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General Theme:
Interesting and Unusual Ways to Specify Coordinates (Gauge).

Outline:
Methods of Specifying Gauge (Coordinates).

Generalized Harmonic (GH) Einstein Equations.

Constraint Damping.

Moving Black Holes.

Dual Coordinate Frame Evolution.

Choosing Coordinates by Feedback Control.

Recent GH Binary Black Hole Results.
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Traditional ADM Gauge Conditions
Construct a foliation of
spacetime by spatial
slices.
Choose a time function
with t = const. on these
slices.
Choose spatial coordinates,
xk , on each slice.
Decompose the 4-metric ψab into its 3+1 parts:
ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The lapse N and shift N i measure how coordinates are laid out on
spacetime: ~n = ∂τ =

∂t
∂τ
∂t +

∂xk

∂τ
∂k ,

=
1
N
∂t −

Nk

N
∂k .

Spacetime coordinates are determined in the traditional ADM
method by specifying the lapse N and shift N i .

~n = ∂τ
∂t

∂k(t , xk)

(t + δt , xk)
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ADM Evolution System

When the gauge is determined by specifying the lapse N and shift
Nk , the Einstein system becomes a set of evolution equations for
the spatial metric gij and extrinsic curvature Kij :

∂tgij − Nk∂kgij = −2NKij + ...,

∂tKij − Nk∂kKij = NRij(g) + ...

The Einstein equations also include constraints:

0 = Mt̂ ≡ R − KijK
ij + K 2,

0 = Mi ≡ ∇kKki −∇iK .

This traditional form of the Einstein equations is not hyperbolic,
and numerical solutions are found to suffer from generic constraint
violating instabilities.
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Generalized Harmonic Gauge Conditions
An alternate way to specify the coordinates is through the gauge
source function Ha:

Let Ha denote the function obtained by the action of the covariant
scalar wave operator on the coordinates xa:

Ha ≡ ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(x , ψ) = ψabHb, and requiring that

Ha(x , ψ) = −Γa = −ψabψ
cdΓb

cd .
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Important Properties of the GH Method

The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Rab = −1
2
ψcd∂c∂dψab +∇(aΓb) + Fab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc . The vacuum
Einstein equation, Rab = 0, has the same principal part as the
scalar wave equation when Ha(x , ψ) = −Γa is imposed.
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Generalized Harmonic Evolution System
Frans Pretorius wrote a very nice second order finite difference
AMR code to solve the generalized harmonic Einstein equations:

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by the derivatives of the gauge constraint Ca:

Ma ≡
[
Rab −

1
2
ψabR

]
nb =

[
∇(aCb) −

1
2
ψab∇cCc

]
nb.
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Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
n(aCb) −

1
2
ψab nc Cc

]
,

where na is a unit timelike vector field. Since Ca = Ha + Γa

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c
[
n(cCa)

]
+ Cc∇(cCa)−

1
2
γ0 naCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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First-Order Einstein Evolution System

Introduce new fields Πab and Φiab representing the time and space
derivatives of the metric ψab.

Our code solves a first-order representation of the GH Einstein
evolution system:

∂tψab = −NΠab + N iΦiab,

∂tΠab − Nk∂kΠab + Ngki∂kΦiab + γ2Nk∂kψab ' 0,

∂tΦiab − Nk∂kΦiab + N∂iΠab − γ2N∂iΨab ' 0.

Violations of the additional constraint, Ciab = Φiab − ∂iψab, are
suppressed on the timescale 1/γ2 by this evolution system.

This evolution system is symmetric hyperbolic and linearly
degenerate.
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Numerical Tests of the First-Order GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.

These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Moving Black Holes in a Spectral Code

Spectral: Excision boundary is a smooth analytic surface.

Cannot add/remove individual grid points.

Straightforward method: re-grid when holes move too far.
Problems:

Re-gridding/interpolation is expensive.
Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.

x

Horizon

Horizon
Outside

t
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Evolving Black Holes in Rotating Frames

Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.

Evolutions of Schwarzschild in rotating coordinates are unstable.
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Evolutions shown use a
computational domain that
extends to r = 1000M.

Angular velocity needed to
track the horizons of an equal
mass binary at merger is
about Ω ≈ 0.2/M.

Problem caused by asymptotic
behavior of metric in rotating
coordinates: ψtt ∼ ρ2Ω2,
ψti ∼ ρΩ, ψij ∼ 1.
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Dual-Coordinate-Frame Evolution Method

Single-coordinate frame method uses the one set of coordinates,
x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
and the same coordinates to determine these components by
solving Einstein’s equation for uᾱ = uᾱ(x ā):

∂ t̄u
ᾱ + Ak̄ ᾱ

β̄∂k̄uβ̄ = F ᾱ.

Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, xa = {t , x i} = xa(x ā), to represent these
components as functions, uᾱ = uᾱ(xa).

These functions are determined by solving the transformed
Einstein equation:

∂tuᾱ +

[
∂x i

∂ t̄
δᾱ

β̄ +
∂x i

∂x k̄
Ak̄ ᾱ

β̄

]
∂iuβ̄ = F ᾱ.

Lee Lindblom (Caltech) Gauge and Constraints in NR UCSD – 5/10/2007 13 / 20



Dual-Coordinate-Frame Evolution Method

Single-coordinate frame method uses the one set of coordinates,
x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
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Testing Dual-Coordinate-Frame Evolutions
Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:

Dual Frame Evolution Single Frame Evolution
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Dual-frame evolution shown here uses a comoving frame with
Ω = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.

A coordinate transformation from inertial coordinates, (x̄ , ȳ , z̄), to
co-moving coordinates (x , y , z), consisting of a rotation followed
by an expansion, x

y
z

 = e a(̄t)

 cosϕ(̄t) − sinϕ(̄t) 0
sinϕ(̄t) cosϕ(̄t) 0

0 0 1

 x̄
ȳ
z̄

 ,

with t = t̄ , is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(̄t) and ϕ(̄t).

Since the motions of the holes are not known a priori, the
functions a(̄t) and ϕ(̄t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates II

x

δϕ y

c

c

Measure the comoving centers of the holes: xc(t) and yc(t), or
equivalently Qx(t) = [xc(t)− xc(0)]/xc(0) and Qy (t) = yc(t)/xc(t).
Choose the map parameters a(t) and ϕ(t) to keep Qx(t) and
Qy (t) small.

Changing the map parameters by the small amounts, δa and δϕ,
results in associated small changes in δQx and δQy :

δQx = −δa, δQy = −δϕ.
Measure the quantities Q y (t), dQ y (t)/dt , d 2Q y (t)/dt2, and set

d 3ϕ

dt3 = λ3Q y + 3λ2 dQ y

dt
+ 3λ

d 2Q y

dt2 = −d 3Q y

dt3 .

The solutions to this “closed-loop” equation for Q y have the form
Q y (t) = (At2 + Bt + C)e−λt , so Q y always decreases as t →∞.
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Horizon Tracking Coordinates III
In practice the coordinate maps are adjusted only at a prescribed
set of adjustment times t = ti .

In the time interval ti < t < ti+1 we set:

ϕ(t) = ϕi + (t − ti)
dϕi

dt
+

(t − ti)2

2
d 2ϕi

dt2

+
(t − ti)3

2

(
λ

d 2Q y
i

dt2 + λ2 dQ y
i

dt
+ λ3 Q y

i

3

)
,

where Q x , Q y , and their derivatives are measured at t = ti , so
these maps satisfy the closed loop
equation at t = ti .
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(t) - x
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(0)

x
c
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This works! We are now able
to evolve binary black holes using
horizon tracking coordinates until
just before merger.
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Horizon Tracking Coordinates III
In practice the coordinate maps are adjusted only at a prescribed
set of adjustment times t = ti .

In the time interval ti < t < ti+1 we set:

ϕ(t) = ϕi + (t − ti)
dϕi

dt
+

(t − ti)2

2
d 2ϕi

dt2

+
(t − ti)3

2

(
λ

d 2Q y
i

dt2 + λ2 dQ y
i

dt
+ λ3 Q y

i

3

)
,

where Q x , Q y , and their derivatives are measured at t = ti , so
these maps satisfy the closed loop
equation at t = ti .
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Evolving Binary Black Hole Spacetimes
We can now evolve binary black hole spacetimes with excellent
accuracy and computational efficiency through many orbits.
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Evolving Binary Black Hole Spacetimes II
Gravitational waveform and frequency evolution for the equal
mass non-spinning BBH evolution.
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Summary

Generalized Harmonic method produces manifestly hyperbolic
representations of the Einstein equations for any choice of
coordinates.

Constraint damping makes the modified GH equations stable for
numerical simulations.

Dual coordinate frame evolution makes evolutions stable in
coordinates that track the black hole motions.

Feedback control systems can be used to construct co-moving
coordinates that accurately track the black hole motions.
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