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Abstract. Advances in mathematics and computer technology, together
with advances in structural biology, are opening the way to detailed mod-
eling of biology at the molecular and cellular levels. One objective of such
studies is the development of a more complete understanding of biolog-
ical systems, including the emergence of behavior at the cellular level
from that at the molecular level. Another objective is the development
of more sophisticated models for structure-aided discovery of new phar-
maceuticals.

1 Introduction

Computer simulations of biomolecular dynamics began in the 1970’s with a nine
picosecond molecular dynamics simulation of a small protein with no explicit
treatment of the solvent surroundings of the protein [1]. This work was stimu-
lated in part by the development of mathematical methods such as predictor-
corrector algorithms for computing the solution of ordinary differential equation
initial value problems [2]. These algorithms facilitated the solution of Newton’s
equations of motion for a large molecule (albeit only a small protein), a “stiff”
differential equation problem due to the wide range of characteristic time scales
that extends from fast bond stretching (femtoseconds) to the slow changes in
overall shape of the protein.

Even with these advances, and further advances in subsequent years in the
field of molecular dynamics simulation, many important problems are charac-
terized by time scales that are inaccessible to Newtonian simulation. This has
stimulated the development of a variety of coarse-grained simulation methods,
including Brownian dynamics methods in which the inertial terms of Newto-
nian dynamics are assumed to be negligible due to rapid damping by viscous
surroundings [3]. Solvent is treated implicitly in such studies. In particular, the
electrostatic interactions in such models have typically been modeled by finite
difference solution of the Poisson-Boltzmann equation [4, 5].

In the remainder of this chapter, we outline recent and ongoing work by our
groups at the current interface between mathematics and biology. The biologi-
cal applications are all relevant to the activities of nerve cells, particularly the



motor neurons that control muscle contraction. These cells typically comprise
a cell body that contains most of the metabolic apparatus; a long, slender pro-
cess called an axon that carries the excitatory impulse toward the muscle; and
a presynaptic structure that releases the neurotrasmitter acetylcholine (ACh),
which diffuses to the muscle to initiate contraction [6]. Current studies make
use of molecular dynamics to study the activity of single proteins, Brownian dy-
namics to study the assembly of protein complexes, and the Poisson-Boltzmann
equation to calculate the electrostatic interactions that govern the assembly and
stability of protein complexes. Among the protein systems considered here are
acetylcholinesterase (AChE), the enzyme that removes ACh from the synapse
to set the stage for another round of muscle contraction; fasciculin 2, a snake
venom protein that acts by binding to and inhibiting AChE; and actin and tubu-
lin, proteins that form cytoskeletal structures that are essential for the formation
of neurons and the transport of materials along the axon from the cell body to
the synapse.

2 Molecular Dynamics of AChE

2.1 Introduction

Acetylcholinesterase (AChE) is the enzyme responsible for the termination of
signaling in cholinergic synapses such as the neuromuscular junction by degrad-
ing the neurotransmitter acetylcholine. AChE has a gorge, 2 nm deep, leading to
the catalytic site. Molecular dynamics (MD) simulations have shown breathing
motions of this gorge [7-9], and that an alternative portal, the back door, pro-
viding access to the catalytic site is present in AChE which may facilitate rapid
solvent and product removal.

2.2 Preparation of the molecular dynamics trajectory

A previous 1 ns MD simulation of mouse acetylcholinesterase [10] was extended
to afford a trajectory of 10 ns. The protein was solvated in a cubic box (9.6 nm
edges) of pre-equilibrated water molecules. The simulation system had a total
of 8 289 solute atoms and 75 615 solvent atoms. The simulation was performed
in the isothermal-isobaric ensemble, and the solvent and solute were separately
coupled to temperature reservoirs of 298.15 K with coupling times of 0.1 ps.
Pressure was restrained to 1 atmosphere with a coupling time of 0.4 ps. All
minimization and MD simulation steps were performed using NWChem Ver-
sion 3.0 (High Performance Computational Chemistry Group, Pacific Northwest
National Laboratory, Richland, Washington 99352, USA) with the AMBER, 94
force field [11]. This code makes use of domain decomposition to achieve good
performance on parallel machines [12]. The simulation was performed on 32 pro-
cessors of a Cray T3E parallel supercomputer at the San Diego Supercomputer
Center over a period of 3 years, consuming a total of about 200 processor-months
of supercomputer time. Frames were collected at 1 ps intervals for the simulation



length of 10.8 ns, giving 1.08 x 10* frames. The first 700 frames of this trajectory
was considered the equilibration phase; only the subsequent 10 ns was used in
the main analysis.

2.3 Stability of the trajectory

Various properties, such as the total potential energy, the solute (protein and
counterion) potential energy, root mean square displacement from the initial
crystal structure, and temperature, were inspected to ensure that the 10 ns tra-
jectory was stable and suitable for analysis (data not shown). The isotropic tem-
perature (B) factor was calculated from the mean square fluctuation (msf) using

the equation B = % (msf) [13,14]. The B factor plot for the crystal structure
and that calculated from the MD trajectory have similar features (Figure 1). The
experimental B factors include a variety of contributions (e.g., crystal contacts,
static disorder in the crystal) in addition to that from the dynamical fluctua-
tions, and these additional contributions are expected to be substantial for a
structure of modest resolution [15]. Here, the experimental resolution is 0.32 nm
(3.2 A) [16]. The termini exhibited larger B factors in the MD simulation where

the protein is solvated in water rather than packed in a crystal.
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Fig. 1. The B factor for each residue from the AChE part in the fasciculin 2-mouse
AChE complex crystal structure (black) and that calculated from the msf in the 10 ns
MD trajectory (red).

2.4 Definition of the gorge proper radius

In order to characterize the degree of the gorge opening with a single variable,
we defined the gorge proper radius p(t) for the conformation of the snapshot at
time ¢ as the maximum radius of a spherical ligand that can go through the gorge



from outside the protein to reach the bottom. Equivalently, it is the maximum
probe radius with which we can still generate a solvent accessible surface with
a continuous topology. We calculated the time series of the gorge proper radius
at a resolution of 5 pm (Figure 2).
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Fig. 2. The 10 ns time series for the gorge proper radius, p(t).

2.5 Correlation of a-carbon positions and velocities with the gorge
proper radius

We define the correlation between the ith degree of freedom, 7;(¢), and the gorge
proper radius p(t) to be

((ri(t) = (ra)e) (p(t) = {p)e) ),
(ri(t) = (ri)e), (p(t) = (p)e),
We calculated a correlation vector, thus defined, with 3 degrees of freedom for

the a-carbon atom of each residue (Figure 3).
Similarly, the average velocity covariance is defined as

((ri(t) — ri(t — 1 ps)) (p(t) — p(t — 1 ps))), (2)

The average velocity covariance vector is shown in Figure 4.
The vectors reveal how much each residue moves in concert with the gorge.
The moiety of AChE that includes the gorge has remarkable concerted motion

(1)



Fig. 3. The correlation vector (see text for definition) for each residue of acetyl-
cholinesterase (AChE). The vector lengths are in arbitrary units. The vectors are
colored by their length; the longest one being red. This is the conventional orienta-
tion for displaying AChE, with the N-terminus on the top right, and the C-terminus
on the bottom left. The viewer is looking into the gorge, with the active site Ser203
marked by the spacefill model. It is easy to see that the moiety (front) containing the
gorge has large correlated motions with the gorge. A virtual reality markup language
(VRML) file for this plot is available on the web at http://mccammon.ucsd.edu/.



Fig. 4. The average velocity covariance vector (see text for definition) for each residue
of acetylcholinesterase (AChE). The vector lengths are in arbitrary units. The vectors
are colored by their length; the longest one being red. The orientation is the same as
in Figure 3.



with the gorge proper radius. The residues in this moiety generally have correla-
tion vectors pointing away from the gorge. These residues apparently move away
from the gorge when the gorge opens. Some residues that are in the other moiety,
which are closer to the base of the gorge, have correlation vectors that are gener-
ally smaller. The discrimination of concerted motions is even more pronounced
in Figure 4: The residues that construct the gorge itself have the largest average
velocity covariance vectors. The vectors decrease in magnitude; the residues that
are farthest from the gorge have the smallest average velocity covariance vectors.

We speculate that inhibitors such as fasciculin 2 may decrease the likelihood
of gorge opening by restricting loops on the surface of AChE that have large
concerted motions, in addition to sterically occluding the entrance to the gorge.
This remains to be confirmed by our current work on the MD simulation of the
fasciculin 2-mouse AChE complex.

2.6 Contribution of the principal components to the gorge proper
radius fluctuations

Principal component analysis [17] of N = 530 a-carbons (Leu9 to Lys538; 1590
degrees of freedom) was performed. We then have a transformation matrix T,
whose columns are the eigenvectors v.. That is,

T:[V1V2"'V3N] (3)

such that

Ar(t) := r(t) — (r), = Tp(t) (4)

where p(t) is a vector containing the projection in each of the principal com-
ponents ¢ = 1 to 3N at time ¢, and r(t) is a vector containing the Cartesian
coordinates for residue 1 direction z, residue 1 direction y, ..., up to residue NV
direction z at time ¢.

We found that the Phe338 C.o—Tyr124 Oy distance correlated well with p(t),
with a correlation coefficient of 0.91. The Phe338 C,—Tyr124 C, distance and
p(t) had a correlation coefficient of 0.55.

It can be proved that one can express exactly the square of the Phe338 C,—
Tyrl24 C, distance dja4,33s3 in terms of the projection time series:

3N 3N 3N
[d124,338(t)]2 =5+ Zchc(t) + Z Z QC162pC1 (t)pcz (t) (5)
c=1 c1=1co=1

where S, the R.s, and the Q.,.,s are functions of the average structure (r);
and the transformation matrix T only, neither of which is time-dependent. We
calculated the time-dependent contributions to [d124,338(t)]2, namely, the linear
terms ) Rcp.(t) and the cross terms > . > Qe coPe; (£)Pe, (1) (Figure 5).
The contribution of the cross terms is not negligible, since they are at times
of opposite direction but of the same magnitude as the linear term. Therefore,



100 -

2

contribution / (100 pm)

_100 L | [ | [ | ' | ' |
0 2000 4000 6000 8000 10000
time / ps

Fig.5. Contribution of the linear (3, Rcpc(t), green) and the cross
(2o, 2o, QercoPer (t)pes(t), blue) terms to the square distance [d124,338 (t)]?, and the
sum of these two (red). See text for definitions.

it is not justified to assume that only the linear terms contribute to the square
distance [d1247338 (t)]2.

We have proposed previously [18] that the gorge proper radius exhibits
fractal-like behavior without characteristic scale of length or time. Our results
here are in concert with that proposal.

2.7 Water molecules in the gorge

Since AChE catalysis is observed to occur at the diffusion-controlled limit [19],
it is important to understand how the behavior of water molecules in AChE
may affect its function. In particular, it is desirable to know the mechanism and
frequency of water molecules diffusing into and out of the gorge, for it is these
waters that must be displaced by a substrate trying to enter.

In order to measure the population of gorge water molecules, gorge waters
are defined to be that cluster of waters all within 4 A of each other around
the active site residue Ser203. If such a cluster extends outside the gorge to the
bulk, a junction water is defined between the gorge and bulk. This molecule
assumes a gorge or bulk identity depending on from where it came. Such a
definition reduces noise in gorge population at the gorge-bulk interface. The
overall gorge water population defined in this way ranges from 16 to 22 molecules
(Figure 6), the dominant population being 19-20 waters. It is interesting to note
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Fig. 6. Population of gorge waters as a function of time.

that the change in gorge water volume due to such population fluctuations is
approximately equivalent to a typical substrate molecule.

There are a number of possible entrances to the gorge [10]. The four paths
found connecting the gorge to the bulk are the main gorge proper, as described
earlier, a second “front door”, and two “back doors”, all illustrated in Figure 7.
Of these, the main gorge is approximately 70 % of the time open wide enough
for a water molecule, while the other three are never open more than 1 % of the
time [18]. 53 water transits are observed between the gorge and the bulk, all of
them via the main gorge, while none are observed to pass by the other paths.
During these transits, no obvious motions of the protein side chains lining the
main gorge are detected. This is in agreement with the previous finding that the
opening of the gorge is due to larger scale protein motions. In addition to water
transits, waters are also occasionally observed to pass into or out of (become
separated by > 4 A from the main cluster) the residues making up the side of
the gorge itself.

One of the striking observations about gorge waters is that they are much
less mobile than in bulk. Although diffusion in the confined gorge is anisotropic,
the average mean-squared displacement for gorge waters changes two orders of
magnitude more slowly than that in bulk. Evidently, the mobility of the substrate
would be severely impeded if too many water molecules are present in the gorge.

What all these observations suggest is that substrate entry is likely to occur
after the prior exit of a sufficient number of water molecules rather than both of
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Fig. 7. Two structures showing the four paths into the gorge, indicated by the junction
water molecules (red = junction, blue = bulk, green = gorge, brown = buried). Going
clockwise from the top-left, they are the main gorge (i.e., front door 1), front door 2,
back door 2, and back door 1.
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these processes occurring simultaneously. Further study is required to determine
which of the water molecules in the gorge are likely to be excluded, whether
there is any relationship between fluctuations in gorge water population and the
gorge proper radius, and how fluctuations in gorge water population may be
contributing to the speed of AChE catalysis.

3 Brownian Dynamics of Protein-Protein Association

As evidenced in the previous section, molecular dynamics can be very useful
in simulating the dynamics of proteins, as well as the interactions between the
protein and its solvent environment. However, because of the amount of detail
involved in these calculations, they are really limited to simulating processes that
occur on the 10 ns to 100 ns timescale. For this reason, when we are interested
in dynamics or interactions that occur on much longer time scales, we often
turn to Brownian Dynamics (BD) simulations. As always, there must be some
compensation between speed and accuracy, and BD simulations achieve their
gain in speed through two simplifying measures: 1) the internal dynamics of the
proteins are typically ignored and the structures are held rigid, and 2) the explicit
solvent molecules are replaced with a continuum model. These assumptions allow
us to study much larger proteins and to explore a wide variety of processes such
as the kinetics of protein-protein association [20-26].
The basis of BD simulations is the Ermak-McCammon equation [27]

R(t+ At)=R(t)+ —F+ S (6)
kT

where D is the diffusion constant, kg is the Boltzmann constant and T is the
temperature. In this equation, the position of the protein R(t) changes due to
forces and torque between the proteins (F') and stochastic interactions with the
solvent (S). The forces between the molecules are usually only due to electro-
static interactions, found by solving the Poisson-Boltzmann equation [4, 5]. One
of the major differences between BD and MD simulations in that the solvent
is only included implicitly, dynamically through the stochastic term S, and by
using a large value for the solvent dielectric (typically 78-80) when solving the
Poisson-Boltzmann equation. By allowing the proteins to diffuse subject to these
electrostatic and solvent forces, and by keeping count of the number of times they
form a successful bound complex, we can determine the association rate constant
(see [28] for details).

As we move to increasingly larger protein systems, the workload in calculat-
ing the electrostatic interactions between the proteins again becomes a limiting
factor. To alleviate this restriction, some of our recent work has employed the
‘effective charge’ model of Gabdoulline and Wade [29]. Within this framework,
the ‘true’ charges of the biomolecules are replaced with a simplified set of charges
that reproduce the same electrostatic potentials. This method has proved very
successful in the study of barnase and barstar [23], as well as two studies which
we will highlight here.
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3.1 AChE-fasciculin

We have already been introduced to the enzyme acetylcholinesterase (AChE)
in the previous section, but the interruption of this enzyme by other proteins
is the basis of many types of nerve agents and neurotoxins. One such protein
is fasciculin, a 61 residue peptide from the venom of the green mamba, which
binds to AChE with a very high affinity. It has been shown that the formation
of the AChE-fasciculin complex is diffusion limited, and also that electrostatics
plays an important role. These two factors make this an ideal system for study
using BD techniques [24].
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Fig. 8. Comparison between simulated and experimental rate constants for simulations
performed only with electrostatic interactions (open circles) and with both electrostatic
and desolvation effects (open squares).

The interest in performing simulations of AChE-fasciculin association is not
simply to reproduce the experimentally measured rate constants, but to explain
the binding kinetics of a number of mutants that have been produced. In these
mutants, charged amino acids were replaced with neutral ones, thus altering the
electrostatic interaction between the two proteins. These changes resulted in a
decrease in the association rate constant, in some cases by almost two orders of
magnitude. It is a true test of our simulation methods to see if this change can be
explained simply on the basis of electrostatic interactions. Figure 8 shows a plot
of the experimental rates versus the calculated rates for wild type fasciculin as
well as six mutants. The agreement between the two data sets is quite reasonable,
even in case of one mutant where a total of six residues were replaced.

From these results, it appears we can characterize the net effect of mutations
on the association rate, however we can still make improvements to our model.
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Fig. 9. Contours of the electrostatic potential of AChE (right) and fasciculin (left)
showing the favorable electrostatic interactions.

Figure 9 shows the electrostatic complementarity between AChE and fasciculin.
Despite these favorable interactions, more complete Poisson Boltzmann calcu-
lations show that the desolvation penalty incurred to bringing the two proteins
together is larger than the gain from favorable electrostatics. Because of the gen-
eral form of the Ermak-McCammon equation (6), we are not limited in adding
additional forces, such as those arriving from desolvation, into the simulation
(see [24] for details). When this is done, the absolute agreement between the ex-
perimental and calculated results is improved (Figure 8), as is the ionic strength
dependence of the rate constant [24]. The general conclusion that can be drawn
from these simulations is that electrostatic interactions alone can certainly ac-
count for the qualitative effects of mutation, but more accurate, quantitative
results can be achieved through the addition of electrostatic desolvation effects.

3.2 Actin Polymerization

Another system of interest is the polymerization of actin filaments. Actin fil-
aments are key components of the cell’s cytoskeleton and are responsible for
many cellular functions. What makes them so interesting is their polymerization
properties, since one end of these polar filaments grows much faster than the
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other. Like the AChE-fasciculin system, electrostatics and diffusion control the
binding, making this an ideal system to study using BD techniques.
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Fig. 10. The simulated association rate constants for actin polymerization where the
results have been uniformly scaled so that the barbed end rate at 50 mM is equal
to 10 pM~'s™!. The inset is meant to emphasize the fact that there are structural
differences between the two ends of the filament.

Actin filaments are double-stranded helical polymers that are assembled from
the 375-residue protein actin. The monomers attach in a “head-to-tail” fashion
which results in the two ends of the filaments, the ‘barbed’ and ‘pointed’ ends,
having different properties. The underlying reason for the difference in polymer-
ization rates between the two ends was not known, and our goal was to try
and determine the basis for this difference. To date there has been no crystal
structure of the filament, however the crystal structure of the monomer has been
docked into x-ray fiber data for actin filaments by Holmes et al. [30]. Using this
structure as the basis for our study, we performed BD simulations to observe the
effects of ionic strength on the polymerization rate, and to see if there was any
difference in the polymerization rates between the barbed and pointed ends [25].
Figure 10 shows the polymerization rates at the two ends of the filaments as a
function of ionic strength. Again we see that we are fairly successful in repro-
ducing experimentally measured rates (data not shown), but more importantly,
our simulations reproduced the asymmetry between the barbed and pointed end



15

polymerization rates. In experiments, depending on the exact conditions, the
barbed end typically grows about 10 times faster than the pointed end. In our
simulations, this ratio is only about 3 to 4, but based on the fact that increasing
the stringency in the binding criteria leads to a higher ratio, it seems electro-
static interactions account for a large portion of the polymerization differences
(see [25] for more details).
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Fig. 11. Plot showing the effect of electrostatic interactions on the simulated associa-
tion rate constants at the barbed and pointed ends of an actin filament.

A more interesting experiment is to compare simulations performed with and
without electrostatic interactions. What we observe is that without the force
term in Eq. 6, the pointed end, ie. the slow growing end, actually polymerizes
faster than the barbed end (see Figure 11). Comparing these results with those
calculated at 50 mM ionic strength, we see that the net effect of electrostatic
interactions is to accelerate monomer addition at the fast growing barbed end,
while at the same time decreasing the binding rate at the pointed end. This
explains why the barbed end is observed to be diffusion limited and the pointed
end is not, and it also indicates that asymmetry between the two ends has both
a structural and electrostatic basis. The relative contributions of both factors
could hopefully be resolved with an increase in the accuracy of both the structure
of the actin filaments and the treatment of electrostatic interactions.
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3.3 Future of Brownian Dynamics

There are two limitations that we face in using BD techniques: 1) we cannot
routinely account or allow for protein flexibility, and 2) we are limited in the
accuracy of the electrostatic interactions when the proteins are in close proximity.
The first point needs to be carefully considered since it is by dealing with rigid
protein structures that we can simulate for longer times than is possible using
molecular dynamics. Perhaps by allowing some limited form of flexibility, we
will someday be able to capture the effect of internal protein dynamics without
incurring the workload of too many degrees of freedom. Overcoming the second
limitation is much more feasible with the introduction of better and faster solvers
for the Poisson-Boltzmann equation. One such method using adaptivity appears
to be very promising, and we will discuss it next.

4 Parallel adaptive finite element solution of the
Poisson-Boltzmann equation for large biomolecules

Both the thermodynamics and kinetics of a variety of biomolecular processes are
strongly influenced by electrostatic interactions [31, 32]. However, due the long-
range nature of these interactions, the accurate modeling of the contributions of
solvent, counterions, and protein charges to the electrostatic field is often difficult
and typically presents a computational bottleneck for a variety of molecular sim-
ulations. Continuum methods, such as the Poisson-Boltzmann equation (PBE),
partially reduce the computational effort required to evaluate electrostatic inter-
actions by approximating the explicit solvent as a polarization continuum and
replacing discrete counterion charges by a continuous distribution. Despite these
simplifications, current methods for the calculation of electrostatic properties
from the PBE still require significant computational effort and typically do not
scale well with increasing problem size [33].

Recently, new adaptive multilevel finite element methods have been intro-
duced for the efficient solution of the PBE for large biomolecular systems [33—
35]. Using these adaptive finite element algorithms as implemented in the FEtk
(Finite Element toolkit) library [33,36], a new software package APBS (Adap-
tive Poisson-Boltzmann Solver) [33,34] has been developed for the modeling
of electrostatic interactions in biomolecular systems. The APBS program pro-
vides parallel and sequential implementations of these multilevel adaptive fi-
nite element techniques to solve the linear and nonlinear versions of the PBE
around biomolecules in ionic solutions. APBS makes extensive use of FEtk [36]
for a variety of tasks, including the implementation of finite element mesh
structures, refinement algorithms and data structures, assembly and solution
of the linear and nonlinear equations, spectral bisection mesh partitioning, and
residual-based error estimation. Because of the underlying hardware abstrac-
tion design of FEtk, the APBS code is designed for portability and can be
used, with no modifications, on both single-processor workstations and mas-
sively parallel supercomputers. Information about obtaining APBS is available
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at http://wasabi.ucsd.edu/~nbaker/pbe.html and information regarding FEtk
and related tools is available from http://www.fetk.org/.

4.1 The Poisson-Boltzmann equation

The Poisson-Boltzmann equation is a second-order elliptic partial differential
equation which describes the electrostatic potential around a fixed charge distri-
bution in an ionic solution. More thorough reviews of this equation and its role in
biological electrostatics calculations are presented by Davis and McCammon [31]
and Sharp and Honig [37]. The three components of the solvated biomolecular
system which must be considered to accurately model the electrostatic potential
are the solute molecule, the solvent, and the solvated ions. The solute molecule
is treated as a dielectric continuum of low polarizability (dielectric constant be-
tween 2 and 20) embedded in a dielectric medium of high polarizability (dielectric
constant near 80) which represents the solvent. In most cases, the atomic charge
distribution inside the biomolecule is represented by a collection of delta func-
tions scaled by the atomic partial charges. Finally, the solvated ions surrounding
the biomolecule are modeled according to a continuous Boltzmann distribution.
The nonlinear PBE (NPBE) can be thought of as a combination of this Boltz-
mann distribution with the Poisson equation to give

V- (e(2) Vu()) + 7 (2) sinh (u(2)) = f(z), u(o0) = 0. (7)

The linearized PBE (LPBE) arises from the NPBE by linearization of the hy-
perbolic sine term

—V - (e(z)Vu(z)) + B (z)u(z) = f(z), u(oco)=0. (8)

In both equations, the source term is a sum of delta functions,

) = TS (o - )
kT P ' v
In Egs. 7 and 8, the variable u(xz) = e.¢(x)/kT represents a dimensionless

electrostatic potential, €(z) is the dielectric coefficient, &2 is the Debye-Hiickel
screening parameter, which describes ion concentration and accessibility, kT
is the thermal energy, e. is the electron charge, N,, is the number of protein
charges, z; is the partial charge of each protein atom, and x; is the position of
each atom. Figure 12 shows a schematic of a solute (here taken to be a pro-
tein), ions, and solvent system modeled by the Poisson-Boltzmann equation.
The dielectric coefficient € changes by nearly two orders of magnitude across
the protein-solvent boundary (defined by the molecular surface [38] shown as a
solid line in Fig. 12) and the screening parameter jumps from zero to a value
proportional to the bulk ionic strength across the “exterior” boundary (defined
by the inflated van der Waals surface shown as a dashed line in Fig. 12).

As described here, the PBE equation contains three sources of discontinu-
ities. Both the dielectric coefficient € and the screening parameter &2 have jump
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Fig. 12. Schematic of a model protein-solvent system. Charges within the protein are
depicted as plus and minus symbols. The first protein-solvent boundary (solid line) rep-
resents discontinuities in the dielectric coefficient €, while the second boundary (dashed
line) represents discontinuities in the screening parameter 2. Finally, the solvated ions
surrounding the protein are depicted by the circled plus and minus symbols.

discontinuities over surfaces near near the protein-solvent interface. The final
discontinuity is found in the source term f(z), which models the point charges
at the protein atoms by a sum of delta functions. While these jump and delta
function discontinuities of coefficients in the PBE can pose serious numerical dif-
ficulties for traditional uniform or nonadaptive mesh partial differential equation
solvers, these features can be efficiently described using adaptive finite element
techniques [33, 34, 36].

4.2 Adaptive multilevel finite element methods

This section briefly describes the theory behind the parallel multilevel adap-
tive finite element scheme used to solve the PBE for the electrostatic potential
around biomolecules. A much more detailed treatment of these methods and the
corresponding theory can be found in texts by Axelsson and Barker [39] and
Braess [40].

Finite element discretization In order to solve the PBE on a finite computa-
tional platform, the infinitely large problem domain implicit in Eqs. 7 and 8 must
be truncated and the solution (the electrostatic potential) must be discretized
into some basis supported on that domain. Finite element methods solve the
equation inside a polygonal domain 2 C R?® subject to some Dirichlet bound-
ary condition, i.e., u(z) = g on 912, where 9{2 denotes the boundary of (2. To
discretize the problem, the domain (2 is subdivided into tetrahedral simplices;
this mesh forms the structure over which the function space Vj, = span{v;} is
defined in terms of the piecewise-polynomial basis functions {v;}. Although a
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variety of polynomial orders are possible in such finite element bases, APBS
currently uses the piecewise-linear finite element support provided by FEtk [36].
The solution to the PBE is then approximated in terms of this solution space V},
and a trace function u, which satisfies the Dirichlet boundary conditions, such
that up, € uy + V},. Such a solution can be constructed by a linear combination
of the finite element basis functions, uy(x) = va ;v (x).

In order for the construction of uj, from piecewise-linear functions to be
successful, we must restate the PBE equations in their “weak” form. Clearly,
the second derivative (as required by Eqgs. 7 and 8) of a piecewise-linear function
is not well defined. This difficulty can be overcome by integrating the PBE with a
test function ¥ and applying integration by parts to the second-order differential
term to give

/ (eVu - V9 + E* sinh(u)d) do = / fodz. (10)
e} e}

Equation 10 can also be written as
(F(u),0)12(0) = / (eVu - V9 + & sinh(u)d — f3) dz = 0, (11)
2

where (-,-)72() denotes the L?(£2) inner product and F(u) is the strong form
of the residual. This allows us to restate the PBE in weak form:

Find up, € w+ V}, such that (F(up),v;) = 0 for all v; € V. (12)

This form of the PBE requires only one order of differentiation under an integral
and is therefore a “weaker” formulation of the PBE than the original second-
order differential equations (7 and 8). Although the above discussion used the
NPBE, similar manipulations can be performed for the LPBE to produce an
expression for the residual F(u) which is linear in w.

Given up as a linear combination of the finite element basis functions and
the above weak form of the PBE (12), we have a discretization of the partial
differential equation suitable for numerical solution. In the case in which F'(u)
is linear (LPBE), Eq. 12 explicitly defines a sparse matrix equation that can be
solved using standard linear algebra methods or the multilevel methods described
in Section 4.2. However, when F'(u) is nonlinear (NPBE), a damped inexact
Newton iteration can be used in conjunction with the multilevel linear methods
to solve the nonlinear equations [33,41-45].

Adaptive refinement While these finite element methods can be used to de-
termine the solution on a given finite element mesh, they do not provide infor-
mation about the accuracy of the numerical solution up or indicate how it can
be improved. The answers to these two questions lie within the domain of error
estimation and adaptive refinement techniques. Again, only a cursory overview
of this topic is presented here, with discussion of the a posteriori error estimation
and adaptive refinement techniques that are applied to the PBE in the present
work. For more detailed information about the implementation of these methods
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in the solution of the PBE, see Holst, Baker, and Wang [33]. A posteriori error
estimation has been the subject of several publications [36,46-50] which provide
much more information about the theory and implementation of these methods.

Adaptive refinement methods typically employ error-estimation techniques to
approximate the difference between the numerical and true solution ||u — us||
(using some norm [|-|| ) and determine the regions of the problem domain where
this error is large. The mesh is then refined in regions of excess error and the
equation is re-solved to provide a more accurate finite element representation
of the solution. This error-based refinement of the mesh can also be interpreted
as the local enrichment of the finite element basis set in regions where the true
solution is not adequately represented. In general, an a posteriori error estimator
is used to determine the error in each simplex. Although simpler a priori or
geometry-based error estimators can also be used, the reduction of error in the
solution with each level of refinement is typically less efficient. APBS employs the
residual-based a posteriori error estimation framework provided by FEtk which
generates a per-simplex error estimate 7y in simplex s by using the residual
defined by the strong form (Eqs. 7 and 8) of the PBE [33,49]. An estimate of
the global error over the problem domain is obtained as the root mean square of

the per-simplex estimates ngiopal = (>; n?)l/ 2 /N . Although this 7gioba1 provides
only an upper bound (within a constant) of the true error in the solution, it offers
a practical measure for the reduction of error during solution of the PBE. Given a
per-simplex error estimate, those simplices with errors above a certain tolerance
o1 are marked for subdivision. The iterative subdivision algorithms in FEtk
[36] are used to refine the marked simplices, together with a few neighboring

simplices needed for mesh conformity.

Multilevel solution The time required to solve the linear algebra equations,
either within the Newton steps for NPBE or explicitly defined by the LPBE,
generally controls the performance of solution methods for the PBE. Multilevel
methods are well-established techniques for efficiently solving such equations
through algebraic hierarchies [41, 51-56]. Such methods have been shown to give
optimal (for uniformly refined meshes [57]) or nearly optimal (for adaptively
refined meshes [58]) time and memory complexity for the solution of the linear
matrix equations.

APBS employs the multilevel finite element solver technology in FEtk [36]
to form an algebraic hierarchy of problems based on the refinement of the mesh
[33,36,59]. Specifically, a prolongation operator Py is constructed which relates
basis functions on refinement levels k and k+1 of the finite element mesh. Given
operator Ay on level k of the mesh, the prolongation operator Pj can be used to
reconstruct the problems Ay, from coarser levels of the mesh by applying P
to the current problem Ay via Apiq = PkTAkPk. Using this prolongation-based
reconstruction, the problem can then be solved in a multilevel fashion, employing
a direct solver for the problem on the coarsest level.
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Parallel finite element methods Using the parallel refinement techniques
of Bank and Holst [60], the methods described in the previous sections can be
performed in a parallel fashion. In the parallel implementation, each of P pro-
cessors is given the same initial mesh. Using the previously described sequential
finite element techniques, each processor then solves the problem on this coarse
mesh and generates an a posteriori error estimate for every simplex in the mesh.
This error estimate is used to weight a partitioning which divides the mesh into
P pieces of approximately equal error. Finally, each of these mesh partitions M;
is assigned to a different processor i. After partitioning, the usual solution and
adaptive refinement methods of the previous sections are performed with only
a small modification: When the per-simplex error estimates are calculated on
processor i, only simplices within the local partition M; and a boundary region
of size o surrounding M; are given nonzero error estimates. The simplices with
errors greater than a specified tolerance are marked for refinement, and these
marked simplices (which are located only in M; and the overlap) are subdivided.
The mesh refinement algorithm then proceeds as usual, refining marked and any
additional simplices (from any partition) required to ensure a conforming mesh.
The initial error-based partitioning step acts as the load-balancing mechanism
for this algorithm; the number of simplices in an error-based adaptive refinement
is related to the total error in in the mesh region it is refining. By partitioning
the mesh such that all processors have roughly the same amount of error, this
algorithm provides a reasonable amount of a priori load balancing.

The overlap region surrounding each mesh partition is implemented by APBS
in a simple fashion. Let z; be the center of geometry of partition M;, and let
R; be the radius of the sphere circumscribing M;. The parameter ¢ > 1 is
the desired relative size of the overlap region with respect to R;. APBS then
enforces parallel refinement with partition overlap by only allowing error-based
simplex marking (on processor i) of simplices within a distance o R; of the center
x; of partition M;. A two-dimensional example of this method applied to a
four processor system is shown in Fig. 13. In this example, all simplices within
o = 1.2 times the radius of the green partition were given the same error (which
was chosen to be greater than the error-based marking tolerance). The resulting
refinement over the green processor’s partition and the overlap region is evident,
as is the additional refinement outside the radius o R; required for conformity.

As noted by Bank and Holst [60], this error-decoupling parallel algorithm
essentially trades computation for communication. While the algorithm requires
little or no communication between processors, it compensates by duplicating
the computational effort spent in some portions of the solution algorithm. Specif-
ically, partitioning steps of the mesh and computations on the the solution in
overlap regions are duplicated across processors. Although the overlap region
can be neglected for some problems [60], a nonzero overlap region proportional
to the size of M; must generally be implemented to satisfy the requirements
underlying the decoupled error estimates [60, 61].
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Fig. 13. Overlapping refinement on a partitioned mesh. All simplices within ¢ = 1.2
times the radius of the green partition were given the same error (greater than the
simplex marking tolerance). The checkerboard pattern within the refined region is an
artifact of the image, a Moiré pattern due to the high density of simplex edges.

4.3 Application to microtubules

One of the advantages of applying adaptive finite element methods to the PBE
is the ability to study large biomolecular systems which would be inaccessible
using uniform mesh techniques. One such system of interest is the cytoskeleton,
the complex array of filaments and proteins within every eukaryotic cell. The
largest cytoskeletal component, the microtubule, is a hollow cylindrical filament
(see Fig. 14) assembled from the long protofilaments composed of tubulin sub-
units [62, 63]. The microtubule cylinders are 25 nm in diameter and, depending
on function, can have lengths from nanometers to several millimeters. While
microtubules are the most rigid structures in the cell and play an important
structural role, they are also involved in variety of other functions, including
cellular transport, motility, and division. Many of these more dynamic functions
involve interactions with other proteins or filaments in the cell, often through
electrostatic interactions. For this reason, the ability to calculate the electrostatic
properties of a microtubule can provide important insight into many cellular pro-
cesses. It is the large size of microtubules that poses tremendous computational
challenges; for example, the atomically detailed solution of the PBE for a 1 pm
long microtubule requires more than 21 million delta functions in the source
term of the PBE to model the charge distribution to full atomic detail.

As described previously by Baker et al. [35], APBS was used to solve the
LPBE for a 40 nm long microtubule consisting of 605 205 atoms with a net
charge of —1800e. The microtubule structure was assembled by D. Sept using



23

Fig. 14. The amino acid backbone atoms of a microtubule fragment. The structure
shown here is 25 nm in diameter, 60 nm in length and has 901 083 atoms and a —3000e
charge.

microtubule structures derived from the work of Nogales, Whittaker, Milligan,
and Downing [64]. The biomolecule was assigned an internal dielectric constant
of 2 and surrounded by a solvent of dielectric 78.54 and ionic strength of 150 mM.
The molecular volume was defined with 0.14 nm radius solvent probes, and the
ion accessibility was calculated using 0.20 nm probes. For each P-processor cal-
culation, the pre-mesh was uniformly refined to over 100P simplices and par-
titioned by error-weighted spectral bisection. Each partition in the mesh was
then subjected to the solve-estimate-refine adaptive refinement loop using the
residual-based a posterior: error estimator until each processor had the target
number of vertices (40 000). These calculations were performed on 1, 2, 4, 8,
16, and 32 processors of the NPACI Blue Horizon supercomputer. Blue Hori-
zon is a massively parallel computational platform with eight-way SMP IBM
222 MHz Power3 nodes and 4 gigabytes of RAM per node. Jobs requiring less
than 32 processors were run with all 8 processors per node, giving each pro-
cessor roughly 400 megabytes of heap memory. However, to provide adequate
memory for the initial mesh refinement and partitioning steps, the 32-processor
job was run with 4 processors per node, allowing approximately 800 megabytes
of memory per processor.

The parallel efficiency of these calculations was very good. Although it was
anticipated that each calculation would take roughly the same amount of exe-
cution time with the various processor configurations, the actual runs showed a
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decrease in the execution time with increasing number of processors. The global
number of simplices in the mesh L(P) (the sum of the number of simplices from
each partition) was fit to a straight line L(P) = I; P + Iy with correlation coeffi-
cient r2 = 0.999, slope I; = (2.0540.03) x 10° simplices/processor, and intercept
lo = (1.7 £ 0.6) x 10° simplices. Finally, the parallel efficiency was defined as
E(P) = L(P)/PL(1) to measure the increase in problem size at each processor
configuration. The efficiency was also fit to a linear polynomial E(P) = e; P+e¢g
with correlation coefficient 72 = 0.61, slope e; = (7 £ 3) x 10~ per proces-
sor, and intercept ey = (1.08 + 0.05). The mean efficiency of the six runs was
E=10+0.1.

Due to the large size of the resulting electrostatic potential data sets, it was
not possible to visualize the results of the above parallel calculations. However,
a much lower resolution calculation was performed on a slightly larger (60 nm
long, 901 083 atoms, —3000e charge) microtubule to generate the electrostatic
potential contours shown in Figure 15. As expected, the highly charged micro-
tubule shows mostly negative electrostatic potential near the molecular surface
(Figure 15, red contour). However, several regions of positive potential are vis-
ible, especially near the ends of the microtubule. Such localized variations in
electrostatic potential often play important roles in molecular recognition and
binding and suggest interesting modes of microtubule assembly and stability.

4.4 Outlook

New methods for the parallel solution of elliptic partial differential equations
have made it possible to leverage the teraflops computing power of parallel com-
puters to perform electrostatic calculations on biomolecular systems at scales ap-
proaching the cellular level. Using the APBS and FEtk software on the NPACI
Blue Horizon supercomputer, it was possible to solve the Poisson-Boltzmann
equation for the electrostatic potential around a microtubule containing more
than 600 000 atoms. The code showed excellent parallel scaling, providing incen-
tive to attempt further calculations to probe the structure and function of even
larger macromolecular assemblages. Such calculations may also serve as a bench-
mark for parameterizing simpler methods for modeling large-scale biomolecular
electrostatics.
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