be reduced to $R_{ab} = 0$.
- The Ricci curvature *R*_{ab} is determined by derivatives of the metric:

 $R_{ab} = \partial_c \Gamma^c{}_{ab} - \partial_a \Gamma^c{}_{bc} + \Gamma^c{}_{cd} \Gamma^d{}_{ab} - \Gamma^c{}_{ad} \Gamma^d{}_{bc},$

where $\Gamma^{c}_{ab} = \frac{1}{2} \psi^{cd} (\partial_a \psi_{db} + \partial_b \psi_{da} - \partial_d \psi_{ab}).$

• Einstein's equations are second-order PDEs that (should, hopefully) determine the spacetime metric, e.g. in vacuum

 Einstein's equations are second-order PDEs that (should, hopefully) determine the spacetime metric, e.g. in vacuum

- What are the properties of these PDEs?
- How do we go about solving them?
- What are the appropriate boundary and/or initial data needed to determine unique solutions to these equations?

 Einstein's equations are second-order PDEs that (should, hopefully) determine the spacetime metric, e.g. in vacuum

- What are the properties of these PDEs?
- How do we go about solving them?
- What are the appropriate boundary and/or initial data needed to determine unique solutions to these equations?
- The important fundamental ideas needed to understand and then answer these questions are:
 - gauge freedom,
 - constraints.

• Einstein's equations are second-order PDEs that (should, hopefully) determine the spacetime metric, e.g. in vacuum

- What are the properties of these PDEs?
- How do we go about solving them?
- What are the appropriate boundary and/or initial data needed to determine unique solutions to these equations?
- The important fundamental ideas needed to understand and then answer these questions are:
 - gauge freedom,
 - constraints.
- Maxwell's equations are a simpler (and more familiar) system in which these same fundamental issues play analogous roles.

• Maxwell's equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

Introduce Maxwell tensor, *F_{ab}* with components are *E* and *B*. The Maxwell equations then reduce to ∇^a*F_{ab}* = 0 and ∇_{[a}*F_{bc]}* = 0.

• Maxwell's equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \\ \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

- Introduce Maxwell tensor, *F_{ab}* with components are *E* and *B*. The Maxwell equations then reduce to ∇^a*F_{ab}* = 0 and ∇_{[a}*F_{bc]}* = 0.
- Maxwell's equations can be solved in part by introducing a vector potential *F_{ab}* = ∇_a*A_b* − ∇_b*A_a*. This reduces the system to the single equation: ∇^a∇_a*A_b* − ∇_b∇^a*A_a* = 0.

• Maxwell's equations split into evolution equations and constraints:

$$\begin{aligned} \partial_t \vec{E} &= \vec{\nabla} \times \vec{B}, & \nabla \cdot \vec{E} &= 0, \\ \partial_t \vec{B} &= -\vec{\nabla} \times \vec{E}, & \nabla \cdot \vec{B} &= 0. \end{aligned}$$

- Introduce Maxwell tensor, *F_{ab}* with components are *Ē* and *B*. The Maxwell equations then reduce to ∇^a*F_{ab}* = 0 and ∇_{[a}*F_{bc]}* = 0.
- Maxwell's equations can be solved in part by introducing a vector potential *F_{ab}* = ∇_a*A_b* − ∇_b*A_a*. This reduces the system to the single equation: ∇^a∇_a*A_b* − ∇_b∇^a*A_a* = 0.
- This form of the equations can be made hyperbolic by choosing the gauge correctly, e.g., let ∇^aA_a = H(x, t, A), giving:

$$\nabla^{a} \nabla_{a} A_{b} = \left(-\partial_{t}^{2} + \partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} \right) A_{b} = \nabla_{b} H.$$

• Maxwell's equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

- Introduce Maxwell tensor, *F_{ab}* with components are *Ē* and *B*. The Maxwell equations then reduce to ∇^a*F_{ab}* = 0 and ∇_{[a}*F_{bc]}* = 0.
- Maxwell's equations can be solved in part by introducing a vector potential *F_{ab}* = ∇_a*A_b* − ∇_b*A_a*. This reduces the system to the single equation: ∇^a∇_a*A_b* − ∇_b∇^a*A_a* = 0.
- This form of the equations can be made hyperbolic by choosing the gauge correctly, e.g., let ∇^aA_a = H(x, t, A), giving:

$$\nabla^{a} \nabla_{a} A_{b} = \left(-\partial_{t}^{2} + \partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} \right) A_{b} = \nabla_{b} H.$$

Hyperbolic equations (like Maxwell's) can be solved by giving values of the fields, A_a and ∂_tA_a, at an initial time t = 0, and integrating to determine the fields A_a for future times t > 0.

Lee Lindblom (Caltech)

Gauge and Hyperbolicity in General Relativity

• The spacetime Ricci curvature tensor can be written as:

$$R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + Q_{ab}(\psi,\partial\psi),$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi_{ad} \psi^{bc} \Gamma^d{}_{bc}$.

• Like Maxwell's equations, these equations can not be solved without specifying suitable gauge conditions.

Gauge and Hyperbolicity in General Relativity

• The spacetime Ricci curvature tensor can be written as:

 $R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + Q_{ab}(\psi,\partial\psi),$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi_{ad} \psi^{bc} \Gamma^d{}_{bc}$.

- Like Maxwell's equations, these equations can not be solved without specifying suitable gauge conditions.
- The gauge freedom in general relativity theory is the freedom to choose any coordinates *x*^{*a*} on spacetime. Solving the equations requires some specific choice of coordinates be made.

Gauge and Hyperbolicity in General Relativity

• The spacetime Ricci curvature tensor can be written as:

 $R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + Q_{ab}(\psi,\partial\psi),$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi_{ad} \psi^{bc} \Gamma^d{}_{bc}$.

- Like Maxwell's equations, these equations can not be solved without specifying suitable gauge conditions.
- The gauge freedom in general relativity theory is the freedom to choose any coordinates *x*^{*a*} on spacetime. Solving the equations requires some specific choice of coordinates be made.
- One way to impose the needed gauge conditions is to specify *H*^{*a*}, the source term for a wave equation for each coordinate *x*^{*a*}:

$$H^{a} = \nabla^{c} \nabla_{c} x^{a} = \psi^{bc} (\partial_{b} \partial_{c} x^{a} - \Gamma^{e}{}_{bc} \partial_{e} x^{a}) = -\Gamma^{a}$$

where $\Gamma^a = \psi^{bc} \Gamma^a{}_{bc}$.

Einstein's Equation with the GH Method

• The spacetime Ricci tensor can be written as:

$$\begin{split} R_{ab} &= -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + Q_{ab}(\psi,\partial\psi), \\ \text{where } \psi_{ab} \text{ is the 4-metric, and } \Gamma_a = \psi^{bc}\Gamma_{abc} \text{ .} \end{split}$$

• The Generalized Harmonic Einstein equation is obtained by replacing Γ_a with $-H_a(x, \psi) = -\psi_{ab}H^b(x, \psi)$:

 $R_{ab} - \nabla_{(a} \left[\Gamma_{b} + H_{b} \right] = -\frac{1}{2} \psi^{cd} \partial_{c} \partial_{d} \psi_{ab} - \nabla_{(a} H_{b)} + Q_{ab} (\psi, \partial \psi).$

• The vacuum GH Einstein equation, $R_{ab} = 0$ with $\Gamma_a + H_a = 0$, is therefore manifestly hyperbolic, having the same principal part as Maxwell's equation:

 $\nabla^{c}\nabla_{c}A_{a} = \psi^{cd}\partial_{c}\partial_{d}A_{a} + Q_{a}(A,\partial A) = \nabla_{b}H.$

 Einstein's equations can be solved by specifying initial values of ψ_{ab} and ∂_tψ_{ab} (subject to the constraints C_a = Γ_a + H_a = 0 and ∂_tC_a = ∂_tΓ_a + ∂_tH_a = 0) at t = 0, and then integrating to find the solutions for t > 0.

The Constraint Problem

- Fixing the gauge in an appropriate way makes the Einstein equations hyperbolic, so the initial value problem becomes well-posed mathematically.
- In a well-posed representation, the constraints, C = 0, remain satisfied for all time if they are satisfied initially.

The Constraint Problem

- Fixing the gauge in an appropriate way makes the Einstein equations hyperbolic, so the initial value problem becomes well-posed mathematically.
- In a well-posed representation, the constraints, C = 0, remain satisfied for all time if they are satisfied initially.
- There is no guarantee, however, that constraints that are "small" initially will remain "small".
- Constraint violating instabilities were one of the major problems that made progress on binary black hole solutions so slow.
- Special representations of the Einstein equations are needed that control the growth of any constraint violations.

The Constraint Problem

- Fixing the gauge in an appropriate way makes the Einstein equations hyperbolic, so the initial value problem becomes well-posed mathematically.
- In a well-posed representation, the constraints, C = 0, remain satisfied for all time if they are satisfied initially.
- There is no guarantee, however, that constraints that are "small" initially will remain "small".
- Constraint violating instabilities were one of the major problems that made progress on binary black hole solutions so slow.
- Special representations of the Einstein equations are needed that control the growth of any constraint violations.
- Constraints play a similar role in Maxwell's equation, so we will discuss that simpler case first.

Constraint Damping in Electromagnetism

Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?

Constraint Damping in Electromagnetism

- Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

$$\nabla^a \nabla_a \left(\nabla^b A_b - H \right) = \nabla^a \nabla_a \mathcal{C} = 0.$$

Constraint Damping in Electromagnetism

- Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

$$\nabla^a \nabla_a \left(\nabla^b A_b - H \right) = \nabla^a \nabla_a \mathcal{C} = 0.$$

Modify evolution equations by adding multiples of the constraints:

 $\nabla^{a} \nabla_{a} A_{b} = \nabla_{b} H + \gamma_{0} t_{b} C = \nabla_{b} H + \gamma_{0} t_{b} (\nabla^{a} A_{a} - H).$

• These changes effect the constraint evolution equation,

$$\nabla^a \nabla_a \mathcal{C} - \gamma_0 t^b \nabla_b \mathcal{C} = \mathbf{0},$$

so constraint violations are damped when $\gamma_0 > 0$.

Lee Lindblom (Caltech)

Generalized Harmonic Evolution System

A similar constraint damping mechanism exists for the GH evolution system:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$ plays the role of a constraint. Without constraint damping, these equations are very unstable to constraint violating instabilities.

Generalized Harmonic Evolution System

• A similar constraint damping mechanism exists for the GH evolution system:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$ plays the role of a constraint. Without constraint damping, these equations are very unstable to constraint violating instabilities.

• Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to *C*_a:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[t_{(a}C_{b)} - \frac{1}{2}\psi_{ab} t^c C_c \right],$$

where t^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the basic hyperbolic structure of the system.

12/32

Constraint Damping Generalized Harmonic System

- Evolution of constraints C_a follow from the Bianchi identities.
- Apply them to the (trace reversed) Pretorius evolution system,

$$0 = R_{ab} - \frac{1}{2}\psi_{ab}R - \nabla_{(a}\mathcal{C}_{b)} + \frac{1}{2}\psi_{ab}\nabla^{c}\mathcal{C}_{c} + \frac{\gamma_{0}t_{(a}\mathcal{C}_{b)}}{t_{(a}\mathcal{C}_{b)}},$$

to obtain

$$0 = \nabla^c \nabla_c \mathcal{C}_a - 2\gamma_0 \nabla^c [t_{(c} \mathcal{C}_{a)}] + \mathcal{C}^c \nabla_{(c} \mathcal{C}_{a)} - \frac{1}{2}\gamma_0 t_a \mathcal{C}^c \mathcal{C}_c.$$

 This damped wave equation for C_a drives all small short-wavelength constraint violations toward zero as the system evolves (for γ₀ > 0).

Numerical Tests of the GH Evolution System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of the GH evolution system.
- These evolutions are stable and convergent when $\gamma_0 = 1$.

Bad Old BBH Movie
Outline of Talk:

- Brief History of the BBH Problem.
- Fundamental Einstein Equation Issues.
- Numerical Method Issues.
- Sample of Interesting BBH Evolution Results.

$$\partial_t u = Q(u, \partial_x u, x, t).$$

• Choose a grid of spatial points, *x_n*.

 $\partial_t u = Q(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

 $\partial_t u = Q(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

• Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$

 $\partial_t u = Q(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$\begin{array}{cccc} U_{n-1} & U_n & U_{n+1} \\ \bullet & \bullet & \bullet & \bullet \\ X_{n-1} & X_n & X_{n+1} \end{array}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *Q* at the grid points x_n in terms of the u_k : $Q(u_k, x_n, t)$.

 $\partial_t u = Q(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function u on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *Q* at the grid points x_n in terms of the u_k : $Q(u_k, x_n, t)$.
- Solve the coupled system of ordinary differential equations,

$$\frac{du_n(t)}{dt} = Q[u_k(t), x_n, t],$$

using standard numerical methods (e.g. Runge-Kutta).

Lee Lindblom (Caltech)

 Different numerical methods use different ways of choosing the grid points *x_n*, and different expressions for the spatial derivatives ∂_x*u*(*x_n*) = ∑_{,k} *D_{nk}u_k*.

- Different numerical methods use different ways of choosing the grid points x_n , and different expressions for the spatial derivatives $\partial_x u(x_n) = \sum_k D_{nk} u_k$.
- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $x_n x_{n-1} = \Delta x = \text{constant}.$
 - Use Taylor expansions to obtain approximate expressions for the derivatives, e.g.,

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

- Different numerical methods use different ways of choosing the grid points x_n , and different expressions for the spatial derivatives $\partial_x u(x_n) = \sum_k D_{nk} u_k$.
- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $x_n x_{n-1} = \Delta x = \text{constant}.$
 - Use Taylor expansions to obtain approximate expressions for the derivatives, e.g.,

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

- Grid spacing decreases as the number of grid points *N* increases, $\Delta x \sim 1/N$. Errors in finite difference methods scale as N^{-p} .
- Most groups now use finite difference codes with p = 6 or p = 8.

• A few groups (Caltech/Cornell, Meudon) use spectral methods.

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (e.g. for Fourier series of *smooth* functions):

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (e.g. for Fourier series of *smooth* functions):

- Errors in spectral methods decrease faster than any power N^p.
- This means that a given level of accuracy can be achieved using many fewer grid points with spectral methods.

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).

Lee Lindblom (Caltech)

Binary Black Holes

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Lee Lindblom (Caltech)

Binary Black Holes

• Spectral: Excision boundary is a smooth analytic surface.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points when hole move.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

Solution:

Choose coordinates that smoothly track the location of the black hole.

For a black hole binary this means using coordinates that rotate with respect to inertial frames at infinity.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.
- This can be implemented by using a coordinate transformation from inertial coordinates, xⁱ, to co-moving coordinates xⁱ, consisting of a translation followed by a rotation followed by an expansion:

$$\begin{aligned} x^{i} &= a(\bar{t}) R^{(z)i}{}_{j}[\varphi(\bar{t})] R^{(y)j}{}_{k}[\xi(\bar{t})] \left[\bar{x}^{k} - c^{k}(\bar{t}) \right], \\ t &= \bar{t}. \end{aligned}$$

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.
- This can be implemented by using a coordinate transformation from inertial coordinates, xⁱ, to co-moving coordinates xⁱ, consisting of a translation followed by a rotation followed by an expansion:

$$\begin{aligned} x^{i} &= a(\overline{t}) R^{(z) i}{}_{j}[\varphi(\overline{t})] R^{(y) j}{}_{k}[\xi(\overline{t})] \left[\overline{x}^{k} - c^{k}(\overline{t}) \right], \\ t &= \overline{t}. \end{aligned}$$

- This transformation keeps the holes fixed in co-moving coordinates for suitably chosen a(t
), φ(t
), ξ(t
), and c^k(t
).
- Motions of the holes are not known *a priori*, so $a(\bar{t})$, $\varphi(\bar{t})$, $\xi(\bar{t})$, and $c^k(\bar{t})$ must be chosen dynamically and adaptively.
- A simple feedback-control system has been used to choose a(t
 t), φ(t
 t), ξ(t
 t), and c^k(t
 t) by fixing the black-hole positions, even in evolutions with precession and "kicks".

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

Horizon Distortion Maps

 Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.
 - When the horizons move relative to the excision boundary points, the excision boundary can become timelike, and boundary conditions are then needed there.

Horizon Distortion Maps II

 Adjust the placement of grid points near each black hole using a horizon distortion map that connects grid coordinates xⁱ to points in the black-hole rest frame xⁱ:

$$\hat{\theta}_A = \theta_A, \qquad \tilde{\varphi}_A = \varphi_A,$$

 $\tilde{r}_A = r_A - f_A(r_A, \theta_A, \varphi_A) \sum_{\ell=0}^L \sum_{m=-\ell}^\ell \lambda_A^{\ell m}(t) Y_{\ell m}(\theta_A, \varphi_A).$

Horizon Distortion Maps II

 Adjust the placement of grid points near each black hole using a horizon distortion map that connects grid coordinates xⁱ to points in the black-hole rest frame xⁱ:

$$\begin{aligned} \theta_A &= \theta_A, \qquad \tilde{\varphi}_A = \varphi_A, \\ \tilde{r}_A &= r_A - f_A(r_A, \theta_A, \varphi_A) \sum_{\ell=0}^L \sum_{m=1}^\ell \lambda_A^{\ell m}(t) Y_{\ell m}(\theta_A, \varphi_A). \end{aligned}$$

- Adjust the coefficients λ^{ℓm}_A(t) using a feedback-control system to keep the excision surface the same shape and slightly smaller than the horizon, and to keep the boundary spacelike.
- Choose f_A to scale linearly from $f_A = 1$ on the excision boundary, to $f_A = 0$ on cut sphere.

Caltech/Cornell Spectral Einstein Code (SpEC):

• Multi-domain pseudo-spectral evolution code.

Lovelace, Scheel, & Szilágyi (2010) high spin evolution grids.

- Constraint damped "generalized harmonic" Einstein equations: $\psi^{cd}\partial_c\partial_d\psi_{ab} = Q_{ab}(\psi,\partial\psi).$
- Dual frame evolutions with horizon tracking and distortion maps.
- Constraint-preserving, physical and gauge boundary conditions.
- Spectral AMR. Event Horizon Movie

Outline of Talk:

- Brief History of the BBH Problem.
- Fundamental Einstein Equation Issues.
- Numerical Method Issues.
- Sample of Interesting BBH Evolution Results.
Accurate Long Waveform Simulations

- Numerical waveforms must be accurate enough to satisfy LIGO's data analysis requiements.
- Numerical waveforms must be long enough to allow matching onto PN or EOB waveforms without loss of accuracy.

 Recent Caltech/Cornell: accurate aligned-spin waveforms, Pan, et al. (2010).

Post-Merger Recoils

- Mergers of asymmetric binaries (unequal masses and/or unequal or nonaligned spins) emit gravitational waves asymmetrically.
- Resulting single black hole has a "kick" velocity relative to the pre-merger center of mass.
- Kicks in asymmetric non-spinning binaries first studied by the Penn State and Jena groups (2006-07).
- Figure from González, Sperhake, and Brügmann (2009).

Post-Merger Recoils with Spin

- Mergers of spinning black-hole binaries can result in large recoils.
- Maximum kicks are produced by mergers with anti-parallel spins tangent to the orbital plane.

- Campanelli, et al. (2007): Kick velocities as function of orbital phase for black holes with spin $\chi \approx 0.5$.
- Brügmann, et al. (2007): Analogous results for black holes with spin $\chi \approx 0.72$.
- Maximum kick velocity $v_{\text{max}} \approx 4000$ km/s predicted for maximum spin, $\chi_1 = -\chi_2 = 1$, equal-mass black-hole mergers.

Lee Lindblom (Caltech)

Binary Black Hole

Very High Mass Ratios

- Numerical simulation of high mass-ratio binaries is very difficult:
 - Very high spatial resolution needed near the smaller black hole.
 - Time steps set by the smallest spatial resolution (explicit schemes).
 - Radiation reaction timescale proportional to mass ratio $M/m \gg 1$, so many orbits required to achieve merger.
- Jena group performed $M/m \approx 10$ simulations (2009), RIT group later performed $M/m \approx 100$ simulations (2010).

Lee Lindblom (Caltech)

High Spin Evolutions

- Lovelace, Scheel, & Szilágyi (2010) use high spin conformal initial data from superimposed boosted Kerr-Schild black holes.
- Spins $\chi \approx 0.95$ anti-aligned with orbital angular momentum.
- Evolve through 12.5 orbits, merger, and ringdown.
- High accuracy gravitational waveform extracted.

High Spin Evolutions II

- Lovelace, Boyle, Scheel, & Szilágyi (2011) evolve initial data with high spins, $\chi \approx 0.97$, aligned with orbital angular momentum, for about 25.5 orbits followed by merger and ringdown.
- Comparisons of numerical waveforms with PN waveforms:

Summary

- The NR community has made great progress on a number of fundamental problems:
 - Hyperbolic representations of GR: GH and BSSN and ...
 - Constraint violating instabilities controlled.
 - Plus several others (that there wasn't time to talk about), e.g. good gauge conditions, outer boundary conditions, ...
- Great progress on numerical and code development issues:
 - Higher order FD and spectral numerical methods.
 - Methods of controlling boundaries inside black holes: Excision plus dual-frame dynamical horizon-tracking coordinates using feedback-control.
 - Plus several others, e.g. Moving Puncture method, Adaptive Mesh Refinement (AMR), ...
- Interesting physical results:
 - Long acccurate waveforms for GW data analysis.
 - Large astrophysically interesting post-merger kicks.