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Binary Black Hole Problem

Two black holes orbiting each other are the strongest astrophysical
sources of gravitational waves, first detected by LIGO in 2015.
As gravitational waves are emitted, energy is removed from the
system. Orbit becomes smaller and the frequency of the waves
becomes higher as the binary evolves.

Gravitational waves are emitted at twice the orbital frequency with
an amplitude that scales roughly as the frequency squared.

Strongest waves (and therefore the most easily detectable waves)
are emitted as the two black holes merge into a single hole.
Full non-linear numerical relativity is needed to construct accurate
model waveforms for these spacetimes.
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Why Is Numerical Relativity So Difficult?

Very big computational problem:

Must evolve ∼ 50 dynamical fields (spacetime metric plus all first
derivatives).
Must accurately resolve features on many scales from black hole
horizons r ∼ M to emitted waves r ∼ 100M.
Evolutions must be stable and accurate for very long times
t ∼ 105M.

Dynamics of the binary black hole problem is driven by delicate
adjustments to orbit due to emission of gravitational waves. Very
high accuracy is needed to represent these effects correctly.
Many representations of the Einstein equations have
mathematically ill-posed initial value and/or initial-boundary value
problems.
Constraint violating instabilities destroy stable numerical solutions
in many well-posed forms of the equations.
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General Relativity Theory

The spacetime metric ψab is determined by Einstein’s equation:
Rab − 1

2 Rψab = 8πTab,
where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.

For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.
The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,

where Γc
ab = 1

2ψ
cd (∂aψdb + ∂bψda − ∂dψab).

The Ricci tensor therefore depends on the spacetime metric and
its first and second derivatives:

Rab = Rab(∂∂ψ, ∂ψ, ψ).
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General Relativity Theory II

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine a unique solution to these equations?
The important fundamental ideas needed to understand these
questions are:

gauge freedom,
constraints.

Maxwell’s equations are a simpler system in which these same
fundamental issues play analogous roles.
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Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∂t

~B = −~∇× ~E , ~∇ · ~E = 0, ~∇ · ~B = 0.
These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where the antisymmetric Fab has components ~E and ~B.

Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
Gauge freedom allows you to add an arbitrary ∇aΛ to Aa.
The choice of Λ effects ∇aAa, so fix Λ by setting ∇aAa = H, where
H(A, x , t) can be chosen arbitrarily.
The resulting Maxwell equations are manifestly hyperbolic for all
choices of H(A, x , t):

∇a∇aAb = ∇bH.
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Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equations can not be solved as an
initial value problem without specifying suitable gauge conditions.

The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates. Gauge conditions fix the desired choice.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.
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Gauge and Hyperbolicity in General Relativity II
Specifying coordinates by the generalized harmonic (GH) method
is accomplished by choosing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Recall that the spacetime Ricci tensor is given by

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ).

The Generalized Harmonic Einstein equation is obtained by
replacing Γa = ψabΓb with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, in the sense that it has the same
principal part as the scalar wave equation:

0 = ∇a∇aΦ = ψab∂a∂bΦ + Q(∂Φ).
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ADM 3+1 Approach to Fixing Coordinates

Decompose the 4-metric ψab into its 3+1 parts:

ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).

The unit vector ta normal to the t =constant slices depends only
on the lapse N and shift N i : ~t = ∂τ = ∂xa

∂τ
∂a = 1

N∂t − Nk

N ∂k .

~t = ∂τ
∂t

∂k(t , xk )

(t + δt , xk )
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ADM Approach to the Einstein Evolution System
Decompose the Einstein equations Rab = 0 using the ADM 3+1
coordinate splitting. The resulting system includes evolution
equations for the spatial metric gij and extrinsic curvature Kij :

∂tgij − Nk∂kgij = −2NKij + gjk∂iNk + gik∂jNk ,

∂tKij − Nk∂kKij = NR(3)
ij + Kjk∂iNk + Kik∂jNk

−∇i∇jN − 2NKikK k
j + NK k

kKij .
The resulting system also includes constraints:

0 = R(3) − KijK ij + (K k
k )2,

0 = ∇kKki −∇iK k
k .

System includes no evolution equations for lapse N or shift N i .
These quanties can be specified freely to fix the gauge.
Resolving the issues of hyperbolicity (i.e. well posedness of the
initial value problem) and constraint stability are much more
complicated in this approach. The most successful version is the
BSSN evolution system used by many (most) codes.
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Dynamical GH Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.

The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black-hole mergers.
This failure seems to occur because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.

Lee Lindblom (UCSD) Generalized Harmonic Einstein Equation 9/16/2017 11 / 23



Dynamical GH Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.
The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black-hole mergers.
This failure seems to occur because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.

Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.

Lee Lindblom (UCSD) Generalized Harmonic Einstein Equation 9/16/2017 11 / 23



Dynamical GH Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.
The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black-hole mergers.
This failure seems to occur because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.

Lee Lindblom (UCSD) Generalized Harmonic Einstein Equation 9/16/2017 11 / 23



Dynamical GH Gauge Conditions II
Some of the extraneous gauge dynamics could be removed by
adding a damping term to the harmonic gauge condition:

∇a∇axb = Hb = µta∂axb = µtb.

This works well for the spatial coordinates x i , driving them toward
solutions of the spatial Laplace equation on the timescale 1/µ.

For the time coordinate t , this damped wave condition drives t to a
time independent constant, which is not a good coordinate.

A better choice sets taHa = −µ log
√

g/N . The gauge condition
in this case becomes

ta∂a log
√

g/N = −µ log
√

g/N + N−1∂kNk

This coordinate condition keeps g/N close to unity, even during
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The Constraint Problem

Fixing the gauge in an appropriate way makes the Einstein
equations hyperbolic, so the initial value problem becomes
well-posed mathematically.
In a well-posed representation, the constraints, C = 0, remain
satisfied for all time if they are satisfied initially.

There is no guarantee, however, that constraints that are “small”
initially will remain “small”.
Constraint violating instabilities were one of the major problems
that made progress on the binary black hole problem so slow.
Special representations of the Einstein equations are needed that
control the growth of any constraint violations.
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Constraint Damping in Electromagnetism
Electromagnetism is described by the hyperbolic evolution
equation ∇a∇aAb = ∇bH . Are there any constraints?
Where have the usual ~∇ · ~E = ~∇ · ~B = 0 constraints gone?

Gauge condition becomes a constraint: 0 = C ≡ ∇bAb − H .

Maxwell’s equations imply that this constraint is preserved:

0 = ∇a∇a (∇bAb − H) = ∇a∇a C.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes effect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Constraints in the GH Evolution System
The GH evolution system has the form,

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa plays the role of a constraint. Without
constraint damping, these equations are very unstable to
constraint violating instabilities.
Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by derivatives of the gauge constraint Ca:

Ma ≡
[
Rab − 1

2ψabR
]
tb =

[
∇(aCb) − 1

2ψab∇cCc

]
tb.
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Constraint Damping Generalized Harmonic System

Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c[t(cCa)
]

+ Cc∇(cCa)− 1
2γ0 taCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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Summary of the GH Einstein System

Choose coordinates by fixing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = ∇c∇cxa = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Gauge condition Ha = −Γa is a constraint: Ca = Ha + Γa = 0.

Principal part of evolution system becomes manifestly hyperbolic:

Rab −∇(a Cb) = − 1
2ψ

cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

Add constraint damping terms for stability:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.
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What Do We Mean By Hyperbolic?
Einstein’s equation is “manifestly hyperbolic” in the sense that its
principal part is the same as the scalar wave equation.
Exactly what does this mean and this helpful mathematically?
Does this imply the equations have well-posed initial value and
initial-boundary value problems?

Using equations with well-posed initial-boundary value problems is
critical. We want to solve problems with physical boundaries (e.g.
boundaries near spatial infinity or just inside black-hole horizons).
Some numerical methods (e.g. spectral) cut space into many
small computational domains. Exchanging dynamical information
across these domain boundaries without loss of accuracy is
essential.
Symmetric hyperbolic systems are one class of equations for
which suitable well-posedness theorems exist, and which are
general enough to include Einstein’s equation together with most
of the other dynamical field equations used by physicists.
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Symmetric Hyperbolic Systems
Evolution equations of the form,

∂tuα + Ak α
β(u, x , t)∂kuβ = Fα(u, x , t),

for a collection of dynamical fields uα, are called symmetric
hyperbolic if there exists a positive definite Sαβ having the
property that SαγAk γ

β ≡ Ak
αβ = Ak

βα.

Consider the scalar wave equation in space with arbitrary spatial
metric gij :

0 = −∂2
t ψ +∇k∇kψ = −∂2

t ψ + gk`(∂k∂`ψ − Γn
k`∂nψ).

Define the first-order dynamical fields, uα = {ψ,Π,Φk}, which
satisfy the following evolution equations:

∂tψ = −Π, ∂t Π +∇k Φk = 0, ∂t Φk +∇k Π = 0.
Solutions to this first order system are the same as the solutions
to the original second-order wave equation as long as the
constrainds are satisfied: Ci ≡ ∂iψ − Φi = 0, and Cij ≡ ∂[iΦj] = 0.
The first-order scalar field system is symmetric hyperbolic with the
symmetrizer

dS2 = Sαβduαduβ = Λ2dψ2 + dΠ2 + g ijdΦidΦj .
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First Order Generalized Harmonic Evolution System
GH Einstein equations can be written as a symmetric-hyperbolic
first-order system (Fischer and Marsden 1972, Alvi 2002). It is
straightforward to write it as a first-order evolution system:

∂tψab − Nk∂kψab = −N Πab,

∂tΠab − Nk∂k Πab + Ngki∂k Φiab ' 0,
∂tΦiab − Nk∂k Φiab + N∂iΠab ' 0,

where ' means equality up to terms depending on the fields
uα = {ψab,Πab,Φkab} but not their derivatives.

This system is symmetric hyperbolic because there exists a
symmetrizer, which can written in the form:

dS2 = Sαβduαduβ

= mabmcd (Λ2dψacdψbd + dΠacdΠbd + g ijdΦiacdΦjbd
)
,

where mab is any positive definite metric (e.g. mab = δab).
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Constraints in the First-Order Einstein System
The first-order symmetric hyperbolic evolution system is
equivalent to the original second-order Einstein equation so long
as the following constraints are satisfied:

Ca = Ha + Γa = 0,
Fa = ∂tCb = 0,
Cia = ∂iCb = 0,
Ciab = ∂iψab − Φiab = 0,
Cijab = ∂[iΦj]ab = 0.

This first-order system has (at least) two potential problems:
The new constraints, e.g. in particular Ckab = ∂kψab − Φkab, tend
to grow exponentially during numerical evolutions.
This system is not linearly degenerate, so it is possible (likely?) that
shocks will develop (e.g. the components that determine shift
evolution have the form ∂tN i − Nk∂kN i ' 0).
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A ‘New’ Generalized Harmonic Evolution System

We can correct these problems by adding additional multiples of
the constraints to the evolution system:

∂tψab − (1 + γ1)Nk∂kψab = −NΠab−γ1Nk Φkab,

∂tΠab − Nk∂k Πab + Ngki∂k Φiab−γ1γ2Nk∂kψab ' −γ1γ2Nk Φkab,

∂tΦiab − Nk∂k Φiab + N∂iΠab−γ2N∂iψab ' −γ2NΦiab.

This ‘new’ generalized-harmonic evolution system has several
nice properties:

This system is linearly degenerate for γ1 = −1 (and so shocks
should not form from smooth initial data).

The Φiab evolution equation can be written in the form,
∂tCiab − Nk∂kCiab ' −γ2NCiab, so the new constraints are
damped when γ2 > 0.

This system is symmetric hyperbolic for all values of γ1 and γ2.
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Numerical Tests of the New GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.
These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem fix the
boundary data to be the exact analytical values.
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