Testing Post-Newtonian Waveforms with Numerical Relativity

Lee Lindblom

Theoretical Astrophysics, Caltech

24th Pacific Coast Gravitiy Meeting UCSB 22 March 2008

Collaborators:

Michael Boyle, Duncan Brown, Lawrence Kidder, Abdul Mroue, Harald Pfeiffer, Mark Scheel, Gregory Cook, and Saul Teukolsky.

 High precision numerical inspiral-merger-ringdown waveforms are now available for equal-mass non-spinning BBH systems.

 High precision numerical inspiral-merger-ringdown waveforms are now available for equal-mass non-spinning BBH systems.

 Post-Newtonian (PN) waveforms are widely used to construct detection templates for LIGO data analysis.

 High precision numerical inspiral-merger-ringdown waveforms are now available for equal-mass non-spinning BBH systems.

- Post-Newtonian (PN) waveforms are widely used to construct detection templates for LIGO data analysis.
- How accurate are PN waveforms?

• High precision numerical inspiral-merger-ringdown waveforms are now available for equal-mass non-spinning BBH systems.

- Post-Newtonian (PN) waveforms are widely used to construct detection templates for LIGO data analysis.
- How accurate are PN waveforms?
- Test the PN waveforms by comparing them to the "exact" numerical relativity waveforms: Boyle, et al., *Phys. Rev. D*, **76**, 124038 (2007).

Comparison of Numerical with PN Waveforms

- PN waveforms are computed using the TaylorT1 method at order 3.5 in phase and 2.5 in amplitude.
- PN waveforms are matched to Numerical waveforms by adjusting time and phase offsets at the point where $\omega = 0.04/M$.

Comparison of Numerical with PN Waveforms

- PN waveforms are computed using the TaylorT1 method at order 3.5 in phase and 2.5 in amplitude.
- PN waveforms are matched to Numerical waveforms by adjusting time and phase offsets at the point where $\omega = 0.04/M$.
- Are the differences significant?

Comparison of Numerical with PN Waveforms

- PN waveforms are computed using the TaylorT1 method at order 3.5 in phase and 2.5 in amplitude.
- PN waveforms are matched to Numerical waveforms by adjusting time and phase offsets at the point where ω = 0.04/M.
- Are the differences significant?
- How accurate are the Numerical waveforms?
- What is the TaylorT1 method, and does it matter?

Determining Numerical Waveform Accuracy

 Numerical convergence of gravitational waveform.

Determining Numerical Waveform Accuracy

- Numerical convergence of gravitational waveform.
- Phase dependence on outer boundary location.

Determining Numerical Waveform Accuracy

- Numerical convergence of gravitational waveform.
- Phase dependence on outer boundary location.
- Constancy of the black hole masses.

Summary of Numerical Waveform Phase Errors:

Effect	$\delta\phi$ (radians)
Numerical truncation error	0.003
Finite outer boundary	0.005
Drift of mass M	0.002
Extrapolation $r \to \infty$	0.005
Wave extraction at <i>r</i> _{areal} =const?	0.002
Coordinate time = proper time?	0.002
Lapse spherically symmetric?	0.01
root-mean-square sum	0.01

Summary of Numerical Waveform Phase Errors (Including Physical Parameter Errors):

Effect	$\delta\phi$ (radians)
Numerical truncation error	0.003
Finite outer boundary	0.005
Drift of mass M	0.002
Extrapolation $r \to \infty$	0.005
Wave extraction at r_{areal} =const?	0.002
Coordinate time = proper time?	0.002
Lapse spherically symmetric?	0.01
residual orbital eccentricity	0.02
residual black hole spin	0.03
root-mean-square sum	0.04

Post-Newtonian Gravitational Waveforms TaylorT1

Rewrite energy-balance equation

$$\frac{dE_{\text{binary}}}{dt} = \frac{dE_{\text{binary}}}{d\Omega} \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}}{dt} \quad \Rightarrow \quad \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}/dt}{dE_{\text{binary}}/d\Omega}$$

Substitute Taylor series from PN expansion on right-hand side

$$\frac{d\Omega}{dt} = -\frac{\Omega^{10/3} \left(A_0 + \ldots + A_n \Omega^{n/3}\right)}{\Omega^{-1/3} \left(B_0 + \ldots + B_n \Omega^{n/3}\right)}$$

- **O** Numerically integrate once to find Ω
- Numerically integrate once more to find Φ

Post-Newtonian Gravitational Waveforms *TaylorT4*

Rewrite energy-balance equation

$$\frac{dE_{\text{binary}}}{dt} = \frac{dE_{\text{binary}}}{d\Omega} \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}}{dt} \quad \Rightarrow \quad \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}/dt}{dE_{\text{binary}}/d\Omega}$$

Substitute Taylor series from PN expansion on right-hand side

$$\frac{d\Omega}{dt} = -\frac{\Omega^{10/3} \left(A_0 + \ldots + A_n \Omega^{n/3} \right)}{\Omega^{-1/3} \left(B_0 + \ldots + B_n \Omega^{n/3} \right)}$$

Re-expand right-hand side as a Taylor series, and truncate

$$\frac{d\Omega}{dt} = -\Omega^{11/3} \left(C_0 + \ldots + C_n \Omega^{n/3} \right)$$

- **9** Numerically integrate once to find Ω
- Sumerically integrate once more to find

Post-Newtonian Gravitational Waveforms *TaylorT4*

Rewrite energy-balance equation

$$\frac{dE_{\text{binary}}}{dt} = \frac{dE_{\text{binary}}}{d\Omega} \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}}{dt} \quad \Rightarrow \quad \frac{d\Omega}{dt} = -\frac{dE_{\text{GW}}/dt}{dE_{\text{binary}}/d\Omega}$$

Substitute Taylor series from PN expansion on right-hand side

$$\frac{d\Omega}{dt} = -\frac{\Omega^{10/3} \left(A_0 + \ldots + A_n \Omega^{n/3} \right)}{\Omega^{-1/3} \left(B_0 + \ldots + B_n \Omega^{n/3} \right)}$$

Re-expand right-hand side as a Taylor series, and truncate

$$\frac{d\Omega}{dt} = -\Omega^{11/3} \left(C_0 + \ldots + C_n \Omega^{n/3} \right)$$

- **9** Numerically integrate once to find Ω
- Sumerically integrate once more to find

TaylorT2, TaylorT3, ...

Lee Lindblom (Caltech)

Comparing Various PN Methods

Summary:

• PN waveforms agree with numerical BBH waveforms with small errors to within a few orbits of merger.

Summary:

• PN waveforms agree with numerical BBH waveforms with small errors to within a few orbits of merger.

The End!

Thanks to Don Marolf and the UCSB organizers!