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@ What is the relativistic inverse stellar structure problem (SSP~1)?
@ Can spectral methods provide a more effective way to solve it?
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Relativistic Stellar Structure Problem (SSP)

@ Given an equation of state, ¢ = ¢(p), solve Einstein’s equations,

dm 5
o - 4rr-e,
do m+ 4nr3p
o = PG o)

to determine the structures of relativistic stars.
@ Find the radius p(R) = 0 and mass M = m(R) for each star.

@ SSP can be thought of as a map from the equation of state
¢ = ¢(p) to the M-R curve {R(pc). M(pc)}.
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Relativistic Inverse Stellar Structure Problem (SSP~1)

@ When the equation of state is well understood — as in white dwarf
stars — the standard stellar structure problem is useful.

@ When the equation of state is poorly known — as in neutron stars —
the inverse stellar structure problem may be more interesting.
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Relativistic Inverse Stellar Structure Problem (SSP~1)

@ When the equation of state is well understood — as in white dwarf
stars — the standard stellar structure problem is useful.

@ When the equation of state is poorly known — as in neutron stars —
the inverse stellar structure problem may be more interesting.

@ SSP~ finds the equation of state ¢ = ¢(p) from a given

mass-radius curve.

@ SSP~' can be thought of as a map from the M-R curve

{R(pc), M(p:)} to the equation of state ¢ = ¢(p).
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Standard Solution to SSP

@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).
@ Assume the complete M-R curve is known.
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Standard Solution to SSP

@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).

@ Assume the complete M-R curve is known.

@ Choose a new point on the M-R curve, { R 1, M;. 1}, having
slightly larger central density.
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Standard Solution to SSP

@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).
@ Assume the complete M-R curve is known.

@ Choose a new point on the M-R curve, { R 1, M;. 1}, having
slightly larger central density.

@ Integrate Einstein’s equations through the outer parts of the star,
to determine the mass and radius, {/j; 1, M;.1 }, of the core.
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Standard Solution to SSP

@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).
@ Assume the complete M-R curve is known.

@ Choose a new point on the M-R curve, { R 1, M;. 1}, having
slightly larger central density.

@ Integrate Einstein’s equations through the outer parts of the star,
to determine the mass and radius, {/j; 1, M;.1 }, of the core.

@ Use a power series solution of Einstein’s equations in the core to
determine the central pressure and density, {pj1, €11}
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Can the Standard Solution to SSP~' be Improved?

@ Standard solution to the relativistic SSP~ finds the equation of
state, ¢ = ¢(p), represented as a table: {p;,¢;} fori=1,...,N.

@ Standard solution has several weaknesses:

e Solution converges (slowly) with the number of points, as N~ °.

e Each equation of state point found, {p;, ¢; }, requires the
knowledge of a separate M-R curve point, { R;, M;}.

o Accurate M-R curve points {R,-, M,-} for neutron stars are scarce.
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Can the Standard Solution to SSP~' be Improved?

@ Standard solution to the relativistic SSP~ finds the equation of
state, ¢ = ¢(p), represented as a table: {p;,¢;} fori=1,...,N.
@ Standard solution has several weaknesses:

e Solution converges (slowly) with the number of points, as N~ °.

e Each equation of state point found, {p;, ¢; }, requires the
knowledge of a separate M-R curve point, { R;, M;}.

o Accurate M-R curve points {:‘?,-7 M,-} for neutron stars are scarce.

@ Spectral numerical methods typically converge more rapidly, and
represent functions more efficiently than finite difference methods.

@ Can spectral methods provide better solutions to the SSP~'?

Lee Lindblom (Caltech) PCGM26 3/27/2010 5/9



Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
e = ¢(p, \.), where the )\, are a set of parameters.

For example, the equation of state could be written as a spectral
expansion, € = €(p, \o) = >, A\a®u(p), where the ¢, (p) are
spectral basis functions.
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
e = ¢(p, \.), where the )\, are a set of parameters.

For example, the equation of state could be written as a spectral
expansion, € = €(p, \o) = >, A\a®u(p), where the ¢, (p) are
spectral basis functions.

@ For a given equation of state, i.e. a particular choice of )\, solve
the SSP to obtain the M-R curve: {R(pc, \o), M(pe, Ao ) }-
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
e = ¢(p, \.), where the )\, are a set of parameters.

For example, the equation of state could be written as a spectral
expansion, € = €(p, \o) = >, A\a®u(p), where the ¢, (p) are
spectral basis functions.

@ For a given equation of state, i.e. a particular choice of )\, solve
the SSP to obtain the M-R curve: { R(pc, \o), M(ps, A\o) }-

@ Given a set of points from the “real” M-R curve, { R;, M;}, choose
the parameters A\, and p; that minimize the difference measure:

o = 3 [ (P22 " g (M5220) )

i=1
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
e = ¢(p, \.), where the )\, are a set of parameters.

For example, the equation of state could be written as a spectral
expansion, € = €(p, \o) = >, A\a®u(p), where the ¢, (p) are
spectral basis functions.

@ For a given equation of state, i.e. a particular choice of )\, solve
the SSP to obtain the M-R curve: {R(pc, \o), M(pe, Ao ) }-

@ Given a set of points from the “real” M-R curve, { R;, M;}, choose
the parameters A\, and p; that minimize the difference measure:

o = 3 [ (P22 " g (M5220) )

@ Resulting A\, for o = 1, ..., N determine an equation of state,
¢ = ¢(p, \.), that provides an approximate solution of SSP~".
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Faithful Spectral Expansions of the Equation of State
@ Physical equations of state, ¢ = ¢(p), are positive monotonic
increasing functions. These do not form a vector space.
@ The representation, ¢ = ¢(p. \o) = >, A\a®u(p), is not faithful.
@ Faithful here means that every choice of )\, corresponds to a

possible physical equation of state, and every equation of state
can be represented by such an expansion.
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Faithful Spectral Expansions of the Equation of State
@ Physical equations of state, ¢ = ¢(p), are positive monotonic
increasing functions. These do not form a vector space.
@ The representation, ¢ = ¢(p. \o) = >, A\a®u(p), is not faithful.
@ Faithful here means that every choice of )\, corresponds to a

possible physical equation of state, and every equation of state
can be represented by such an expansion.

@ Faithful spectral expansions of the adiabatic index do exist:

2+ pd
rp) =< —PP _oxp [Z a®a(p)

pc?  de

[e7

Lee Lindblom (Caltech) PCGM26 3/27/2010 719



Faithful Spectral Expansions of the Equation of State
@ Physical equations of state, ¢ = ¢(p), are positive monotonic
increasing functions. These do not form a vector space.
@ The representation, ¢ = ¢(p. \o) = >, A\a®u(p), is not faithful.
@ Faithful here means that every choice of )\, corresponds to a

possible physical equation of state, and every equation of state
can be represented by such an expansion.

@ Faithful spectral expansions of the adiabatic index do exist:

_eCP+pdp

@ Every equation of state is determined by the adiabatic index ['(p):

o ][]

e 1P o)
W= o ) / zr(p) *-
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Neutron Star Equations of State

@ What choice of spectral basis functions ®,(p) provide efficient
representations of realistic neutron star equations of state?
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Neutron Star Equations of State

@ What choice of spectral basis functions ®,(p) provide efficient
representations of realistic neutron star equations of state?

@ The following simple expansion works well:

M(p) = exp {Z% [Iog <,§>}} |

«
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Neutron Star Equations of State

@ What choice of spectral basis functions ®,(p) provide efficient
representations of realistic neutron star equations of state?

@ The following simple expansion works well:

M(p) = exp {Z% [Iog <5)>}} |

«

@ Test its effectiveness by constructing expansions that minimize,

Ny

for realistic neutron star equations of state.
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Neutron Star Equations of State

@ What choice of spectral basis functions ®,(p) provide efficient
representations of realistic neutron star equations of state?

@ The following simple expansion works well:

M(p) = exp{;% [Iog <5)>}}

@ Test its effectiveness by constructing expansions that minimize,

st = 3 {on (2]

for realistic neutron star equations of state.
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Neutron Star Equations of State

@ What choice of spectral basis functions ®,(p) provide efficient
representations of realistic neutron star equations of state?

@ The following simple expansion works well:

M(p) = exp {Z/ [Iog <5)>}} |

@ Test its effectiveness by constructing expansions that minimize,

o - 5l (2)])

for realistic neutron star equations of state.
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Spectral Solution of SSP~

@ Next step is to test this spectral approach by finding the
approximate solution to SSP~" for realistic neutron star models.

@ Choose points { R;, M;} from realistic neutron star models, then fix
the spectral expansion coefficients ~,, by minimizing,

o 3o ()] (252}
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Spectral Solution of SSP~

@ Next step is to test this spectral approach by finding the
approximate solution to SSP~" for realistic neutron star models.

@ Choose points { R;, M;} from realistic neutron star models, then fix
the spectral expansion coefficients ~,, by minimizing,

: Nz{w M 20) oy (M)

@ Finally evaluate AE,

= {2

to determine how well the spectral expansion ¢ = ¢(p, 7,),
matches the original realistic neutron star equation of state

¢ = ¢(p).
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Spectral Solution of SSP~

@ Next step is to test this spectral approach by finding the
approximate solution to SSP~" for realistic neutron star models.

@ Choose points { R;, M;} from realistic neutron star models, then fix
the spectral expansion coefficients ~,, by minimizing,

: Nz{w M 20) oy (M)

@ Finally evaluate AE,

= {2

to determine how well the spectral expansion ¢ = ¢(p, 7,),
matches the original realistic neutron star equation of state

¢ = ¢(p).
@ Unfortunately, | have run out of time.
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Spectral Solution of SSP~

@ Next step is to test this spectral approach by finding the
approximate solution to SSP~" for realistic neutron star models.

@ Choose points { R;, M;} from realistic neutron star models, then fix
the spectral expansion coefficients ~,, by minimizing,

: Nz{w M 20) oy (M)

@ Finally evaluate AE,

= {2

to determine how well the spectral expansion ¢ = ¢(p, 7,),
matches the original realistic neutron star equation of state
¢ = ¢(p).

@ Unfortunately, | have run out of time.

@ The End.
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