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Motivation: Gravitational Wave Astronomy
Recent work in numerical relativity is aimed at providing model
waveforms for gravitational wave (GW) astronomy (LIGO, etc.).
Binary black hole systems emit large amounts of GW as the holes
inspiral and ultimately merge. These are expected to be among
the strongest sources detectable by LIGO.

Numerical waveforms may be useful in detection (to construct
better data filters), and/or in modeling detected signals.
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Gravitational Wave Data Analysis
Signals hs(t) are detected in the noisy LIGO data by projecting
them onto a model waveforms hm(λ, t).

The measured signal-to-noise ratio, ρm(λ), is maximized by
adjusting the model waveform parameters λ.

ρm(λ) = 4
∫ ∞

0

Re[hs(f )h∗m(f , λ)]

Sn(f )
df
[
4
∫ ∞

0

|hm(f , λ)|2
Sn(f )

df
]−1/2

A detection occurs whenever a signal is present that matches a
model waveform with ρm(λ) > ρmin.

For LIGO searches ρmin ≈ 8.
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How Accurate Must Model Waveforms Be?
Write the model waveform as hm(f ) = hs(f )e δχm(f )+iδΦm(f ), where
δχm(f ) and δΦm(f ) represent errors in its amplitude and phase.

Inaccurate model waveforms degrade the measured
signal-to-noise ratios ρm(λ), resulting in missed detections.
To ensure that the loss rate of detections does not exceed 10%,
the waveform errors must not exceed:

0.01 &
(
δχm

)2
+
(
δΦm

)2 ≡
∫ ∞

0

[
(δχm)2 + (δΦm)2] 4|hs|2

ρ2Sn
df .

Physical properties of the GW source are measured by adjusting
the model waveform parameters hm(f , λ) to achieve the largest
measured signal-to-noise ρm(λ).
To ensure the errors in the measured parameters λ are dominated
by the intrinsic detector noise Sn(f ) rather than model waveform
error, the waveform errors must not exceed:

1
4ρ 2

max
≈ 2.5× 10−5 &

(
δχm

)2
+
(
δΦm

)2
.
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How Are Accurate Waveforms Calculated?

Computational Challanges:

Dynamics of binary black hole problem is driven by delicate
adjustments to orbit due to emission of gravitational waves.
Very big computational problem:

Must evolve ∼ 50 dynamical fields (spacetime metric plus all first
derivatives).
Must accurately resolve features on many scales from black hole
horizons r ∼ GM/c2 to emitted waves r ∼ 100GM/c2.
Many grid points are required & 106 even if points are located
optimally.

Most representations of the Einstein equations have
mathematically ill-posed initial value problems.
Constraint violating instabilities destroy stable numerical solutions
in many well-posed forms of the equations.
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Outline of Remainder of Talk:

Interesting Features of the Caltech/Cornell code:

Constraint Damping.
Pseudo-Spectral Methods.
Horizon Tracking and Conforming Grid Structures..
Damped Harmonic Gauge Conditions.

Results:

Generic Mergers.
Accurate BBH waveforms.
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Gauge and Constraints in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional notation: ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations are often re-expressed in terms of a vector
potential Fab = ∇aAb −∇bAa :

∇a∇aAb −∇b∇aAa = 0.
This form of Maxwell’s equations is manifestly hyperbolic as long
as the gauge is chosen correctly, e.g., let ∇aAa = H(x , t), giving:

∇a∇aAb ≡
(−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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Constraint Damping

Where are the constraints: ∇a∇aAb = ∇bH?

Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes also affect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Constraint Damped Einstein System
“Generalized Harmonic” form of Einstein’s equations have
properties similar to Maxwell’s equations:

Gauge (coordinate) conditions are imposed by specifying the
divergence of the spacetime metric: ∂agab = Hb + ...
Evolution equations become manifestly hyperbolic: �gab = ...
Gauge conditions become constraints.
Constraint damping terms can be added which make numerical
evolutions stable.
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Numerical Solution of Evolution Equations
∂tu = F (u, ∂xu, x , t).

Choose a grid of spatial points, xn.

x n−1 x n x n+1

Evaluate the function u on this grid: un(t) = u(xn, t).

Approximate the spatial derivatives at the grid points
∂xu(xn) =

∑
k Dn kuk .

Evaluate F at the grid points xn in terms of the uk : F (uk , xn, t).

Solve the coupled system of ordinary differential equations,

dun(t)

dt
= F [uk (t), xn, t ],

using standard numerical methods (e.g. Runge-Kutta).
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Basic Numerical Methods

Different numerical methods use different ways of choosing the
grid points xn, and different expressions for the spatial derivatives

∂xu(un) =
∑

k

Dn kuk .

Most numerical groups use finite difference methods:
Uniformly spaced grids: xn − xn−1 = ∆x = constant.
Use Taylor expansions to obtain the needed expressions for ∂xu:

∂xu(xn) =
un+1 − un−1

2∆x
+O(∆x2).

Grid spacing decreases as the number of grid points N increases,
∆x ∼ 1/N . Errors in finite difference methods scale as N−p.
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Basic Numerical Methods II

A few groups (including ours) use pseudo-spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1

k=0 ũk (t)eikx .
Choose grid points xn to allow exact (and efficient) inversion of the
series: ũk (t) =

∑N−1
n=0 wn u(xn, t)e−ikxn .

Obtain derivative formulas by differentiating the series:
∂xu(xn, t) =

∑N−1
k=0 ũk (t)∂xeikxn =

∑N−1
m=0 Dn m u(xm, t).

Errors in spectral methods are dominated by the size of ũN .
Estimate the errors (for Fourier series of smooth functions):

ũN =
1

2π

∫ π

−π
u(x)e−iNxdx

≤ 1
Np max

∣∣∣∣dpu(x)

dxp

∣∣∣∣ .
Errors in spectral methods decrease faster than any power of N.
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Comparing Different Numerical Methods
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Wave propagation with spectral method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).
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Caltech/Cornell Spectral Einstein Code (SpEC):

Multi-domain pseudo-spectral method.

Constraint damped “generalized harmonic” Einstein equations:
�gab = Fab(g, ∂g).

Constraint-preserving, physical and gauge boundary conditions.
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Moving Black Holes

Black hole interior is not in causal contact with exterior.
Interior is removed, introducing an excision boundary.

Numerical grid must be moved when black holes move too far.
Problems:

Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the motions of the centers
of the black holes.

x

Horizon

Horizon
Outside

t
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.
A coordinate transformation from “inertial” coordinates, (x̄ , ȳ , z̄), to
“co-moving” coordinates (x , y , z), consisting of a rotation followed
by an expansion, x

y
z

 = e a(̄t)

 cosϕ(̄t) − sinϕ(̄t) 0
sinϕ(̄t) cosϕ(̄t) 0

0 0 1

 x̄
ȳ
z̄

 ,

is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(̄t) and ϕ(̄t).
Since the motions of the holes are not known a priori, the
functions a(̄t) and ϕ(̄t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates II

x

δϕ y

c

c

Measure the co-moving centers of the holes: xc(t) and yc(t), or
equivalently

Qx (t) =
xc(t)− xc(0)

xc(0)
,

Qy (t) =
yc(t)
xc(t)

.

Use a feedback-control system to adjust the map parameters a(t)
and ϕ(t) in such a way that Qx (t) and Qy (t) remain small, thus
keeping the positions of the black holes at fixed coordinate
locations along the x axis.
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Horizon Distortion Maps

Tidal deformation, along with kinematic and gauge effects cause
the shapes of the black holes to deform:

If the holes become significantly distorted – relative to the
spherical excision surface – bad things happen:

Some points on the excision boundary are much deeper inside the
singular black hole interior. Numerical errors and constraint
violations are largest there, sometimes leading to instabilities.
When the horizons move relative to the excision boundary points,
the excision boundary can become timelike, and boundary
conditions are then needed there.
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Horizon Distortion Maps II
Adjust the placement of grid points near each black hole using a
horizon distortion map that moves grid coordinates x i into points
in the black hole rest frame x̃ i :

θ̃A = θA, ϕ̃A = ϕA,

r̃A = rA − fA(rA, θA, ϕA)
L∑
`=0

∑̀
m=−`

λ`mA (t)Y`m(θa, ϕA).

Adjust the coefficients λ`mA (t) using
a feedback control system to keep
the excision surface the same shape
and slightly smaller than the horizon.
Choose fA to scale linearly from
fA = 1 on the excision boundary, to
fA = 0 on the surrounding cube.
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Dynamical Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric gab.
The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black hole mergers.
We think this failure occurs because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.
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Dynamical Gauge Conditions II

Some of the extraneous gauge dynamics could be removed by
adding a damping term to the harmonic gauge condition:

∇a∇axb = Hb = µta∂axb = µtb = µgbt/
√
−gtt .

This works well for the spatial coordinates x i , driving them toward
solutions of the spatial Laplace equation on the timescale 1/µ.

For the time coordinate t , this damped wave condition drives t to a
time independent constant, which is not a good coordinate.
A better choice sets Ht proportional to µ log

√−det gij/gtt . This
time coordinate condition keeps the ratio det gij/gtt close to unity,
even during binary black hole mergers where it becomes of order
100 using our simpler gauge conditions.
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Generic Mergers

Recent improvements now allow the Caltech/Cornell code SpEC
to perform inspiral merger and ringdown simulations robustly for a
wide range of black hole binary systems.
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Numerical BBH Gravitational Waveforms

The Caltech/Cornell collaboration has computed high precision
numerical inspiral-merger-ringdown waveforms for several simple
equal-mass BBH systems.
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Do these waveforms meet the required accuracy standards for
LIGO data analysis?
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Determining Numerical Waveform Accuracy
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Summary of Numerical Waveform Phase Errors:

Effect δφ (radians)
Numerical truncation error 0.003
Finite outer boundary 0.005
Drift of mass M 0.002
Extrapolation r →∞ 0.005
Wave extraction at rareal=const? 0.002
Coordinate time = proper time? 0.002
Lapse spherically symmetric? 0.01
root-mean-square sum 0.01
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Summary of Numerical Waveform Phase Errors
(Including Physical Parameter Errors):

Effect δφ (radians)
Numerical truncation error 0.003
Finite outer boundary 0.005
Drift of mass M 0.002
Extrapolation r →∞ 0.005
Wave extraction at rareal=const? 0.002
Coordinate time = proper time? 0.002
Lapse spherically symmetric? 0.01
residual orbital eccentricity 0.02
residual black hole spin 0.03
root-mean-square sum 0.04

It isn’t known yet whether these waveforms meet the real frequency
domain waveform accuracy standards required for LIGO data analysis.
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