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What is the relativistic inverse stellar structure problem (SSP−1)?
Can spectral methods provide a more effective way to solve it?
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Relativistic Stellar Structure Problem (SSP)

Given an equation of state, ε = ε(p), solve Einstein’s equations,
dm
dr

= 4πr 2ε,

dp
dr

= −(ε + p)
m + 4πr 3p
r(r − 2m)

,

to determine the structures of relativistic stars.
Find the radius p(R) = 0 and mass M = m(R) for each star.
SSP can be thought of as a map from the equation of state
ε = ε(p) to the M-R curve {R(pc),M(pc)}.
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Relativistic Inverse Stellar Structure Problem (SSP−1)

When the equation of state is well understood – as in white dwarf
stars – the standard stellar structure problem is useful.
When the equation of state is poorly known – as in neutron stars –
the inverse stellar structure problem may be more interesting.

SSP−1 finds the equation of state ε = ε(p) from a given
mass-radius curve.
SSP−1 can be thought of as a map from the M-R curve
{R(pc),M(pc)} to the equation of state ε = ε(p).
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Standard Solution to SSP−1

Assume the equation of state is known for ε ≤ εi = ε(pi).
Assume the complete M-R curve is known.

Choose a new point on the M-R curve, {Ri+1,Mi+1}, having
slightly larger central density.
Integrate Einstein’s equations through the outer parts of the star,
to determine the mass and radius, {ri+1,mi+1}, of the core.
Use a power series solution of Einstein’s equations in the core to
determine the central pressure and density, {pi+1, εi+1}.

M

R

{Ri, Mi} →
log ε(p)

log p

{pi, εi}
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Can the Standard Solution to SSP−1 be Improved?

Standard solution to the relativistic SSP−1 finds the equation of
state, ε = ε(p), represented as a table: {pi , εi} for i = 1, ...,N.

Standard solution has several weaknesses:

Solution converges (slowly) with the number of points, as N−p.
Each equation of state point found, {pi , εi}, requires the
knowledge of a separate M-R curve point, {Ri ,Mi}.
Accurate M-R curve points {Ri ,Mi} for neutron stars are scarce.

Spectral numerical methods typically converge more rapidly, and
represent functions more efficiently than finite difference methods.

Can spectral methods provide better solutions to the SSP−1?
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Outline for Solving SSP−1 Using Spectral Methods
Assume the equation of state can be written in the form
ε = ε(p, λα), where the λα are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ε = ε(p, λα) =

∑
α λαΦα(p), where the Φα(p) are

spectral basis functions.

For a given equation of state, i.e. a particular choice of λα, solve
the SSP to obtain the M-R curve: {R(pc, λα),M(pc, λα)}.
Given a set of points from the “real” M-R curve, {Ri ,Mi}, choose
the parameters λα and p i that minimize the difference measure:

∆2
MR =

1
N

N∑
i=1

{[
log
(

R(p i , λα)

Ri

)]2

+

[
log
(

M(p i , λα)

Mi

)]2
}

Resulting λα for α = 1, ...,N determine an equation of state,
ε = ε(p, λα), that provides an approximate solution of SSP−1.

Lee Lindblom (Caltech) Inverse Stellar Structure Problem PCGM26 3/27/2010 6 / 9



Outline for Solving SSP−1 Using Spectral Methods
Assume the equation of state can be written in the form
ε = ε(p, λα), where the λα are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ε = ε(p, λα) =

∑
α λαΦα(p), where the Φα(p) are

spectral basis functions.
For a given equation of state, i.e. a particular choice of λα, solve
the SSP to obtain the M-R curve: {R(pc, λα),M(pc, λα)}.

Given a set of points from the “real” M-R curve, {Ri ,Mi}, choose
the parameters λα and p i that minimize the difference measure:

∆2
MR =

1
N

N∑
i=1

{[
log
(

R(p i , λα)

Ri

)]2

+

[
log
(

M(p i , λα)

Mi

)]2
}

Resulting λα for α = 1, ...,N determine an equation of state,
ε = ε(p, λα), that provides an approximate solution of SSP−1.

Lee Lindblom (Caltech) Inverse Stellar Structure Problem PCGM26 3/27/2010 6 / 9



Outline for Solving SSP−1 Using Spectral Methods
Assume the equation of state can be written in the form
ε = ε(p, λα), where the λα are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ε = ε(p, λα) =

∑
α λαΦα(p), where the Φα(p) are

spectral basis functions.
For a given equation of state, i.e. a particular choice of λα, solve
the SSP to obtain the M-R curve: {R(pc, λα),M(pc, λα)}.
Given a set of points from the “real” M-R curve, {Ri ,Mi}, choose
the parameters λα and p i that minimize the difference measure:

∆2
MR =

1
N

N∑
i=1

{[
log
(

R(p i , λα)

Ri

)]2

+

[
log
(

M(p i , λα)

Mi

)]2
}

Resulting λα for α = 1, ...,N determine an equation of state,
ε = ε(p, λα), that provides an approximate solution of SSP−1.

Lee Lindblom (Caltech) Inverse Stellar Structure Problem PCGM26 3/27/2010 6 / 9



Outline for Solving SSP−1 Using Spectral Methods
Assume the equation of state can be written in the form
ε = ε(p, λα), where the λα are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ε = ε(p, λα) =

∑
α λαΦα(p), where the Φα(p) are

spectral basis functions.
For a given equation of state, i.e. a particular choice of λα, solve
the SSP to obtain the M-R curve: {R(pc, λα),M(pc, λα)}.
Given a set of points from the “real” M-R curve, {Ri ,Mi}, choose
the parameters λα and p i that minimize the difference measure:

∆2
MR =

1
N

N∑
i=1

{[
log
(

R(p i , λα)

Ri

)]2

+

[
log
(

M(p i , λα)

Mi

)]2
}

Resulting λα for α = 1, ...,N determine an equation of state,
ε = ε(p, λα), that provides an approximate solution of SSP−1.

Lee Lindblom (Caltech) Inverse Stellar Structure Problem PCGM26 3/27/2010 6 / 9



Faithful Spectral Expansions of the Equation of State
Physical equations of state, ε = ε(p), are positive monotonic
increasing functions. These do not form a vector space.
The representation, ε = ε(p, λα) =

∑
α λαΦα(p), is not faithful.

Faithful here means that every choice of λα corresponds to a
possible physical equation of state, and every equation of state
can be represented by such an expansion.

Faithful spectral expansions of the adiabatic index do exist:

Γ(p) =
εc2 + p

pc2

dp
dε

= exp

[∑
α

γαΦα(p)

]
.

Every equation of state is determined by the adiabatic index Γ(p):

µ(p) = exp
[∫ p

p0

dp′

p′Γ(p′)

]
,

ε(p) =
ε0

µ(p)
+

1
µ(p)

∫ p

p0

µ(p′)
c2Γ(p′)

dp′.
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Neutron Star Equations of State
What choice of spectral basis functions Φα(p) provide efficient
representations of realistic neutron star equations of state?

The following simple expansion works well:

Γ(p) = exp

{∑
α

γα

[
log
(

p
p0

)]α
}
.

Test its effectiveness by constructing expansions that minimize,

∆2
ε =

1
N

N∑
i=1

{[
log
(
ε(p i , γα)

εi

)]2
}

for realistic neutron star equations of state.
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Spectral Solution of SSP−1

Next step is to test this spectral approach by finding the
approximate solution to SSP−1 for realistic neutron star models.

Choose points {Ri ,Mi} from realistic neutron star models, then fix
the spectral expansion coefficients γα by minimizing,

∆2
MR =

1
N

N∑
i=1

{[
log
(

M(p i , γα)

Mi

)]2

+

[
log
(

R(p i , γα)

Ri

)]2
}
.

Finally evaluate ∆ε,

∆2
ε =

1
N

N∑
i=1

{[
log
(
ε(p i , γα)

εi

)]2
}

to determine how well the spectral expansion ε = ε(p, γα),
matches the original realistic neutron star equation of state
ε = ε(p).
Unfortunately, I have run out of time.
The End.
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