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• Generalized Harmonic (GH) coordinates have two interesting
properties exploited recently by Frans Pretorius to perform some
very impressive numerical evolutions of binary black-hole
spacetimes.

• Outline of this talk:

– How these special properties of GH coordinates make stable
numerical evolutions possible.

– Extending the GH system in a way that makes the formulation of
appropriate boundary conditions easier, etc.

– Numerical tests of the new extended GH evolution system.
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Methods of Specifying Spacetime Coordinates

• The lapse N and shift Ni are generally used to specify how
coordinates are layed out on a spacetime manifold: ∂t = Nta+Nk∂k.

• An alternate way to specify how the coordinates are layed out on
spacetime is through the generalized harmonic gauge source
function Ha(x):

– Let Ha(x) denote the function obtained by the action of the scalar
wave operator on the coordinates xb:

Ha(x)≡ ψab∇c∇cx
b =−Γa,

– where ψab is the 4-metric, and Γa = ψbcΓabc.
– Specifying generalized harmonic (GH) coordinates is

accomplished by choosing a gauge-source function Ha(x), and
requiring that Ha(x) =−Γa.
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Important Properties of GH Coordinates

• The Einstein equations are manifestly hyperbolic when coordinates
are specified using a GH gauge function: The Ricci tensor may be
written as

Rab = −1
2

ψ
cd

∂c∂dψab+∇(aΓb) +Fab(ψ,∂ψ),

• where ψab is the 4-metric, and Γa = ψbcΓabc. The vacuum Einstein
equation, Rab = 0, has the same principal part as the scalar wave
equation when the GH gauge condition, Ha(x) =−Γa, is imposed.

• Imposing coordinates using a GH gauge function changes the
nature of the constraints of the Einstein system in a profound way.
The GH constraint equation, Ca = 0, where

Ca = Ha+Γa,

• depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints, Ma = 0, are determined by
the derivatives of the gauge constraint Ca:

Ma≡Gabt
b = tb

(
∇(aCb)−

1
2

ψab∇cCc

)
.
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Constraint Damping Generalized Harmonic System

• Pretorius (based on a suggestion from Gundlach, et al.) modified the
GH system by adding terms proportional to the gauge constraints:

0 = Rab−∇(aCb) + γ0 t(aCb)−
1
2

γ0ψabtcCc,

• where ta is a unit timelike vector field. Since Ca = Ha+Γa depends
only on first derivatives of the metric, these additional terms do not
change the hyperbolic structure of the system.

• The evolution of the constraints Ca for this system can be deduced
from the Bianci identities:

0 = ∇c∇cCa−2γ0∇c
[
t(cCa)

]
+C c∇(cCa)−

1
2

γ0 taC
cCc.

• This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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First Order Generalized Harmonic Evolution System

• We prefer to solve first-order equations numerically. (More is known
about first-order systems: how to formulate well-posed boundary
conditions, when shocks form, etc.)

• Kashif Alvi (2002) derived a nice (symmetric hyperbolic) first-order
form for the generalized-harmonic evolution system:

∂tψab−Nk∂kψab = −NΠab,

∂tΠab−Nk∂kΠab+Ngki∂kΦiab ' 0,

∂tΦiab−Nk∂kΦiab+N∂iΠab ' 0,

• where Φkab= ∂kψab.

• This system has two immediate problems:
– This system has new constraints, Ciab = ∂iψab−Φiab, that tend to

grow exponentially during numerical evolutions.
– This system is not linearly degenerate, so it is possible (likely) that

shocks will develop (e.g. the shift evolution equation is of the form
∂tNi−Nk∂kNi ' 0).
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A ‘New’ Generalized Harmonic Evolution System

• We can correct these problems by adding additional multiples of the
constraints to the evolution system:

∂tψab− (1+ γ1)Nk∂kψab = −NΠab−γ1N
kΦkab,

∂tΠab−Nk∂kΠab+Ngki∂kΦiab−γ1γ2Nk∂kψab ' −γ1γ2N
kΦkab,

∂tΦiab−Nk∂kΦiab+N∂iΠab−γ2N∂iψab ' −γ2NΦiab,

• This ‘new’ generalized-harmonic evolution system has several nice
properties:
– This system is linearly degenerate for γ1 =−1 (and so shocks

should not form from smooth initial data).
– The Φiab evolution equation can be written in the form,

∂tCiab−Nk∂kCiab'−γ2NCiab, so the new constraints are damped
when γ2 > 0.

– This system is symmetric hyperbolic for all values of the
parameters γ1 and γ2.
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Constraint Evolution for the New GH System

• The evolution of the constraints,
cA = {Ca,Ckab,Fa≈ tc∂cCa,Cka≈ ∂kCa,Cklab = ∂[kCl ]ab} are determined by
the evolution of the dynamical fields uα = {ψab,Πab,Φkab}:

∂tc
A+AkA

B(u)∂kc
B = FA

B(u,∂u)cB.

• This constraint evolution system is symmetric hyperbolic with
principal part:

∂tCa ' 0,

∂tFa−Nk
∂kFa−Ngi j

∂iC ja ' 0,

∂tCia−Nk
∂kCia−N∂iFa ' 0,

∂tCiab− (1+ γ1)Nk
∂kCiab ' 0,

∂tCi jab−Nk
∂kCi jab ' 0.

• An analysis of this system shows that all of the constraints are
damped in the WKB limit when γ0 > 0 and γ2 > 0. So, this system has
constraint suppression properties that are similar to those of the
Pretorius (and Gundlach, et al.) system.
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Boundary Condition Basics

• Boundary conditions are imposed on first-order hyperbolic
evolutions systems,

∂tu
α +Akα

β(u)∂ku
β = Fα(u),

• in the following way:

• Find the eigenvectors of the characteristic matrix nkAkα
β at each

boundary point:
eα̂

α nkA
kα

β = v(α̂)e
α̂

β

• where nk is the outward directed unit normal.

• Define the characteristic fields:

uα̂ = eα̂
αuα.

• (For hyperbolic evolution systems the eigenvectors eα̂
α are complete

so deteα̂
α 6= 0.)

• A boundary condition must be imposed on every incoming
characteristic field (i.e. every field with v(α̂) < 0), and must not be
imposed on any outgoing field (i.e. any field with v(α̂) > 0).
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Boundary Condition Basics II

• Why are these incoming characteristic fields the right ones to
impose boundary conditions on?

• Consider the propagation of short wavelength perturbations (the
WKB limit) normal to the boundary. Multiply the evolution equations,

∂tδuα +nkA
kα

β(u)∂⊥δuβ ≈ 0,

• by the characteristic eigenvector matrix eα̂
α, to obtain a decoupled

set of evolution equations for the perturbed characteristic fields:

∂tδuα̂ +v(α̂)∂⊥δuα̂ ≈ 0.

• The solutions to these perturbed characteristic evolution equations
(in the WKB limit) are simple traveling waves of the form,

δuα̂ = δuα̂(x⊥−v(α̂)t).

• The incoming characteristic waves, those with v(α̂) < 0, must have
boundary conditions imposed on them. It is inconsistent to impose
any boundary condition on the outgoing characteristic waves, those
with v(α̂) > 0.
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Numerical Tests of the ‘New’ GH System

• 3D numerical evolutions of static black-hole spacetimes illustrate the
constraint damping properties of this new GH evolution system.

• These evolutions are stable and convergent when γ0 = γ2 = 1.
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• The boundary conditions used for this simple test problem freeze the
incoming characteristic fields to their initial values.
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Evolutions of a Perturbed Schwarzschild Black Hole

• A more stringent numerical test uses Schwarzschild initil data and a
boundary condition on the incoming physical GW characteristic
projection of ψab = f (t)(x̂ax̂b+ ŷaŷb−2ẑaẑb) having a time profile
f (t) = A e−(t−tp)2/w2 with A = 10−3, tp = 60M, and w = 10M.

• Evolutions using simple “freezing” boundary conditions on the
remaining incoming characteristic fields are stable and convergent.
But these solutions have non-negligable constraint violations (which
do not converge away).
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• Better boundary conditions are needed to prevent the influx of
constraint violations.
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Constraint Preserving Boundary Conditions

• The evolution of the GH constraints are described by a hyperbolic
evolution system:

∂tc
A+AkA

B(u)∂kc
B = FA

B(u,∂u)cB.

• Find the characteristic constraint fields cÂ = eÂ
AcA.

• Divide the constraints into incoming and outgoing fields:

c = {c−, c+}.

• Use the definitions of the constraints to re-express them in terms of
the principal characteristic fields:

c− = d⊥u−+ f−(∂‖u,u),

• where f−(∂‖u,u) indicates terms with derivatives of the fields tangent
to the boundary, and terms algebraic in the fields.

• Set boundary conditions on those incoming dynamical fields that will
ensure the incoming constraint fields are zero at the boundaries:

d⊥u− =−f−(∂‖u,u).
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Numerical Tests of Constraint Preserving Boundary Conditions

• 3D numerical evolutions of Kerr with ~s= (0.1,0.2,0.3) using γ0 = γ2 = 1,
constraint preserving boundary conditions, and physical boundary
conditions that set ∂tΨ0 = 0:
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• These evolutions are also stable and convergent when γ0 = γ2 = 1,
even though no rigorous well-posedness theorem currently exists for
these constraint-preserving and physical boundary conditions.
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Perturbed Schwarzschild Black Hole with Constaint Preserving BC
• Evolve a Schwarzschild black hole perturbed by the incoming

gravitational waves as before. Impose constraint preserving
boundary conditions on the remaining incoming characteristic fields.
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• Evolutions using these new constraint-preserving boundary
conditions are still stable and convergent.
• The Weyl curvature component Ψ4 shows clear quasi-normal mode

oscillations in the outgoing gravitational wave flux when
constraint-preserving boundary conditions are used.
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Trouble in Paradise

• 3D numerical evolutions in spacetimes with large tangential shift
components on the boundary of the compuational domain (e.g. any
spacetime in rotating coordinates) all appear to be unstable.

• Even evolutions of flat space in coordinates that rotate with angular
velocity Ω > 0 are unstable in the new GH system:
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• This may be a problem with our boundary conditions, or ... ?
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