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Gauge conditions are specified in the GH Einstein system by the
gauge source function Ha ≡ ∇c∇cxa.
How do you choose Ha in a way that provides a reasonable
coordinate system and keeps the GH Einstein system hyperbolic?
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Gauge Conditions and Hyperbolicity
The GH Einstein equations may be written (abstractly) as

ψcd∂c∂dψab = ∂aHb + ∂bHa + Qab(H, ψ, ∂ψ).

These equations are manifestly hyperbolic when Ha is specified
as a function of xa and ψab: Ha = Ha(x , ψ).

Unfortunately, most gauge conditions found useful in numerical
relativity are conditions on ψab and ∂cψab.

The GH Einstein equations are typically not hyperbolic for gauge
conditions of this type: Ha = Ha(x , ψ, ∂ψ).

Elevate Ha to the status of an independent dynamical field, by
choosing an evolution equation for Ha whose solutions are the
desired gauge conditions.
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Solution: Gauge Driver Equations

Pretorius proposed evolving Ha using an equation of the form:

Gauge Driver : ψcd∂c∂dHa = Qa(x ,H, ∂H, ψ, ∂ψ),

Combined Einstein–Gauge system is manifestly hyperbolic.
Dynamically very rich, often producing solutions with “interesting”
gauge dynamics. This is bad.

Introduce a new simpler gauge driver:

New Gauge Driver : tc∂cHa = Qa(x ,H, ψ, ∂ψ).

Also hyperbolic, but not obviously so.
Choose Qa so that all solutions Ha evolve toward a target Fa:

tc∂cHa = −µ(Ha − Fa) + ...

New gauge driver has fewer “interesting” solutions.
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Damped-Wave Gauge Conditions
Spatial coordinates satisfying ∇c∇cx i = 2µSt c∂cx i are called
damped-wave coordinates.
Choose target F i = 2µSt i = −2µSN−1N i .

The time-component taHa related to spacetime metric by
constraints of GH Einstein system:

taHa = ta∂a log
(√

g
N

)
+ N−1∂kNk .

Choose target taFa to suppress growth in g = det gij :

taFa = −2µL log
(√

g
N

)
.

This condition on taHa = taFa is also a damped-wave equation for
lapse N .
Combined expression for damped-wave target Fa:

Fa = 2µL log
(√

g
N

)
ta − 2µSN−1gaiN i .
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Testing New Gauge-Driver System:

Gauge Driver: ∂tHa = −µN(Ha − Fa) + ...

Target Gauge: Fa representing damped-wave gauge.
Initial Data: Schwarzschild with perturbed lapse and shift.
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Summary

The new gauge driver ∂tHa = −µN(Ha − Fa) + ... allows
hyperbolic implementations of a wide variety of gauge conditions.
Numerical tests show the new gauge driver is effective.

Tests of numerous gauge conditions found the damped-wave
gauge very stable and useful for black-hole evolutions.
Binary black-hole systems have been evolved successfully
through the last orbits plus merger using this new gauge driver
and the damped-wave gauge condition.
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