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e Generalized Harmonic (GH) coordinates have two interesting
properties exploited recently by Frans Pretorius to perform some
very impressive numerical evolutions of binary black-hole
spacetimes.

e Outline of this talk:

— How these special properties of GH coordinates make stable
numerical evolutions possible.

— Extending the GH system in a way that makes the formulation of
appropriate boundary conditions easier, etc.

— Numerical tests of the new extended GH evolution system.



Methods of Specifying Spacetime Coordinates

e The lapse N and shift N' are generally used to specify how
coordinates are layed out on a spacetime manifold: o, = Nt2 + N¥g,.

e An alternate way to specify how the coordinates are layed out on
spacetime is through the generalized harmonic gauge source
function Ha(x):

— Let Ha(x) denote the function obtained by the action of the scalar
wave operator on the coordinates x°:

Ha(X) — ll/abDCD(;Xb — _ra7

where vy, is the 4-metric, and My = YT 4.

— Specifying generalized harmonic (GH) coordinates is
accomplished by choosing a gauge-source function H;(x), and
requiring that Hy(x) = —I,.



Important Properties of GH Coordinates

e The Einstein equations are manifestly hyperbolic when coordinates
are specified using a GH gauge function: The Ricci tensor may be
written as

1
Rp = —éll/Cdacﬁd Wab~+ Oal by + Fan(y, 0 y),

where vy, is the 4-metric, and M, = y°T 4. The vacuum Einstein
equation, R, = 0, has the same principal part as the scalar wave
equation when the GH gauge condition, Ha(x) = —I5, IS Imposed.

e Imposing coordinates using a GH gauge function changes the
nature of the constraints of the Einstein system in a profound way.
The GH constraint equation, ¢, = 0, where

Cga — Ha‘|‘ r617

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints, .#, = 0, are determined by
the derivatives of the gauge constraint ¢,:
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Constraint Damping Generalized Harmonic System

e Pretorius (based on a suggestion from Gundlach, et al.) modified the
GH system by adding terms proportional to the gauge constraints:

1
0 = Rap— U@ +10ta%n— 510 Wapt© G,

where t2 Is a unit timelike vector field. Since 4, = H,+ T, depends
only on first derivatives of the metric, these additional terms do not
change the hyperbolic structure of the system.

e The evolution of the constraints %, for this system can be deduced
from the Bianci identities:

1
O — DCDCCKa - ZYODC [t(ccga)} + CKCD(C%a) - é’yo tacgccgc.

e This is a damped wave equation for ¢, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for 1, > 0).



First Order Generalized Harmonic Evolution System

e We prefer to solve first-order equations numerically. (More is known
about first-order systems: how to formulate well-posed boundary
conditions, when shocks form, etc.)

o Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order
form for the generalized-harmonic evolution system:

0k Wab — N O Wap = —NTMap,
oMap— N*kMap+ NGO DPiay ~ O,
0 Piap — N O Diap + NoMap  ~ 0,
where ®y ., = hVap.

e This system has two immediate problems:

— This system has new constraints, %, = diyap — Pian, that tend to
grow exponentially during numerical evolutions.

— This system is not linearly degenerate, so it is possible (likely) that
shocks will develop (e.g. the shift evolution equation is of the form
IN' — N¥gN' ~ 0).



A ‘New’ Generalized Harmonic Evolution System

e We can correct these problems by adding additional multiples of the
constraints to the evolution system:

o Vab — (1 + 71) N kak'y”ab = —NMagp—pN chkaba
OMap— N¥OMap + N A DPiap— 117N K Wap =~ — 117N Dy,
0 Diap — N Diap + N M ap— 72N Wap ~  —1NDijyp,

e This ‘new’ generalized-harmonic evolution system has several nice
properties:
— This system is linearly degenerate for y; = —1 (and so shocks
should not form from smooth initial data).

— The @i, evolution equation can be written in the form,
0 Cap — N O Eiap ~ —-NGan, SO the new constraints are damped
when y, > 0.

— This system is symmetric hyperbolic for all values of the
parameters y; and v.



Constraint Evolution for the New GH System

e The evolution of the constraints,
CA — {Cgaa Cgkaba ga ~t° c(gaa (gka ~ 8k<€a, Cgklab — 8[kcgl]ab} are determined by
the evolution of the dynamical fields u* = {yap, Map, Pan}:

o+ A% (U) 9 c® = FAg(u, du) c®.

e This constraint evolution system is symmetric hyperbolic with
principal part:
Bt%a ~

0
0T a—NWTFa—Nd'0Ga ~ O
0 Ca—NKGa—N&F, ~ O,
O Giap— (L+ V)N OBy =~ O
A Gjap — N KGljap =~ O
e An analysis of this system shows that all of the constraints are
damped in the WKB limit when 1, > 0 and . > 0. So, this system has

constraint suppression properties that are similar to those of the
Pretorius (and Gundlach, et al.) system.



Boundary Condition Basics

e Boundary conditions are imposed on first-order hyperbolic
evolutions systems,

U + A (W’ = F%(u),
In the following way:

 Find the eigenvectors of the characteristic matrix n,A**; at each
boundary point: S Ak“ﬁ _ V(&)e&ﬁ
where ny is the outward directed unit normal.

e Define the characteristic fields:
u® = e u®.

(For hyperbolic evolution systems the eigenvectors e*, are complete
SO dete”, # 0.)

e A boundary condition must be imposed on every incoming
characteristic field (i.e. every field with v, < 0), and must not be
Imposed on any outgoing field (i.e. any field with v, > 0).



Boundary Condition Basics Il

e Why are these incoming characteristic fields the right ones to
Impose boundary conditions on?

e Consider the propagation of short wavelength perturbations (the
WKB limit) normal to the boundary. Multiply the evolution equations,

ASU* + A (U)d, SUP ~ 0,

by the characteristic eigenvector matrix e, to obtain a decoupled
set of evolution equations for the perturbed characteristic fields:

8t5U& —I—V(&)8L5U& ~ 0.

e The solutions to these perturbed characteristic evolution equations
(in the WKB limit) are simple traveling waves of the form,

Su® = Su*(x, — viat).

e The incoming characteristic waves, those with v, < 0, must have
boundary conditions imposed on them. It is inconsistent to impose
any boundary condition on the outgoing characteristic waves, those
with Vig) > 0.



Numerical Tests of the ‘New’ GH System

e 3D numerical evolutions of static black-hole spacetimes illustrate the
constraint damping properties of this new GH evolution system.

e These evolutions are stable and convergent when y, = 1 = 1.
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e The boundary conditions used for this simple test problem freeze the
Incoming characteristic fields to their initial values.
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Evolutions of a Perturbed Schwarzschild Black Hole

e A more stringent numerical test uses Schwarzschild initil data and a
boundary condition on the incoming physical GW characteristic
projection of v, = f(t) (R0 +y2y° — 2227°) having a time profile
f(t) = o7 e %)/ with o/ = 1073, t, = 60M, and w = 10M.

e Evolutions using simple “freezing” boundary conditions on the
remaining incoming characteristic fields are stable and convergent.
But these solutions have non-negligable constraint violations (which
do not converge away).
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e Better boundary conditions are needed to prevent the influx of
constraint violations.
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Constraint Preserving Boundary Conditions

The evolution of the GH constraints are described by a hyperbolic
evolution system:

o+ A% (U) 9 c® = FAg(u, du) c®.
Find the characteristic constraint fields ¢ = e*ac*.
Divide the constraints into incoming and outgoing fields:
c={c,c"}.
Use the definitions of the constraints to re-express them in terms of
the principal characteristic fields:
¢ =du +f(du,u),

where f~(dyu,u) indicates terms with derivatives of the fields tangent
to the boundary, and terms algebraic in the fields.

Set boundary conditions on those incoming dynamical fields that will
ensure the incoming constraint fields are zero at the boundaries:

du =-f"(Ju,u).
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Numerical Tests of Constraint Preserving Boundary Conditions

e 3D numerical evolutions of Kerr with s=(0.1,0.2,0.3) using 1% = 7> = 1,
constraint preserving boundary conditions, and physical boundary
conditions that set ¢,W, = 0:

2

10 ——mM@MmM8Mm—————
{N.,L__}={11,7}
107 (13,9}
I C | (15, 11}
10°F -
{17, 13}
108+ {19, 15} -+
-10 ) ) ) | ] | | A A
109 5000 10000

t/M

e These evolutions are also stable and convergent when y =1 =1,
even though no rigorous well-posedness theorem currently exists for
these constraint-preserving and physical boundary conditions.
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Perturbed Schwarzschild Black Hole with Constaint Preserving BC

e Evolve a Schwarzschild black hole perturbed by the incoming
gravitational waves as before. Impose constraint preserving

boundary conditions on the remaining incoming characteristic fields.
10_2 T T T T T T T T T T T
Iy 10° |
AN L 3 ={9.7}
10701 1 ‘ ol
C i {13, 11 10
el T RY, 1
a0l 0 ' H?‘"\‘
10 I |”|"\\ 7] -9 | " 'l'u\\ ]
ulﬂll \ { 17’ 15} 10 ', |:"‘I “,\r\
J«l ) I"‘l., w_ ST S PEEELLL ," |'
| {21, 19} |
-14 . . . . I A A A A 10—12 L ] ] .
500 1000 0 100 200 300
t/M

10 0
. . t/M . .
e Evolutions using these new constraint-preserving boundary

conditions are still stable and convergent.
e The Weyl curvature component W, shows clear quasi-normal mode
oscillations in the outgoing gravitational wave flux when

constraint-preserving boundary conditions are used.
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Trouble in Paradise

e 3D numerical evolutions in spacetimes with large tangential shift
components on the boundary of the compuational domain (e.g. any
spacetime in rotating coordinates) all appear to be unstable.

e Even evolutions of flat space in coordinates that rotate with angular
velocity Q > 0 are unstable in the new GH system:
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e This may be a problem with our boundary conditions, or ... ?
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