Solving the Inverse Stellar Structure Problem

Lee Lindblom

Theoretical Astrophysics, Caltech

Institute of Theoretical Science Seminar University of Oregon, 30 April 2013

• Can the equation of state of the matter in a neutron star be determined from astronomical observations?

Solving the Inverse Stellar Structure Problem

Lee Lindblom

Theoretical Astrophysics, Caltech

Institute of Theoretical Science Seminar University of Oregon, 30 April 2013

- Can the equation of state of the matter in a neutron star be determined from astronomical observations?
- This talk describes recent work on the mathematical, rather than observational or data analysis, aspects of this question.
 - What is the relativistic inverse stellar structure problem?
 - How can it be solved?
 - How well does the solution work in practice?
 - Can gravitational wave data be used to solve this problem?

Relativistic Stellar Structure Problem (SSP)

• Given an equation of state, $\epsilon = \epsilon(p)$, solve Einstein's equations,

$$\begin{array}{lll} \displaystyle \frac{dm}{dr} & = & 4\pi r^2 \epsilon, \\ \displaystyle \frac{dp}{dr} & = & -(\epsilon+p) \frac{m+4\pi r^3 p}{r(r-2m)}, \end{array}$$

to determine the structures of relativistic stars.

• Find the radius p(R) = 0 and mass M = m(R) for each star.

Relativistic Stellar Structure Problem (SSP)

• Given an equation of state, $\epsilon = \epsilon(p)$, solve Einstein's equations,

$$\begin{array}{lll} \displaystyle \frac{dm}{dr} & = & 4\pi r^2 \epsilon, \\ \displaystyle \frac{dp}{dr} & = & -(\epsilon+p) \frac{m+4\pi r^3 p}{r(r-2m)}, \end{array}$$

to determine the structures of relativistic stars.

• Find the radius p(R) = 0 and mass M = m(R) for each star.

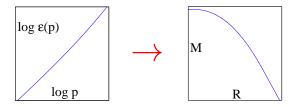
Relativistic Stellar Structure Problem (SSP)

• Given an equation of state, $\epsilon = \epsilon(p)$, solve Einstein's equations,

$$\frac{dm}{dr} = 4\pi r^2 \epsilon, \frac{dp}{dr} = -(\epsilon + p) \frac{m + 4\pi r^3 p}{r(r - 2m)},$$

to determine the structures of relativistic stars.

- Find the radius p(R) = 0 and mass M = m(R) for each star.
- SSP can be thought of as a map from the equation of state $\epsilon = \epsilon(p)$ to the M-R curve $\{R(p_c), M(p_c)\}$.

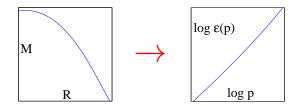


Relativistic Inverse Stellar Structure Problem (SSP⁻¹)

- When the equation of state is well understood as in white dwarf stars – the standard stellar structure problem is useful.
- When the equation of state is poorly known as in neutron stars the inverse stellar structure problem (SSP⁻¹) is more interesting.

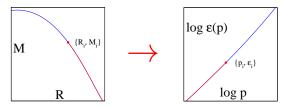
Relativistic Inverse Stellar Structure Problem (SSP⁻¹)

- When the equation of state is well understood as in white dwarf stars – the standard stellar structure problem is useful.
- When the equation of state is poorly known as in neutron stars the inverse stellar structure problem (SSP⁻¹) is more interesting.
- SSP⁻¹ finds the equation of state ε = ε(p) from a given mass-radius curve.
- SSP⁻¹ can be thought of as the map from the M-R curve $\{R(p_c), M(p_c)\}$ to the equation of state $\epsilon = \epsilon(p)$.



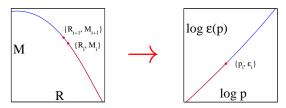
Standard Solution to SSP⁻¹

- Assume the complete M-R curve is known, including the point $\{R_i, M_i\} = \{R(p_i), M(p_i)\}.$
- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.



Standard Solution to SSP⁻¹

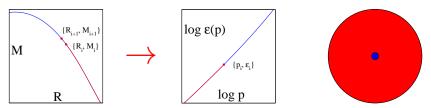
- Assume the complete M-R curve is known, including the point $\{R_i, M_i\} = \{R(p_i), M(p_i)\}.$
- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.



• Choose a new point on the M-R curve, {*R*_{*i*+1}, *M*_{*i*+1}}, having slightly larger central density.

Standard Solution to SSP⁻¹

- Assume the complete M-R curve is known, including the point $\{R_i, M_i\} = \{R(p_i), M(p_i)\}.$
- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.



Choose a new point on the M-R curve, {*R_{i+1}*, *M_{i+1}*}, having slightly larger central density.

• Integrate Einstein's equations,

 $\frac{dm}{dr} = 4\pi r^2 \epsilon, \qquad \frac{dp}{dr} = -(\epsilon + p) \frac{m + 4\pi r^3 p}{r(r - 2m)},$ through the outer parts of the star, to determine the mass and radius, $\{r_{i+1}, m_{i+1}\}$, of the small core with large densities $\epsilon \ge \epsilon_i$.

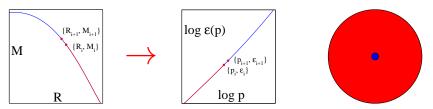
Standard Solution to SSP⁻¹ II

• For very small cores, {*r*_{*i*+1}, *m*_{*i*+1}}, the solution to the OV equations is described by the power series solution:

$$m_{i+1} = \frac{4\pi}{3} \epsilon_{i+1} r_{i+1}^3 + \mathcal{O}(r_{i+1}^5),$$

$$p_i = p_{i+1} - \frac{2\pi}{3} (\epsilon_{i+1} + p_{i+1}) (\epsilon_{i+1} + 3p_{i+1}) r_{i+1}^2 + \mathcal{O}(r_{i+1}^4).$$

• Invert these series to determine the central pressure and density, $\{p_{i+1}, \epsilon_{i+1}\}$, in terms of the known quantities, m_{i+1} , r_{i+1} , p_i , ϵ_i .



Can the Standard Solution to SSP⁻¹ be Improved?

- Standard solution to the relativistic SSP⁻¹ finds the equation of state, ε = ε(p), represented as a table, {p_i, ε_i} for i = 1, ..., N, and an interpolation formula.
- Standard solution has several weaknesses:
 - Solution converges (slowly) with the number of points, as N^{-p} .
 - Each new equation of state point, {*p_i*, *ϵ_i*}, requires the knowledge of a separate new M-R curve point, {*R_i*, *M_i*}.
 - Accurate M-R curve points $\{R_i, M_i\}$ for neutron stars are scarce.

Can the Standard Solution to SSP⁻¹ be Improved?

- Standard solution to the relativistic SSP⁻¹ finds the equation of state, ε = ε(p), represented as a table, {p_i, ε_i} for i = 1, ..., N, and an interpolation formula.
- Standard solution has several weaknesses:
 - Solution converges (slowly) with the number of points, as N^{-p} .
 - Each new equation of state point, {*p_i*, *ϵ_i*}, requires the knowledge of a separate new M-R curve point, {*R_i*, *M_i*}.
 - Accurate M-R curve points $\{R_i, M_i\}$ for neutron stars are scarce.
- Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods.

Can the Standard Solution to SSP⁻¹ be Improved?

- Standard solution to the relativistic SSP⁻¹ finds the equation of state, ε = ε(p), represented as a table, {p_i, ε_i} for i = 1, ..., N, and an interpolation formula.
- Standard solution has several weaknesses:
 - Solution converges (slowly) with the number of points, as N^{-p} .
 - Each new equation of state point, {*p_i*, *ϵ_i*}, requires the knowledge of a separate new M-R curve point, {*R_i*, *M_i*}.
 - Accurate M-R curve points $\{R_i, M_i\}$ for neutron stars are scarce.
- Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods.
- Can spectral methods provide better (*i.e.* more practical and more accurate) solutions to the SSP⁻¹?
- Can spectral methods provide interesting solutions to SSP⁻¹ when only a few (*e.g.* two or three) M-R data points are available?

• Assume the equation of state can be written in the form $\epsilon = \epsilon(p, \gamma_k)$, where the γ_k are a set of parameters.

For example, the equation of state could be written as a spectral expansion, $\epsilon = \epsilon(p, \gamma_k) = \sum_k \gamma_k \Phi_k(p)$, where the $\Phi_k(p)$ are spectral basis functions, *e.g.* $\Phi_k(p) = e^{ikp}$, or $\Phi_k(p) = P_k(p)$.

• Assume the equation of state can be written in the form $\epsilon = \epsilon(p, \gamma_k)$, where the γ_k are a set of parameters.

For example, the equation of state could be written as a spectral expansion, $\epsilon = \epsilon(p, \gamma_k) = \sum_k \gamma_k \Phi_k(p)$, where the $\Phi_k(p)$ are spectral basis functions, *e.g.* $\Phi_k(p) = e^{ikp}$, or $\Phi_k(p) = P_k(p)$.

For a given equation of state, *i.e.* a particular choice of γ_k, solve the SSP to obtain a model M-R curve: {*R*(*p_c*, γ_k), *M*(*p_c*, γ_k)}.

• Assume the equation of state can be written in the form $\epsilon = \epsilon(p, \gamma_k)$, where the γ_k are a set of parameters.

For example, the equation of state could be written as a spectral expansion, $\epsilon = \epsilon(p, \gamma_k) = \sum_k \gamma_k \Phi_k(p)$, where the $\Phi_k(p)$ are spectral basis functions, *e.g.* $\Phi_k(p) = e^{ikp}$, or $\Phi_k(p) = P_k(p)$.

- For a given equation of state, *i.e.* a particular choice of γ_k, solve the SSP to obtain a model M-R curve: {*R*(*p_c*, γ_k), *M*(*p_c*, γ_k)}.
- Given a set of points from the "real" M-R curve, {*R_i*, *M_i*}, choose the parameters γ_k and pⁱ_c that minimize the difference measure:

$$\chi^{2} = \frac{1}{N_{\text{stars}}} \sum_{i=1}^{N_{\text{stars}}} \left\{ \left[\log \left(\frac{R(p_{c}^{i}, \gamma_{k})}{R_{i}} \right) \right]^{2} + \left[\log \left(\frac{M(p_{c}^{i}, \gamma_{k})}{M_{i}} \right) \right]^{2} \right\}$$

• Assume the equation of state can be written in the form $\epsilon = \epsilon(p, \gamma_k)$, where the γ_k are a set of parameters.

For example, the equation of state could be written as a spectral expansion, $\epsilon = \epsilon(p, \gamma_k) = \sum_k \gamma_k \Phi_k(p)$, where the $\Phi_k(p)$ are spectral basis functions, *e.g.* $\Phi_k(p) = e^{ikp}$, or $\Phi_k(p) = P_k(p)$.

- For a given equation of state, *i.e.* a particular choice of γ_k, solve the SSP to obtain a model M-R curve: {*R*(*p_c*, γ_k), *M*(*p_c*, γ_k)}.
- Given a set of points from the "real" M-R curve, {*R_i*, *M_i*}, choose the parameters γ_k and pⁱ_c that minimize the difference measure:

$$\chi^{2} = \frac{1}{N_{\text{stars}}} \sum_{i=1}^{N_{\text{stars}}} \left\{ \left[\log \left(\frac{R(p_{c}^{i}, \gamma_{k})}{R_{i}} \right) \right]^{2} + \left[\log \left(\frac{M(p_{c}^{i}, \gamma_{k})}{M_{i}} \right) \right]^{2} \right\}$$

• Resulting γ_k for $k = 1, ..., N_{\gamma_k}$ determines an equation of state, $\epsilon = \epsilon(p, \gamma_k)$, that provides an approximate solution of SSP⁻¹.

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?
- Can the spectral parameters γ_k be determined accurately and robustly by matching model masses and radii
 {R(pⁱ_c, γ_k), M(pⁱ_c, γ_k)} to given {R_i, M_i} data?

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?
- Can the spectral parameters *γ_k* be determined accurately and robustly by matching model masses and radii {*R*(*pⁱ_c*, *γ_k*), *M*(*pⁱ_c*, *γ_k*)} to given {*R_i*, *M_i*} data?
- These questions are best answered using a somewhat different form of the standard stellar structure problem (SSP).
- Digress (briefly) now to describe this alternate formulation that provides a more efficient and more accurate way to solve the SSP.

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines m(r) and p(r), given an equation of state of the form ε = ε(p).
- The outer boundary of the star is the point where p(R) = 0. This condition is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto (R r)^{\Gamma_0/(\Gamma_0 1)}$.

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines m(r) and p(r), given an equation of state of the form ε = ε(p).
- The outer boundary of the star is the point where p(R) = 0. This condition is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto (R r)^{\Gamma_0/(\Gamma_0 1)}$.
- This problem can be simplified by introducing the relativistic enthalpy $h(p) = \int_0^p dp' / [\epsilon(p') + p']$, and re-writing the OV equations in terms of it:

$$rac{dm}{dr}=4\pi r^2\epsilon(h),\qquad rac{dh}{dr}=-rac{m+4\pi r^3p(h)}{r(r-2m)}.$$

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines m(r) and p(r), given an equation of state of the form ε = ε(p).
- The outer boundary of the star is the point where p(R) = 0. This condition is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto (R r)^{\Gamma_0/(\Gamma_0 1)}$.
- This problem can be simplified by introducing the relativistic enthalpy $h(p) = \int_0^p dp' / [\epsilon(p') + p']$, and re-writing the OV equations in terms of it:

$$rac{dm}{dr}=4\pi r^2\epsilon(h),\qquad rac{dh}{dr}=-rac{m+4\pi r^3p(h)}{r(r-2m)}.$$

• The surface of the star is now the point where h(R) = 0. This condition is easier to solve numerically because the enthalpy goes to zero linearly there: $h(r) \propto (R - r)$.

Alternative Representations of the SSP II

• Simplify again by swapping the roles of *h* and *r*:

$$\frac{dm}{dh}=-\frac{4\pi\epsilon(h)r^3(r-2m)}{m+4\pi r^3p(h)},\qquad \frac{dr}{dh}=-\frac{r(r-2m)}{m+4\pi r^3p(h)}.$$

Alternative Representations of the SSP II

• Simplify again by swapping the roles of *h* and *r*:

$$rac{dm}{dh}=-rac{4\pi\epsilon(h)r^3(r-2m)}{m+4\pi r^3p(h)},\qquad rac{dr}{dh}=-rac{r(r-2m)}{m+4\pi r^3p(h)}.$$

- This form of the equations is easier to solve numerically:
 - The domain on which the solution {*r*(*h*), *m*(*h*)} is defined, *h_c* ≥ *h* ≥ 0, is known *a priori*.
 - The total mass *M* and radius *R* are determined simply by evaluating the solution at *h* = 0, {*R*, *M*} = {*r*(0), *m*(0)}.

Alternative Representations of the SSP II

• Simplify again by swapping the roles of *h* and *r*:

$$rac{dm}{dh}=-rac{4\pi\epsilon(h)r^3(r-2m)}{m+4\pi r^3p(h)},\qquad rac{dr}{dh}=-rac{r(r-2m)}{m+4\pi r^3p(h)}.$$

- This form of the equations is easier to solve numerically:
 - The domain on which the solution {*r*(*h*), *m*(*h*)} is defined, *h_c* ≥ *h* ≥ 0, is known *a priori*.
 - The total mass *M* and radius *R* are determined simply by evaluating the solution at *h* = 0, {*R*, *M*} = {*r*(0), *m*(0)}.
- These alternative OV equations require that the equation of state, c = c(p) be require the equation of state,
 - $\epsilon = \epsilon(p)$, be re-written as $\epsilon = \epsilon(h)$ and p = p(h):
 - Start with the standard, $\epsilon = \epsilon(\mathbf{p})$.
 - Compute, $h(p) = \int_0^p dp' / [\epsilon(p') + p'].$
 - Invert to give p = p(h).
 - Compose $\epsilon = \epsilon(p)$ with p = p(h), to give $\epsilon = \epsilon(h) = \epsilon[p(h)]$.

Faithful Spectral Expansions of the Equation of State

Faithful Spectral Expansions of the Equation of State

- Physical equations of state, ε = ε(h) and p = p(h), are positive monotonic increasing functions.
- Naive spectral representations, ε = ε(h, α_k) = Σ_k α_kΦ_k(h) and p = p(h, β_k) = Σ_k β_kΦ_k(h), are not faithful, because positive monotonic functions do not form a vector space.
- Faithful here means *i*) that every choice of spectral parameters, *α_k* and *β_k*, corresponds to a possible physical equation of state, and *ii*) that every equation of state can be represented by such an expansion.

Faithful Spectral Expansions of the Equation of State

- Physical equations of state, ε = ε(h) and p = p(h), are positive monotonic increasing functions.
- Naive spectral representations, ε = ε(h, α_k) = Σ_k α_kΦ_k(h) and p = p(h, β_k) = Σ_k β_kΦ_k(h), are not faithful, because positive monotonic functions do not form a vector space.
- Faithful here means *i*) that every choice of spectral parameters, *α_k* and *β_k*, corresponds to a possible physical equation of state, and *ii*) that every equation of state can be represented by such an expansion.
- Faithful spectral expansions of the adiabatic index Γ do exist:

$$\Gamma(h) = \frac{\epsilon + p}{p} \frac{dp}{d\epsilon} = \exp\left[\sum_{k} \gamma_k \Phi_k(h)\right].$$

Faithful Spectral Expansions of the Equation of State II

• Every equation of state is determined by the adiabatic index $\Gamma(h)$:

$$rac{d\epsilon}{dh} = rac{(\epsilon + p)^2}{p \, \Gamma(h)}, \qquad \qquad rac{dp}{dh} = \epsilon + p$$

• The solutions to these equations can be reduced to quadratures:

$$p(h) = p_0 \exp\left[\int_{h_0}^{h} \frac{e^{h'} dh'}{\mu(h')}\right],$$

$$\epsilon(h) = p(h) \frac{e^h - \mu(h)}{\mu(h)},$$

$$\mu(h) = \frac{p_0 e^{h_0}}{\epsilon_0 + p_0} + \int_{h_0}^{h} \frac{\Gamma(h') - 1}{\Gamma(h')} e^{h'} dh'.$$

Faithful Spectral Expansions of the Equation of State II

• Every equation of state is determined by the adiabatic index $\Gamma(h)$:

$$rac{d\epsilon}{dh} = rac{(\epsilon + p)^2}{p \, \Gamma(h)}, \qquad \qquad rac{dp}{dh} = \epsilon + p$$

• The solutions to these equations can be reduced to quadratures:

$$p(h) = p_0 \exp\left[\int_{h_0}^{h} \frac{e^{h'} dh'}{\mu(h')}\right],$$

$$\epsilon(h) = p(h) \frac{e^{h} - \mu(h)}{\mu(h)},$$

$$\mu(h) = \frac{p_0 e^{h_0}}{\epsilon_0 + p_0} + \int_{h_0}^{h} \frac{\Gamma(h') - 1}{\Gamma(h')} e^{h'} dh'.$$

Choosing, log Γ(h) = ∑_k γ_kΦ_k(h), for any spectral basis functions, Φ_k(h), results in a faithful parametrized equation of state of the desired form: ε = ε(h, γ_k) and p = p(h, γ_k).

Fitting Model Neutron-Star Equations of State

• How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon = \epsilon(h, \gamma_k)$ and $p = p(h, \gamma_k)$, when $\Gamma(h)$ is given by

$$\Gamma(h) = \exp\left\{\sum_{k=0}^{N_{\gamma_k}-1} \gamma_k \left[\log\left(\frac{h}{h_0}\right)\right]^k\right\}?$$

Fitting Model Neutron-Star Equations of State

• How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon = \epsilon(h, \gamma_k)$ and $p = p(h, \gamma_k)$, when $\Gamma(h)$ is given by

$$\Gamma(h) = \exp\left\{\sum_{k=0}^{N_{\gamma_k}-1} \gamma_k \left[\log\left(\frac{h}{h_0}\right)\right]^k\right\}?$$

- Let {p_i, ε_i, h_i}, for i = 1, ..., N_{EOS} denote one of the standard tabulated realistic neutron-star equations of state.
- Find the spectral parameters γ_k that minimize the fitting error:

$$\left(\Delta_{N_{\gamma_k}}^{EOS}\right)^2 = \frac{1}{N_{EOS}} \sum_{i=1}^{N_{EOS}} \left[\log\left(\frac{\epsilon(h_i, \gamma_k)}{\epsilon_i}\right)\right]^2$$

Fitting Model Neutron-Star Equations of State

• How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon = \epsilon(h, \gamma_k)$ and $p = p(h, \gamma_k)$, when $\Gamma(h)$ is given by

$$\Gamma(h) = \exp\left\{\sum_{k=0}^{N_{\gamma_k}-1} \gamma_k \left[\log\left(\frac{h}{h_0}\right)\right]^k\right\}?$$

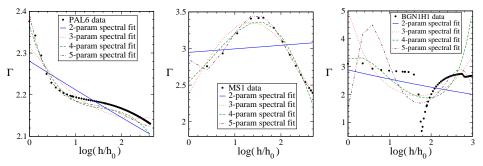
- Let {p_i, ε_i, h_i}, for i = 1, ..., N_{EOS} denote one of the standard tabulated realistic neutron-star equations of state.
- Find the spectral parameters γ_k that minimize the fitting error:

$$\left(\Delta_{N_{\gamma_k}}^{EOS}\right)^2 = \frac{1}{N_{EOS}} \sum_{i=1}^{N_{EOS}} \left[\log\left(\frac{\epsilon(h_i, \gamma_k)}{\epsilon_i}\right)\right]^2$$

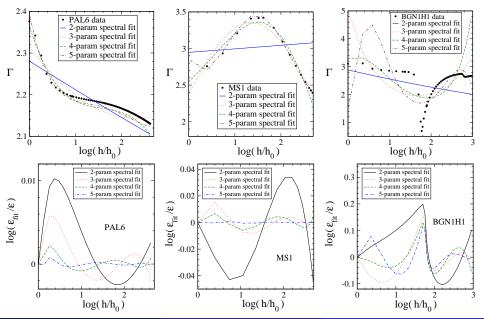
• The average values of these fitting errors, $\Delta_{N_{\gamma_k}}^{EOS}$, for 34 realistic neutron-star equations of state are:

$$\begin{array}{ll} \Delta_2^{EOS} = 0.032, & \Delta_3^{EOS} = 0.017, \\ \Delta_4^{EOS} = 0.012, & \Delta_5^{EOS} = 0.0089 \end{array}$$

Spectral Fits of Model Neutron-Star Equations of State



Spectral Fits of Model Neutron-Star Equations of State



Lee Lindblom (Caltech)

Inverse Stellar Structure Proble

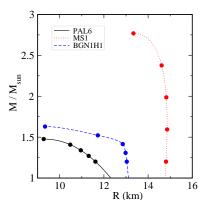
ITS Oregon 4/30/2013 14 / 20

Spectral Solution of SSP⁻¹

- Next step is to test this spectral approach to solving the SSP⁻¹ using realistic neutron-star models.
- Work done with Caltech undergraduate Nathaniel Indik.

Spectral Solution of SSP⁻¹

- Next step is to test this spectral approach to solving the SSP⁻¹ using realistic neutron-star models.
- Work done with Caltech undergraduate Nathaniel Indik.
- Choose mock data points {*R_i*, *M_i*} for neutron-star models computed with 34 realistic equations of state.



Lee Lindblom (Caltech)

Spectral Solution of SSP⁻¹ II

• Fix the spectral expansion coefficients γ_k by minimizing,

$$\chi^{2} = \frac{1}{N_{\text{stars}}} \sum_{i=1}^{N_{\text{stars}}} \left\{ \left[\log \left(\frac{M(h_{c}^{i}, \gamma_{k})}{M_{i}} \right) \right]^{2} + \left[\log \left(\frac{R(h_{c}^{i}, \gamma_{k})}{R_{i}} \right) \right]^{2} \right\}$$

with respect to variations in γ_k , and variations in the central values of the enthalpy for each star, h_c^i .

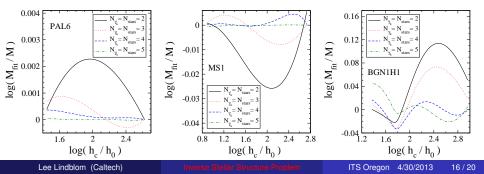
Spectral Solution of SSP⁻¹ II

• Fix the spectral expansion coefficients γ_k by minimizing,

$$\chi^{2} = \frac{1}{N_{\text{stars}}} \sum_{i=1}^{N_{\text{stars}}} \left\{ \left[\log \left(\frac{M(h_{c}^{i}, \gamma_{k})}{M_{i}} \right) \right]^{2} + \left[\log \left(\frac{R(h_{c}^{i}, \gamma_{k})}{R_{i}} \right) \right]^{2} \right\}$$

with respect to variations in γ_k , and variations in the central values of the enthalpy for each star, h_c^i .

Compare the resulting M-R curve {*R*(*h_c*, *γ_k*), *M*(*h_c*, *γ_k*)} with the exact curve from the known equation of state {*R*(*h_c*), *M*(*h_c*)}.



Spectral Solutions to SSP⁻¹ III

• Next evaluate the equation of state fitting errors, $\Delta_{N_{ext}}^{MR}$,

$$\left(\Delta_{N_{\gamma_k}}^{MR}\right)^2 = \frac{1}{N_{\text{EOS}}} \sum_{i=1}^{N_{\text{EOS}}} \left[\log\left(\frac{\epsilon(h_i, \gamma_k)}{\epsilon_i}\right)\right]^2$$

to determine how well the spectral expansion $\epsilon = \epsilon(h, \gamma_k)$, matches the exact neutron-star equation of state $\epsilon = \epsilon(h)$.

Spectral Solutions to SSP⁻¹ III

• Next evaluate the equation of state fitting errors, $\Delta_{N_{ext}}^{MR}$,

$$\left(\Delta_{N_{\gamma_k}}^{MR}\right)^2 = \frac{1}{N_{\text{EOS}}} \sum_{i=1}^{N_{\text{EOS}}} \left[\log\left(\frac{\epsilon(h_i, \gamma_k)}{\epsilon_i}\right)\right]^2$$

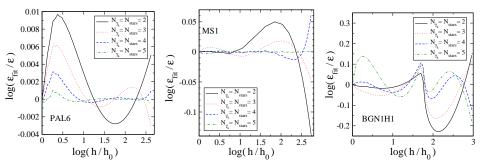
to determine how well the spectral expansion $\epsilon = \epsilon(h, \gamma_k)$, matches the exact neutron-star equation of state $\epsilon = \epsilon(h)$.

The average values of Δ^{MR}_{N_{γk}} (with N_{γk} = N_{stars}) determined in this way for 34 realistic model equations of state are:

• The accuracy of these solutions to the SSP⁻¹ is quite impressive, even though the number of M-R data used is very small.

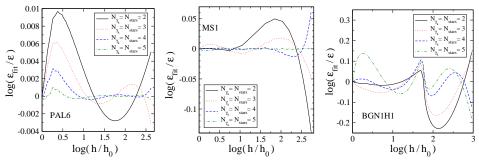
Spectral Solutions to SSP⁻¹ IV

 Compare the spectral equation of state, ε(h, γ_k), determined by fitting the M-R data with the exact equation of state ε(h):



Spectral Solutions to SSP⁻¹ IV

 Compare the spectral equation of state, ε(h, γ_k), determined by fitting the M-R data with the exact equation of state ε(h):



• The convergence of $\Delta_{N_{\gamma_k}}^{MR}$ is not as good as $\Delta_{N_{\gamma_k}}^{EOS}$. Perhaps our χ^2 minimization finds local not global minima?

 Observations of neutron star binary systems can determine the masses *M* and tidal deformabilities ∧ of neutron stars.

- Observations of neutron star binary systems can determine the masses *M* and tidal deformabilities ∧ of neutron stars.
- M and ∧ are determined (for a given equation of state) by solving a slightly more complicated set of structure equations,

$$\frac{dm}{dh} = \mathcal{M}(m, r, h), \quad \frac{dr}{dh} = \mathcal{R}(m, r, h), \quad \frac{d\lambda}{dh} = \mathcal{L}(\lambda, m, r, h),$$

with macroscopic observables: M = m(0), R = r(0) and $\Lambda = \lambda(0)$.

- Observations of neutron star binary systems can determine the masses *M* and tidal deformabilities ∧ of neutron stars.
- M and ∧ are determined (for a given equation of state) by solving a slightly more complicated set of structure equations,

$$\frac{dm}{dh} = \mathcal{M}(m, r, h), \quad \frac{dr}{dh} = \mathcal{R}(m, r, h), \quad \frac{d\lambda}{dh} = \mathcal{L}(\lambda, m, r, h),$$

with macroscopic observables: M = m(0), R = r(0) and $\Lambda = \lambda(0)$.

Solve SSP⁻¹ by matching model values of {*M*(*h*ⁱ_c, γ_k), Λ(*h*ⁱ_c, γ_k)} to gravitational wave observations of {*M*_i, Λ_i}.

- Observations of neutron star binary systems can determine the masses *M* and tidal deformabilities ∧ of neutron stars.
- *M* and ∧ are determined (for a given equation of state) by solving a slightly more complicated set of structure equations,

$$\frac{dm}{dh} = \mathcal{M}(m, r, h), \quad \frac{dr}{dh} = \mathcal{R}(m, r, h), \quad \frac{d\lambda}{dh} = \mathcal{L}(\lambda, m, r, h),$$

with macroscopic observables: M = m(0), R = r(0) and $\Lambda = \lambda(0)$.

- Solve SSP⁻¹ by matching model values of {*M*(*h*ⁱ_c, γ_k), Λ(*h*ⁱ_c, γ_k)} to gravitational wave observations of {*M*_i, Λ_i}.
- Compare average accuracy of the resulting equations of state $\Delta_N^{M\Lambda}$ with those obtained using mass-radius data, Δ_N^{MR} . (Warning: Preliminary results, hot-off-the-press.)

 $\begin{array}{l} \Delta_2^{M\Lambda}=0.040, \ \Delta_3^{M\Lambda}=0.029, \ \Delta_4^{M\Lambda}=0.023, \ \Delta_5^{M\Lambda}=0.018.\\ \Delta_2^{MR}=0.040, \ \Delta_3^{MR}=0.029, \ \Delta_4^{MR}=0.023, \ \Delta_5^{MR}=0.017, \end{array}$

Summary

 Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.

Summary

- Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.
- Matching observed values of neutron star masses M_i and radii R_i to models of $M(h_c^i, \gamma_k)$ and $R(h_c^i, \gamma_k)$ can determine the equation of state with (average) accuracies of just a few percent using (high quality) data from only 2 or 3 neutron stars.

Summary

- Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.
- Matching observed values of neutron star masses M_i and radii R_i to models of $M(h_c^i, \gamma_k)$ and $R(h_c^i, \gamma_k)$ can determine the equation of state with (average) accuracies of just a few percent using (high quality) data from only 2 or 3 neutron stars.
- Gravitational wave measurements of neutron star masses M_i and tidal deformabilities Λ_i can be used to determine the neutron star equation of state with about the same level of accuracy as that obtainable with more traditional mass M_i radius R_i data.