Model Waveform Accuracy Standards for Gravitational Wave Data Analysis

Lee Lindblom

Theoretical Astrophysics, Caltech

Numerical Relativity and Data Analysis Meeting Syracuse University – 12 August 2008

Collaborators: Duncan Brown (Syracuse) Benjamin Owen (Penn State)

- Derive model waveform accuracy requirements for ideal detectors:
 - Standards for measurement.
 - Standards for detection.

- Derive model waveform accuracy requirements for ideal detectors:
 - Standards for measurement.
 - Standards for detection.
- Transform requirements into more user-friendly forms.

- Derive model waveform accuracy requirements for ideal detectors:
 - Standards for measurement.
 - Standards for detection.
- Transform requirements into more user-friendly forms.
- Determine effect of calibration errors on accuracy requirements.

- Derive model waveform accuracy requirements for ideal detectors:
 - Standards for measurement.
 - Standards for detection.
- Transform requirements into more user-friendly forms.
- Determine effect of calibration errors on accuracy requirements.
- Evaluate standards for the Advanced LIGO case.

- Derive model waveform accuracy requirements for ideal detectors:
 - Standards for measurement.
 - Standards for detection.
- Transform requirements into more user-friendly forms.
- Determine effect of calibration errors on accuracy requirements.
- Evaluate standards for the Advanced LIGO case.
- What this talk will not cover
 - How to measure NR waveform errors.
 - How well do current NR waveforms satisfy these standards.
 - ...

• How close must two waveforms, h_e(f) and h_m(f), be to each other so that observations are unable to distinguish them?

- How close must two waveforms, h_e(f) and h_m(f), be to each other so that observations are unable to distinguish them?
- Consider the one parameter family of waveforms:

 $h(\lambda, f) = h_e(f) + \lambda [h_m(f) - h_e(f)] = h_e(f) + \lambda \delta h(f)$

- How close must two waveforms, h_e(f) and h_m(f), be to each other so that observations are unable to distinguish them?
- Consider the one parameter family of waveforms:

 $h(\lambda, f) = h_e(f) + \lambda [h_m(f) - h_e(f)] = h_e(f) + \lambda \delta h(f)$

• The variance for measuring the parameter λ is given by

$$\frac{1}{\sigma_{\lambda}^{2}} = \left\langle \frac{\partial h}{\partial \lambda} \left| \frac{\partial h}{\partial \lambda} \right\rangle = \langle \delta h | \delta h \rangle,$$

where the noise weighted inner product is defined by

$$\langle h_e|h_m
angle = 2\int_0^\infty rac{h_e^*(f)h_m(f)+h_e(f)h_m^*(f)}{S_n(f)}df.$$

- How close must two waveforms, h_e(f) and h_m(f), be to each other so that observations are unable to distinguish them?
- Consider the one parameter family of waveforms:

 $h(\lambda, f) = h_e(f) + \lambda [h_m(f) - h_e(f)] = h_e(f) + \lambda \delta h(f)$

• The variance for measuring the parameter λ is given by

$$\frac{1}{\sigma_{\lambda}^{2}} = \left\langle \frac{\partial h}{\partial \lambda} \left| \frac{\partial h}{\partial \lambda} \right\rangle = \langle \delta h | \delta h \rangle,$$

where the noise weighted inner product is defined by

$$\langle h_e|h_m
angle = 2\int_0^\infty rac{h_e^*(f)h_m(f)+h_e(f)h_m^*(f)}{S_n(f)}df.$$

Two waveforms are indistinguishable iff the variance σ²_λ is larger than the parameter distance between the waveforms:
 (Δλ)² = 1 < σ²_λ = 1/⟨δh|δh⟩, that is iff 1 > ⟨δh|δh⟩.

 The signal-to-noise ratio ρ_m for detecting a signal h_e using a filter constructed from a model waveform h_m is

$$\rho_m = \langle h_e | \hat{h}_m \rangle = \frac{\langle h_e | h_m \rangle}{\langle h_m | h_m \rangle^{1/2}}.$$

 The signal-to-noise ratio ρ_m for detecting a signal h_e using a filter constructed from a model waveform h_m is

$$\rho_m = \langle h_e | \hat{h}_m \rangle = \frac{\langle h_e | h_m \rangle}{\langle h_m | h_m \rangle^{1/2}}.$$

 Errors in model waveform, h_m = h_e + δh, result in reduction of ρ_m compared to the optimal signal-to-noise ratio:

$$\rho_m = \rho \left(1 - \epsilon \right) = \langle h_e | h_e \rangle^{1/2} (1 - \epsilon).$$

 The signal-to-noise ratio ρ_m for detecting a signal h_e using a filter constructed from a model waveform h_m is

$$\rho_m = \langle h_e | \hat{h}_m \rangle = \frac{\langle h_e | h_m \rangle}{\langle h_m | h_m \rangle^{1/2}}.$$

 Errors in model waveform, h_m = h_e + δh, result in reduction of ρ_m compared to the optimal signal-to-noise ratio:

$$\rho_m = \rho \left(1 - \epsilon \right) = \langle h_e | h_e \rangle^{1/2} (1 - \epsilon).$$

• Evaluate mismatch ϵ in terms of the waveform error:

$$\epsilon = rac{\langle \delta h_{\perp} | \delta h_{\perp} \rangle}{2 \langle h_e | h_e \rangle}, \quad ext{where} \quad \delta h_{\perp} = \delta h - h_e \langle h_e | \delta h \rangle / \rho^2.$$

 The signal-to-noise ratio ρ_m for detecting a signal h_e using a filter constructed from a model waveform h_m is

$$\rho_m = \langle h_e | \hat{h}_m \rangle = \frac{\langle h_e | h_m \rangle}{\langle h_m | h_m \rangle^{1/2}}.$$

 Errors in model waveform, h_m = h_e + δh, result in reduction of ρ_m compared to the optimal signal-to-noise ratio:

$$\rho_m = \rho \left(1 - \epsilon \right) = \langle h_e | h_e \rangle^{1/2} (1 - \epsilon).$$

• Evaluate mismatch ϵ in terms of the waveform error:

$$\epsilon = \frac{\langle \delta h_{\perp} | \delta h_{\perp} \rangle}{2 \langle h_e | h_e \rangle}, \quad \text{where} \quad \delta h_{\perp} = \delta h - h_e \langle h_e | \delta h \rangle / \rho^2.$$

• For detection, model waveform accuracy must satisfy the requirement $\langle \delta h_{\perp} | \delta h_{\perp} \rangle < 2\epsilon_{\max}\rho^2$.

- The optimal accuracy standards $\langle \delta h | \delta h \rangle < 1$ and $\langle \delta h_{\perp} | \delta h_{\perp} \rangle < 2\epsilon_{\max} \rho^2$ depend in the details of the waveform model (e.g. the total mass and location of the source) as well as the details of the detector noise spectrum $S_n(f)$.
- Construct slightly stronger *sufficient* conditions that are easier for the NR community to use.

- The optimal accuracy standards $\langle \delta h | \delta h \rangle < 1$ and $\langle \delta h_{\perp} | \delta h_{\perp} \rangle < 2\epsilon_{\max} \rho^2$ depend in the details of the waveform model (e.g. the total mass and location of the source) as well as the details of the detector noise spectrum $S_n(f)$.
- Construct slightly stronger *sufficient* conditions that are easier for the NR community to use.
- One simplification can be made by noting that

 $\langle \delta \mathbf{h}_{\perp} | \delta \mathbf{h}_{\perp} \rangle \leq \langle \delta \mathbf{h} | \delta \mathbf{h} \rangle,$

So a sufficient condition for detection is:

 $\langle \delta h | \delta h \rangle < 2\epsilon_{\max} \rho^2.$

• Define the model waveform (logarithmic) amplitude $\delta \chi$ and phase $\delta \Phi$ errors: $\delta h = h_e(\delta \chi + i\delta \Phi)$.

- Define the model waveform (logarithmic) amplitude $\delta \chi$ and phase $\delta \Phi$ errors: $\delta h = h_e(\delta \chi + i \delta \Phi)$.
- The basic accuracy requirements can be written as

$$\frac{\langle \delta h | \delta h \rangle}{\rho^2} = \overline{\delta \chi}^2 + \overline{\delta \Phi}^2 < \begin{cases} 1/\rho^2 & \text{measurement,} \\ 2\epsilon_{\text{max}} & \text{detection,} \end{cases}$$

where the signal-weighted average errors are defined as

$$\overline{\delta\chi}^2 = \int_0^\infty \delta\chi^2 \frac{4|h_e|^2}{\rho^2 S_n} df, \quad \text{and} \quad \overline{\delta\Phi}^2 = \int_0^\infty \delta\Phi^2 \frac{4|h_e|^2}{\rho^2 S_n} df.$$

- Define the model waveform (logarithmic) amplitude $\delta \chi$ and phase $\delta \Phi$ errors: $\delta h = h_e(\delta \chi + i \delta \Phi)$.
- The basic accuracy requirements can be written as

$$\frac{\langle \delta h | \delta h \rangle}{\rho^2} = \overline{\delta \chi}^2 + \overline{\delta \Phi}^2 < \begin{cases} 1/\rho^2 & \text{measurement,} \\ 2\epsilon_{\text{max}} & \text{detection,} \end{cases}$$

where the signal-weighted average errors are defined as

$$\overline{\delta\chi}^2 = \int_0^\infty \delta\chi^2 \frac{4|h_e|^2}{\rho^2 S_n} df, \quad \text{and} \quad \overline{\delta\Phi}^2 = \int_0^\infty \delta\Phi^2 \frac{4|h_e|^2}{\rho^2 S_n} df.$$

• These averages satisfy $\overline{\delta\Phi} \le \max |\delta\Phi|$, etc., so a set of sufficient accuracy requirements are

$$\left(\max|\delta\chi|\right)^2 + \left(\max|\delta\Phi|\right)^2 < \left\{ \begin{array}{cc} 1/
ho^2 & 1 \\ 2\epsilon_{\max} & 0 \end{array} \right\}$$

measurement, detection.

 We can derive another sufficient waveform accuracy requirement by noting that:

$$\langle \delta h | \delta h \rangle = 4 \int_0^\infty \frac{|\delta h|^2}{S_n(f)} df \leq \frac{2||\delta h(f)||^2}{\min S_n(f)},$$

where $||\delta h(f)||^2 = 2 \int_0^\infty |\delta h|^2 df$ is the L^2 norm of $\delta h(f)$.

 We can derive another sufficient waveform accuracy requirement by noting that:

$$\langle \delta h | \delta h \rangle = 4 \int_0^\infty \frac{|\delta h|^2}{S_n(f)} df \leq \frac{2||\delta h(f)||^2}{\min S_n(f)},$$

where $||\delta h(f)||^2 = 2 \int_0^\infty |\delta h|^2 df$ is the L^2 norm of $\delta h(f)$.

 We can therefore convert the basic accuracy requirements into the following sufficient conditions:

$$\frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection,} \end{cases}$$

where *C* is defined as $C^2 = \frac{\rho^2}{2||h_e(f)||^2/\min S_n(f)} \le 1.$

 We can derive another sufficient waveform accuracy requirement by noting that:

$$\langle \delta h | \delta h \rangle = 4 \int_0^\infty \frac{|\delta h|^2}{S_n(f)} df \leq \frac{2||\delta h(f)||^2}{\min S_n(f)},$$

where $||\delta h(f)||^2 = 2 \int_0^\infty |\delta h|^2 df$ is the L^2 norm of $\delta h(f)$.

• We can therefore convert the basic accuracy requirements into the following sufficient conditions:

$$\frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection,} \end{cases}$$

where *C* is defined as $C^2 = \frac{\rho^2}{2||h_e(f)||^2/\min S_n(f)} \le 1.$

• The quantity *C* can be evaluated once-and-for-all for a given type of waveform and a given detector noise spectrum.

 We can derive another sufficient waveform accuracy requirement by noting that:

$$\langle \delta h | \delta h \rangle = 4 \int_0^\infty \frac{|\delta h|^2}{S_n(f)} df \leq \frac{2||\delta h(f)||^2}{\min S_n(f)},$$

where $||\delta h(f)||^2 = 2 \int_0^\infty |\delta h|^2 df$ is the L^2 norm of $\delta h(f)$.

 We can therefore convert the basic accuracy requirements into the following sufficient conditions:

$$\frac{||\delta h(t)||^2}{||h_e(t)||^2} = \frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection,} \end{cases}$$

where *C* is defined as $C^2 = \frac{\rho^2}{2||h_e(f)||^2/\min S_n(f)} \le 1.$

• The quantity *C* can be evaluated once-and-for-all for a given type of waveform and a given detector noise spectrum.

Let v(f) denote the raw detector output, and R(f) denote the response function used to convert v(f) to the observed gravitational wave signal: h(f) = R(f)v(f).

- Let v(f) denote the raw detector output, and R(f) denote the response function used to convert v(f) to the observed gravitational wave signal: h(f) = R(f)v(f).
- Assume the measured response function *R*(*f*) has errors that cause errors in the inferred gravitational waveform:

 $h(f) = R(f)v(f) = [R_e(f) + \delta R(f)]v(f) = h_e(f) + \delta h_R(f).$

- Let v(f) denote the raw detector output, and R(f) denote the response function used to convert v(f) to the observed gravitational wave signal: h(f) = R(f)v(f).
- Assume the measured response function *R*(*f*) has errors that cause errors in the inferred gravitational waveform:

 $h(f) = R(f)v(f) = [R_e(f) + \delta R(f)]v(f) = h_e(f) + \delta h_R(f).$

• Evaluate the signal-to-noise ratio for an observed signal h with a filter based on the model waveform $h_m = h_e + \delta h_m$. Keep terms through quadratic order in δR and δh_m :

$$\rho_m = \frac{\langle h | h_m \rangle}{\langle h_m | h_m \rangle^{1/2}} = \rho - \frac{1}{2\rho} \langle (\delta h_m - \delta h_R)_{\perp} | (\delta h_m - \delta h_R)_{\perp} \rangle,$$

where $(\delta h_m - \delta h_R)_{\perp} = \delta h_m - \delta h_R - h_e \langle h_e | (\delta h_m - \delta h_R) \rangle / \rho^2$.

• Determine the maximum effect of response function error, δh_R , and modeling error, δh_m , on the signal-to-noise ratio ρ :

$$\begin{split} \rho_m &= \rho - \langle (\delta h_m - \delta h_R)_{\perp} | (\delta h_m - \delta h_R)_{\perp} \rangle / 2\rho, \\ &\geq \rho - \left[\langle \delta h_m | \delta h_m \rangle^{1/2} + \langle \delta h_R | \delta h_R \rangle^{1/2} \right]^2 / 2\rho. \end{split}$$

 Determine the maximum effect of response function error, δh_R, and modeling error, δh_m, on the signal-to-noise ratio ρ:

$$\begin{split} \rho_m &= \rho - \langle (\delta h_m - \delta h_R)_{\perp} | (\delta h_m - \delta h_R)_{\perp} \rangle / 2\rho, \\ &\geq \rho - \left[\langle \delta h_m | \delta h_m \rangle^{1/2} + \langle \delta h_R | \delta h_R \rangle^{1/2} \right]^2 / 2\rho. \end{split}$$

• Define η , the ratio of model waveform error to response function error: $\langle \delta h_m | \delta h_m \rangle = \eta^2 \langle \delta h_R | \delta h_R \rangle$. Re-express ρ_m as,

$$\rho_m \geq \rho - (1+\eta)^2 \langle \delta h_R | \delta h_R \rangle / 2\rho.$$

 Determine the maximum effect of response function error, δh_R, and modeling error, δh_m, on the signal-to-noise ratio ρ:

$$\begin{split} \rho_m &= \rho - \langle (\delta h_m - \delta h_R)_{\perp} | (\delta h_m - \delta h_R)_{\perp} \rangle / 2\rho, \\ &\geq \rho - \left[\langle \delta h_m | \delta h_m \rangle^{1/2} + \langle \delta h_R | \delta h_R \rangle^{1/2} \right]^2 / 2\rho. \end{split}$$

• Define η , the ratio of model waveform error to response function error: $\langle \delta h_m | \delta h_m \rangle = \eta^2 \langle \delta h_R | \delta h_R \rangle$. Re-express ρ_m as,

$$\rho_m \geq \rho - (1+\eta)^2 \langle \delta h_R | \delta h_R \rangle / 2\rho.$$

• Waveform model errors less than maximum fraction of the calibration error, $\eta \leq \eta_{\max}$, are swamped by calibration error.

 Determine the maximum effect of response function error, δh_R, and modeling error, δh_m, on the signal-to-noise ratio ρ:

$$\begin{split} \rho_m &= \rho - \langle (\delta h_m - \delta h_R)_{\perp} | (\delta h_m - \delta h_R)_{\perp} \rangle / 2\rho, \\ &\geq \rho - \left[\langle \delta h_m | \delta h_m \rangle^{1/2} + \langle \delta h_R | \delta h_R \rangle^{1/2} \right]^2 / 2\rho. \end{split}$$

• Define η , the ratio of model waveform error to response function error: $\langle \delta h_m | \delta h_m \rangle = \eta^2 \langle \delta h_R | \delta h_R \rangle$. Re-express ρ_m as,

$$\rho_m \geq \rho - (1+\eta)^2 \langle \delta h_R | \delta h_R \rangle / 2\rho.$$

- Waveform model errors less than maximum fraction of the calibration error, $\eta \leq \eta_{\text{max}}$, are swamped by calibration error.
- Natural choices for η_{max} are $\eta_{max} = 1$, or $\eta_{max} = \sqrt{2} 1 \approx 0.4$.

Summary of Model Waveform Accuracy Standards

• The basic model waveform accuracy standards are:

$$\frac{\langle \delta h | \delta h \rangle}{\rho^2} = \overline{\delta \chi_m}^2 + \overline{\delta \Phi_m}^2 < \begin{cases} 1/\rho^2 & \text{measurement,} \\ 2\epsilon_{\text{max}} & \text{detection.} \end{cases}$$

- Simpler conditions that guarantee the basic standards are:
 - $\frac{||\delta h(t)||^2}{||h_e(t)||^2} = \frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection.} \end{cases}$

Summary of Model Waveform Accuracy Standards

• The basic model waveform accuracy standards are:

$$\frac{\langle \delta h | \delta h \rangle}{\rho^2} = \overline{\delta \chi_m}^2 + \overline{\delta \Phi_m}^2 < \begin{cases} 1/\rho^2 & \text{measurement,} \\ 2\epsilon_{\text{max}} & \text{detection.} \end{cases}$$

• Simpler conditions that guarantee the basic standards are:

 $\frac{||\delta h(t)||^2}{||h_e(t)||^2} = \frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection.} \end{cases}$

 The basic waveform accuracy standards need not be enforced when they are stricter than the response-function error condition:

$$\frac{||\delta h(t)||^2}{||h_e(t)||^2} \le \eta_{\max}^2 C^2 \left[\overline{\delta \chi_R}^2 + \overline{\delta \Phi_R}^2\right]$$

Summary of Model Waveform Accuracy Standards

• The basic model waveform accuracy standards are:

$$\frac{\langle \delta h | \delta h \rangle}{\rho^2} = \overline{\delta \chi_m}^2 + \overline{\delta \Phi_m}^2 < \begin{cases} 1/\rho^2 & \text{measurement,} \\ 2\epsilon_{\text{max}} & \text{detection.} \end{cases}$$

Simpler conditions that guarantee the basic standards are:

 $\frac{||\delta h(t)||^2}{||h_e(t)||^2} = \frac{||\delta h(f)||^2}{||h_e(f)||^2} < \begin{cases} C^2/\rho^2 & \text{measurement,} \\ 2\epsilon_{\max}C^2 & \text{detection.} \end{cases}$

 The basic waveform accuracy standards need not be enforced when they are stricter than the response-function error condition:

$$\frac{||\delta h(t)||^2}{||h_e(t)||^2} \le \eta_{\max}^2 C^2 \left[\overline{\delta \chi_R}^2 + \overline{\delta \Phi_R}^2\right].$$

• To use these standards, we must determine the ranges for the quantities ρ , ϵ_{max} , C, η_{max} , $\overline{\delta\chi_R}$, and $\overline{\delta\Phi_R}$ appropriate for LIGO.

Measurement Standards for LIGO

• The most restrictive waveform standards are needed for the strongest gravitational wave signals. For Advanced LIGO the maximum signal-to-noise ratio unlikely larger than $\rho_{\rm max} \approx 80$.

Measurement Standards for LIGO

- The most restrictive waveform standards are needed for the strongest gravitational wave signals. For Advanced LIGO the maximum signal-to-noise ratio unlikely larger than $\rho_{\rm max} \approx 80$.
- The signal-to-noise quantity $C^2 = \rho^2 \min S_n/2 ||h_e||^2 \le 1$ has been evaluated for equal-mass non-spinning black hole binaries using LIGO noise curves.

Measurement Standards for LIGO

- The most restrictive waveform standards are needed for the strongest gravitational wave signals. For Advanced LIGO the maximum signal-to-noise ratio unlikely larger than $\rho_{max} \approx 80$.
- The signal-to-noise quantity $C^2 = \rho^2 \min S_n/2 ||h_e||^2 < 1$ has been evaluated for equal-mass non-spinning black hole binaries using LIGO noise curves.
- The accuracy requirement for BBH waveforms for Advanced LIGO measurements is therefore:

Detection Standards for LIGO

- The maximum mismatch is chosen to assure searches miss only a small fraction of real signals. The common choice $\epsilon_{max} = 0.035$ limits the loss rate to about 10%.

Detection Standards for LIGO

- Accuracy requirement for detection depends on the parameter ϵ_{max} , the maximum allowed mismatch between an exact waveform and its model counterpart.
- The maximum mismatch is chosen to assure searches miss only a small fraction of real signals. The common choice $\epsilon_{max} = 0.035$ limits the loss rate to about 10%.
- Real searches are more complicated: comparing signals with a discrete template bank of model waveforms.

 h_{b2}

 ϵ_{max}

hm

h_{b1}

Detection Standards for LIGO

- The maximum mismatch is chosen to assure searches miss only a small fraction of real signals. The common choice $\epsilon_{max} = 0.035$ limits the loss rate to about 10%.
- Real searches are more complicated: comparing signals with a discrete template bank of model waveforms.
- In this case ϵ_{max} must be chosen so that $\epsilon_{max} = \epsilon_{match} \epsilon_{bank}$.
- For Initial LIGO, template banks are constructed with $\epsilon_{\text{bank}} = 0.03$, so $\epsilon_{\text{max}} = 0.035 0.03 = 0.005$ is the appropriate choice.
- Accuracy requirement for BBH waveforms for detection in LIGO:

$$\frac{|\delta h_m(t)||}{||h_e(t)||} < \sqrt{2\epsilon_{\max}}C = \sqrt{2 \times 0.005} \times 0.014 \approx 0.0014.$$

 h_{b2}

ε_{max}

hm

 ϵ_{bank}

h_{b1}

 Model waveform errors are insignificant when they are smaller than some fraction (η_{max} ≤ 0.4) of the response function error,

$$\overline{\delta\chi_m}^2 + \overline{\delta\Phi_m}^2 \le \eta_{\max}^2 \left[\overline{\delta\chi_R}^2 + \overline{\delta\Phi_R}^2\right]$$

 Model waveform errors are insignificant when they are smaller than some fraction (η_{max} ≤ 0.4) of the response function error,

$$\overline{\delta\chi_m}^2 + \overline{\delta\Phi_m}^2 \le \eta_{\max}^2 \left[\overline{\delta\chi_R}^2 + \overline{\delta\Phi_R}^2\right]$$

• For the Initial LIGO S4 data, the calibration errors are:

$$\begin{array}{ll} 0.03 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.09 & \text{L1} \\ 0.06 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.12 & \text{H1} \end{array}$$

 Model waveform errors are insignificant when they are smaller than some fraction (η_{max} ≤ 0.4) of the response function error,

$$\overline{\delta\chi_m}^2 + \overline{\delta\Phi_m}^2 \le \eta_{\max}^2 \left[\overline{\delta\chi_R}^2 + \overline{\delta\Phi_R}^2\right].$$

• For the Initial LIGO S4 data, the calibration errors are:

$$\begin{array}{ll} 0.03 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.09 & \text{L1} \\ 0.06 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.12 & \text{H1} \end{array}$$

 A sufficient condition for model waveform error to be insignificant compared to calibration error is therefore:

$$\frac{||\delta h_m(t)||}{||h_e(t)||} \leq \eta_{\max} C \sqrt{\min |\delta \chi_R|^2 + \min |\delta \Phi_R|^2} \\ = 0.4 \times 0.014 \times 0.03 \approx 0.0002.$$

 Model waveform errors are insignificant when they are smaller than some fraction (η_{max} ≤ 0.4) of the response function error,

$$\overline{\delta\chi_m}^2 + \overline{\delta\Phi_m}^2 \le \eta_{\max}^2 \left[\overline{\delta\chi_R}^2 + \overline{\delta\Phi_R}^2\right].$$

• For the Initial LIGO S4 data, the calibration errors are:

$$\begin{array}{ll} 0.03 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.09 & \text{L1} \\ 0.06 & \leq \sqrt{\delta\chi_R^2 + \delta\Phi_R^2} & \leq 0.12 & \text{H1} \end{array}$$

 A sufficient condition for model waveform error to be insignificant compared to calibration error is therefore:

 $\frac{||\delta h_m(t)||}{||h_e(t)||} \leq \eta_{\max} C \sqrt{\min |\delta \chi_R|^2 + \min |\delta \Phi_R|^2}$ $= 0.4 \times 0.014 \times 0.03 \approx 0.0002.$

• The ideal-detector measurement standard requires waveform errors smaller than calibration errors for $\rho \gtrsim 80$, so calibration errors prevent optimal accuracy measurements for these sources.

Lee Lindblom (Caltech)

The End

Extra Slides for Discussion

Frequency Domain BBH Waveforms (Equal Mass Non-Spinning)

FFT of BBH waveform from Scheel, et al. (2008).

 Summary 	Waveform Error	Measurement	Detection
	Diagnostic	Requirement	Requirement
	$\overline{\delta \Phi}$	$1/\sqrt{2}\rho$	$\sqrt{\epsilon_{max}}$
	$\max \delta \Phi $	$1/\sqrt{2} ho$	$\sqrt{\epsilon_{max}}$
	$ \delta h(t) / h_e(t) $	\mathcal{C}/ ho	$\sqrt{2\epsilon_{\max}} C$
• LIGO	Waveform Error	Measurement	Detection
	Diagnostic	Requirement	Requirement
	$\overline{\delta \Phi}$	0.009	0.07
	max $ \delta \Phi $	0.009	0.07
	$ \delta h(t) / h_e(t) $	0.0002	0.001
• LISA	Waveform Error	Measurement	Detection
	Diagnostic	Requirement	Requirement
	$\overline{\delta \Phi}$	4 · 10 ^{−5}	0.07
	$\max \delta \Phi $	$4 \cdot 10^{-5}$	0.07
	$ \delta h(t) / h_e(t) $	$3 \cdot 10^{-7}$	0.0005