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ABSTRACT. In this article we present a coherent rigorous overview of the main proper-
ties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds;
results of this type are scattered through the literature and can be difficult to find. A spe-
cial emphasis has been put on spaces with noninteger smoothness order, and a special
attention has been paid to the peculiar fact that for a general nonsmooth domain Ω in Rn,
0 < t < 1, and 1 < p < ∞, it is not necessarily true that W 1,p(Ω) ↪→ W t,p(Ω). This
has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces
and subsequently in the study of Sobolev spaces on manifolds. We focus on establish-
ing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact
manifolds. In particular, by introducing notions such as “geometrically Lipschitz at-
lases” we build a general framework for developing multiplication theorems, embedding
results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’
knowledge, some of the proofs, especially those that are pertinent to the properties of
Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in
the literature in the generality appearing here.
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2 A. BEHZADAN AND M. HOLST

1. INTRODUCTION

Suppose s ∈ R and p ∈ (1,∞). With each nonempty open set Ω in Rn we can
associate a complete normed function space denoted by W s,p(Ω) called the Sobolev-
Slobodeckij space with smoothness degree s and integrability degree p. Similarly, given
a compact smooth manifold M and a vector bundle E over M , there are several ways to
define the normed spaces W s,p(M) and more generally W s,p(E). The main goal of this
manuscript is to review these various definitions and rigorously study the key properties
of these spaces. Some of the properties that we are interested in are as follows:

• Density of smooth functions

• Completeness, separability, reflexivity

• Embedding properties

• Behavior under differentiation

• Being closed under multiplication by smooth functions

u ∈ W s,p, φ is smooth ?
=⇒ φu ∈ W s,p .

• Invariance under change of coordinates

u ∈ W s,p, T is a diffeomorphism ?
=⇒ u ◦ T ∈ W s,p .

• Invariance under composition by a smooth function

u ∈ W s,p, F is smooth ?
=⇒ F (u) ∈ W s,p .

As we shall see, there are several ways to define W s,p(E). In particular, ∥u∥W s,p(E) can
be defined using the components of the local representations of u with respect to a fixed
augmented total trivialization atlas Λ, or it can be defined using the notion of connection
in E. Here are some of the questions that we have studied in this paper regarding this
issue:

• Are the different characterizations that exist in the literature equivalent? If not,
what is the relationship between the various characterizations of Sobolev-Slobodeckij
spaces on M?

• In particular, does the corresponding space depend on the chosen atlas (more pre-
cisely the chosen augmented total trivialization atlas) used in the definition?

• Suppose f ∈ W s,p(M). Does this imply that the local representation of f with
respect to each chart (Uα, φα) is in W s,p(φα(Uα))? If g is a metric on M and g ∈
W s,p, can we conclude that gij ◦ φ−1

α ∈ W s,p(φα(Uα))?

• Suppose that P : C∞(M) → C∞(M) is a linear differential operator. Is it possible to
gain information about the mapping properties of P by studying the mapping proper-
ties of its local representations with respects to charts in a given atlas? For example,
suppose that the local representations of P with respect to each chart (Uα, φα) in an
atlas is continuous from W s,p(φα(Uα)) to W s̃,p̃(φα(Uα)). Is it possible to extend P
to a continuous linear map from W s,p(M) to W s̃,p̃(M)?

To further motivate the questions that are studied in this paper and the study of the key
properties mentioned above, let us consider a concrete example. For any two sets A
and B, let Func(A,B) denote the collection of all functions from A to B. Consider the
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differential operator

divg : C∞(TM) → Func(M,R), divgX = (tr ◦ sharpg ◦ ∇ ◦ flatg)X ,

on a compact Riemannian manifold (M, g) with g ∈ W s,p. Let {(Uα, φα)} be a smooth
atlas for M . It can be shown that for each α

(divgX) ◦ φ−1
α =

n∑
j=1

1√
det gα

∂

∂xj
[
(
√

det gα)(Xj ◦ φ−1
α )

]
,

where gα(x) is the matrix whose (i, j)-entry is (gij ◦ φ−1
α )(x). As it will be discussed in

detail in Section 10, we call Qα : C∞(φα(Uα),Rn) → Func(φα(Uα),R) defined by

Qα(Y ) =
n∑
j=1

1√
det gα

∂

∂xj
[
(
√

det gα)(Y j)
]

︸ ︷︷ ︸
Qαj (Y

j)

the local representation of divg with respect to the local chart (Uα, φα). Let’s say we
can prove that for each α and j, Qα

j maps W e,q
0 (φα(Uα)) to W e−1,q(φα(Uα)). Can we

conclude that divg maps W e,q(TM) to W e−1,q(M)? And how can we find exponents e
and q such that

Qα
j : W e,q

0 (φα(Uα)) → W e−1,q(φα(Uα))

is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W 0,p(Ω) = Lp(Ω), Sobolev-Slobodeckij spaces can be viewed as a generaliza-
tion of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key
properties of W s,p(Ω) (for s ̸= 0) depend on the geometry of the boundary of Ω. Indeed,
to thoroughly study the properties of W s,p(Ω) one should consider the following cases
independently:

(1) Ω = Rn

(2) Ω is an arbitrary open subset of Rn

{
2a)bounded
2b)unbounded

(3) Ω is an open subset of Rn with smooth boundary

{
3a)bounded
3b)unbounded

Let us mention here four facts to highlight the dependence on domain and some atypical
behaviors of certain fractional Sobolev spaces. Let s ∈ (0,∞) and p ∈ (1,∞).

• Fact 1:

∀ j ∂

∂xj
: W s,p(Rn) → W s−1,p(Rn)

is a well-defined bounded linear operator.

• Fact 2: If we further assume that s ̸= 1
p

and Ω has smooth boundary then

∀ j ∂

∂xj
: W s,p(Ω) → W s−1,p(Ω)

is a well-defined bounded linear operator.

• Fact 3: If s̃ ≤ s, then

W s,p(Rn) ↪→ W s̃,p(Rn) .



4 A. BEHZADAN AND M. HOLST

• Fact 4: If Ω does NOT have Lipschitz boundary, then it is NOT necessarily true that

W 1,p(Ω) ↪→ W s̃,p(Ω)

for 0 < s̃ < 1.

Let M be an n-dimensional compact smooth manifold and let {(Uα, φα)} be a smooth
atlas for M . As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in Rn. Primarily we will be interested in the prop-
erties of W s,p(φα(Uα)) and W s,p

loc (φα(Uα)). Also, when we want to patch things to-
gether consistently and move from “local” to “global”, we will need to consider spaces
W s,p(φα(Uα ∩ Uβ)) and W s,p(φβ(Uα ∩ Uβ)). However, as we pointed out earlier, some
of the properties of W s,p(Ω) depend heavily on the geometry of the boundary of Ω.
Considering that the intersection of two Lipschitz domains is not necessarily a Lipschitz
domain, we need to consider the following question:

• Is it possible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire Rn or a nonempty bounded set
with smooth boundary? And if we define the Sobolev spaces using such an atlas, will
the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in Rn (cf. [2, 18, 34]), real
order Sobolev spaces of functions ([21, 41, 37, 32, 11]), Sobolev spaces of functions
on manifolds ([42, 25, 4, 26]), and Sobolev spaces of sections of vector bundles on
manifolds ([33, 17]). However, most of these works focus on spaces of functions rather
than general sections, and in many cases the focus is on integer order spaces. This paper
should be viewed as a part of our efforts to build a more complete foundation for the
study and use of Sobolev-Slobodeckij spaces on manifolds through a sequence of related
manuscripts [7, 8, 9].

Outline of Paper. In Section 2 we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3 we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some
less well-known facts about topics such as higher order covariant derivatives in the con-
text of vector bundles. In Section 6 we collect the results that we need from the theory
of generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Section 8 and Section 9 we
introduce Lebesgue spaces and Sobolev-Slobodeckij spaces of sections of vector bun-
dles and we present a rigorous account of their various properties. Finally in Section 10
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we study the continuity of certain differential operators between Sobolev spaces of sec-
tions of vector bundles. Although the purpose of sections 3 through 7 is to give a quick
overview of the prerequisites that are needed to understand the proofs of the results in
later sections and set the notation straight, as it was pointed out earlier, several theorems
and proofs that appear in these sections cannot be found elsewhere in the generality that
are stated here.

2. NOTATION AND CONVENTIONS

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and N0 denotes the set of nonnegative integers. For any nonnegative real num-
ber s, the integer part of s is denoted by ⌊s⌋. The letter n is a positive integer and stands
for the dimension of the space.

Ω is a nonempty open set in Rn. The collection of all compact subsets of Ω will be
denoted by K(Ω). Lipschitz domain in Rn refers to a nonempty bounded open set in Rn

with Lipschitz continuous boundary.

Each element of Nn
0 is called a multi-index. For a multi-index α = (α1, · · · , αn) ∈ Nn

0 ,
we let

• |α| := α1 + · · ·+ αn,
• α! := α1! · · ·αn!.

If α, β ∈ Nn
0 , we say β ≤ α provided that βi ≤ αi for all 1 ≤ i ≤ n. If β ≤ α, we let(

α

β

)
:=

α!

β!(α− β)!
=

(
α1

β1

)
· · ·

(
α1

β1

)
.

Suppose that α ∈ Nn
0 . For sufficiently smooth functions u : Ω → R (or for any distribu-

tion u) we define the αth order partial derivative of u as follows:

∂αu :=
∂|α|u

∂xα1
1 · · · ∂xαnn

.

We use the notation A ⪯ B to mean A ≤ cB, where c is a positive constant that
does not depend on the non-fixed parameters appearing in A and B. We write A ≃ B if
A ⪯ B and B ⪯ A.

For any nonempty set X and r ∈ N, X×r stands for X × · · · ×X︸ ︷︷ ︸
r times

.

For any two nonempty sets X and Y , Func(X, Y ) denotes the collection of all func-
tions from X to Y .

We write L(X, Y ) for the space of all continuous linear maps from the normed space
X to the normed space Y . L(X,R) is called the (topological) dual ofX and is denoted by
X∗. We use the notation X ↪→ Y to mean X ⊆ Y and the inclusion map is continuous.

GL(n,R) is the set of all n×n invertible matrices with real entries. Note that GL(n,R)
can be identified with an open subset of Rn2 and so it can be viewed as a smooth manifold
(more precisely, GL(n,R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the man-
ifold M at point p ∈ M is denoted by TpM , and the cotangent space by T ∗

pM . If
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(U,φ = (xi)) is a local coordinate chart and p ∈ U , we denote the corresponding coor-
dinate basis for TpM by ∂i|p while ∂

∂xi
|x denotes the basis for the tangent space to Rn at

x = φ(p) ∈ Rn; that is,

φ∗∂i =
∂

∂xi
.

Note that for any smooth function f :M → R we have

(∂if) ◦ φ−1 =
∂

∂xi
(f ◦ φ−1) .

The vector space of all k-covariant, l-contravariant tensors on TpM is denoted by T kl (TpM).
So, each element of T kl (TpM) is a multilinear map of the form

F : T ∗
pM × · · · × T ∗

pM︸ ︷︷ ︸
l copies

×TpM × · · · × TpM︸ ︷︷ ︸
k copies

→ R .

We are primarily interested in the vector bundle of
(
k
l

)
-tensors onM whose total space

is
T kl (M) =

⊔
p∈M

T kl (TpM) .

A section of this bundle is called a
(
k
l

)
-tensor field. We set T kM := T k0 (M). TM

denotes the tangent bundle of M and T ∗M is the cotangent bundle of M . We set

τ kl (M) = C∞(M,T kl (M)) = collection of smooth
(k
l

)
-tensor fields on M

and

χ(M) = C∞(M,TM) = the collection of smooth vector fields on M .

A symmetric positive definite section of T 2M is called a Riemannian metric on M . If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as
a Riemannian manifold. If there is no possibility of confusion, we may write ⟨X, Y ⟩ in-
stead of g(X, Y ). The norm induced by g on each tangent space will be denoted by ∥.∥g.
We say that g is smooth (or the Riemannian manifold is smooth) if g ∈ C∞(M,T 2M).
d denotes the exterior derivative and grad : C∞(M) → C∞(M,TM) denotes the

gradient operator which is defined by g(grad f,X) = d f(X) for all f ∈ C∞(M) and
X ∈ C∞(M,TM).

Given a metric g on M , one can define the musical isomorphisms as follows:

flatg : TpM → T ∗
pM

X 7→ X♭ := g(X, · ) ,
sharpg : T

∗
pM → TpM

ψ 7→ ψ♯ := flat−1
g (ψ) .

Using sharpg we can define the
(
0
2

)
-tensor field g−1 (which is called the inverse metric

tensor) as follows

g−1(ψ1, ψ2) := g(sharpg(ψ1), sharpg(ψ2)) .

Let {Ei} be a local frame on an open subset U ⊂M and {ηi} be the corresponding dual
coframe. So we can write X = X iEi and ψ = ψiη

i. It is standard practice to denote the
ith component of flatgX by Xi and the ith component of sharpg(ψ) by ψi:

flatgX = Xiη
i , sharpgψ = ψiEi .
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It is easy to show that
Xi = gijX

j , ψi = gijψj ,

where gij = g(Ei, Ej) and gij = g−1(ηi, ηj). It is said that flatgX is obtained from X by
lowering an index and sharpgψ is obtained from ψ by raising an index.

3. REVIEW OF SOME RESULTS FROM LINEAR ALGEBRA

In this section we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators on
manifolds.

There are several ways to construct new vector spaces from old ones: subspaces, prod-
ucts, direct sums, quotients, etc. The ones that are particularly important for the study of
Sobolev spaces of sections of vector bundles are the vector space of linear maps between
two given vector spaces, the tensor product of vector spaces, and the vector space of all
densities on a given vector space which we briefly review here in order to set the notation
straight.

• Let V and W be two vector spaces. The collection of all linear maps from V to W is
a new vector space which we denote by Hom(V,W ). In particular, Hom(V,R) is the
(algebraic) dual of V . If V and W are finite-dimensional, then Hom(V,W ) is a vector
space whose dimension is equal to the product of dimensions of V and W . Indeed, if
we choose a basis for V and a basis for W , then Hom(V,W ) is isomorphic with the
space of matrices with dimW rows and dimV columns.

• Let U and V be two vector spaces. Roughly speaking, the tensor product of U and V
(denoted by U ⊗ V ) is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W , Hom(U ⊗ V,W ) is isomorphic to the collection of
bilinear maps from U×V toW . Informally, U⊗V consists of finite linear combinations
of symbols u⊗ v, where u ∈ U and v ∈ V . It is assumed that these symbols satisfy the
following identities:

(u1 + u2)⊗ v − u1 ⊗ v − u2 ⊗ v = 0 ,

u⊗ (v1 + v2)− u⊗ v1 − u⊗ v2 = 0 ,

α(u⊗ v)− (αu)⊗ v = 0 ,

α(u⊗ v)− u⊗ (αv) = 0 ,

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and α ∈ R. These identities simply say that the map

⊗ : U × V → U ⊗ V, (u, v) 7→ u⊗ v ,

is a bilinear map. The image of this map spans U ⊗ V .

Definition 3.1. Let U and V be two vector spaces. Tensor product is a vector space
U ⊗ V together with a bilinear map ⊗ : U × V → U ⊗ V, (u, v) 7→ u ⊗ v such that
given any vector space W and any bilinear map b : U × V → W , there is a unique
linear map b̄ : U ⊗ V → W with b̄(u ⊗ v) = b(u, v). That is, the following diagram
commutes:

U ⊗ V

U × V W

b̄

b

⊗
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V,W ) ∼= V ∗ ⊗W .

Indeed, the following map is an isomorphism of vector spaces:

F : V ∗ ⊗W → Hom(V,W ), F (v∗ ⊗ w)︸ ︷︷ ︸
an element of Hom(V,W )

(v) = [v∗(v)]︸ ︷︷ ︸
a real number

w .

It is useful to obtain an expression for the inverse of F too. That is, given T ∈
Hom(V,W ), we want to find an expression for the corresponding element of V ∗ ⊗W .
To this end, let {ei}1≤i≤n be a basis for V and {ei}1≤i≤n denote the corresponding dual
basis. Let {sa}1≤a≤r be a basis for W . Then {ei ⊗ sb} is a basis for V ∗ ⊗W . Suppose∑

i,aR
a
i e
i ⊗ sa is the element of V ∗ ⊗W that corresponds to T . We have

F (
∑
i,a

Ra
i e
i ⊗ sa) = T =⇒ ∀u ∈ V

∑
i,a

Ra
iF [e

i ⊗ sa](u) = T (u)

=⇒ ∀u ∈ V
∑
i,a

Ra
i e
i(u)sa = T (u) .

In particular, for all 1 ≤ j ≤ n,

T (ej) =
∑
i,a

Ra
i e

i(ej)︸ ︷︷ ︸
δij

sa =
∑
a

Ra
j sa .

That is, Ra
i is the entry in the ath row and ith column of the matrix of the linear trans-

formation T .

• Let V be an n-dimensional vector space. A density on V is a function µ : V × · · · × V︸ ︷︷ ︸
n copies

→

R with the property that

µ(Tv1, · · · , T vn) = |detT |µ(v1, · · · , vn) ,

for all T ∈ Hom(V, V ).

We denote the collection of all densities on V by D(V ). It can be shown that D(V ) is
a one dimensional vector space under the obvious vector space operations. Indeed, if
(e1, · · · , en) is a basis for V , then each element µ ∈ D(V ) is uniquely determined by
its value at (e1, · · · , en) because for any (v1, · · · , vn) ∈ V ×n, we have µ(v1, · · · , vn) =
|detT |µ(e1, · · · , en) where T : V → V is the linear transformation defined by T (ei) = vi
for all 1 ≤ i ≤ n. Thus

F : D(V ) → R, F (µ) = µ(e1, · · · , en) ,

will be an isomorphism of vector spaces.
Moreover, if ω ∈ Λn(V ) where Λn(V ) is the collection of all alternating covariant

n-tensors, then |ω| belongs to D(V ). Thus if ω is any nonzero element of Λn(V ), then
{|ω|} will be a basis for D(V ) ([31], Page 428).
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4. REVIEW OF SOME RESULTS FROM ANALYSIS AND TOPOLOGY

4.1. Euclidean Space. Let Ω be a nonempty open set in Rn and m ∈ N0. Here is a list
of several useful function spaces on Ω:

C(Ω) = {f : Ω → R : f is continuous}
Cm(Ω) = {f : Ω → R : ∀ |α| ≤ m ∂αf ∈ C(Ω)} (C0(Ω) = C(Ω))

BC(Ω) = {f : Ω → R : f is continuous and bounded on Ω}
BCm(Ω) = {f ∈ Cm(Ω) : ∀ |α| ≤ m ∂αf is bounded on Ω}
BC(Ω̄) = {f : Ω → R : f ∈ BC(Ω) and f is uniformly continuous on Ω}
BCm(Ω̄) = {f : Ω → R : f ∈ BCm(Ω),∀ |α| ≤ m ∂αf is uniformly continuous on Ω }

C∞(Ω) =
⋂
m∈N0

Cm(Ω), BC∞(Ω) =
⋂
m∈N0

BCm(Ω), BC∞(Ω̄) =
⋂
m∈N0

BCm(Ω̄)

Remark 4.1. [2] If g : Ω → R is in BC(Ω̄), then it possesses a unique, bounded,
continuous extension to the closure Ω̄ of Ω.

Notation : Let Ω be a nonempty open set in Rn. The collection of all compact sets in Ω
is denoted by K(Ω). If f : Ω → R is a function, the support of f is denoted by supp f .
Notice that, in some references supp f is defined as the closure of {x ∈ Ω : f(x) ̸= 0}
in Ω, while in certain other references it is defined as the closure of {x ∈ Ω : f(x) ̸= 0}
in Rn. Of course, if we are concerned with functions whose support is inside an element
of K(Ω), then the two definitions agree. For the sake of definiteness, in this manuscript
we always use the former interpretation of support. Also, support of a distribution will
be discussed in Section 6.

Remark 4.2. If F(Ω) is any function space on Ω and K ∈ K(Ω), then FK(Ω) denotes
the collection of elements in F(Ω) whose support is inside K. Also,

Fc(Ω) = Fcomp(Ω) =
⋃

K∈K(Ω)

FK(Ω) .

Let 0 < λ ≤ 1. A function F : Ω ⊆ Rn → Rk is called λ-Holder continuous if there
exists a constant L such that

|F (x)− F (y)| ≤ L|x− y|λ ∀x, y ∈ Ω .

Clearly, a λ-Holder continuous function on Ω is uniformly continuous on Ω. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BCm,λ(Ω) = {f : Ω → R : ∀ |α| ≤ m ∂αf is λ-Holder continuous and bounded}
= {f ∈ BCm(Ω) : ∀ |α| ≤ m ∂αf is λ-Holder continuous}
= {f ∈ BCm(Ω̄) : ∀ |α| ≤ m ∂αf is λ-Holder continuous}

and
BC∞,λ(Ω) :=

⋂
m∈N0

BCm,λ(Ω) .

Remark 4.3. Let F : Ω ⊆ Rn → Rk (F = (F 1, · · · , F k)). Then

F is Lipschitz ⇐⇒ ∀ 1 ≤ i ≤ k F i is Lipschitz .
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Indeed, for each i

|F i(x)− F i(y)| ≤

√√√√ k∑
j=1

|F j(x)− F j(y)|2 = |F (x)− F (y)| ≤ L|x− y| ,

which shows that if F is Lipschitz so will be its components. Also, if for each i, there
exists Li such that

|F i(x)− F i(y)| ≤ Li|x− y| ,
then

k∑
j=1

|F j(x)− F j(y)|2 ≤ nL2|x− y|2 ,

where L = max {L1, · · · , Lk}. This proves that if each component of F is Lipschitz so
is F itself.

Theorem 4.4. [24] Let Ω be a nonempty open set in Rn and let K ∈ K(Ω). There is a
function ψ ∈ C∞

c (Ω) taking values in [0, 1] such that ψ = 1 on a neighborhood of K.

Theorem 4.5 (Exhaustion by Compact Sets). [24] Let Ω be a nonempty open subset of
Rn. There exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = Ω and

K1 ⊆ K̊2 ⊆ K2 ⊆ · · · ⊆ K̊j ⊆ Kj ⊆ · · · .
Moreover, as a direct consequence, if K is any compact subset of the open set Ω, then
there exists an open set V such that K ⊆ V ⊆ V̄ ⊆ Ω.

Theorem 4.6. [24] Let Ω be a nonempty open subset of Rn. Let {Kj}j∈N be an exhaus-
tion of Ω by compact sets. Define

V0 = K̊4, ∀ j ∈ N Vj = K̊j+4 \Kj .

Then

(1) each Vj is an open bounded set and Ω = ∪jVj ,
(2) the cover {Vj}j∈N0 is locally finite in Ω, that is, each compact subset of Ω has nonempty

intersection with only a finite number of the Vj’s,

(3) there is a family of functions ψj ∈ C∞
c (Ω) taking values in [0, 1] such that suppψj ⊆

Vj and ∑
j∈N0

ψj(x) = 1 for all x ∈ Ω .

Theorem 4.7 ([19], Page 74). Suppose Ω is an open set in Rn and G : Ω → G(Ω) ⊆
Rn is a C1-diffeomorphism (i.e. G and G−1 are both C1 maps). If f is a Lebesgue
measurable function on G(Ω), then f ◦ G is Lebesgue measurable on Ω. If f ≥ 0 or
f ∈ L1(G(Ω)), then ∫

G(Ω)

f(x)dx =

∫
Ω

f ◦G(x)|detG′(x)|dx .

Theorem 4.8 ([19], Page 79). If f is a nonnegative measurable function on Rn such that
f(x) = g(|x|) for some function g on (0,∞), then∫

f(x)dx = σ(Sn−1)

∫ ∞

0

g(r)rn−1dr ,

where σ(Sn−1) is the surface area of (n− 1)-sphere.
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Theorem 4.9. ([3], Section 12.11) Suppose U is an open set in Rn and f : U → R is
differentiable. Let x and y be two points in U and suppose the line segment joining x and
y is contained in U . Then there exists a point z on the line joining x to y such that

f(y)− f(x) = ∇f(z).(y − x) .

As a consequence, if U is convex and all first order partial derivatives of f are bounded,
then f is Lipschitz on U .

Warning: Suppose f ∈ BC∞(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
∪∞
n=0(n, n+ 1) and define

f : U → R, f(x) = (−1)n, ∀x ∈ (n, n+ 1) .

Clearly, all derivatives of U are equal to zero, so f ∈ BC∞(U). But f is not uniformly
continuous and thus it is not Lipschitz. Indeed, for any 1 > δ > 0, we can let x = 2−δ/4
and y = 2 + δ/4. Clearly |x− y| < δ, however, |f(x)− f(y)| = 2.

Of course, if f ∈ C1
c (U), then f can be extended by zero to a function in C1

c (Rn).
Since Rn is convex, we may conclude that the extension by zero of f is Lipschitz which
implies that f : U → R is Lipschitz. As a consequence, C1

c (U) ⊆ BC0,1(U) and
C∞
c (U) ⊆ BC∞,1(U). Also, Theorem 7.27 and the following theorem provide useful

information regarding this issue.

Theorem 4.10. Let U ⊆ Rn and V ⊆ Rk be two nonempty open sets and let T : U → V
(T = (T 1, · · · , T k)) be a C1 map (that is, for each 1 ≤ i ≤ k, T i ∈ C1(U)). Suppose
B ⊆ U is a bounded set such that B ⊆ B̄ ⊆ U . Then T : B → V is Lipschitz.

Proof. By Remark 4.3 it is enough to show that each T i is Lipschitz on B. Fix a function
φ ∈ C∞

c (Rn) such that φ = 1 on B̄ and φ = 0 on Rn \U . Then φT i can be viewed as an
element of C1

c (Rn). Therefore, it is Lipschitz (Rn is convex) and there exists a constant
L, which may depend on φ, B and T i, such that

|φT i(x)− φT i(y)| ≤ L|x− y| ∀x, y ∈ Rn .

Since φ = 1 on B̄, it follows that

|T i(x)− T i(y)| ≤ L|x− y| ∀x, y ∈ B .

□

4.2. Normed Spaces.

Theorem 4.11. Let X and Y be normed spaces. Let A be a dense subspace of X and B
be a dense subspace of Y . Then

• A×B is dense in X × Y ;

• if T : A× B → R is a continuous bilinear map, then T has a unique extension to a
continuous bilinear operator T̃ : X × Y → R.

Theorem 4.12. [2] Let X be a normed space and let M be a closed vector subspace of
X .

(1) If X is reflexive, then X is a Banach space.

(2) X is reflexive if and only if X∗ is reflexive.

(3) If X∗ is separable, then X is separable.
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(4) If X is reflexive and separable, then so is X∗.

(5) If X is a reflexive Banach space, then so is M .

(6) If X is a separable Banach space, then so is M .

Moreover, if X1, · · · , Xr are reflexive Banach spaces, then X1 × · · · ×Xr equipped with
the norm

∥(x1, · · · , xr)∥ = ∥x1∥X1 + · · ·+ ∥xr∥Xr
is also a reflexive Banach space.

4.3. Topological Vector Spaces. There are different, generally nonequivalent, ways to
define topological vector spaces. The conventions in this section mainly follow Rudin’s
functional analysis [36]. Statements in this section are either taken from Rudin’s func-
tional analysis, Grubb’s distributions and operators [24], excellent presentation of Reus
[35], and Treves’ topological vector spaces [39] or are direct consequences of statements
in the aforementioned references. Therefore we will not give the proofs.

Definition 4.13. A topological vector space is a vector spaceX together with a topology
τ with the following properties:

(i) For all x ∈ X , the singleton {x} is a closed set.
(ii) The maps

(x, y) 7→ x+ y (from X ×X into X) ,

(λ, x) 7→ λx (from R×X into X) ,

are continuous where X ×X and R×X are equipped with the product topology.

Definition 4.14. Suppose (X, τ) is a topological vector space and Y ⊆ X .

• Y is said to be convex if for all y1, y2 ∈ Y and t ∈ (0, 1) it is true that ty1+(1− t)y2 ∈
Y .

• Y is said to be balanced if for all y ∈ Y and |λ| ≤ 1 it holds that λy ∈ Y . In particular,
any balanced set contains the origin.

• We say Y is bounded if for any neighborhood U of the origin (i.e. any open set contain-
ing the origin), there exits t > 0 such that Y ⊆ tU .

Theorem 4.15 (Important Properties of Topological Vector Spaces).

• Every topological vector space is Hausdorff.

• If (X, τ) is a topological vector space, then
(1) for all a ∈ X: E ∈ τ ⇐⇒ a+ E ∈ τ (that is, τ is translation invariant),
(2) for all λ ∈ R \ {0}: E ∈ τ ⇐⇒ λE ∈ τ (that is, τ is scale invariant),
(3) if A ⊆ X is convex and x ∈ X , then so is A+ x,
(4) if {Ai}i∈I is a family of convex subsets of X , then ∩i∈IAi is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4.16. Let (X, τ) be a topological space.

• A collection B ⊆ τ is said to be a basis for τ , if every element of τ is a union of elements
in B.
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• Let p ∈ X . If γ ⊆ τ is such that each element of γ contains p and every neighborhood
of p (i.e. every open set containing p) contains at least one element of γ, then we say γ
is a local base at p. If X is a vector space, then the local base γ is said to be convex if
each element of γ is a convex set.

• (X, τ) is called first-countable if each point has a countable local base.

• (X, τ) is called second-countable if there is a countable basis for τ .

Theorem 4.17. Let (X, τ) be a topological space and suppose for all x ∈ X , γx is a
local base at x. Then B = ∪x∈Xγx is a basis for τ .

Theorem 4.18. LetX be a vector space and suppose τ is a translation invariant topology
on X . Then for all x1, x2 ∈ X we have

the collection γx1
is a local base at x1 ⇐⇒ the collection {A+ (x2 − x1)}A∈γx1

is a local base at x2

Remark 4.19. LetX be a vector space and suppose τ is a translation invariant topology
on X . As a direct consequence of the previous theorems the topology τ is uniquely
determined by giving a local base γx0 at some point x0 ∈ X .

Definition 4.20. Let (X, τ) be a topological vector space. X is said to be metrizable if
there exists a metric d : X ×X → [0,∞) whose induced topology is τ . In this case we
say that the metric d is compatible with the topology τ .

Theorem 4.21. Let (X, τ) be a topological vector space.

• X is metrizable ⇐⇒ there exists a metric d onX such that for all x ∈ X , {B(x, 1
n
)}n∈N

is a local base at x.

• A metric d on X is compatible with τ ⇐⇒ for all x ∈ X , {B(x, 1
n
)}n∈N is a local base

at x.

(B(x, 1
n
) is the open ball of radius 1

n
centered at x.)

Definition 4.22. Let X be a vector space and d be a metric on X . d is said to be
translation invariant provided that

∀x, y, a ∈ X d(x+ a, y + a) = d(x, y) .

Remark 4.23. Let (X, τ) be a topological vector space and suppose d is a translation
invariant metric on X . Then the following statements are equivalent:

(1) For all x ∈ X , {B(x, 1
n
)}n∈N is a local base at x.

(2) There exists x0 ∈ X such that {B(x0,
1
n
)}n∈N is a local base at x0.

Therefore, d is compatible with τ if and only if {B(0, 1
n
)}n∈N is a local base at the origin.

Theorem 4.24. Let (X, τ) be a topological vector space. Then (X, τ) is metrizable if
and only if it has a countable local base at the origin. Moreover, if (X, τ) is metrizable,
then one can find a translation invariant metric that is compatible with τ .

Definition 4.25. Let (X, τ) be a topological vector space and let {xn} be a sequence in
X .

• We say that {xn} converges to a point x ∈ X provided that

∀U ∈ τ, x ∈ U ∃N ∀n ≥ N xn ∈ U .

• We say that {xn} is a Cauchy sequence provided that

∀U ∈ τ, 0 ∈ U ∃N ∀m,n ≥ N xn − xm ∈ U .
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Theorem 4.26. Let (X, τ) be a topological vector space, {xn} be a sequence in X , and
x, y ∈ X . Also suppose γ is a local base at the origin. The following statements are
equivalent:

(1) xn → x
(2) (xn − x) → 0
(3) xn + y → x+ y
(4) ∀V ∈ γ ∃N ∀n ≥ N xn − x ∈ V

Moreover, {xn} is a Cauchy sequence if and only if

∀V ∈ γ ∃N ∀n,m ≥ N xn − xm ∈ V .

Remark 4.27. In contrast with properties like continuity of a function and convergence
of a sequence which depend only on the topology of the space, the property of being a
Cauchy sequence is not a topological property. Indeed, it is easy to construct examples
of two metrics d1 and d2 on a vector space X that induce the same topology (i.e. the
metrics are equivalent) but have different collection of Cauchy sequences. However, it
can be shown that if d1 and d2 are two translation invariant metrics that induce the same
topology on X , then the Cauchy sequences of (X, d1) will be exactly the same as the
Cauchy sequences of (X, d2).

Theorem 4.28. Let (X, τ) be a metrizable topological vector space and d be a transla-
tion invariant metric on X that is compatible with τ . Let {xn} be a sequence in X . The
following statements are equivalent:

(1) {xn} is a Cauchy sequence in the topological vector space (X, τ).
(2) {xn} is a Cauchy sequence in the metric space (X, d).

Definition 4.29. Let (X, τ) be a topological vector space. We say (X, τ) is locally
convex if it has a convex local base at the origin.

Note that, as a consequence of theorems (4.15) and (4.18), the following statements
are equivalent:

(1) (X, τ) is a locally convex topological vector space.
(2) There exists p ∈ X with a convex local base at p.
(3) For every p ∈ X there exists a convex local base at p.

Definition 4.30. Let (X, τ) be a metrizable locally convex topological vector space. Let
d be a translation invariant metric on X that is compatible with τ . We say that X is
complete if and only if the metric space (X, d) is a complete metric space. A complete
metrizable locally convex topological vector space is called a Frechet space.

Remark 4.31. Our previous remark about Cauchy sequences shows that the above defi-
nition of completeness is independent of the chosen translation invariant metric d. Indeed
one can show that the locally convex topological vector space (X, τ) is complete in the
above sense if and only if every Cauchy net in (X, τ) is convergent.

Theorem 4.32. ([13], Page 63) A linear continuous bijective mapping of a Frechet space
X onto a Frechet space Y has a continuous linear inverse.

Definition 4.33. A seminorm on a vector space X is a real-valued function p : X → R
such that

i. ∀x, y ∈ X p(x+ y) ≤ p(x) + p(y)
ii. ∀x ∈ X ∀α ∈ R p(αx) = |α|p(x)
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If P is a family of seminorms on X , then we say P is separating provided that for all
x ̸= 0 there exists at least one p ∈ P such that p(x) ̸= 0 (that is, if p(x) = 0 for all
p ∈ P , then x = 0).

Remark 4.34. It follows from conditions (i) and (ii) that if p : X → R is a seminorm,
then p(x) ≥ 0 for all x ∈ X .

Theorem 4.35. Suppose P is a separating family of seminorms on a vector space X .
For all p ∈ P and n ∈ N let

V (p, n) := {x ∈ X : p(x) <
1

n
} .

Also, let γ be the collection of all finite intersections of V (p, n)’s. That is,

A ∈ γ ⇐⇒ ∃k ∈ N, ∃p1, · · · , pk ∈ P , ∃n1, · · · , nk ∈ N such that A = ∩ki=1V (pi, ni)

Then each element of γ is a convex balanced subset ofX . Moreover, there exists a unique
topology τ on X that satisfies both of the following properties:

(1) τ is translation invariant (that is, if U ∈ τ and a ∈ X , then a+ U ∈ τ ).
(2) γ is a local base at the origin for τ .

This unique topology is called the natural topology induced by the family of seminorms
P . Furthermore, if X is equipped with the natural topology τ , then

i) (X, τ) is a locally convex topological vector space,
ii) every p ∈ P is a continuous function from X to R.

Theorem 4.36. Suppose P is a separating family of seminorms on a vector spaceX . Let
τ be the natural topology induced by P . Then

(1) τ is the smallest topology on X that is translation invariant and with respect to
which every p ∈ P is continuous,

(2) τ is the smallest topology on X with respect to which addition is continuous and
every p ∈ P is continuous.

Theorem 4.37. Let X and Y be two vector spaces and suppose P and Q are two sepa-
rating families of seminorms on X and Y , respectively. Equip X and Y with the corre-
sponding natural topologies.

(1) A sequence xn converges to x in X if and only if for all p ∈ P , p(xn − x) → 0.

(2) A linear operator T : X → Y is continuous if and only if

∀ q ∈ Q ∃ c > 0, k ∈ N, p1, · · · , pk ∈ P such that ∀x ∈ X |q ◦ T (x)| ≤ c max
1≤i≤k

pi(x) .

(3) A linear operator T : X → R is continuous if and only if

∃ c > 0, k ∈ N, p1, · · · , pk ∈ P such that ∀x ∈ X |T (x)| ≤ c max
1≤i≤k

pi(x) .

Theorem 4.38. Let X be a Frechet space and let Y be a topological vector space. When
T is a linear map of X into Y , the following two properties are equivalent:

(1) T is continuous.
(2) xn → 0 in X =⇒ Txn → 0 in Y .

Theorem 4.39. Let P = {pk}k∈N be a countable separating family of seminorms on a
vector space X . Let τ be the corresponding natural topology. Then the locally convex
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topological vector space (X, τ) is metrizable and the following translation invariant
metric on X is compatible with τ :

d(x, y) =
∞∑
k=1

1

2k
pk(x− y)

1 + pk(x− y)
.

Let (X, τ) be a locally convex topological vector space. Consider the topological dual
of X ,

X∗ := {f : X → R : f is linear and continuous} .
There are several ways to topologize X∗: the weak∗ topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [39], Chapter 19). Here we describe the weak∗ topology and the strong topology on
X∗.

Definition 4.40. Let (X, τ) be a locally convex topological vector space.

• The weak∗ topology on X∗ is the natural topology induced by the separating family of
seminorms {px}x∈X where

∀x ∈ X px : X
∗ → R, px(f) := |f(x)| .

A sequence {fm} converges to f in X∗ with respect to the weak∗ topology if and only if
fm(x) → f(x) in R for all x ∈ X .

• The strong topology on X∗ is the natural topology induced by the separating family of
seminorms {pB}B⊆Xbounded where for any bounded subset B of X

pB : X∗ → R pB(f) := sup{|f(x)| : x ∈ B} .
(It can be shown that for any bounded subset B of X and f ∈ X∗, f(B) is a bounded
subset of R.)

Remark 4.41.

(1) If X is a normed space, then the topology induced by the norm

∀ f ∈ X∗ ∥f∥op = sup
∥x∥X=1

|f(x)|

on X∗ is the same as the strong topology on X∗ ([39], Page 198).

(2) In this manuscript we always consider the topological dual of a locally convex topo-
logical vector space with the strong topology. Of course, it is worth mentioning that
for many of the spaces that we will consider (including X = E(Ω) or X = D(Ω)
where Ω is an open subset of Rn) a sequence in X∗ converges with respect to the
weak∗ topology if and only if it converges with respect to the strong topology (for more
details on this see the definition and properties of Montel spaces in section 34.4, page
356 of [39]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 4.42 ([35], Page 160). If X and Y are topological vector spaces and I :
X → Y and P : Y → X are continuous linear maps such that P ◦ I = idX , then
I : X → I(X) ⊆ Y is a linear topological isomorphism and I(X) is closed in Y .

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.
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Let X1, · · · , Xr be topological vector spaces. Recall that the product topology on X1 ×
· · · ×Xr is the smallest topology such that the projection maps

πk : X1 × · · · ×Xr → Xk, πk(x1, · · · , xr) = xk ,

are continuous for all 1 ≤ k ≤ r. It can be shown that if each Xk is a locally convex
topological vector space whose topology is induced by a family of seminorms Pk, then
X1× · · ·×Xr equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{p1 ◦ π1 + · · ·+ pr ◦ πr : pk ∈ Pk ∀ 1 ≤ k ≤ r} .

Theorem 4.43 ([35], Page 164). Let X1, · · · , Xr be locally convex topological vector
spaces. Equip X1×· · ·×Xr and X∗

1 ×· · ·×X∗
r with the product topology. The mapping

L̃ : X∗
1 × · · · ×X∗

r → (X1 × · · · ×Xr)
∗ defined by

L̃(u1, · · · , ur) = u1 ◦ π1 + · · ·+ ur ◦ πr
is a linear topological isomorphism. Its inverse is

L(v) = (v ◦ i1, · · · , v ◦ ir) ,
where for all 1 ≤ k ≤ r, ik : Xk → X1 × · · · ×Xr is defined by

ik(z) = (0, · · · , 0, z︸︷︷︸
kth position

, 0, · · · , 0) .

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.

Theorem 4.44 ([35], Page 163). Let X and Y be locally convex topological vector
spaces and suppose T : X → Y is a continuous linear map. Then

(1) the map
T ∗ : Y ∗ → X∗ ⟨T ∗y, x⟩X∗×X = ⟨y, Tx⟩Y ∗×Y ,

is well-defined, linear, and continuous. (T ∗ is called the adjoint of T .)

(2) If T (X) is dense in Y , then T ∗ : Y ∗ → X∗ is injective.

Remark 4.45. In the subsequent sections we will focus heavily on certain function spaces
on domains Ω in the Euclidean space. For approximation purposes, it is always desirable
to have D(Ω)(= C∞

c (Ω)) as a dense subspace of our function spaces. However, there is
another, may be more profound, reason for being interested in having D(Ω) as a dense
subspace. It is important to note that we would like to use the term “function spaces” for
topological vector spaces that can be continuously embedded inD′(Ω) (see Section 6 for
the definition of D′(Ω)) so that concepts such as differentiation will be meaningful for
the elements of our function spaces. Given a function space A(Ω) it is usually helpful to
consider its dual too. In order to be able to view the dual of A(Ω) as a function space we
need to ensure that [A(Ω)]∗ can be viewed as a subspace ofD′(Ω). To this end, according
to the above theorem, it is enough to ensure that the identity map from D(Ω) to A(Ω) is
continuous with dense image in A(Ω).

Let us consider more closely two special cases of Theorem 4.44.

(1) Suppose Y is a normed space and H is a dense subspace of Y . Clearly, the identity
map i : H → Y is continuous with dense image. Therefore, i∗ : Y ∗ → H∗ (F 7→
F |H) is continuous and injective. Furthermore, by the Hahn-Banach theorem for all



18 A. BEHZADAN AND M. HOLST

φ ∈ H∗ there exists F ∈ Y ∗ such that F |H = φ and ∥F∥Y ∗ = ∥φ∥H∗ . So the
above map is indeed bijective and Y ∗ and H∗ are isometrically isomorphic. As an
important example, let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞.
Consider the space W s,p

0 (Ω) (see Section 7 for the definition of W s,p
0 (Ω)). C∞

c (Ω) is
a dense subspace of W s,p

0 (Ω). Therefore, W−s,p′(Ω) := [W s,p
0 (Ω)]∗ is isometrically

isomorphic to [(C∞
c (Ω), ∥.∥s,p)]∗. In particular, if F ∈ W−s,p′(Ω), then

∥F∥W−s,p′ (Ω) = sup
0̸≡ψ∈C∞

c (Ω)

|F (ψ)|
∥ψ∥s,p

.

(2) Suppose (Y, ∥.∥Y ) is a normed space, (X, τ) is a locally convex topological vector
space, X ⊆ Y , and the identity map i : (X, τ) → (Y, ∥.∥Y ) is continuous with dense
image. So i∗ : Y ∗ → X∗ (F 7→ F |X) is continuous and injective and can be used to
identify Y ∗ with a subspace of X∗.
• Question: Exactly what elements of X∗ are in the image of i∗? That is, which

elements of X∗ “belong to” Y ∗?
• Answer: φ ∈ X∗ belongs to the image of i∗ if and only if φ : (X, ∥.∥Y ) →
R is continuous, that is, φ ∈ X∗ belongs to the image of i∗ if and only if
supx∈X\{0}

|φ(x)|
∥x∥Y

<∞.
So, an element φ ∈ X∗ can be considered as an element of Y ∗ if and only if

sup
x∈X\{0}

|φ(x)|
∥x∥Y

<∞ .

Furthermore if we denote the unique corresponding element in Y ∗ by φ̃ (normally we
identify φ and φ̃ and we use the same notation for both) then since X is dense in Y

∥φ̃∥Y ∗ = sup
y∈Y \{0}

|φ̃(y)|
∥y∥Y

= sup
x∈X\{0}

|φ(x)|
∥x∥Y

<∞ .

Remark 4.46. To sum up, given an element φ ∈ X∗ in order to show that φ can
be considered as an element of Y ∗ we just need to show that supx∈X\{0}

|φ(x)|
∥x∥Y

< ∞
and in that case, norm of φ as an element of Y ∗ is supx∈X\{0}

|φ(x)|
∥x∥Y

. However, it is
important to notice that if F : Y → R is a linear map, X is a dense subspace of Y ,
and F |X : (X, ∥.∥Y ) → R is bounded, that does NOT imply that F ∈ Y ∗. It just
shows that there exists G ∈ Y ∗ such that G|X = F |X .

We conclude this section by a quick review of the inductive limit topology.

Definition 4.47. LetX be a vector space and let {Xα}α∈I be a family of vector subspaces
of X with the property that

• for each α ∈ I , Xα is equipped with a topology that makes it a locally convex
topological vector space, and

•
⋃
α∈I Xα = X .

The inductive limit topology on X with respect to the family {Xα}α∈I is defined to be
the largest topology with respect to which

(1) X is a locally convex topological vector space, and
(2) all the inclusions Xα ⊆ X are continuous.

Theorem 4.48. ([35], Page 161) Let X be a vector space equipped with the inductive
limit topology with respect to {Xα} as described above. If Y is a locally convex vector
space, then a linear map T : X → Y is continuous if and only if T |Xα : Xα → Y is
continuous for all α ∈ I .
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Theorem 4.49. ([35], Page 162) Let X be a vector space equipped with the inductive
limit topology with respect to {Xα} as described above. A convex subset W of X is a
neighborhood of the origin (i.e. an open set containing the origin) in X if and only if for
all α, the set W ∩Xα is a neighborhood of the origin in Xα.

Theorem 4.50. ([35], Page 165) Let X be a vector space and let {Xj}j∈N0 be a nested
family of vector subspaces of X:

X0 ⊊ X1 ⊊ · · · ⊊ Xj ⊊ · · · .
Suppose each Xj is equipped with a topology that makes it a locally convex topological
vector space. Equip X with the inductive limit topology with respect to {Xj}. Then the
following topologies on X×r are equivalent (=they are the same):

(1) The product topology
(2) The inductive limit topology with respect to the family {X×r

j }. (For each j, X×r
j

is equipped with the product topology.)
As a consequence, if Y is a locally convex vector space, then a linear map T : X×r → Y
is continuous if and only if T |X×r

j
: X×r

j → Y is continuous for all j ∈ N0.

5. REVIEW OF SOME RESULTS FROM DIFFERENTIAL GEOMETRY

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties
that we will frequently use. The main reference for the majority of the definitions is one
of the invaluable books by John M. Lee ([31]).

5.1. Smooth Manifolds. SupposeM is a topological space. We say thatM is a topolog-
ical manifold of dimension n if it is Hausdorff, second-countable, and locally Euclidean
in the sense that each point of M has a neighborhood that is homeomorphic to an open
subset of Rn. It is easy to see that the following statements are equivalent ([31], Page
3):

(1) Each point of M has a neighborhood that is homeomorphic to an open subset of Rn.

(2) Each point of M has a neighborhood that is homeomorphic to an open ball in Rn.

(3) Each point of M has a neighborhood that is homeomorphic to Rn.

By a coordinate chart (or just chart) on M we mean a pair (U,φ), where U is an
open subset of M and φ : U → Û is a homeomorphism from U to an open subset
Û = φ(U) ⊆ Rn. U is called a coordinate domain or a coordinate neighborhood of
each of its points and φ is called a coordinate map. An atlas for M is a collection of
charts whose domains cover M . Two charts (U,φ) and (V, ψ) are said to be smoothly
compatible if eitherU∩V = ∅ or the transition map ψ◦φ−1 is aC∞-diffeomorphism. An
atlas A is called a smooth atlas if any two charts in A are smoothly compatible with each
other. A smooth atlas A on M is maximal if it is not properly contained in any larger
smooth atlas. A smooth structure onM is a maximal smooth atlas. A smooth manifold
is a pair (M,A), where M is a topological manifold and A is a smooth structure on M .
Any chart (U,φ) contained in the given maximal smooth atlas is called a smooth chart.
If M and N are two smooth manifolds, a map F : M → N is said to be a smooth
(C∞) map if for every p ∈ M , there exist smooth charts (U,φ) containing p and (V, ψ)
containing F (p) such that F (U) ⊆ V and ψ ◦ F ◦ φ−1 ∈ C∞(φ(U)). It can be shown
that if F is smooth, then its restriction to every open subset of M is smooth. Also, if
every p ∈M has a neighborhood U such that F |U is smooth, then F is smooth.
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Remark 5.1.

• Sometimes we use the shorthand notation Mn to indicate that M is n-dimensional.

• Clearly, if (U,φ) is a chart in a maximal smooth atlas and V is an open subset of
U , then (V, ψ) where ψ = φ|V is also a smooth chart (i.e. it belongs to the same
maximal atlas).

• Every smooth atlas A for M is contained in a unique maximal smooth atlas, called
the smooth structure determined by A.

• If M is a compact smooth manifold, then there exists a smooth atlas with finitely
many elements that determines the smooth structure of M (this is immediate from the
definition of compactness).

Definition 5.2.

• We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz
(GL) smooth atlas if the image of each coordinate domain in the atlas under the cor-
responding coordinate map is a nonempty bounded open set with Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas
under the corresponding coordinate map is the entire Rn or a nonempty bounded
open set with Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a nice smooth atlas if the
image of each coordinate domain in the atlas under the corresponding coordinate
map is a ball in Rn.

• We say that a smooth atlas for a smooth manifold Mn is a super nice smooth atlas if
the image of each coordinate domain in the atlas under the corresponding coordinate
map is the entire Rn.

• We say that two smooth atlases {(Uα, φα)}α∈I and {(Ũβ, φ̃β)}β∈J for a smooth man-
ifold Mn are geometrically Lipschitz compatible (GLC) smooth atlases provided
that each atlas is GGL and moreover for all α ∈ I and β ∈ J with Uα ∩ Ũβ ̸= ∅,
φα(Uα∩Ũβ) and φ̃β(Uα∩Ũβ) are nonempty bounded open sets with Lipschitz bound-
ary or the entire Rn.

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Also, note that two arbitrary GL smooth atlases are not necessarily GLC smooth atlases
because the intersection of two Lipschitz domains is not necessarily Lipschitz (see e.g.
[5], pages 115-117).

Given a smooth atlas {(Uα, φα)} for a compact smooth manifold M , it is not neces-
sarily possible to construct a new atlas {(Uα, φ̃α)} such that this new atlas is nice; for
instance if Uα is not connected we cannot find φ̃α such that φ̃α(Uα) = Rn (or any ball in
Rn). However, as the following lemma states, it is always possible to find a refinement
that is nice.

Lemma 5.3. Suppose {(Uα, φα)}1≤α≤N is a smooth atlas for a compact smooth manifold
M . Then there exists a finite open cover {Vβ}1≤β≤L of M such that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), φα(β)(Vβ) is a ball in Rn .
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Therefore, {(Vβ, φα(β)|Vβ)}1≤β≤L is a nice smooth atlas.

Proof. For each 1 ≤ α ≤ N and p ∈ Uα, there exists rαp > 0 such that Brαp(φα(p)) ⊆
φα(Uα). Let Vαp := φ−1

α (Brαp(φα(p))).
⋃

1≤α≤N
⋃
p∈Uα Vαp is an open cover of M and

so it has a finite subcover {Vα1p1 , · · · , VαLpL}. Let Vβ = Vαβpβ . Clearly, Vβ ⊆ Uαβ and
φαβ(Vβ) is a ball in Rn. □

Remark 5.4. Every open ball in Rn is C∞-diffeomorphic to Rn. Also, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas
on a compact smooth manifold, which is guaranteed by the above lemma, implies the
existence of a finite super nice smooth atlas.

Lemma 5.5. Let M be a compact smooth manifold. Let {Uα}1≤α≤N be an open cover
of M . Suppose C is a closed set in M (so C is compact) which is contained in Uβ
for some 1 ≤ β ≤ N . Then there exists an open cover {Aα}1≤α≤N of M such that
C ⊆ Aβ ⊆ Āβ ⊆ Uβ and Aα ⊆ Āα ⊆ Uα for all α ̸= β.

Proof. Without loss of generality we may assume that β = 1. For each 1 ≤ α ≤ N
and p ∈ Uα, there exists rαp > 0 such that B2rαp(φα(p)) ⊆ φα(Uα). Let Vαp :=
φ−1
α (Brαp(φα(p))). Clearly, p ∈ Vαp ⊆ V̄αp ⊆ Uα. Since M is compact, the open

cover
⋃

1≤α≤N
⋃
p∈Uα Vαp of M has a finite subcover A. For each 1 ≤ α ≤ N let

Eα = {p ∈ Uα : Vαp ∈ A} and

I1 = {α : Eα ̸= ∅} .
If α ∈ I1, we let Wα =

⋃
p∈Eα Vαp. For α ̸∈ I1 choose one point p ∈ Uα and let

Wα = Vαp.
C is compact so φ1(C) is a compact set inside the open set φ1(U1). Therefore, there
exists an open set B such that

φ1(C) ⊆ B ⊆ B̄ ⊆ φ1(U1) .

Let W = φ−1
1 (B). Clearly, C ⊆ W ⊆ W̄ ⊆ Uα. Now Let

A1 = W
⋃

W1 ,

Aα = Wα ∀α > 1 .

Clearly,A1 containsW which contains C. Also, union ofAα’s contains
⋃N
α=1

⋃
p∈Eα Vαp

which is equal to M . Closure of a union of sets is a subset of the union of closures of
those sets. Therefore, for each α, Āα ⊆ Uα. □

Theorem 5.6 (Exhaustion by Compact Sets for Manifolds). LetM be a smooth manifold.
There exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j =M , K̊j+1\Kj ̸=
∅ for all j and

K1 ⊆ K̊2 ⊆ K2 ⊆ · · · ⊆ K̊j ⊆ Kj ⊆ · · · .

Definition 5.7. A C∞ partition of unity on a smooth manifold is a collection of nonneg-
ative C∞ functions {ψα :M → R}α∈A such that

(i) the collection of supports, {suppψα}α∈A is locally finite in the sense that every
point in M has a neighborhood that intersects only finitely many of the sets in
{suppψα}α∈A.

(ii)
∑

α∈A ψα = 1.
Given an open cover {Uα}α∈A of M , we say that a partition of unity {ψα}α∈A is subor-
dinate to the open cover {Uα}α∈A if suppψα ⊆ Uα for every α ∈ A.
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Theorem 5.8. ([44], Page 146) Let M be a compact smooth manifold and {Uα}α∈A an
open cover ofM . There exists a C∞ partition of unity {ψα}α∈A subordinate to {Uα}α∈A.
(Notice that the index sets are the same.)

Theorem 5.9. ([44], Page 347) Let {Uα}α∈A be an open cover of a smooth manifold M .
(i) There is a C∞ partition of unity {φk}∞k=1 with every φk having compact support

such that for each k, suppφk ⊆ Uα for some α ∈ A.
(ii) If we do not require compact support, then there is a C∞ partition of unity {ψα}α∈A

subordinate to {Uα}α∈A.

Remark 5.10. LetM be a compact smooth manifold. Suppose {Uα}α∈A is an open cover
of M and {ψα}α∈A is a partition of unity subordiante to {Uα}α∈A.

◦ For all m ∈ N, {ψ̃α = ψmα∑
α∈A ψ

m
α
} is another partition of unity subordinate to {Uα}α∈A.

◦ If {Vβ}β∈B is an open cover of M and {ξβ} is a partition of unity subordinate to
{Vβ}β∈B, then {ψαξβ}(α,β)∈A×B is a partition of unity subordinate to the open cover
{Uα ∩ Vβ}(α,β)∈A×B.

Lemma 5.11. Let M be a compact smooth manifold. Suppose {Uα}1≤α≤N is an open
cover of M . Suppose C is a closed set in M (so C is compact) which is contained in Uβ
for some 1 ≤ β ≤ N . Then there exists a partition of unity {ψα}1≤α≤N subordinate to
{Uα}1≤α≤N such that ψβ = 1 on C.

Proof. We follow the argument in [16]. Without loss of generality we may assume β = 1.
We can construct a partition of unity with the desired property as follows: Let Aα be a
collection of open sets that covers M and such that C ⊆ A1 ⊆ Ā1 ⊆ U1 and for α > 1,
Aα ⊆ Āα ⊆ Uα (see Lemma 5.5). Let ηα ∈ C∞

c (Uα) be such that 0 ≤ ηα ≤ 1 and
ηα = 1 on a neighborhood of Āα. Of course

∑N
α=1 ηα is not necessarily equal to 1 for all

x ∈M . However, if we define ψ1 = η1 and for α > 1

ψα = ηα(1− η1) · · · (1− ηα−1) ,

by induction one can easily show that for 1 ≤ l ≤ N

1−
l∑

α=1

ψα = (1− η1) · · · (1− ηl) .

In particular,

1−
N∑
α=1

ψα = (1− η1) · · · (1− ηN) = 0 ,

since for each x ∈ M there exists α such that x ∈ Aα and so ηα(x) = 1. Consequently,∑N
α=1 ψα = 1. □

5.2. Vector Bundles, Basic Definitions. Let M be a smooth manifold. A (smooth real)
vector bundle of rank r over M is a smooth manifold E together with a surjective
smooth map π : E →M such that

(1) for each x ∈M , Ex = π−1(x) is an r-dimensional (real) vector space,
(2) for each x ∈ M , there exists a neighborhood U of x in M and a smooth map

ρ = (ρ1, · · · , ρr) from E|U := π−1(U) onto Rr such that
• for every x ∈ U , ρ|Ex : Ex → Rr is an isomorphism of vector spaces,
• Φ = (π|EU , ρ) : EU → U × Rr is a diffeomorphism.
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We denote the projection onto the last r components by π′. So π′ ◦ Φ = ρ. The expres-
sions “E is a vector bundle over M”, or “E → M is a vector bundle”, or “π : E → M
is a vector bundle” are all considered to be equivalent in this manuscript.

If π : E → M is a vector bundle of rank r, U is an open set in M , ρ : EU =
π−1(U) → Rr and Φ = (π|EU , ρ) : EU → U × Rr satisfy the properties stated in item
(2), then we refer to both Φ : EU → U × Rr and ρ : EU → Rr as a (smooth) local
trivialization of E over U (it will be clear from the context which one we are referring
to). We say that E|U is trivial. The pair (U, ρ) (or (U,Φ)) is sometimes called a vector
bundle chart. It is easy to see that if (U, ρ) is a vector bundle chart and ∅ ≠ V ⊆ U is
open, then (V, ρ|EV ) is also a vector bundle chart for E. Moreover, if V is any nonempty
open subset of M , then EV is a vector bundle over the manifold V . We say that a triple
(U,φ, ρ) is a total trivialization triple of the vector bundle π : E → M provided that
(U,φ) is a smooth coordinate chart and ρ = (ρ1, · · · , ρr) : EU → Rr is a trivialization of
E over U . A collection {(Uα, φα, ρα)} is called a total trivialization atlas for the vector
bundle E → M provided that for each α, (Uα, φα, ρα) is a total trivialization triple and
{(Uα, φα)} is a smooth atlas for M .

Lemma 5.12. ([31],Page 252) Let π : E →M be a smooth vector bundle of rank r over
M . Suppose Φ : π−1(U) → U × Rr and Ψ : π−1(V ) → V × Rr are two smooth local
trivializations of E with U ∩ V ̸= ∅. There exists a smooth map τ : U ∩ V → GL(r,R)
such that the composition

Φ ◦Ψ−1 : (U ∩ V )× Rr → (U ∩ V )× Rr

has the form
Φ ◦Ψ−1(p, v) = (p, τ(p)v) .

Remark 5.13. Let E be a vector bundle over an n-dimensional smooth manifold M .
Suppose {(Uα, φα, ρα)}α∈I is a total trivialization atlas for the vector bundle π : E →
M . Then for each α ∈ I , the mapping

EUα = π−1(Uα) → φα(Uα)× Rr ⊆ Rn+r, s 7→
(
φα(π(s)), ρα(s)

)
will be a coordinate map for the manifold E over the coordinate domain EUα . The
collection {

(
EUα , (φα ◦ π, ρα)

)
}α∈I will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5.14. ([45], Page 77) Let E be a vector bundle over an n-dimensional smooth
manifold M (M does not need to be compact). Then M can be covered by n + 1 open
sets V0, · · · , Vn where the restriction E|Vi is trivial.

Theorem 5.15. Let E be a vector bundle of rank r over an n-dimensional smooth man-
ifold M . Then E → M has a total trivialization atlas. In particular, if M is compact,
then it has a total trivialization atlas that consists of only finitely many total trivialization
triples.

Proof. Let V0, · · · , Vn be an open cover of M such that E is trivial over Vβ with the
mapping ρβ : EVβ → Rr. Let {(Uα, φα)}α∈I be a smooth atlas for M (if M is compact,
the index set I can be chosen to be finite). For all α ∈ I and 0 ≤ β ≤ n let Wαβ =
Uα ∩ Vβ . Let J = {(α, β) : Wαβ ̸= ∅}. Clearly, {(Wαβ, φαβ, ραβ)}(α,β)∈J where
φαβ = φα|Wαβ

and ραβ = ρβ|π−1(Wαβ) is a total trivialization atlas for E →M . □

Definition 5.16.
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• We say that a total trivialization triple (U,φ, ρ) is geometrically Lipschitz (GL) pro-
vided that φ(U) is a nonempty bounded open set with Lipschitz boundary. A total
trivialization atlas is called geometrically Lipschitz if each of its total trivialization
triples is GL.

• We say that a total trivialization triple (U,φ, ρ) is nice provided that φ(U) is equal to
a ball in Rn. A total trivialization atlas is called nice if each of its total trivialization
triples is nice.

• We say that a total trivialization triple (U,φ, ρ) is super nice provided that φ(U)
is equal to Rn. A total trivialization atlas is called super nice if each of its total
trivialization triples is super nice.

• A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if
each of its total trivialization triples is GL or super nice.

• We say that two total trivialization atlases {(Uα, φα, ρα)}α∈I and {(Ũβ, φ̃β, ρ̃β)}β∈J
are geometrically Lipschitz compatible (GLC) if the corresponding atlases
{(Uα, φα)}α∈I and {(Ũβ, φ̃β)}β∈J are GLC.

Theorem 5.17. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M . Then E has a nice total trivialization atlas (and a super nice total
trivialization atlas) that consists of only finitely many total trivialization triples.

Proof. By Theorem 5.15, E → M has a finite total trivialization atlas {(Uα, φα, ρα)}.
By Lemma 5.3 (and Remark 5.4) there exists a finite open cover {Vβ}1≤β≤L of M such
that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), φα(β)(Vβ) is a ball in Rn

(or ∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), φα(β)(Vβ) = Rn) ,

and thus {(Vβ, φα(β)|Vβ)}1≤β≤L is a nice (resp. super nice) smooth atlas. Now, clearly,
{(Vβ, φα(β)|Vβ , ρα(β)|EVβ )}1≤β≤L is a nice (resp. super nice) total trivialization atlas. □

Theorem 5.18. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M . Then E admits a finite total trivialization atlas that is GL compat-
ible with itself. In fact, there exists a total trivialization atlas {(Uα, φα, ρα)}1≤α≤N such
that

• for all 1 ≤ α ≤ N , φα(Uα) is bounded with Lipschitz continuous boundary, and,

• for all 1 ≤ α, β ≤ N , Uα ∩Uβ is either empty or else φα(Uα ∩Uβ) and φβ(Uα ∩Uβ)
are bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [27]. Equip M with a smooth Riemannian metric g. Let rinj denote the
injectivity radius of M which is strictly positive because M is compact. Let V0, · · · , Vn
be an open cover of M such that E is trivial over Vβ with the mapping ρβ : EVβ → Rr.
For every x ∈ M choose 0 ≤ i(x) ≤ n such that x ∈ Vi(x). For all x ∈ M let rx be a
positive number less than rinj

2
such that expx(Brx) ⊆ Vi(x) where Brx denotes the open

ball in TxM of radius rx (with respect to the inner product induced by the Riemannian
metric g) and expx : TxM → M denotes the exponential map at x. For every x ∈ M
define the normal coordinate chart centered at x , (Ux, φx), as follows:

Ux = expx(Brx), φx := λ−1
x ◦ exp−1

x : Ux → Rn,



SOBOLEV SPACES ON COMPACT MANIFOLDS 25

where λx : Rn → TxM is an isomorphism defined by λx(y1, · · · , yn) = yiEix; Here
{Eix}ni=1 is a an arbitrary but fixed orthonormal basis for TxM . It is well-known that
(see e.g. [29])

• φx(x) = (0, · · · , 0),
• gij(x) = δij where gij denotes the components of the metric with respect to the

normal coordinate chart (Ux, φx),

• Eix = ∂i|x where {∂i}1≤i≤n is the coordinate basis induced by (Ux, φx).

As a consequence of the previous items, it is easy to show that if X ∈ TxM (X =
X i∂i|x), then the Euclidean norm of X will be equal to the norm of X with respect to
the metric g, that is, |X|g = |X|ḡ where

|X|ḡ =
√
(X1)2 + · · ·+ (Xn)2 |X|g =

√
g(X,X) .

Consequently, for every x ∈ M , φx(Ux) will be a ball in the Euclidean space, in partic-
ular, {(Ux, φx)}x∈M is a GL atlas. The proof of Lemma 3.1 in [27] in part shows that
the atlas {(Ux, φx)}x∈M is GL compatible with itself. Since M is compact there exists
x1, · · · , xN ∈M such that {Uxj}1≤j≤N also covers M .
Now, clearly, {(Uxj , φxj , ρi(xj)|Uxj )}1≤j≤N is a total trivialization atlas for E that is GL
compatible with itself. □

Corollary 5.19. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M . Then E admits a finite super nice total trivialization atlas that is
GL compatible with itself.

Proof. Let {(Uα, φα, ρα)}1≤α≤N be the total trivialization atlas that was constructed above.
For each α, φα(Uα) is a ball in the Euclidean space and so it is diffeomorphic to Rn; let
ξα : φα(Uα) → Rn be such a diffeomorphism. We let φ̃α := ξα ◦ φα : Uα → Rn.
A composition of diffeomorphisms is a diffeomorphism, so for all 1 ≤ α, β ≤ N ,
φ̃α ◦ φ̃−1

β : φ̃β(Uα ∩ Uβ) → φ̃α(Uα ∩ Uβ) is a diffeomorphism. So {(Uα, φ̃α, ρα)}1≤α≤N
is clearly a smooth super nice total trivialization atlas. Moreover, if 1 ≤ α, β ≤ N are
such that Uα ∩ Uβ is nonempty, then φ̃α(Uα ∩ Uβ) is Rn or a bounded open set with
Lipschitz continuous boundary. The reason is that φ̃α = ξα ◦φα, and φα(Uα ∩Uβ) is Rn

or Lipschitz, ξα is a diffeomorphism and being equal to Rn or Lipschitz is a property that
is preserved under diffeomorphisms. Therefore, {(Uα, φ̃α, ρα)}1≤α≤N is a finite super
nice total trivialization atlas that is GL compatible with itself. □

A section of E is a map u : M → E such that π ◦ u = IdM . The collection of
all sections of E is denoted by Γ(M,E). A section u ∈ Γ(M,E) is said to be smooth
if it is smooth as a map from the smooth manifold M to the smooth manifold E. The
collection of all smooth sections of E → M is denoted by C∞(M,E). Note that if
{(Uα, φα, ρα)}α∈I is a total trivialization atlas for the vector bundle π : E → M of rank
r, then for u ∈ Γ(M,E) we have u ∈ C∞(M,E) if and only if for all α ∈ I , the local
representation of uwith respect to the coordinate charts (Uα, φα) and

(
EUα , (φα◦π, ρα)

)
is smooth, that is,

u ∈ C∞(M,E) ⇐⇒ ∀α ∈ I x 7→
(
φα ◦ π ◦ u ◦ φ−1

α , ρα ◦ u ◦ φ−1
α

)
is smooth

⇐⇒ ∀α ∈ I x 7→
(
x, ρα ◦ u ◦ φ−1

α

)
is smooth

⇐⇒ ∀α ∈ I x 7→ ρα ◦ u ◦ φ−1
α is smooth

⇐⇒ ∀α ∈ I, ∀1 ≤ l ≤ r ρlα ◦ u ◦ φ−1
α ∈ C∞(φα(Uα)) .
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A local section of E over an open set U ⊆ M is a map u : U → E where u has the
property that π ◦ u = IdU (that is, u is a section of the vector bundle EU → U ). We
denote the collection of all local sections on U by Γ(U,E) or Γ(U,EU).

Remark 5.20. As a consequence of ρ|Ex : Ex → Rr being an isomorphism, if u is a
section of E|U → U and f : U → R is a function, then ρ(fu) = fρ(u). In particular,
ρ(0) = 0.

Given a total trivialization triple (U,φ, ρ) we have the following commutative diagram:

E|U φ(U)× R

U φ(U) ⊆ Rn

(φ◦π,ρj)

π π̃

φ

If s is a section of E|U → U , then by definition the pushforward of s by ρj (the jth

component of ρ) is a section of φ(U)× R → φ(U) which is defined by

ρj∗(s) = ρj ◦ s ◦ φ−1 (i.e. z ∈ φ(U) 7→ (z, ρj ◦ s ◦ φ−1(z))) .

Let E → M be a vector bundle of rank r and U ⊆ M be an open set. A (smooth)
local frame for E over U is an ordered r-tuple (s1, · · · , sr) of (smooth) local sections
over U such that for each x ∈ U , (s1(x), · · · , sr(x)) is a basis for Ex. Given any vector
bundle chart (V, ρ), we can define the associated (smooth) local frame on V as follows:

∀ 1 ≤ l ≤ r ∀x ∈ V sl(x) = ρ|−1
Ex
(el) ,

where (e1, · · · , er) is the standard basis of Rr. The following theorem states the converse
of this observation is also true.

Theorem 5.21. ([31], Page 258) Let E → M be a vector bundle of rank r and let
(s1, · · · , sr) be a smooth local frame over an open set U ⊆ M . Then (U, ρ) is a vector
bundle chart where the map ρ : EU → Rr is defined by

∀x ∈ U,∀u ∈ Ex ρ(u) = u1e1 + · · ·+ urer ,

where u = u1s1(x) + · · ·+ ursr(x).

Theorem 5.22. ([31], Page 260) Let E → M be a vector bundle of rank r and let
(s1, · · · , sr) be a smooth local frame over an open set U ⊆ M . If f ∈ Γ(M,E), then
f is smooth on U if and only if its component functions with respect to (s1, · · · , sr) are
smooth.

A (smooth) fiber metric on a vector bundle E is a (smooth) function which assigns to
each x ∈M an inner product

⟨., .⟩E : Ex × Ex → R .
Note that the smoothness of the fiber metric means that for all u, v ∈ C∞(M,E) the
mapping

M → R, x 7→ ⟨u(x), v(x)⟩E
is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([38], Page 72).

Remark 5.23. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber
metric on the tangent bundle. The metric g induces fiber metrics on all tensor bundles; it
can be shown that ([29]) if (M, g) is a Riemannian manifold, then there exists a unique
inner product on each fiber of T kl (M) with the property that for all x ∈ M , if {ei}
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is an orthonormal basis of TxM with dual basis {ηi}, then the corresponding basis of
T kl (TxM) is orthonormal. We denote this inner product by ⟨., .⟩F and the corresponding
norm by |.|F . If A and B are two tensor fields, then with respect to any local coordinate
system

⟨A,B⟩F = gi1r1 · · · gikrkgj1s1 · · · gjlslA
j1···jl
i1···ikB

s1···sl
r1···rk .

Theorem 5.24. Let π : E → M be a vector bundle with rank r equipped with a fiber
metric ⟨., .⟩E . Then given any total trivialization triple (U,φ, ρ), there exists a smooth
map ρ̃ : EU → Rr such that with respect to the new total trivialization triple (U,φ, ρ̃)
the fiber metric trivializes on U , that is,

∀x ∈ U ∀u, v ∈ Ex ⟨u, v⟩E = u1v1 + · · ·+ urvr ,

where for each 1 ≤ l ≤ r, ul and vl denote the lth components of u and v, respectively
(with respect to the local frame associated with the bundle chart (U, ρ̃)).

Proof. Let (t1, · · · , tr) be the local frame on U associated with the vector bundle chart
(U, ρ). That is,

∀x ∈ U, ∀1 ≤ l ≤ r tl(x) = ρ|−1
Ex
(el) .

Now, we apply the Gram-Schmidt algorithm to the local frame (t1, · · · , tr) to construct
an orthonormal frame (s1, · · · , sr) where

∀ 1 ≤ l ≤ r sl =
tl −

∑l−1
j=1⟨tl, sj⟩Esj

|tl −
∑l−1

j=1⟨tl, sj⟩Esj|
.

sl : U → E is smooth because
(1) smooth local sections over U form a module over the ring C∞(U),
(2) the function x 7→ ⟨tl(x), sj(x)⟩E from U to R is smooth,
(3) since Span{s1, · · · , sl−1} = Span{t1, · · · , tl−1}, tl−

∑l−1
j=1⟨tl, sj⟩Esj is nonzero

on U and x 7→ |tl(x) −
∑l−1

j=1⟨tl(x), sj(x)⟩Esj(x)| as a function from U to R is
nonzero on U and it is a composition of smooth functions.

Thus for each l, sl is a linear combination of elements of the C∞(U)-module of smooth
local sections over U , and so it is a smooth local section over U . Now, we let (U, ρ̃) be
the associated vector bundle chart described in Theorem 5.21. For all x ∈ U and for all
u, v ∈ Ex we have

⟨u, v⟩E = ⟨ulsl, vjsj⟩E = ulvj⟨sl, sj⟩E = ulvjδlj = u1v1 + · · ·+ urvr .

□

Corollary 5.25. As a consequence of Theorem 5.24, Theorem 5.18, and Theorem 5.17
every vector bundle on a compact manifold equipped with a fiber metric admits a nice
finite total trivialization atlas (and a super nice finite total trivialization atlas and a finite
total trivialization atlas that is GL compatible with itself) such that the fiber metric is
trivialized with respect to each total trivialization triple in the atlas.

5.3. Standard Total Trivialization Triples. Let Mn be a smooth manifold and π :
E → M be a vector bundle of rank r. For certain vector bundles there are standard
methods to associate with any given smooth coordinate chart (U,φ = (xi)) a total trivi-
alization triple (U,φ, ρ). We call such a total trivialization triple the standard total triv-
ialization associated with (U,φ). Usually this is done by first associating with (U,φ)
a local frame for EU and then applying Theorem 5.21 to construct a total trivialization
triple.
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• E = T kl (M): The collection of the following tensor fields on U forms a local frame for
EU associated with (U,φ = (xi))

∂

∂xi1
⊗ · · · ⊗ ∂

∂xil
⊗ dxj1 ⊗ · · · ⊗ dxjk .

So, given any atlas {(Uα, φα)} of a manifold Mn, there is a corresponding total trivi-
alization atlas for the tensor bundle T kl (M), namely {(Uα, φα, ρα)} where for each α,
ρα has nk+l components which we denote by (ρα)

j1···jl
i1···ik . For all F ∈ Γ(M,T kl (M)), we

have
(ρα)

j1···jl
i1···ik(F ) = (Fα)

j1···jl
i1···ik .

Here (Fα)
j1···jl
i1···ik denotes the components of F with respect to the standard frame for

T kl Uα described above. When there is no possibility of confusion, we may write F j1···jl
i1···ik

instead of (Fα)
j1···jl
i1···ik .

• E = Λk(M): This is the bundle whose fiber over each x ∈ M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for EU associated with (U,φ = (xi))

dxj1 ∧ · · · ∧ dxjk ((j1, · · · , jk) is increasing) .

• E = D(M) (the density bundle): The density bundle overM is the vector bundle whose
fiber over each x ∈M is D(TxM). More precisely, if we let

D(M) =
∐
x∈M

D(TxM) ,

then D(M) is a smooth vector bundle of rank 1 over M ([31], Page 429). Indeed, for
every smooth chart (U,φ = (xi)), |dx1 ∧ · · · ∧ dxn| on U is a local frame for D(M)|U .
We denote the corresponding trivialization by ρD,φ, that is, given µ ∈ D(TyM), there
exists a number a such that

µ = a(|dx1 ∧ · · · ∧ dxn|y)
and ρD,φ sends µ to a. Sometimes we write D instead of D(M) if M is clear from the
context. Also, when there is no possibility of confusion we may write ρD instead of
ρD,φ.

Remark 5.26 (Integration of densities on manifolds). Elements of Cc(M,D) can be
integrated over M . Indeed, for µ ∈ Cc(M,D) we may consider two cases

• Case 1: There exists a smooth chart (U,φ) such that suppµ ⊆ U .∫
M

µ :=

∫
φ(U)

ρD,φ ◦ µ ◦ φ−1 dV .

• Case 2: If µ is an arbitrary element of Cc(M,D), then we consider a smooth atlas
{(Uα, φα)}α∈I and a partition of unity {ψα}α∈I subordinate to {Uα} and we let∫

M

µ :=
∑
α∈I

∫
M

ψαµ .

It can be shown that the above definitions are independent of the choices (charts and
partition of unity) involved ([31], Pages 431 and 432).
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5.4. Constructing New Bundles From Old Ones.

5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle.

• The construction Hom(., .) can be applied fiberwise to a pair of vector bundles E and
Ẽ over a manifold M to give a new vector bundle denoted by Hom(E, Ẽ). The fiber
of Hom(E, Ẽ) at any given point p ∈ M is the vector space Hom(Ep, Ẽp). Clearly, if
rankE = r and rank Ẽ = r̃, then rank Hom(E, Ẽ) = rr̃.
If {(Uα, φα, ρα)} and {(Uα, φα, ρ̃α)} are total trivialization atlases for the vector bundles
π : E → M and π̃ : Ẽ → M , respectively, then {Uα, φα, ρ̂α} will be a total trivializa-
tion atlas for πHom : Hom(E, Ẽ) → M where ρ̂α : π−1

Hom(Uα) → Hom(Rr,Rr̃) ∼= Rrr̃ is
defined as follows: for p ∈ Uα, Ap ∈ Hom(Ep, Ẽp) is mapped to [ρ̃α|Ẽp ]◦A◦ [ρα|Ep ]−1.

• Let π : E → M be a vector bundle. The dual bundle E∗ is defined by E∗ =
Hom(E, Ẽ =M × R).

• Let π : E → M be a vector bundle and let D denote the density bundle of M . The
functional dual bundle E∨ is defined by E∨ = Hom(E,D)(see [35]). Let’s describe
explicitly what the standard total trivialization triples of this bundle are. Let (U,φ, ρ) be
a total trivialization triple for E. We can associate with this triple the total trivialization
triple (U,φ, ρ∨) for E∨ where ρ∨ : E∨

U → Rr is defined as follows: for p ∈ U , Lp ∈
Hom(Ep,Dp) is mapped to ρD,φ ◦ Lp ◦ (ρ|Ep)−1 ∈ (Rr)∗ ≃ Rr. Note that (Rr)∗ ≃ Rr

under the following isomorphism

(Rr)∗ → Rr, u 7→ u(e1)e1 + · · ·+ u(er)er .

That is, u as an element of Rr is the vector whose components are (u(e1), · · · , u(er)).
In particular, if z = z1e1 + · · ·+ zrer is an arbitrary vector in Rr, then

u(z) = u(z1e1 + · · ·+ zrer) = z1u(e1) + · · ·+ zru(er) = z · u ,
where on the LHS u is viewed as an element of (Rr)∗ and on the RHS u is viewed as an
element of Rr.

In short, ρ∨ : E∨
U → Rr is given by

∀ 1 ≤ l ≤ r (ρ∨)l(Lp) =
(
ρD,φ ◦ Lp ◦ (ρ|Ep)−1

)
(el) .

5.4.2. Tensor Product Of Bundles. Let π : E → M and π̃ : Ẽ → M be two vector
bundles. Then E ⊗ Ẽ is a new vector bundle whose fiber at p ∈ M is Ep ⊗ Ẽp. If
{(Uα, φα, ρα)} and {(Uα, φα, ρ̃α)} are total trivialization atlases for the vector bundles
π : E →M and π̃ : Ẽ →M , respectively, then {(Uα, φα, ρ̂α))} will be a total trivializa-
tion atlas for πtensor : E ⊗ Ẽ →M where ρ̂α : π−1

tensor(Uα) → (Rr ⊗Rr̃) ∼= Rrr̃ is defined
as follows: for p ∈ Uα, ap ⊗ ãp ∈ Ep ⊗ Ẽp is mapped to ρα|Ep(ap)⊗ ρ̃α|Ẽp(ãp).
It can be shown that Hom(E, Ẽ) ∼= E∗ ⊗ Ẽ (isomorphism of vector bundles over M ).

Remark 5.27 (Fiber Metric on Tensor Product). Consider the inner product spaces
(U, ⟨., .⟩U) and (V, ⟨., .⟩V ). We can turn the tensor product of U and V , U ⊗ V into
an inner product space by defining

⟨u1 ⊗ v1, u2 ⊗ v2⟩U⊗V = ⟨u1, u2⟩U⟨v1, v2⟩V ,
and extending by linearity. As a consequence, if E is a vector bundle (on a Riemann-
ian manifold (M, g)) equipped with a fiber metric ⟨., .⟩E , then there is a natural fiber
metric on the bundle (T ∗M)⊗k and subsequently on the bundle (T ∗M)⊗k ⊗ E. If
F = F a

i1···ikdx
i1 ⊗ · · · ⊗ dxik ⊗ sa and G = Gb

j1···jkdx
j1 ⊗ · · · ⊗ dxjk ⊗ sb are two
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local sections of this bundle on a domain U of a total trivialization triple, then at any
point in U we have

⟨F,G⟩(T ∗M)⊗k⊗E = F a
i1···ikG

b
j1···jk⟨dx

i1 , dxj1⟩T ∗M · · · ⟨dxik , dxjk⟩T ∗M⟨sa, sb⟩E
= gi1j1 · · · gikjkhabF a

i1···ikG
b
j1···jk ,

where hab := ⟨sa, sb⟩E . (Here {sa = ρ−1(ea)}1≤a≤r is a local frame for E over
U .{ea}1≤a≤r is the standard basis for Rr where r = rankE.)

5.5. Connection on Vector Bundles, Covariant Derivative.

5.5.1. Basic Definitions. Let π : E →M be a vector bundle.

Definition 5.28. A connection in E is a map

∇ : C∞(M,TM)× C∞(M,E) → C∞(M,E), (X, u) 7→ ∇Xu

satisfying the following properties:

(1) ∇Xu is linear over C∞(M) in X

∀ f, g ∈ C∞(M) ∇fX1+gX2u = f∇X1u+ g∇X2u .

(2) ∇Xu is linear over R in u:

∀ a, b ∈ R ∇X(au1 + bu2) = a∇Xu1 + b∇Xu2 .

(3) ∇ satisfies the following product rule

∀ f ∈ C∞(M) ∇X(fu) = f∇Xu+ (Xf)u .

A metric connection in a real vector bundle E with a fiber metric is a connection ∇ such
that

∀X ∈ C∞(M,TM),∀u, v ∈ C∞(M,E) X⟨u, v⟩E = ⟨∇Xu, v⟩E + ⟨u,∇Xv⟩E .

Here is a list of useful facts about connections:

• ([28],Page183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection

• ([31], Page 50) If ∇ is a connection in a bundle E, X ∈ C∞(M,TM), u ∈ C∞(M,E),
and p ∈M , then ∇Xu|p depends only on the values of u in a neighborhood of p and the
value of X at p. More precisely, if u = ũ on a neighborhood of p and Xp = X̃p, then
∇Xu|p = ∇X̃ ũ|p.

• ([31], Page 53) If ∇ is a connection in TM , then there exists a unique connection in
each tensor bundle T kl (M), also denoted by ∇, such that the following conditions are
satisfied:
(1) On the tangent bundle, ∇ agrees with the given connection.
(2) On T 0(M), ∇ is given by ordinary differentiation of functions, that is, for all real-

valued smooth functions f :M → R: ∇Xf = Xf .
(3) ∇X(F ⊗G) = (∇XF )⊗G+ F ⊗ (∇XG).
(4) If tr denotes the trace on any pair of indices, then ∇X(trF ) = tr(∇XF ).
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This connection satisfies the following additional property: for any T ∈ C∞(M,T kl (M)),
vector fields Yi, and differential 1-forms ωj ,

(∇XT )(ω
1, . . . ,ωl, Y1, . . . , Yk) = X(T (ω1, . . . , ωl, Y1, . . . , Yk))

−
l∑

j=1

T (ω1, . . . ,∇Xω
j, . . . , ωl, Y1, . . . , Yk)

−
k∑
i=1

T (ω1, . . . , ωl, Y1, . . . ,∇XYi, . . . , Yk) .

Definition 5.29. Let ∇ be a connection in π : E → M . We define the corresponding
covariant derivative on E, also denoted ∇, as follows

∇ : C∞(M,E) → C∞(M,Hom(TM,E)) ∼= C∞(M,T ∗M ⊗ E), u 7→ ∇u

where for all p ∈M , ∇u(p) : TpM → Ep is defined by

Xp 7→ ∇Xu|p ,

where X on the RHS is any smooth vector field whose value at p is Xp.

Remark 5.30. Let ∇ be a connection in TM . As it was discussed ∇ induces a con-
nection in any tensor bundle E = T kl (M), also denoted by ∇. Some authors (including
Lee in [31], Page 53) define the corresponding covariant derivative on E = T kl (M) as
follows:

∇ : C∞(M,T kl (M)) → C∞(M,T k+1
l (M)), F 7→ ∇F

where

∇F (ω1, · · · , ωl, Y1, · · · , Yk, X) = (∇XF )(ω
1, · · · , ωl, Y1, · · · , Yk) .

This definition agrees with the previous definition of covariant derivative that we had for
general vector bundles because

T ∗M ⊗ T kl M
∼= T ∗M ⊗ T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸

k factors

⊗TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
l factors

∼= T k+1
l M .

Therefore,

C∞(M,Hom(TM, T kl M)) ∼= C∞(M,T ∗M ⊗ T kl M) ∼= C∞(M,T k+1
l M) .

More concretely, we have the following one-to-one correspondence between
C∞(M,Hom(TM, T kl M)) and C∞(M,T k+1

l M):

(1) Given u ∈ C∞(M,T k+1
l M), the corresponding element ũ ∈ C∞(M,Hom(TM, Tkl M))

is given by

∀ p ∈M ũ(p) : TpM → T kl (TpM), X 7→ u(p)(· · · , · · · , X) .

(2) Given ũ ∈ C∞(M,Hom(TM, T kl M)), the corresponding element u ∈ C∞(M,T k+1
l M)

is given by

∀ p ∈M u(p)(ω1, · · · , ωl, Y1, · · · , Yk, X) = [ũ(p)(X)](ω1, · · · , ωl, Y1, · · · , Yk) .
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5.5.2. Covariant Derivative on Tensor Product of Bundles. ([33], Page 87) IfE an Ẽ are
vector bundles overM with covariant derivatives ∇E : C∞(M,E) → C∞(M,T ∗M⊗E)
and ∇Ẽ : C∞(M, Ẽ) → C∞(M,T ∗M ⊗ Ẽ), respectively, then there is a uniquely
determined covariant derivative

∇E⊗Ẽ : C∞(M,E ⊗ Ẽ) → C∞(M,T ∗M ⊗ E ⊗ Ẽ)

such that
∇E⊗Ẽ(u⊗ ũ) = ∇Eu⊗ ũ+∇Ẽũ⊗ u .

The above sum makes sense because of the following isomorphisms:

(T ∗M ⊗ E)⊗ Ẽ ∼= T ∗M ⊗ E ⊗ Ẽ ∼= T ∗M ⊗ Ẽ ⊗ E ∼= (T ∗M ⊗ Ẽ)⊗ E .

Remark 5.31. Recall that for tensor fields covariant derivative can be considered as
a map from C∞(M,T kl M) → C∞(M,T k+1

l M). Using this, we can give a second de-
scription of covariant derivative on E ⊗ Ẽ when E = T kl M . In this new description we
have

∇Tkl M⊗Ẽ : C∞(M,T kl M ⊗ Ẽ) → C∞(M,T k+1
l M ⊗ Ẽ) .

Indeed, for F ∈ C∞(M,T kl M) and u ∈ C∞(M, Ẽ)

∇Tkl M⊗Ẽ(F ⊗ u) = (∇Tkl MF )︸ ︷︷ ︸
Tk+1
l M

⊗u+ F︸︷︷︸
Tkl M

⊗ ∇Ẽu︸︷︷︸
T ∗M⊗Ẽ︸ ︷︷ ︸

Tk+1
l M⊗Ẽ

.

In particular, if f ∈ C∞(M) and u ∈ C∞(M,E) we have ∇E(fu) ∈ C∞(M,T ∗M⊗E)
and it is equal to

∇E(fu) = df ⊗ u+ f∇Eu .

5.5.3. Higher Order Covariant Derivatives. Let π : E → M be a vector bundle. Let
∇E be a connection in E and ∇ be a connection in TM which induces a connection in
T ∗M . We have the following chain

C∞(M,E)
∇E

−−→ C∞(M,T ∗M ⊗ E)
∇T∗M⊗E

−−−−−−→ C∞(M, (T ∗M)⊗2 ⊗ E)
∇(T∗M)⊗2⊗E

−−−−−−−−−→ · · ·

· · · ∇(T∗M)⊗(k−1)⊗E

−−−−−−−−−−−−→ C∞(M, (T ∗M)⊗k ⊗ E)
∇(T∗M)⊗k⊗E

−−−−−−−−−→ · · · .

In what follows we denote all the maps in the above chain by ∇E . That is, for any k ∈ N0

we consider ∇E as a map from C∞(M, (T ∗M)⊗k ⊗ E) to C∞(M, (T ∗M)⊗(k+1) ⊗ E).
So,

(∇E)k : C∞(M,E) → C∞(M, (T ∗M)⊗k ⊗ E) .

As an example, let’s consider (∇E)k(fu) where f ∈ C∞(M) and u ∈ C∞(M,E). We
have

∇E(fu) = df ⊗ u+ f∇Eu .

(∇E)2(fu) = ∇T ∗M⊗E[df ⊗ u+ f∇Eu
]

= [∇T ∗M(df)⊗ u+ df ⊗∇Eu] + [df ⊗∇Eu+ f(∇E)2u]

=
2∑
j=0

(
2

j

)
(∇T ∗M)jf ⊗ (∇E)2−ju .

In general, we can show by induction that

(∇E)k(fu) =
k∑
j=0

(
k

j

)
(∇T ∗M)jf ⊗ (∇E)k−ju .
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where (∇T ∗M)0 = Id. Here (∇T ∗M)jf should be interpreted as applying ∇ (in the
sense described in Remark 5.30) j times; so (∇T ∗M)jf at each point is an element of
T j0M = (T ∗M)⊗j .

5.5.4. Three Useful Rules, Two Important Observations. Let π : E → M and π̃ : Ẽ →
M be two vector bundles over M with ranks r and r̃, respectively. Let ∇ be a connec-
tion in TM (which automatically induces a connection in all tensor bundles), ∇E be a
connection in E and ∇Ẽ be a connection in Ẽ. Let (U,φ, ρ) be a total trivialization triple
for E.

(1) {∂i = φ−1
∗

∂
∂xi

}1≤i≤n is a coordinate frame for TM over U .
(2) {sa = ρ−1(ea)}1≤a≤r is a local frame for E over U .({ea}1≤a≤r is the standard

basis for Rr where r = rankE.)
(3) Christoffel Symbols for ∇ on (U,φ, ρ): ∇∂i∂j = Γkij∂k.
(4) Christoffel Symbols for ∇E on (U,φ, ρ): ∇∂isa = (ΓE)

b
iasb.

Also, recall that for any 1-form ω,

∇Xω = (X i∂iωk −X iωjΓ
j
ik)dx

k .

Therefore,

∇∂idx
j = −Γjikdx

k .

• Rule 1: For all u ∈ C∞(M,E)

∇Eu = dxi ⊗∇E
∂i
u on U .

The reason is as follows: Recall that for all p ∈ M , ∇Eu(p) ∈ T ∗M ⊗ E. Since
{dxi ⊗ sa} is a local frame for T ∗M ⊗ E on U we have

∇Eu = Ra
i dx

i ⊗ sa = dxi ⊗ (Ra
i sa) .

According to what was discussed in the study of the isomorphism Hom(V,W ) ∼= V ∗ ⊗
W in Section 3 we know that at any point p ∈ M , Ra

i is the element in column i and
row a of the matrix of ∇Eu(p) as an element of Hom(TpM,Ep). Therefore,

∇E
∂i
u = Ra

i sa .

Consequently, we have ∇Eu = dxi ⊗ (Ra
i sa) = dxi ⊗∇E

∂i
u.

• Rule 2: For all v1 ∈ C∞(M,E) and v2 ∈ C∞(M, Ẽ)

∇E⊗Ẽ
∂j

(v1 ⊗ v2) = (∇E
∂j
v1)⊗ v2 + v1 ⊗ (∇Ẽ

∂j
v2) .

• Rule 3: For all u ∈ C∞(M,E) and f ∈ C∞(M)

∇E(fu) = f∇Eu+ df ⊗ u .

The following two examples are taken from [20].
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• Example 1: Let u ∈ C∞(M,E). On U we may write u = uasa. We have

∇Eu = ∇E(uasa)
Rule 3
= ua∇Esa + dua ⊗ sa = ua∇Esa + (∂iu

adxi)⊗ sa
Rule 1
= uadxi ⊗∇E

∂i
sa + (∂iu

adxi)⊗ sa

= uadxi ⊗
(
(ΓE)

b
iasb

)
+ (∂iu

adxi)⊗ sa = dxi ⊗
(
ua(ΓE)

b
iasb

)
+ dxi ⊗ (∂iu

asa)

= dxi ⊗
(
ub(ΓE)

a
ibsa

)
+ dxi ⊗ (∂iu

asa)

= [∂iu
a + (ΓE)

a
ibu

b]dxi ⊗ sa .

That is, ∇Eu = (∇Eu)ai dx
i ⊗ sa where

(∇Eu)ai = ∂iu
a + (ΓE)

a
ibu

b .

• Example 2: Let u ∈ C∞(M,E). On U we may write u = uasa. We have

(∇E)2u = ∇T
∗M⊗E([∂iua + (ΓE)

a
ibu

b]dxi ⊗ sa
)

Rule 3
= [∂iu

a + (ΓE)
a
ibu

b]∇T
∗M⊗E(dxi ⊗ sa) + d[∂iu

a + (ΓE)
a
ibu

b]⊗ (dxi ⊗ sa)

Rule 1
= [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗∇T
∗M⊗E

∂j
(dxi ⊗ sa) + d[∂iu

a + (ΓE)
a
ibu

b]⊗ (dxi ⊗ sa)

Def. of d
= [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗∇T
∗M⊗E

∂j
(dxi ⊗ sa) + ∂j [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗ dxi ⊗ sa

Rule 2
= [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗
[
∇T

∗M
∂j

dxi ⊗ sa + dxi ⊗∇E∂j sa
]
+ ∂j [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗ dxi ⊗ sa

= [∂iu
a + (ΓE)

a
ibu

b]dxj ⊗
[
− Γijkdx

k ⊗ sa + dxi ⊗ (ΓE)
c
jasc

]
+ ∂j [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗ dxi ⊗ sa

i ↔ k in the first summand
= [∂ku

a + (ΓE)
a
kbu

b]dxj ⊗
[
− Γkjidx

i ⊗ sa + dxk ⊗ (ΓE)
c
jasc

]
+ ∂j [∂iu

a + (ΓE)
a
ibu

b]dxj ⊗ dxi ⊗ sa

= {∂j [∂iua + (ΓE)
a
ibu

b]− Γkji[∂ku
a + (ΓE)

a
kbu

b]}dxj ⊗ dxi ⊗ sa + [∂ku
a + (ΓE)

a
kbu

b](ΓE)
c
jadx

j ⊗ dxk ⊗ sc

i ↔ k in the last summand
= {∂j [∂iua + (ΓE)

a
ibu

b]− Γkji[∂ku
a + (ΓE)

a
kbu

b]}dxj ⊗ dxi ⊗ sa

+ [∂iu
a + (ΓE)

a
ibu

b](ΓE)
c
jadx

j ⊗ dxi ⊗ sc

c ↔ a in the last summand
= {∂j [∂iua + (ΓE)

a
ibu

b]− Γkji[∂ku
a + (ΓE)

a
kbu

b]}dxj ⊗ dxi ⊗ sa

+ [∂iu
c + (ΓE)

c
ibu

b](ΓE)
a
jcdx

j ⊗ dxi ⊗ sa .

Considering the above examples we make the following two useful observations that can
be proved by induction.

• Observation 1: In general (∇E)ku =
(
(∇E)ku

)a
i1···ik

dxi1 ⊗ · · · ⊗ dxik ⊗ sa (1 ≤
a ≤ r, 1 ≤ i1, · · · , ik ≤ n) where ((∇E)ku

)a
i1···ik

◦ φ−1 is a linear combination of
u1 ◦ φ−1, · · · , ur ◦ φ−1 and their partial derivatives up to order k and the coefficients
are polynomials in terms of Christoffel symbols (of the linear connection on M and
connection in E) and their derivatives (on a compact manifold these coefficients are
uniformly bounded provided that the metric and the fiber metric are smooth). That is,

((∇E)ku
)a
i1···ik

◦ φ−1 =
∑
|η|≤k

r∑
l=1

Cηl∂
η(ul ◦ φ−1) ,

where for each η and l, Cηl is a polynomial in terms of Christoffel symbols (of the linear
connection on M and connection in E) and their derivatives.

• Observation 2: The highest order term in ((∇E)ku
)a
i1···ik

◦φ−1 is ∂
xi1

· · · ∂
xik

(ua ◦φ−1);
that is,

((∇E)ku
)a
i1···ik

◦φ−1 =
∂

∂xi1
· · ·

∂

∂xik
(ua◦φ−1)+terms that contain derivatives of order at most k − 1 of ul ◦ φ−1 (1 ≤ l ≤ r) .
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So,

((∇E)ku
)a
i1···ik

◦ φ−1 =
∂k

∂xi1 · · · ∂xik
(ua ◦ φ−1) +

∑
|η|<k

r∑
l=1

Cηl∂
η(ul ◦ φ−1) .

6. SOME RESULTS FROM THE THEORY OF GENERALIZED FUNCTIONS

In this section we collect some results from the theory of distributions that will be
needed for our definition of function spaces on manifolds. Our main reference for this
part is the exquisite exposition by Marcel De Reus ([35]).

6.1. Distributions on Domains in Euclidean Space. Let Ω be a nonempty open set in
Rn.

(1) Recall that

• K(Ω) is the collection of all compact subsets of Ω.

• C∞(Ω) = the collection of all infinitely differentiable (real-valued) functions on Ω.

• For all K ∈ K(Ω), C∞
K (Ω) = {φ ∈ C∞(Ω) : suppφ ⊆ K}.

• C∞
c (Ω) =

⋃
K∈K(Ω)C

∞
K (Ω) = {φ ∈ C∞(Ω) : suppφ is compact in Ω}.

(2) For all φ ∈ C∞(Ω), j ∈ N and K ∈ K(Ω) we define

∥φ∥j,K := sup{|∂αφ(x)| : |α| ≤ j, x ∈ K} .
(3) For all j ∈ N and K ∈ K(Ω), ∥.∥j,K is a seminorm on C∞(Ω). We define E(Ω)

to be C∞(Ω) equipped with the natural topology induced by the separating family of
seminorms {∥.∥j,K}j∈N,K∈K(Ω). It can be shown that E(Ω) is a Frechet space.

(4) For all K ∈ K(Ω) we define EK(Ω) to be C∞
K (Ω) equipped with the subspace topol-

ogy. This subspace topology on C∞
K (Ω) is the natural topology induced by the separat-

ing family of seminorms {∥.∥j,K}j∈N. Since C∞
K (Ω) is a closed subset of the Frechet

space E(Ω), EK(Ω) is also a Frechet space.

(5) We define D(Ω) =
⋃
K∈K(Ω) EK(Ω) equipped with the inductive limit topology with

respect to the family of vector subspaces {EK(Ω)}K∈K(Ω). It can be shown that if
{Kj}j∈N0 is an exhaustion by compacts sets of Ω, then the inductive limit topology on
D(Ω) with respect to the family {EKj}j∈N0 is exactly the same as the inductive limit
topology with respect to {EK(Ω)}K∈K(Ω).

Remark 6.1. Let us mention a trivial but extremely useful consequence of the above
description of the inductive limit topology on D(Ω). Suppose Y is a topological space
and the mapping T : Y → D(Ω) is such that T (Y ) ⊆ EK(Ω) for some K ∈ K(Ω).
Since EK(Ω) ↪→ D(Ω), if T : Y → EK(Ω) is continuous, then T : Y → D(Ω) will be
continuous.

Theorem 6.2 (Convergence and Continuity for E(Ω)). Let Ω be a nonempty open set
in Rn. Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {φm} converges to φ in E(Ω) if and only if ∥φm−φ∥j,K → 0 for all j ∈ N
and K ∈ K(Ω).

(2) Suppose T : E(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
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• For every q ∈ Q, there exist j ∈ N and K ∈ K(Ω), and C > 0 such that

∀φ ∈ E(Ω) q(T (φ)) ≤ C∥φ∥j,K .
• If φm → 0 in E(Ω), then T (φm) → 0 in Y .

(3) In particular, a linear map T : E(Ω) → R is continuous if and only if there exist j ∈ N
and K ∈ K(Ω), and C > 0 such that

∀φ ∈ E(Ω) |T (φ)| ≤ C∥φ∥j,K .
(4) A linear map T : Y → E(Ω) is continuous if and only if

∀ j ∈ N, ∀K ∈ K(Ω) ∃C > 0, k ∈ N , q1, · · · , qk ∈ Q such that ∀ y ∥T (y)∥j,K ≤ C max
1≤i≤k

qi(y) .

Theorem 6.3 (Convergence and Continuity for EK(Ω)). Let Ω be a nonempty open set
in Rn and K ∈ K(Ω). Let Y be a topological vector space whose topology is induced by
a separating family of seminorms Q.

(1) A sequence {φm} converges to φ in EK(Ω) if and only if ∥φm − φ∥j,K → 0 for all
j ∈ N.

(2) Suppose T : EK(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
• For every q ∈ Q, there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) q(T (φ)) ≤ C∥φ∥j,K .
• If φm → 0 in EK(Ω), then T (φm) → 0 in Y .

Theorem 6.4 (Convergence and Continuity for D(Ω)). Let Ω be a nonempty open set
in Rn. Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {φm} converges to φ in D(Ω) if and only if there is a K ∈ K(Ω) such that
suppφm ⊆ K and φm → φ in EK(Ω).

(2) Suppose T : D(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
• For all K ∈ K(Ω), T : EK(Ω) → Y is continuous.
• For every q ∈ Q and K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) q(T (φ)) ≤ C∥φ∥j,K .
• If φm → 0 in D(Ω), then T (φm) → 0 in Y .

(3) In particular, a linear map T : D(Ω) → R is continuous if and only if for every
K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) |T (φ)| ≤ C∥φ∥j,K .

Remark 6.5. Let Ω be a nonempty open set in Rn. Here are two immediate consequences
of the previous theorems and remark:

(1) The identity map
iD,E : D(Ω) → E(Ω)

is continuous (that is, D(Ω) ↪→ E(Ω) ).

(2) If T : E(Ω) → E(Ω) is a continuous linear map such that supp(Tφ) ⊆ suppφ for all
φ ∈ E(Ω) (i.e. T is a local continuous linear map), then T restricts to a continuous
linear map from D(Ω) to D(Ω). Indeed, the assumption supp(Tφ) ⊆ suppφ implies
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that T (D(Ω)) ⊆ D(Ω). Moreover, T : D(Ω) → D(Ω) is continuous if and only if
for K ∈ K(Ω) T : EK(Ω) → D(Ω) is continuous. Since T (EK(Ω)) ⊆ EK(Ω), this
map is continuous if and only if T : EK(Ω) → EK(Ω) is continuous (see Remark
6.1). However, since the topology of EK(Ω) is the induced topology from E(Ω), the
continuity of the preceding map follows from the continuity of T : E(Ω) → E(Ω).

Theorem 6.6. Let Ω be a nonempty open set in Rn. Let Y be a topological vector
space whose topology is induced by a separating family of seminorms Q. Suppose T :
[D(Ω)]×r → Y is a linear map. The following are equivalent: (product spaces are
equipped with the product topology)

(1) T : [D(Ω)]×r → Y is continuous.
(2) For all K ∈ K(Ω), T : [EK(Ω)]×r → Y is continuous.
(3) For all q ∈ Q and K ∈ K(Ω), there exists j1, · · · , jl ∈ N such that

∀ (φ1, · · · , φr) ∈ [EK(Ω)]×r |q ◦ T (φ1, · · · , φr)| ≤ C(∥φ1∥j1,K + · · ·+ ∥φr∥jr,K) .

Theorem 6.7. Let Ω be a nonempty open set in Rn.
(1) A set B ⊆ D(Ω) is bounded if and only if there exists K ∈ K(Ω) such that B is a

bounded subset of EK(Ω) which is in turn equivalent to the following statement:

∀ j ∈ N ∃rj ≥ 0 such that ∀φ ∈ B ∥φ∥j,K ≤ rj .

(2) If {φm} is a Cauchy sequence inD(Ω), then it converges to a function φ ∈ D(Ω).
We say D(Ω) is sequentially complete.

Remark 6.8. Topological spaces whose topology is determined by knowing the conver-
gent sequences and their limits exhibit nice properties and are of particular interest. Let
us recall a number of useful definitions related to this topic:

• Let X be a topological space and let E ⊆ X . The sequential closure of E, denoted
scl(E) is defined as follows:

scl(E) = {x ∈ X : there is a sequence {xn} in E such that xn → x} .
Clearly, scl(E) is contained in the closure if E.

• A topological space X is called a Frechet-Urysohn space if for every E ⊆ X the
sequential closure of E is equal to the closure of E.

• A subset E of a topological space X is said to be sequentially closed if E = scl(E).

• A topological space X is said to be sequential if for every E ⊆ X , E is closed if and
only if E is sequentially closed. If X is a sequential topological space and Y is any
topological space, then a map f : X → Y is continuous if and only if

lim
n→∞

f(xn) = f( lim
n→∞

xn)

for each convergent sequence {xn} in X .

The following implications hold for a topological space X:

X is metrizable → X is first-countable → X is Frechet-Urysohn → X is sequential

As it was stated, E and EK (For all K ∈ K(Ω)) are Frechet and subsequently they are
metrizable. However, it can be shown that D(Ω) is not first-countable and subsequently
it is not metrizable. In fact, although according to Theorem 6.4, the elements of the dual
of D(Ω) can be determined by knowing the convergent sequences in D(Ω), it can be
proved that D(Ω) is not sequential.
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Definition 6.9. Let Ω be a nonempty open set in Rn. The topological dual of D(Ω),
denoted D′(Ω) (D′(Ω) = [D(Ω)]∗), is called the space of distributions on Ω. Each
element of D′(Ω) is called a distribution on Ω.

Remark 6.10. Every function f ∈ L1
loc(Ω) defines a distribution uf ∈ D′(Ω) as follows:

∀φ ∈ D(Ω) uf (φ) :=

∫
Ω

fφdx . (6.1)

In particular, every function φ ∈ E(Ω) defines a distribution uφ. It can be shown that the
map j : E(Ω) → D′(Ω) which sends φ to uφ is an injective linear continuous map ([35],
Page 11). Therefore, we can identify E(Ω) with a subspace of D′(Ω).

Remark 6.11. Let Ω ⊆ Rn be a nonempty open set. Recall that f : Ω → R is locally
integrable (f ∈ L1

loc(Ω)) if it satisfies any of the following equivalent conditions:

(1) f ∈ L1(K) for all K ∈ K(Ω).

(2) For all φ ∈ C∞
c (Ω), fφ ∈ L1(Ω).

(3) For every nonempty open set V ⊆ Ω such that V̄ is compact and contained in Ω,
f ∈ L1(V ).

(It can be shown that every locally integrable function is measurable ([14], Page 70).)
As a consequence, if we define Funcreg(Ω) to be the set

{f : Ω → R : uf : D(Ω) → R defined by Equation 6.1 is well-defined and continuous} ,

then Funcreg(Ω) = L1
loc(Ω).

Definition 6.12 (Calculus Rules for Distributions). Let Ω be a nonempty open set in Rn.
Let u ∈ D′(Ω).

• For all φ ∈ C∞(Ω), φu is defined by

∀ψ ∈ C∞
c (Ω) [φu](ψ) := u(φψ) .

It can be shown that φu ∈ D′(Ω).

• For all multiindices α, ∂αu is defined by

∀ψ ∈ C∞
c (Ω) [∂αu](ψ) = (−1)|α|u(∂αψ) .

It can be shown that ∂αu ∈ D′(Ω).

Also, it is possible to make sense of “change of coordinates” for distributions. Let Ω and
Ω′ be two open sets in Rn. Suppose T : Ω → Ω′ is a C∞ diffeomorphism. T can be used
to move any function on Ω to a function on Ω′ and vice versa.

T ∗ : Func(Ω′,R) → Func(Ω,R), T ∗(f) = f ◦ T ,
T∗ : Func(Ω,R) → Func(Ω′,R), T∗(f) = f ◦ T−1 .

T ∗f is called the pullback of the function f under the mapping T and T∗f is called the
pushforward of the function f under the mapping T . Clearly, T ∗ and T∗ are inverses of
each other and T∗ = (T−1)∗. One can show that T∗ sends functions in L1

loc(Ω) to L1
loc(Ω

′)
and furthermore T∗ restricts to linear topological isomorphisms T∗ : E(Ω) → E(Ω′) and
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T∗ : D(Ω) → D(Ω′). Note that for all f ∈ L1
loc(Ω) and φ ∈ C∞

c (Ω′)

< uT∗f , φ >D′(Ω′)×D(Ω′) =

∫
Ω′
(T∗f)(y)φ(y)dy =

∫
Ω′
(f ◦ T−1)(y)φ(y)dy

x=T−1(y)
=

∫
Ω

f(x)φ(T (x))|detT ′(x)|dx

=< uf , |detT ′(x)|φ(T (x)) >D′(Ω)×D(Ω) .

The above observation motivates us to define the pushforward of any distribution u ∈
D′(Ω) as follows:

∀φ ∈ D(Ω′) ⟨T∗u, φ⟩D′(Ω′)×D(Ω′) := ⟨u, |detT ′(x)|φ(T (x))⟩D′(Ω)×D(Ω) .

It can be shown that T∗u : D(Ω′) → R is continuous and so it is in fact an element of
D′(Ω′). Similarly, the pullback T ∗ : D′(Ω′) → D′(Ω) is defined by

∀φ ∈ D(Ω) ⟨T ∗u, φ⟩D′(Ω)×D(Ω) := ⟨u, |det(T−1)′(y)|φ(T−1(y))⟩D′(Ω′)×D(Ω′) .

It can be shown that T ∗u : D(Ω) → R is continuous and so it is in fact an element of
D′(Ω).

Definition 6.13 (Extension by Zero of a Function). Let Ω be an open subset of Rn and
V be an open susbset of Ω. We define the linear map ext0V,Ω : Func(V,R) → Func(Ω,R)
as follows:

ext0V,Ω(f)(x) =

{
f(x) if x ∈ V

0 if x ∈ Ω \ V
.

ext0V,Ω restricts to a continuous linear map D(V ) → D(Ω).

Definition 6.14 (Restriction of a Distribution). Let Ω be an open subset of Rn and V be
an open susbset of Ω. We define the restriction map resΩ,V : D′(Ω) → D′(V ) as follows:

⟨resΩ,V u, φ⟩D′(V )×D(V ) := ⟨u, ext0V,Ωφ⟩D′(Ω)×D(Ω) .

This is well-defined; indeed, resΩ,V : D′(Ω) → D′(V ) is a continuous linear map as
it is the adjoint of the continuous map ext0V,Ω : D(V ) → D(Ω). Given u ∈ D′(Ω), we
sometimes write u|V instead of resΩ,V u.

Remark 6.15. It is easy to see that the restriction of the map resΩ,V : D′(Ω) → D′(V )
to E(Ω) agrees with the usual restriction of smooth functions.

Definition 6.16 (Support of a Distribution). Let Ω be a nonempty open set in Rn. Let
u ∈ D′(Ω).

• We say u is equal to zero on some open subset V of Ω if u|V = 0.

• Let {Vi}i∈I be the collection of all open subsets of Ω such that u is equal to zero on Vi.
Let V =

⋃
i∈I Vi. The support of u is defined as follows:

suppu := Ω \ V .

Note that suppu is closed in Ω but it is not necessarily closed in Rn.

Theorem 6.17 (Properties of the Support). [35, 36, 24] Let Ω and Ω′ be nonempty open
sets in Rn.

• If f ∈ L1
loc(Ω), then suppf = suppuf .

• For all u ∈ D′(Ω), u = 0 on Ω \ suppu.
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• Let u ∈ D′(Ω). If φ ∈ D(Ω) vanishes on an open neighborhood of suppu, then
u(φ) = 0.

• For every closed subset A of Ω and every u ∈ D′(Ω), we have suppu ⊆ A if and only
if u(φ) = 0 for every φ ∈ D(Ω) with suppφ ⊆ Ω \ A.

• For every u ∈ D′(Ω) and ψ ∈ E(Ω), supp(ψu) ⊆ supp(ψ) ∩ supp(u).

• Let u, v ∈ D′(Ω). If there exists a nonempty open subset U of Ω such that suppu ⊆ U
and supp v ⊆ U and

⟨u|U , φ⟩D′(U)×D(U) = ⟨v|U , φ⟩D′(U)×D(U) ∀φ ∈ C∞
c (U) ,

then u = v as elements of D′(Ω).

• Let u, v ∈ D′(Ω). Then supp(u+ v) ⊆ suppu ∪ supp v.

• Let {ui} be a sequence in D′(Ω), u ∈ D(Ω), and K ∈ K(Ω) such that ui → u in D′(Ω)
and suppui ⊆ K for all i. Then also suppu ⊆ K.

• For every u ∈ D′(Ω) and α ∈ Nn
0 , supp(∂αu) ⊆ supp(u).

• If T : Ω → Ω′ is a diffeomorphism, then supp(T∗u) = T (suppu). In particular, if u has
compact support, then so has T∗u.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {ui} be a sequence in D(Ω) such that ui → u in D′(Ω),
and suppose there exists K ∈ K(Ω) such that suppu ⊆ K. Does the fact that the
limiting distribution has compact support imply that there exists a compact set K̃ such
that suppui ⊆ K̃ for all i? The answer is negative. For example, for each i ∈ N let
ui ∈ D(R) be a nonnegative function such that ui = 0 outside the interval (i, i+ 1) and∫ i+1

i
ui dx = 1

i
. Clearly, ui → 0 in L1(R) and so ui → 0 in D′(R). However, there is no

compact set K̃ such that suppui ⊆ K̃ for all i.

Theorem 6.18. ([35], Pages 10 and 20) Let Ω be a nonempty open set in Rn. Let E ′(Ω)
denote the topological dual of E(Ω) equipped with the strong topology. Then

• The map that sends u ∈ E ′(Ω) to u|D(Ω) is an injective continuous linear map from
E ′(Ω) into D′(Ω).

• The image of the above map consists precisely of those u ∈ D′(Ω) for which suppu is
compact.

Due to the above theorem we may identify E ′(Ω) with distributions on Ω with compact
support.

Definition 6.19 (Extension by Zero of Distributions With Compact Support). Let Ω be a
nonempty open set in Rn and V be a nonempty open subset of Ω. We define the linear map
ext0V,Ω : E ′(V ) → E ′(Ω) as the adjoint of the continuous linear map resΩ,V : E(Ω) →
E(V ); that is,

⟨ext0V,Ωu, φ⟩E ′(Ω)×E(Ω) := ⟨u, φ|V ⟩E ′(V )×E(V ) .

Suppose Ω′ and Ω are two nonempty open sets in Rn such that Ω′ ⊆ Ω andK ∈ K(Ω′).
One can easily show that:

• For all u ∈ EK(Ω′), resRn,Ω ◦ ext0Ω′,Rnu = ext0Ω′,Ωu.
• For all u ∈ EK(Ω′), ext0Ω,Rn ◦ ext0Ω′,Ωu = ext0Ω′,Rnu.
• For all u ∈ EK(Ω), ext0Ω′,Ω ◦ resΩ,Ω′u = u.



SOBOLEV SPACES ON COMPACT MANIFOLDS 41

We summarize the important topological properties of the spaces of test functions and
distributions in the table below.

D(Ω) E(Ω) D′(Ω)
Strong

E ′(Ω)
Strong

D′(Ω)
Weak

E ′(Ω)
Weak

Sequential No Yes No No No No
First-Countable No Yes No No No No
Metrizable No Yes No No No No
Second-Countable No Yes No No No No
Sequentially Complete Yes Yes Yes Yes Yes Yes
Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles.

6.2.1. Basic Definitions, Notation. Let Mn be a smooth manifold (M is not necessarily
compact). Let π : E →M be a vector bundle of rank r.

(1) E(M,E) is defined as C∞(M,E) equipped with the locally convex topology induced
by the following family of seminorms: let {(Uα, φα, ρα)}α∈I be a total trivialization
atlas. Then for every α ∈ I , 1 ≤ l ≤ r, and f ∈ C∞(M,E), f̃ lα := ρlα ◦ f ◦ φ−1

α is an
element of C∞(φα(Uα)). For every 4-tuple (l, α, j,K) with 1 ≤ l ≤ r, α ∈ I , j ∈ N,
K a compact subset of Uα (i.e. K ∈ K(Uα)) we define

∥.∥l,α,j,K : C∞(M,E) → R, f 7→ ∥ρlα ◦ f ◦ φ−1
α ∥j,φα(K) .

It is easy to check that ∥.∥l,α,j,K is a seminorm on C∞(M,E) and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write ∥.∥l,φα,j,K instead of ∥.∥l,α,j,K .

(2) For any compact subset K ⊆M we define

EK(M,E) := {f ∈ E(M,E) : supp f ⊆ K} equipped with the subspace topology .

(3) D(M,E) := C∞
c (M,E) = ∪K∈K(M)EK(M,E) (union over all compact subsets of

M ) equipped with the inductive limit topology with respect to the family {EK(M,E)}K∈K(M).
Clearly, if M is compact, then D(M,E) = E(M,E) (as topological vector spaces).

Remark 6.20.

• If for each α ∈ I , {Kα
m}m∈N is an exhaustion by compact sets of Uα, then the topology

induced by the family of seminorms

{∥.∥l,α,j,Kα
m
: 1 ≤ l ≤ r, α ∈ I, j ∈ N,m ∈ N}

on C∞(M,E) is the same as the topology of E(M,E). This together with the fact
that every manifold has a countable total trivialization atlas shows that the topology of
E(M,E) is induced by a countable family of seminorms. So E(M,E) is metrizable.

• If {Kj}j∈N is an exhuastion by compact sets of M , then the inductive limit topology
on C∞

c (M,E) with respect to the family {EKj(M,E)} is the same as the topology on
D(M,E).

Definition 6.21. The space of distributions on the vector bundle E, denoted D′(M,E),
is defined as the topological dual of D(M,E∨). That is,

D′(M,E) = [D(M,E∨)]∗ .
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As usual we equip the dual space with the strong topology. Recall that E∨ denotes the
bundle Hom(E,D(M)) where D(M) is the density bundle of M .

Remark 6.22. The reason that space of distributions on the vector bundle E is defined
as the dual of D(M,E∨) rather than the dual of the seemingly natural choice D(M,E)
is well explained in [23] and [35]. Of course, there are other nonequivalent ways to make
sense of distributions on vector bundles (see [23] for a detailed discussion). Also, see
Lemma 9.28 where it is proved that Riemannian density can be used to identifyD′(M,E)
with [D(M,E)]∗.

Remark 6.23. Let U and V be nonempty open sets in M with V ⊆ U .

• As in the Euclidean case, the linear map ext0V,U : Γ(V,E∨
V ) → Γ(U,E∨

U) defined by

ext0V,Uf(x) =

{
f(x) x ∈ V

0 x ∈ U \ V

restricts to a continuous linear map from D(V,E∨
V ) to D(U,E∨

U).

• As in the Euclidean case, the restriction map resU,V : D′(U,EU) → D′(V,EV ) is
defined as the adjoint of ext0V,U :

⟨resU,V u, φ⟩D′(V,EV )×D(V,E∨
V ) = ⟨u, ext0V,Uφ⟩D′(U,EU )×D(U,E∨

U )
.

• Support of a distribution u ∈ D′(M,E) is defined in the exact same way as for
distributions in the Euclidean space. It can be shown that

(1) ([35], Page 105) If u ∈ D′(M,E) and φ ∈ D(M,E∨) vanishes on an open
neighborhood of suppu, then u(φ) = 0.

(2) ([35], Page 104) For every closed subset A of M and every u ∈ D′(M,E),
we have suppu ⊆ A if and only if u(φ) = 0 for every φ ∈ D(M,E∨) with
suppφ ⊆M \ A.

The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions.
A question that arises is that whether there is a natural way to identify regular sections
of E (i.e. elements of Γ(M,E)) with distributions. The following theorem provides a
partial answer to this question. Recall that compactly supported continuous sections of
the density bundle can be integrated over M .

Theorem 6.24. Every f ∈ E(M,E) defines the following continuous map:

uf : D(M,E∨) → R, ψ 7→
∫
M

[ψ, f ] , (6.2)

where the pairing [ψ, f ] defines a compactly supported continuous section of the density
bundle:

∀x ∈M [ψ, f ](x) := [ψ(x)][f(x)] (ψ(x) ∈ Hom(Ex,Dx) evaluated at f(x) ∈ Ex) .

In general, we define Γreg(M,E) as the set

{f ∈ Γ(M,E) : uf defined by Equation 6.2 is well-defined and continuous} .
(Compare this with the definition of Funcreg(Ω) in Remark 6.11.) Theorem 6.24 tells us
that E(M,E) is contained in Γreg(M,E). If u ∈ D′(M,E) is such that u = uf for some
f ∈ Γreg(M,E), then we say that u is a regular distribution.
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Now, let (U,φ, ρ) be a total trivialization triple for E and let (U,φ, ρD) and (U,φ, ρ∨)
be the corresponding standard total trivialization triples for D(M) and E∨, respectively.
The local representation of the pairing [ψ, f ] has a very simple expression in terms of the
local representations of f and ψ:

f ∈ Γreg(M,E) =⇒ (f̃1, · · · , f̃r) := (f1 ◦ φ−1, · · · , fr ◦ φ−1) := ρ ◦ f ◦ φ−1 ∈ [Func(φ(U),R)]×r

(f̃1, · · · , f̃r) is the local representation of f .

ψ ∈ D(M,E∨) =⇒ (ψ̃1, · · · , ψ̃r) := (ψ1 ◦ φ−1, · · · , ψr ◦ φ−1) := ρ∨ ◦ ψ ◦ φ−1 ∈ [Func(φ(U),R)]×r

(ψ̃1, · · · , ψ̃r) is the local representation of ψ .

Our claim is that the local representation of [ψ, f ] (that is, ρD ◦ [ψ, f ] ◦ φ−1) is equal to
the Euclidean dot product of the local representations of f and ψ:

ρD ◦ [ψ, f ] ◦ φ−1 =
∑
i

f̃ iψ̃i .

The reason is as follows: Let y ∈ φ(U) and x = φ−1(y)

[ρD ◦ [ψ, f ] ◦ φ−1](y) = ρD
(
[ψ(x)][f(x)]

)
= ρD

(
[ψ(x)][(ρ|Ex)−1(f̃ 1(y), · · · , f̃ r(y))]

)
= [ρD ◦ ψ(x) ◦ (ρ|Ex)−1](f̃ 1(y), · · · , f̃ r(y))
= [ρ∨(ψ(x))][(f̃ 1(y), · · · , f̃ r(y))] the left bracket is applied to the right bracket

= ρ∨(ψ(x)) · (f̃ 1(y), · · · , f̃ r(y)) dot product! ρ∨(ψ(x)) viewed as an element of Rr

= (ψ̃1(y), · · · , ψ̃r(y)) · (f̃ 1(y), · · · , f̃ r(y)) .

6.2.2. Local Representation of Distributions. Let (U,φ, ρ) be a total trivialization triple
for π : E → M . We know that each f ∈ Γ(M,E) can locally be represented by r
components f̃ 1, · · · , f̃ r defined by

∀ 1 ≤ l ≤ r f̃ l : φ(U) → R, f̃ l = ρl ◦ f ◦ φ−1 .

These components play a crucial role in our study of Sobolev spaces. Now the ques-
tion is that whether we can similarly use the total trivialization triple (U,φ, ρ) to locally
associate with each distribution u ∈ D′(M,E), r components ũ1, · · · , ũr belonging to
D′(φ(U)). That is, we want to see whether we can define a nice map

D′(U,EU) = [D(U,E∨
U)]

∗ → D′(φ(U))× · · · ×D′(φ(U))︸ ︷︷ ︸
r times

.

(Note that according to Remark 6.23, if u ∈ D′(M,E), then u|U ∈ D′(U,EU).) Such a
map, in particular, will be important when we want to make sense of Sobolev spaces with
negative exponents of sections of vector bundles. Also, it would be desirable to ensure
that if u is a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of Γ(M,E).

We begin with the following map at the level of compactly supported smooth functions:

T̃E∨,U,φ : D(U,E∨
U ) → [D(φ(U))]×r, ξ → ρ∨ ◦ ξ ◦ φ−1 = ((ρ∨)1 ◦ ξ ◦ φ−1, · · · , (ρ∨)r ◦ ξ ◦ φ−1) .

Note that T̃E∨,U,φ has the property that for all ψ ∈ C∞(U) and ξ ∈ D(U,E∨
U)

T̃E∨,U,φ(ψξ) = (ψ ◦ φ−1)T̃E∨,U,φ(ξ) .

Theorem 6.25. The map T̃E∨,U,φ : D(U,E∨
U) → [D(φ(U))]×r is a linear topological

isomorphism. ([D(φ(U))]×r is equipped with the product topology.)
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Proof. Clearly, T̃E∨,U,φ is linear. Also, the map T̃E∨,U,φ is bijective. Indeed, the inverse
of T̃E∨,U,φ (which we denote by TE∨,U,φ) is given by

TE∨,U,φ : [D(φ(U))]×r → D(U,E∨
U)

∀x ∈ U TE∨,U,φ(ξ1, · · · , ξr)(x) =
(
ρ∨|E∨

x

)−1 ◦ (ξ1, · · · , ξr) ◦ φ(x) .

Now, we show that T̃E∨,U,φ : D(U,E∨
U) → [D(φ(U))]×r is continuous. To this end, it is

enough to prove that for each 1 ≤ l ≤ r the map

πl ◦ T̃E∨,U,φ : D(U,E∨
U) → D(φ(U)), ξ 7→ (ρ∨)l ◦ ξ ◦ φ−1

is continuous. The topology on D(U,E∨
U) is the inductive limit topology with respect

to {EK(U,E∨
U)}K∈K(U), so it is enough to show that for each K ∈ K(U), πl ◦ T̃E∨,U,φ :

EK(U,E∨
U) → D(φ(U)) is continuous. Note that πl◦T̃E∨,U,φ[EK(U,E∨

U)] ⊆ Eφ(K)(φ(U)).
Considering that Eφ(K)(φ(U)) ↪→ D(φ(U)), it is enough to show that

πl ◦ T̃E∨,U,φ : EK(U,E∨
U) → Eφ(K)(φ(U))

is continuous. For all ξ ∈ EK(U,E∨
U) and j ∈ N we have

∥πl ◦ T̃E∨,U,φ(ξ)∥j,φ(K) = ∥(ρ∨)l ◦ ξ ◦ φ−1∥j,φ(K) = ∥ξ∥l,φ,j,K ,

which implies the continuity (note that even an inequality in place of the last equality
would have been enough to prove the continuity). It remains to prove the continuity of
TE∨,U,φ : [D(φ(U))]×r → D(U,E∨

U). By Theorem 6.6 it is enough to show that for
all K ∈ K(φ(U)), TE∨,U,φ : [EK(φ(U))]×r → D(U,E∨

U) is continuous. It is clear that
TE∨,U,φ([EK(φ(U))]×r) ⊆ Eφ−1(K)(U,E

∨
U). Since Eφ−1(K)(U,E

∨
U) ↪→ D(U,E∨

U), it is
sufficient to show that TE∨,U,φ : [EK(φ(U))]×r → Eφ−1(K)(U,E

∨
U) is continuous. To this

end, by Theorem 6.6, we just need to show that for all j ∈ N and 1 ≤ l ≤ r there exists
j1, · · · , jr such that

∥TE∨,U,φ(ξ1, · · · , ξr)∥l,φ,j,φ−1(K) ≤ C(∥ξ1∥j1,K + · · · ∥ξr∥jr,K) .

But this obviously holds because

∥TE∨,U,φ(ξ1, · · · , ξr)∥l,φ,j,φ−1(K) = ∥ξl∥j,K .

□

The adjoint of TE∨,U,φ is

T ∗
E∨,U,φ : [D(U,E∨

U)]
∗ →

(
[D(φ(U))]×r

)∗
⟨T ∗

E∨,U,φu, (ξ1, · · · , ξr)⟩ = ⟨u, TE∨,U,φ(ξ1, · · · , ξr)⟩ .

Note that, since TE∨,U,φ is a linear topological isomorphism, T ∗
E∨,U,φ is also a linear

topological isomorphism (and in particular it is bijective). For every u ∈ [D(U,E∨
U)]

∗,
T ∗
E∨,U,φu is in

(
[D(φ(U))]×r

)∗; we can combine this with the bijective map

L :
(
[D(φ(U))]×r

)∗ → [D′(φ(U))]×r, L(v) = (v ◦ i1, · · · , v ◦ ir)

(see Theorem 4.43) to send u ∈ [D(U,E∨
U)]

∗ into an element of [D′(φ(U))]×r:

L(T ∗
E∨,U,φu) = ((T ∗

E∨,U,φu) ◦ i1, · · · , (T ∗
E∨,U,φu) ◦ ir) ,
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where for all 1 ≤ l ≤ r, (T ∗
E∨,U,φu) ◦ il ∈ D′(φ(U)) is given by

((T ∗
E∨,U,φu) ◦ il)(ξ) = (T ∗

E∨,U,φu)(il(ξ)) = (T ∗
E∨,U,φu)(0, · · · , 0, ξ︸︷︷︸

lth position

, 0, · · · , 0)

= ⟨u, TE∨,U,φ(0, · · · , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0)⟩ .

If we define gl,ξ,U,φ ∈ D(U,E∨
U) by

gl,ξ,U,φ(x) = TE∨,U,φ(0, · · · , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0)(x)

=
(
ρ∨|E∨

x

)−1 ◦ (0, · · · , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0) ◦ φ(x) ,

then we may write

⟨(T ∗
E∨,U,φu) ◦ il, ξ⟩D′(φ(U))×D(φ(U)) = ⟨u, gl,ξ,U,φ⟩[D(U,E∨

U )]
∗×D(U,E∨

U )
.

Summary: We can associate with u ∈ D′(U,EU) = (D(U,E∨
U))

∗ the following r
distributions in D′(φ(U)):

∀ 1 ≤ l ≤ r ũl = T ∗
E∨,U,φu ◦ il ,

that is,
∀ ξ ∈ D(φ(U)) ⟨ũl, ξ⟩ = ⟨u, gl,ξ,U,φ⟩ ,

where gl,ξ,U,φ ∈ D(U,E∨
U) is defined by(

ρ∨|E∨
x

)−1 ◦ (0, · · · , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0) ◦ φ(x) .

In particular,
ρ∨ ◦ gl,ξ,U,φ ◦ φ−1 = (0, · · · , 0, ξ︸︷︷︸

lth position

, 0, · · · , 0) ,

and so (ρ∨ ◦ gl,ξ,U,φ ◦ φ−1)l = ξ.

Let’s give a name to the composition of L with T ∗
E∨,U,φ that we used above. We set

HE∨,U,φ := L ◦ T ∗
E∨,U,φ:

HE∨,U,φ : [D(U,E∨
U)]

∗ → (D′(φ(U)))×r, u 7→ L(T ∗
E∨,U,φu) = (ũ1, · · · , ũr) .

Remark 6.26. Here we make three observations about the mapping HE∨,U,φ.

(1) For every u ∈ [D(U,E∨
U)]

∗

supp[HE∨,U,φ u]
l = suppũl ⊆ φ(suppu) .

Indeed, let A = φ(suppu). By Theorem 6.17, it is enough to show that if η ∈
D(φ(U)) is such that suppη ⊆ φ(U) \ A, then ũl(η) = 0. Note that

⟨ũl, η⟩ = ⟨u, gl,η,U,φ⟩ .
So, by Remark 6.23 we just need to show that gl,η,U,φ = 0 on an open neighborhood
of suppu. LetK = suppη. Clearly, U \φ−1(K) is an open neighborhood of suppu.
We will show that gl,η,U,φ vanishes on this open neighborhood. Note that

gl,η,U,φ(x) = (ρ∨|E∨
x
)−1(0, · · · , 0, η ◦ φ(x)︸ ︷︷ ︸

lth position

, 0, · · · , 0) .
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Since ρ∨|E∨
x

is an isomorphism and η = 0 on φ(U)\K, we conclude that gl,η,U,φ =
0 on φ−1(φ(U) \K) = U \ φ−1(K).

(2) Clearly, HE∨,U,φ : D′(U,EU) → [D′(φ(U))]×r preserves addition. Moreover, if
f ∈ C∞(U) and u ∈ D′(U,EU), thenHE∨,U,φ(fu) = (f◦φ−1)HE∨,U,φ(u). Recall
that H = L ◦ T ∗

E∨,U,φ.

⟨T ∗
E∨,U,φ(fu), (ξ1, · · · , ξr)⟩ = ⟨fu, TE∨,U,φ(ξ1, · · · , ξr)⟩

= ⟨u, fTE∨,U,φ(ξ1, · · · , ξr)⟩
= ⟨u, TE∨,U,φ[(f ◦ φ−1)(ξ1, · · · , ξr)]⟩
= ⟨T ∗

E∨,U,φu, (f ◦ φ−1)(ξ1, · · · , ξr)⟩
= ⟨(f ◦ φ−1)T ∗

E∨,U,φu, (ξ1, · · · , ξr)⟩

(The third equality follows directly from the definition of TE∨,U,φ.) Therefore,

T ∗
E∨,U,φ(fu) = (f ◦ φ−1)T ∗

E∨,U,φu .

The fact that L((f ◦ φ−1)T ∗
E∨,U,φu) = (f ◦ φ−1)L(T ∗

E∨,U,φu) is an immediate
consequence of the definition of L.

(3) Since TE∨,U,φ and L are both linear topological isomorphisms, H−1
E∨,U,φ = (L ◦

T ∗
E∨,U,φ)

−1 : (D′(φ(U)))×r → D∗(U,E∨
U) is also a linear topological isomor-

phism. It is useful for our later considerations to find an explicit formula for this
map. Note that

H−1
E∨,U,φ = (L ◦ T ∗

E∨,U,φ)
−1 = (T ∗

E∨,U,φ)
−1 ◦ L−1 = (T−1

E∨,U,φ)
∗ ◦ L−1

= (T̃E∨,U,φ)
∗ ◦ L−1 = (T̃E∨,U,φ)

∗ ◦ L̃ .

Recall that

L̃ : [D∗(φ(U))]×r → [(D(φ(U)))×r]∗, (v1, · · · , vr) 7→ v1 ◦ π1 + · · ·+ vr ◦ πr ,
T̃ ∗
E∨,U,φ : [(D(φ(U)))×r]∗ → D∗(U,E∨

U) .

Therefore, for all ξ ∈ D(U,E∨
U)

H−1
E∨,U,φ(v

1, · · · , vr)(ξ) = ⟨T̃ ∗
E∨,U,φ(v

1 ◦ π1 + · · ·+ vr ◦ πr), ξ⟩
= ⟨(v1 ◦ π1 + · · ·+ vr ◦ πr), T̃ ξ⟩
= ⟨(v1 ◦ π1 + · · ·+ vr ◦ πr), ((ρ∨)1 ◦ ξ ◦ φ−1, · · · , (ρ∨)r ◦ ξ ◦ φ−1)⟩

=
∑
i

vi[(ρ∨)i ◦ ξ ◦ φ−1] .

Remark 6.27. Suppose u ∈ D′(M,E) is a regular distribution, that is, u = uf where
f ∈ Γreg(M,E). We want to see whether the local components of such a distribution
agree with its components as an element of Γ(M,E). With respect to the total trivializa-
tion triple (U,φ, ρ) we have

(1) f 7→ (f̃ 1, · · · , f̃ r), f̃ l = ρl ◦ f ◦ φ−1,
(2) uf 7→ (ũf

1, · · · , ũf l).
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The question is whether uf̃ l = ũf
l? Here we will show that the answer is positive.

Indeed, for all ξ ∈ D(φ(U)) we have

⟨ũf l, ξ⟩ = ⟨uf , gl,ξ,U,φ⟩ =
∫
M

[gl,ξ,U,φ, f ] =

∫
φ(U)

∑
i

(g̃l,ξ,U,φ)
if̃ idV =

∫
φ(U)

(g̃l,ξ,U,φ)
lf̃ ldV

=

∫
φ(U)

f̃ lξdV = ⟨uf̃ l , ξ⟩ .

Note that the above calculation in fact shows that the restriction of HE∨,U,φ to D(U,EU)

is T̃E,U,φ.

7. SPACES OF SOBOLEV AND LOCALLY SOBOLEV FUNCTIONS IN Rn

In this section we present a brief overview of the basic definitions and properties re-
lated to Sobolev spaces on Euclidean spaces.

7.1. Basic Definitions.

Definition 7.1. Let s ≥ 0 and p ∈ [1,∞]. The Sobolev-Slobodeckij space W s,p(Rn) is
defined as follows:

• If s = k ∈ N0, p ∈ [1,∞],

W k,p(Rn) = {u ∈ Lp(Rn) : ∥u∥Wk,p(Rn) :=
∑
|ν|≤k

∥∂νu∥p <∞} .

• If s = θ ∈ (0, 1), p ∈ [1,∞),

W θ,p(Rn) = {u ∈ Lp(Rn) : |u|W θ,p(Rn) :=
( ∫ ∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+θp
dxdy

) 1
p <∞} .

• If s = θ ∈ (0, 1), p = ∞,

W θ,∞(Rn) = {u ∈ L∞(Rn) : |u|W θ,∞(Rn) := ess sup
x,y∈Rn,x ̸=y

|u(x)− u(y)|
|x− y|θ

<∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1), p ∈ [1,∞],

W s,p(Rn) = {u ∈ W k,p(Rn) : ∥u∥W s,p(Rn) := ∥u∥Wk,p(Rn) +
∑
|ν|=k

|∂νu|W θ,p(Rn) <∞} .

Remark 7.2. Clearly, for all s ≥ 0, W s,p(Rn) ⊆ Lp(Rn). Recall that Lp(Rn) ⊆
L1
loc(Rn) ⊆ D′(Rn). So, we may consider elements of W s,p(Rn) as distributions in

D′(Rn). Indeed, for s ≥ 0, p ∈ (1,∞), and u ∈ D′(Rn) we define{
∥u∥W s,p(Rn) := ∥f∥W s,p(Rn) if u = uf for some f ∈ Lp(Rn)

∥u∥W s,p(Rn) := ∞ otherwise
.

As a consequence, we may write

W s,p(Rn) = {u ∈ D′(Rn) : ∥u∥W s,p(Rn) <∞} .

Remark 7.3. Let us make some observations that will be helpful in the proof of a number
of important theorems. Let A be a nonempty measurable set in Rn.



48 A. BEHZADAN AND M. HOLST

(1) We may write:∫ ∫
Rn×Rn

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy

=

∫ ∫
A×A

· · · dxdy +
∫
A

∫
Rn\A

· · · dxdy +
∫
Rn\A

∫
A

· · · dxdy +
∫
Rn\A

∫
Rn\A

· · · dxdy .

In particular, if suppu ⊆ A, then the last integral vanishes and the sum of the two
middle integrals will be equal to 2

∫
A

∫
Rn\A

|∂νu(x)|p
|x−y|n+θpdydx. Therefore, in this case∫ ∫

Rn×Rn

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy =∫ ∫

A×A

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy + 2

∫
A

∫
Rn\A

|∂νu(x)|p

|x− y|n+θp
dydx .

(2) If A is open, K ⊆ A is compact and α > n, then there exists a number C such that
for all x ∈ K we have ∫

Rn\A

1

|x− y|α
dy ≤ C .

(C may depend on A, K, n, and α but is independent of x.) The reason is as follows:
Let R = 1

2
dist(K,Ac) > 0. Clearly, for all x ∈ K, the ball BR(x) is inside A.

Therefore, for all x ∈ K, Rn \ A ⊆ Rn \BR(x) which implies that for all x ∈ K∫
Rn\A

1

|x− y|α
dy ≤

∫
Rn\BR(x)

1

|x− y|α
dy

z=y−x
=

∫
Rn\BR(0)

1

|z|α
dz = σ(Sn−1)

∫ ∞

R

1

rα
rn−1dr ,

which converges because α > n. We can let C = σ(Sn−1)
∫∞
R

1
rα
rn−1dr.

(3) If A is bounded and α < n, then there exists a number C such that for all x ∈ A∫
A

1

|x− y|α
dy ≤ C .

(C depends on A, n, and α but is independent of x.) The reason is as follows: Since
A is bounded there exists R > 0 such that for all x, y ∈ A we have |x − y| < R. So,
for all x ∈ A ∫

A

1

|x− y|α
dy ≤ σ(Sn−1)

∫ R

0

1

rα
rn−1dr ,

which converges because α < n.

Theorem 7.4. Let s ≥ 0 and p ∈ (1,∞). C∞
c (Rn) is dense in W s,p(Rn). In fact, the

identity map iD,W : D(Rn) → W s,p(Rn) is a linear continuous map with dense image.

Proof. The fact that C∞
c (Rn) is dense in W s,p(Rn) follows from Theorem 7.38 and

Lemma 7.44 in [1] combined with Remark 7.13. Linearity of iD,W is obvious. It re-
mains to prove that this map is continuous. By Theorem 6.4 it is enough to show that

∀K ∈ K(Rn),∀φ ∈ EK(Rn) ∃j ∈ N s.t. ∥φ∥W s,p(Rn) ⪯ ∥φ∥j,K .

Let s = m + θ where m ∈ N0 and θ ∈ [0, 1). If θ ̸= 0, by definition ∥φ∥W s,p(Rn) =
∥φ∥Wm,p(Rn) +

∑
|ν|=m |∂νφ|W θ,p(Rn). It is enough to show that each summand can be

bounded by a constant multiple of ∥φ∥j,K for some j.
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• Step 1: If θ = 0,

∥φ∥Wm,p(Rn) =
∑
|ν|≤m

∥∂νφ∥Lp(Rn) =
∑
|ν|≤m

∥∂νφ∥Lp(K)

=
∑
|ν|≤m

(∥φ∥m,K |K|
1
p ) ⪯ ∥φ∥m,K ,

where the implicit constant depends on m, p, and K but is independent of φ.

• Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was
pointed out in Remark 7.3 we may write∫ ∫

Rn×Rn

|∂νφ(x)− ∂νφ(y)|p

|x− y|n+θp
dxdy =∫ ∫

A×A

|∂νφ(x)− ∂νφ(y)|p

|x− y|n+θp
dxdy + 2

∫
A

∫
Rn\A

|∂νφ(x)|p

|x− y|n+θp
dydx .

First note that Rn is a convex open set; so by Theorem 4.9 every function f ∈ EK(Rn)
is Lipschitz; indeed, for all x, y ∈ Rn we have |f(x)− f(y)| ⪯ ∥f∥1,K∥x− y∥. Hence∫ ∫

A×A

|∂νφ(x)− ∂νφ(y)|p

|x− y|n+θp
dxdy ≤

∫
A

∥∂νφ∥p1,K
∫
A

|x− y|p

|x− y|n+θp
dydx

=

∫
A

∥∂νφ∥p1,K
∫
A

1

|x− y|n+(θ−1)p
dydx .

By part 3 of Remark 7.3
∫
A

1
|x−y|n+(θ−1)pdy is bounded by a constant independent of x;

also, clearly, ∥∂νφ∥1,K ≤ ∥φ∥m+1,K . Considering that |A| is finite we get∫ ∫
A×A

|∂νφ(x)− ∂νφ(y)|p

|x− y|n+θp
dxdy ⪯ ∥φ∥pm+1,K .

Finally, for the remaining integral we have∫
A

∫
Rn\A

|∂νφ(x)|p

|x− y|n+θp
dydx =

∫
K

∫
Rn\A

|∂νφ(x)|p

|x− y|n+θp
dydx ,

because the inner integral is zero for x ̸∈ K. Now, we can write∫
K

∫
Rn\A

|∂νφ(x)|p

|x− y|n+θp
dydx ⪯

∫
K

∥φ∥pm,K
∫
Rn\A

1

|x− y|n+θp
dydx .

By part 2 of Remark 7.3 for all x ∈ K, the inner integral is bounded by a constant.
Since |K| is finite we conclude that∫

A

∫
Rn\A

|∂νφ(x)|p

|x− y|n+θp
dydx ⪯ ∥φ∥pm,K .

Hence
∥u∥W s,p(Rn) ⪯ ∥φ∥m+1,K .

□

Definition 7.5. Let s > 0 and p ∈ (1,∞). We define

W−s,p′(Rn) = (W s,p(Rn))∗ (
1

p
+

1

p′
= 1).
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Remark 7.6. Note that since the identity map from D(Rn) to W s,p(Rn) is continuous
with dense image, the dual space W−s,p′(Rn) can be viewed as a subspace of D′(Rn).
Indeed, by Theorem 4.44 the adjoint of the identity map, i∗D,W : W−s,p′(Rn) → D′(Rn)

is an injective linear continuous map and we can use this map to identify W−s,p′(Rn)
with a subspace of D′(Rn). It is a direct consequence of the definition of adjoint that
for all u ∈ W−s,p′(Rn), i∗D,Wu = u|D(Rn). So, by identifying u : W s,p(Rn) → R with
u|D(Rn) : D(Rn) → R, we can view W−s,p′(Rn) as a subspace of D′(Rn).

Remark 7.7.

• It is a direct consequence of the contents of pages 88 and 178 of [41] that for m ∈ Z
and 1 < p <∞

Wm,p(Rn) = Hm
p (Rn) = Fm

p,2(Rn) .

• It is a direct consequence of the contents of pages 38, 51, 90 and 178 of [41] that for
s ̸∈ Z and 1 < p <∞

W s,p(Rn) = Bs
p,p(Rn) .

Theorem 7.8. For all s ∈ R and 1 < p <∞, W s,p(Rn) is reflexive.

Proof. See the proof of Theorem 7.32. Also see [40], Section 2.6, page 198. □

Note that by definition for all s > 0 we have [W s,p(Rn)]∗ = W−s,p′(Rn). Now, since
W s,p(Rn) is reflexive, [W−s,p′(Rn)]∗ is isometrically isomorphic to W s,p(Rn) and so
they can be identified with one another. Thus for all s ∈ R and 1 < p <∞ we may write

[W s,p(Rn)]∗ = W−s,p′(Rn) .

Let s ≥ 0 and p ∈ (1,∞). Every function φ ∈ C∞
c (Rn) defines a linear functional

Lφ : W s,p(Rn) → R defined by

Lφ(u) =

∫
Rn
uφdx .

Lφ is continuous because by Holder’s inequality

|Lφ(u)| = |
∫
Rn
uφdx| ≤ ∥u∥Lp(Rn)∥φ∥Lp′ (Rn) ≤ ∥φ∥Lp′ (Rn)∥u∥W s,p(Rn) .

Also, the map L : C∞
c (Rn) → W−s,p′(Rn) which maps φ to Lφ is injective because

Lφ = Lψ → ∀u ∈ W s,p(Rn)

∫
Rn
u(φ− ψ)dx = 0 →

∫
Rn

|φ− ψ|2dx = 0 → φ = ψ .

Thus we may identify φ with Lφ and consider C∞
c (Rn) as a subspace of W−s,p′(Rn).

Theorem 7.9. For all s > 0 and p ∈ (1,∞), C∞
c (Rn) is dense in W−s,p′(Rn).

Proof. The proof given in page 65 of [2] for the density ofLp′ in the integer order Sobolev
space W−m,p′ , which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C∞

c (Rn) in W−s,p′(Rn). □

Remark 7.10. As a consequence of the above theorems, for all s ∈ R and p ∈ (1,∞),
W s,p(Rn) can be considered as a subspace of D′(Rn). See Theorem 4.44 and the discus-
sion thereafter for further insights. Also see Remark 7.48.

Next we list several definitions pertinent to Sobolev spaces on open subsets of Rn.

Definition 7.11. Let Ω be a nonempty open set in Rn. Let s ∈ R and p ∈ (1,∞).
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(1) • If s = k ∈ N0,

W k,p(Ω) = {u ∈ Lp(Ω) : ∥u∥Wk,p(Ω) :=
∑
|ν|≤k

∥∂νu∥Lp(Ω) <∞} .

• If s = θ ∈ (0, 1),

W θ,p(Ω) = {u ∈ Lp(Ω) : |u|W θ,p(Ω) :=
( ∫ ∫

Ω×Ω

|u(x)− u(y)|p

|x− y|n+θp
dxdy

) 1
p <∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1),

W s,p(Ω) = {u ∈ W k,p(Ω) : ∥u∥W s,p(Ω) := ∥u∥Wk,p(Ω) +
∑
|ν|=k

|∂νu|W θ,p(Ω) <∞} .

• If s < 0,

W s,p(Ω) = (W−s,p′
0 (Ω))∗ (

1

p
+

1

p′
= 1),

where for all e ≥ 0 and 1 < q < ∞, W e,q
0 (Ω) is defined as the closure of C∞

c (Ω)
in W e,q(Ω).

(2) W s,p(Ω̄) is defined as the restriction of W s,p(Rn) to Ω. That is, W s,p(Ω̄) is the col-
lection of all u ∈ D′(Ω) such that there is a v ∈ W s,p(Rn) with v|Ω = u. Here v|Ω
should be interpreted as the restriction of a distribution in D′(Rn) to a distribution in
D′(Ω). W s,p(Ω̄) is equipped with the following norm:

∥u∥W s,p(Ω̄) = inf
v∈W s,p(Rn),v|Ω=u

∥v∥W s,p(Rn).

(3)
W̃ s,p(Ω̄) = {u ∈ W s,p(Rn) : suppu ⊆ Ω̄} .

W̃ s,p(Ω̄) is equipped with the norm ∥u∥W̃ s,p(Ω̄) = ∥u∥W s,p(Rn).

(4)
W̃ s,p(Ω) = {u = v|Ω, v ∈ W̃ s,p(Ω̄)} . (7.1)

Again v|Ω should be interpreted as the restriction of an element in D′(Rn) to D′(Ω).
So W̃ s,p(Ω) is a subspace of D′(Ω). This space is equipped with the norm ∥u∥W̃ s,p =
inf ∥v∥W s,p(Rn) where the infimum is taken over all v that satisfy (7.1). Note that two
elements v1 and v2 of W̃ s,p(Ω̄) restrict to the same element in D′(Ω) if and only if
supp(v1 − v2) ⊆ ∂Ω. Therefore,

W̃ s,p(Ω) =
W̃ s,p(Ω̄)

{v ∈ W s,p(Rn) : supp v ⊆ ∂Ω}
.

(5) For s ≥ 0 we define

W s,p
00 (Ω) = {u ∈ W s,p(Ω) : ext0Ω,Rnu ∈ W s,p(Rn)} .

We equip this space with the norm

∥u∥W s,p
00 (Ω) := ∥ext0Ω,Rnu∥W s,p(Rn) .

Note that previously we defined the operator ext0Ω,Rn only for distributions with com-
pact support and functions; this is why the values of s are restricted to be nonnegative
in this definition.
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(6) For all K ∈ K(Ω) we define

W s,p
K (Ω) = {u ∈ W s,p(Ω) : suppu ⊆ K} ,

with ∥u∥W s,p
K (Ω) := ∥u∥W s,p(Ω).

(7)
W s,p
comp(Ω) =

⋃
K∈K(Ω)

W s,p
K (Ω) .

This space is normally equipped with the inductive limit topology with respect to the
family {W s,p

K (Ω)}K∈K(Ω). However, in these notes we always consider W s,p
comp(Ω) as

a normed space equipped with the norm induced from W s,p(Ω).

Remark 7.12. Each of these definitions has its advantages and disadvantages. For ex-
ample, the way we defined the spaces W s,p(Ω) is well suited for using duality arguments
while proving the usual embedding theorems for these spaces on an arbitrary open set
Ω is not trivial; on the other hand, duality arguments do not work as well for spaces
W s,p(Ω̄) but the embedding results for these spaces on an arbitrary open set Ω auto-
matically follow from the corresponding results on Rn. Various authors adopt different
definitions for Sobolev spaces on domains based on the applications in which they are
interested. Unfortunately, the notation used in the literature for the various spaces in-
troduced above are not uniform. First note that it is a direct consequence of Remark 7.7
and the definitions of Bs

p,q(Ω), H
s
p(Ω) and F s

p,q(Ω) in [40] page 310 and [43] that

W s,p(Ω̄) =

{
F s
p,2(Ω) = Hs

p(Ω) if s ∈ Z
Bs
p,p(Ω) if s ̸∈ Z

.

With this in mind, we have the following table which displays the connection between the
notation used in this work with the notation in a number of well-known references.

this
manuscript Triebel [40] Triebel [43] Grisvard [21] Bhattacharyya

[11]

W s,p(Ω) W s
p (Ω) W s,p(Ω)

W s,p(Ω̄) W s
p (Ω) W s

p (Ω) W s
p (Ω̄) W s,p(Ω̄)

W̃ s,p(Ω̄) W̃ s
p (Ω) W̃ s

p (Ω̄)

W̃ s,p(Ω) W̃ s
p (Ω)

W s,p
00 (Ω) W̃ s

p (Ω) W s,p
00 (Ω)
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Remark 7.13.

• Note that

∥u∥Wk,p(Ω) +
∑
|ν|=k

|∂νu|W θ,p(Ω) ≤ ∥u∥Wk,p(Ω) +
∑
|ν|=k

∥∂νu∥W θ,p(Ω)

= ∥u∥Wk,p(Ω) +
∑
|ν|=k

(
∥∂νu∥Lp(Ω) + |∂νu|W θ,p(Ω)

)
⪯ ∥u∥Wk,p(Ω) +

∑
|ν|=k

|∂νu|W θ,p(Ω) (since
∑
|ν|=k

∥∂νu∥Lp(Ω) ≤ ∥u∥Wk,p(Ω)) .

Therefore, the following is an equivalent norm on W s,p(Ω)

∥u∥W s,p(Ω) := ∥u∥Wk,p(Ω) +
∑
|α|=k

∥∂αu∥W θ,p(Ω) .

• For p ∈ (1,∞) and a, b > 0 we have (ap + bp)
1
p ≃ a+ b; indeed,

ap + bp ≤ (a+ b)p ≤ (2max{a, b})p ≤ 2p(ap + bp) .

More generally, if a1, · · · , am are nonnegative numbers, then (ap1 + · · ·+ apm)
1
p ≃ a1 +

· · ·+am. Therefore, for any nonempty open set Ω in Rn, s > 0, the following expressions
are both equivalent to the original norm on W s,p(Ω)

∥u∥W s,p(Ω) :=
[
∥u∥p

Wk,p(Ω)
+

∑
|ν|=k

|∂νu|p
W θ,p(Ω)

] 1
p ,

∥u∥W s,p(Ω) :=
[
∥u∥p

Wk,p(Ω)
+

∑
|ν|=k

∥∂νu∥p
W θ,p(Ω)

] 1
p ,

where s = k + θ, k ∈ N0, θ ∈ (0, 1).

7.2. Properties of Sobolev Spaces on the Whole Space Rn.

Theorem 7.14 (Embedding Theorem I, [40], Section 2.8.1). Suppose 1 < p ≤ q < ∞
and −∞ < t ≤ s < ∞ satisfy s − n

p
≥ t − n

q
. Then W s,p(Rn) ↪→ W t,q(Rn). In

particular, W s,p(Rn) ↪→ W t,p(Rn).

Theorem 7.15 (Multiplication by smooth functions, [42], Page 203). Let s ∈ R, 1 <
p <∞, and φ ∈ BC∞(Rn). Then the linear map

mφ : W s,p(Rn) → W s,p(Rn), u 7→ φu

is well-defined and bounded.

A detailed study of the following multiplication theorems can be found in [7].

Theorem 7.16. Let si, s and 1 ≤ p, pi <∞ (i = 1, 2) be real numbers satisfying

(i) si ≥ s ≥ 0,
(ii) s ∈ N0,

(iii) si − s ≥ n(
1

pi
− 1

p
),

(iv) s1 + s2 − s > n(
1

p1
+

1

p2
− 1

p
) ≥ 0.
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where the strictness of the inequalities in items (iii) and (iv) can be interchanged.
If u ∈ W s1,p1(Rn) and v ∈ W s2,p2(Rn), then uv ∈ W s,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

W s1,p1(Rn)×W s2,p2(Rn) → W s,p(Rn).

Theorem 7.17 (Multiplication theorem for Sobolev spaces on the whole space, nonnega-
tive exponents). Assume si, s and 1 ≤ pi ≤ p <∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) s ≥ 0,

(iii) si − s ≥ n(
1

pi
− 1

p
),

(iv) s1 + s2 − s > n(
1

p1
+

1

p2
− 1

p
).

If u ∈ W s1,p1(Rn) and v ∈ W s2,p2(Rn), then uv ∈ W s,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

W s1,p1(Rn)×W s2,p2(Rn) → W s,p(Rn).

Theorem 7.18 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents I). Assume si, s and 1 < pi ≤ p <∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} < 0,

(iii) si − s ≥ n(
1

pi
− 1

p
),

(iv) s1 + s2 − s > n(
1

p1
+

1

p2
− 1

p
),

(v) s1 + s2 ≥ n(
1

p1
+

1

p2
− 1) ≥ 0.

Then the pointwise multiplication of smooth functions extends uniquely to a continuous
bilinear map

W s1,p1(Rn)×W s2,p2(Rn) → W s,p(Rn).

Theorem 7.19 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents II). Assume si, s and 1 < p, pi <∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} ≥ 0 and s < 0,

(iii) si − s ≥ n(
1

pi
− 1

p
),

(iv) s1 + s2 − s > n(
1

p1
+

1

p2
− 1

p
) ≥ 0,

(v) s1 + s2 > n(
1

p1
+

1

p2
− 1). (the inequality is strict)

Then the pointwise multiplication of smooth functions extends uniquely to a continuous
bilinear map

W s1,p1(Rn)×W s2,p2(Rn) → W s,p(Rn).

Remark 7.20. Let’s discuss further how we should interpret multiplication in the case
where negative exponents are involved. Suppose for instance s1 < 0 (s2 may be positive
or negative). A moment’s thought shows that the relation

W s1,p1(Rn)×W s2,p2(Rn) ↪→ W s,p(Rn).
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in the above theorems can be interpreted as follows: for all u ∈ W s1,p1(Rn) and v ∈
W s2,p2(Rn), if {φi} in C∞(Rn) ∩ W s1,p1(Rn) is any sequence such that φi → u in
W s1,p1(Rn), then

(1) for all i, φiv ∈ W s,p(Rn) (multiplication of a smooth function and a distribution),
(2) φiv converges to some element g in W s,p(Rn) as i→ ∞,
(3) ∥g∥W s,p(Rn) ⪯ ∥u∥W s1,p1 (Rn)∥v∥W s2,p2 (Rn) where the implicit constant does not

depend on u and v,
(4) g ∈ W s,p(Rn) is independent of the sequence {φi} and can be regarded as the

product of u and v.
In particular, φiv → uv in D′(Rn) and for all ψ ∈ C∞

c (Rn)

⟨uv, ψ⟩D′(Rn)×D(Rn) = lim
i→∞

⟨φiv, ψ⟩D′(Rn)×D(Rn) = ⟨v, φiψ⟩D′(Rn)×D(Rn) .

7.3. Properties of Sobolev Spaces on Smooth Bounded Domains. In this section we
assume that Ω is an open bounded set in Rn with smooth boundary unless a weaker
assumption is stated. First we list some facts that can be useful in understanding the
relationship between various definitions of Sobolev spaces on domains.

• ([11], Page 584)[Theorem 8.10.13 and its proof] Suppose s > 0 and 1 < p < ∞. Then
W s,p(Ω) = W s,p(Ω̄) in the sense of equivalent normed spaces.

• ([43], Pages 481 and 494) For s > 1
p
− 1, W̃ s,p(Ω̄) = W̃ s,p(Ω). That is, for s > 1

p
− 1

{v ∈ W s,p(Rn) : supp v ⊆ ∂Ω} = {0} .
• Let s > 0 and 1 < p <∞. Then for s ̸= 1

p
, 1+ 1

p
, 2+ 1

p
, · · · (that is, when the fractional

part of s is not equal to 1
p
) we have

(1) ([11], Page 592)[Theorem 8.10.20] W s,p
00 (Ω) = W s,p

0 (Ω) in the sense of equivalent
normed spaces.

(2)
ext0Ω,Rn :

(
C∞
c (Ω), ∥.∥s,p

)
→ W s,p(Rn)

is a well-defined bounded linear operator.
(3)

resRn,Ω : W−s,p′(Rn) → W−s,p′(Ω) u 7→ u|Ω
is a well-defined bounded linear operator.

Note that the connection between items (2) and (3) above can be seen as follows: Let
u ∈ W−s,p′(Rn). resRn,Ωu ∈ W−s,p′(Ω) if and only if u|Ω : (D(Ω), ∥.∥s,p) → R is
continuous, that is, if

sup
0̸=φ∈D(Ω)

|⟨u|Ω, φ⟩D′(Ω)×D(Ω)|
∥φ∥W s,p(Ω)

<∞ .

We have

|⟨u|Ω, φ⟩D′(Ω)×D(Ω)| = |⟨u, ext0Ω,Rnφ⟩D′(Rn)×D(Rn)| = |⟨u, ext0Ω,Rnφ⟩W−s,p′ (Rn)×W s,p
0 (Rn)|

⪯ ∥u∥W−s,p′ (Rn)∥ext0Ω,Rnφ∥W s,p
0 (Rn) .

So, the desired inequality holds if one can show that for allφ ∈ D(Ω), ∥ext0Ω,Rnφ∥W s,p
0 (Rn) ⪯

∥φ∥W s,p(Ω).
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Next we recall some facts about extension operators and embedding properties of
Sobolev spaces. The existence of extension operator can be helpful in transferring known
results for Sobolev spaces defined on Rn to Sobolev spaces defined on bounded domains.

Theorem 7.21 (Extension Property I). ([11], Page 584) Let Ω ⊂ Rn be a bounded open
set with Lipschitz continuous boundary. Then for all s > 0 and for 1 ≤ p < ∞,
there exists a continuous linear extension operator P : W s,p(Ω) ↪→ W s,p(Rn) such that
(Pu)|Ω = u and ∥Pu∥W s,p(Rn) ≤ C∥u∥W s,p(Ω) for some constant C that may depend on
s, p, and Ω but is independent of u.

The next theorem states that the claim of Theorem 7.21 holds for all values of s (posi-
tive and negative) if we replace W s,p(Ω) with W s,p(Ω̄).

Theorem 7.22 (Extension Property II). ([43], Page 487, [41],Page 201) Let Ω ⊂ Rn be
a bounded open set with Lipschitz continuous boundary, p ∈ (1,∞) and s ∈ R. Let
R : W s,p(Rn) → W s,p(Ω̄) be the restriction operator (R(u) = u|Ω). Then there exists a
continuous linear operator S : W s,p(Ω̄) → W s,p(Rn) such that R ◦ S = Id.

Corollary 7.23. One can easily show that the results of Sobolev multiplication theorems
in the previous section (Theorems 7.16, 7.17, 7.18, and 7.19) hold also for Sobolev spaces
on any Lipschitz domain as long as all the Sobolev spaces involved satisfy W e,q(Ω) =
W e,q(Ω̄) (and so, in particular, existence of an extension operator is guaranteed). Indeed,
if P1 : W s1,p1(Ω) → W s1,p1(Rn) and P2 : W s2,p2(Ω) → W s2,p2(Rn) are extension
operators, then (P1u)(P2v)|Ω = uv and therefore,

∥uv∥W s,p(Ω) = ∥uv∥W s,p(Ω̄) ≤ ∥(P1u)(P2v)∥W s,p(Rn) ⪯ ∥P1u∥W s1,p1 (Rn)∥P2v∥W s2,p2 (Rn)

⪯ ∥u∥W s1,p1 (Ω)∥v∥W s2,p2 (Ω) .

Remark 7.24. In the above Corollary, we presumed that (P1u)(P2v)|Ω = uv. Clearly,
if s1 and s2 are both nonnegative, the equality holds. But what if at least one of the
exponents, say s1, is negative? In order to prove this equality, we may proceed as follows:
let {φi} be a sequence in C∞(Rn) ∩W s1,p1(Rn) such that φi → P1u in W s1,p1(Rn). By
assumption W s1,p1(Ω) = W s1,p1(Ω̄), therefore the restriction operator is continuous and
{φi|Ω} is a sequence in C∞(Ω) ∩W s1,p1(Ω) that converges to u in W s1,p1(Ω). For all
ψ ∈ C∞

c (Ω) we have

⟨[(P1u)(P2v)]|Ω, ψ⟩D′(Ω)×D(Ω) = ⟨(P1u)(P2v), ext0Ω,Rn ψ⟩D′(Rn)×D(Rn)

Remark 7.20
= lim

i→∞
⟨φi(P2v), ext0Ω,Rn ψ⟩D′(Rn)×D(Rn)

= lim
i→∞

⟨(P2v), φiext0Ω,Rn ψ⟩D′(Rn)×D(Rn)

= lim
i→∞

⟨(P2v), ext0Ω,Rn (φi|Ωψ)⟩D′(Rn)×D(Rn)

= lim
i→∞

⟨(P2v)|Ω, φi|Ωψ⟩D′(Ω)×D(Ω)

= lim
i→∞

⟨φi|Ωv, ψ⟩D′(Ω)×D(Ω)

= ⟨uv, ψ⟩D′(Ω)×D(Ω) .

Theorem 7.25 (Embedding Theorem II). [21] Let Ω be a nonempty bounded open subset
of Rn with Lipschitz continuous boundary or Ω = Rn. If sp > n, then W s,p(Ω) ↪→
L∞(Ω) ∩ C0(Ω) and W s,p(Ω) is a Banach algebra.

Theorem 7.26 (Embedding Theorem III). [7] Let Ω be a nonempty bounded open subset
of Rn with Lipschitz continuous boundary. Suppose 1 ≤ p, q < ∞ (p does NOT need to
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be less than or equal to q) and 0 ≤ t ≤ s satisfy s− n
p
≥ t− n

q
. If s ̸∈ N0, additionally

assume that s ̸= t. Then W s,p(Ω) ↪→ W t,q(Ω). In particular, W s,p(Ω) ↪→ W t,p(Ω).

Theorem 7.27. Let Ω be a nonempty bounded open subset of Rn with Lipschitz continu-
ous boundary. Then u : Ω → R is Lipschitz continuous if and only if u ∈ W 1,∞(Ω). In
particular, every function in BC1(Ω) is Lipschitz continuous.

Proof. The above theorem is proved in Chapter 5 of [18] for open sets with C1 boundary.
The exact same proof works for open sets with Lipschitz continuous boundary. □

The following theorem (and its corollary) will play an important role in our study of
Sobolev spaces on manifolds.

Theorem 7.28 (Multiplication by smooth functions). Let Ω be a nonempty bounded open
set in Rn with Lipschitz continuous boundary.

(1) Let k ∈ N0 and 1 < p < ∞. If φ ∈ BCk(Ω), then the linear map W k,p(Ω) →
W k,p(Ω) defined by u 7→ φu is well-defined and bounded.

(2) Let s ∈ (0,∞) and 1 < p < ∞. If φ ∈ BC⌊s⌋,1(Ω) (all partial derivatives of
φ up to and including order ⌊s⌋ exist and are bounded and Lipschitz continuous),
then the linear map W s,p(Ω) → W s,p(Ω) defined by u 7→ φu is well-defined and
bounded.

(3) Let s ∈ (−∞, 0) and 1 < p < ∞. If φ ∈ BC∞,1(Ω), then the linear map
W s,p(Ω) → W s,p(Ω) defined by u 7→ φu is well-defined and bounded.

Note: According to Theorem 7.27, when Ω is an open bounded set with Lipschitz con-
tinuous boundary, every function in BC1(Ω) is Lipschitz continuous. As a consequence,
BC∞,1(Ω) = BC∞(Ω). Of course, as it was discussed after Theorem 4.9, for a gen-
eral bounded open set Ω whose boundary is not Lipschitz, functions in BC∞(Ω) are not
necessarily Lipschitz.

Proof.

• Step 1: s = k ∈ N0. The claim is proved in ([16], Page 995).

• Step 2: 0 < s < 1. The proof in Page 194 of [15], with obvious modifications,
shows the validity of the claim for the case where s ∈ (0, 1).
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• Step 3: 1 < s ̸∈ N. In this case we can proceed as follows: Let k = ⌊s⌋, θ = s− k.

∥φu∥s,p
Remark 7.13

= ∥φu∥k,p +
∑
|ν|=k

∥∂ν(φu)∥θ,p

⪯ ∥φu∥k,p +
∑
|ν|=k

∑
β≤ν

∥∂ν−βφ∂βu∥θ,p

⪯ ∥u∥k,p +
∑
|ν|=k

∑
β≤ν

∥∂βu∥θ,p (by Step1 and Step2; the implicit constant may depend on φ)

= ∥u∥s,p +
∑
|ν|=k

∑
β<ν

∥∂βu∥θ,p

⪯ ∥u∥s,p +
∑
|ν|=k

∑
β<ν

∥u∥θ+|β|,p (∂β : W θ+|β|,p(Ω) → W θ,p(Ω)is continuous)

⪯ ∥u∥s,p +
∑
|ν|=k

∑
β<ν

∥u∥s,p (θ + |β| < s⇒ W s,p(Ω) ↪→ W θ+|β|,p(Ω))

⪯ ∥u∥s,p.

Note that the embedding W s,p(Ω) ↪→ W θ+|β|,p(Ω) is valid due to the extra assump-
tion that Ω is bounded with Lipschitz continuous boundary. (See Theorem 7.39 and
Remark 7.40).

• Step 4: s < 0. For this case we use a duality argument. Note that since φ ∈ C∞(Ω),
φu is defined as an element of D′(Ω). Also, recall that W s,p(Ω) is isometrically
isomorphic to [C∞

c (Ω), ∥.∥−s,p′ ]∗ (see the discussion after Remark 4.45). So, in order
to prove the claim, it is enough to show that multiplication by φ is a well-defined
continuous operator from W s,p(Ω) to A = [C∞

c (Ω), ∥.∥−s,p′ ]∗. We have

∥φu∥A = sup
v∈C∞

c \{0}

|⟨φu, v⟩D′(Ω)×D(Ω)|
∥v∥−s,p′

= sup
v∈C∞

c \{0}

|⟨u, φv⟩D′(Ω)×D(Ω)|
∥v∥−s,p′

Remark 7.48
= sup

v∈C∞
c \{0}

|⟨u, φv⟩
W s,p(Ω)×W−s,p′

0 (Ω)
|

∥v∥−s,p′

≤ sup
v∈C∞

c \{0}

∥u∥s,p∥φv∥−s,p′
∥v∥−s,p′

⪯ sup
v∈C∞

c \{0}

∥u∥s,p∥v∥−s,p′
∥v∥−s,p′

= ∥u∥s,p.

□

Corollary 7.29. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary. Let K ∈ K(Ω). Suppose s ∈ R and p ∈ (1,∞). If φ ∈ C∞(Ω), then the
linear map W s,p

K (Ω) → W s,p
K (Ω) defined by u 7→ φu is well-defined and bounded.

Proof. Let U be an open set such that K ⊂ U ⊆ Ū ⊆ Ω. Let ψ ∈ C∞
c (Ω) be such that

ψ = 1 on K and ψ = 0 outside U . Clearly ψφ ∈ C∞
c (Ω) and thus ψφ ∈ BC∞,1(Ω) (see

the paragraph above Theorem 4.10). So, it follows from Theorem 7.28 that ∥ψφu∥s,p ⪯
∥u∥s,p where the implicit constant in particular may depend on φ and ψ. Now the claim
follows from the obvious observation that for all u ∈ W s,p

K (Ω), we have ψφu = φu. □

Theorem 7.30. Let Ω = Rn or Ω be a nonempty bounded open set in Rn with Lipschitz
continuous boundary. Let K ⊆ Ω be compact, s ∈ R and p ∈ (1,∞). Then

(1) W s,p
K (Ω) ⊆ W s,p

0 (Ω). That is, every element of W s,p
K (Ω) is a limit of a sequence in

C∞
c (Ω);
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(2) if K ⊆ V ⊆ K ′ ⊆ Ω where and K ′ is compact and V is open, then for every
u ∈ W s,p

K (Ω), there exists a sequence in C∞
K′(Ω) that converges to u in W s,p(Ω).

Proof. (1) Let u ∈ W s,p
K (Ω). By Theorem 7.33 and Theorem 7.34, there exists a

sequence {φi} in C∞(Ω) such that φi → u in W s,p(Ω). Let ψ ∈ C∞
c (Ω) be such

that ψ = 1 on K. Since C∞
c (Ω) ⊆ BC∞,1(Ω), it follows from Theorem 7.15

and Theorem 7.28 that ψφi → ψu in W s,p(Ω). This proves the claim because
ψφi ∈ C∞

c (Ω) and ψu = u.

(2) In the above argument, choose ψ ∈ C∞
c (Ω) such that ψ = 1 on K and ψ = 0

outside V .
□

Theorem 7.31 (([43], Page 496), ([40], Pages 317, 330, and 332)). Let Ω be a bounded
Lipschitz domain in Rn. Suppose 1 < p < ∞, 0 ≤ s < 1

p
. Then C∞

c (Ω) is dense in
W s,p(Ω) (thus W s,p(Ω) = W s,p

0 (Ω)).

7.4. Properties Of Sobolev Spaces on General Domains. In this section Ω and Ω′ are
arbitrary nonempty open sets in Rn. We begin with some facts about the relationship
between various Sobolev spaces defined on bounded domains.

• Suppose s ≥ 0 and Ω′ ⊆ Ω. Then for all u ∈ W s,p(Ω), we have resΩ,Ω′u ∈ W s,p(Ω′).
Moreover, ∥resΩ,Ω′u∥W s,p(Ω′) ≤ ∥u∥W s,p(Ω). Indeed, if we let s = k + θ

∥u∥W s,p(Ω′) = ∥u∥Wk,p(Ω′) +
∑
|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy

) 1
p

=
∑
|α|≤k

∥∂αu∥Lp(Ω′) +
∑
|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy

) 1
p

≤
∑
|α|≤k

∥∂αu∥Lp(Ω) +
∑
|ν|=k

( ∫ ∫
Ω×Ω

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp
dxdy

) 1
p = ∥u∥W s,p(Ω) .

So, resΩ,Ω′ : W s,p(Ω) → W s,p(Ω′) is a continuous linear map. Also, as a consequence,
for every real number s ≥ 0

W s,p(Ω̄) ↪→ W s,p(Ω) .

Indeed, if u ∈ W s,p(Ω̄), then there exists v ∈ W s,p(Rn) such that resRn,Ωv = u and
thus u ∈ W s,p(Ω). Moreover, for every such v, ∥u∥W s,p(Ω) = ∥resRn,Ωv∥W s,p(Ω) ≤
∥v∥W s,p(Rn). This implies that

∥u∥W s,p(Ω) ≤ inf
v∈W s,p(Rn),v|Ω=u

∥v∥W s,p(Rn) = ∥u∥W s,p(Ω̄) .

• Clearly, for all s ≥ 0
W s,p

00 (Ω) ↪→ W s,p(Ω̄) .

• ([21], Page 18) For every integer m > 0

Wm,p
0 (Ω) ⊆ Wm,p

00 (Ω) ⊆ Wm,p(Ω̄) ⊆ Wm,p(Ω) .

• Suppose s ≥ 0. Clearly, the restriction map resRn,Ω : W s,p(Rn) → W s,p(Ω̄) is a
continuous linear map. This combined with the fact that C∞

c (Rn) is dense in W s,p(Rn)
implies that C∞

c (Ω̄) := resRn,Ω(C∞
c (Rn)) is dense in W s,p(Ω̄) for all s ≥ 0.

• W̃ s,p(Ω̄) is a closed subspace of W s,p(Rn). Closed subspaces of reflexive spaces are
reflexive, hence W̃ s,p(Ω̄) is a reflexive space.
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Theorem 7.32. Let Ω be a nonempty open set in Rn and 1 < p <∞.

(1) For all s ≥ 0, W s,p(Ω) is reflexive.

(2) For all s ≥ 0, W s,p
0 (Ω) is reflexive.

(3) For all s < 0, W s,p(Ω) is reflexive.

Proof.

(1) The proof for s ∈ N0 can be found in [2]. Let s = k+ θ where k ∈ N0 and 0 < θ < 1.
Let

r = card{ν ∈ Nn
0 : |ν| = k} .

Define P : W s,p(Ω) → W k,p(Ω)× [Lp(Ω× Ω)]×r by

P (u) = (u,

(
|∂νu(x)− ∂νu(y)|

|x− y|
n
p
+θ

)
|ν|=k

) .

The space W k,p(Ω)× [Lp(Ω× Ω)]×r equipped with the norm

∥(f, v1, · · · , vr)∥ := ∥f∥Wk,p(Ω) + ∥v1∥Lp(Ω×Ω) + · · ·+ ∥vr∥Lp(Ω×Ω)

is a product of reflexive spaces and so it is reflexive (see Theorem 4.12). Clearly,
the operator P is an isometry from W s,p(Ω) to W k,p(Ω) × [Lp(Ω × Ω)]×r. Since
W s,p(Ω) is a Banach space, P (W s,p(Ω)) is a closed subspace of the reflexive space
W k,p(Ω)× [Lp(Ω× Ω)]×r and thus it is reflexive. Hence W s,p(Ω) itself is reflexive.

(2) W s,p
0 (Ω) is the closure of C∞

c (Ω) in W s,p(Ω). Closed subspaces of reflexive spaces
are reflexive. Therefore, W s,p

0 (Ω) is reflexive.

(3) A normed spaceX is reflexive if and only ifX∗ is reflexive (see Theorem 4.12). Since
for s < 0 we have W s,p(Ω) = [W−s,p′

0 (Ω)]∗, the reflexivity of W s,p(Ω) follows from
the reflexivity of W−s,p′

0 (Ω).

□

Theorem 7.33. For all s < 0 and 1 < p <∞, C∞
c (Ω) is dense in W s,p(Ω).

Proof. The proof of the density of Lp in Wm,p in page 65 of [2] for integer order Sobolev
spaces, which is based on the reflexivity of W−m,p′

0 (Ω), works in the exact same way for
establishing the density of C∞

c (Ω) in W s,p(Ω). □

Theorem 7.34 (Meyers-Serrin). For all s ≥ 0 and p ∈ (1,∞), C∞(Ω) ∩ W s,p(Ω) is
dense in W s,p(Ω).

Next we consider extension by zero and its properties.

Lemma 7.35. ([11], Page 201) Let Ω be a nonempty open set in Rn and u ∈ Wm,p
0 (Ω)

where m ∈ N0 and 1 < p <∞. Then

(1) ∀ |α| ≤ m, ∂αũ = (̃∂αu) as elements of D′(Rn),
(2) ũ ∈ Wm,p(Rn) with ∥ũ∥Wm,p(Rn) = ∥u∥Wm,p(Ω).

Here, ũ := ext0Ω,Rnu and (̃∂αu) := ext0Ω,Rn(∂
αu).

Lemma 7.36 ([32],Page 546). Let Ω be a nonempty open set in Rn, K ∈ K(Ω), u ∈
W s,p
K (Ω) where s ∈ (0, 1) and 1 < p <∞. Then ext0Ω,Rnu ∈ W s,p(Rn) and

∥ext0Ω,Rn∥W s,p(Rn) ⪯ ∥u∥W s,p(Ω) ,

where the implicit constant depends on n, p, s,K and Ω.
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Theorem 7.37 (Extension by Zero). Let s ≥ 0 and p ∈ (1,∞). Let Ω be a nonempty
open set in Rn and let K ∈ K(Ω). Suppose u ∈ W s,p

K (Ω). Then
(1) ext0Ω,Rnu ∈ W s,p(Rn). Indeed, ∥ext0Ω,Rnu∥W s,p(Rn) ⪯ ∥u∥W s,p(Ω) where the im-

plicit constant may depend on s, p, n,K,Ω but it is independent of u ∈ W s,p
K (Ω).

(2) Moreover,
∥ext0Ω,Rnu∥W s,p(Rn) ≥ ∥u∥W s,p(Ω) .

In short, ∥ext0Ω,Rnu∥W s,p(Rn) ≃ ∥u∥W s,p(Ω).

Proof. Let ũ = ext0Ω,Rnu. If s ∈ N0, then both items follow from Lemma 7.35. So, let
s = m+ θ where m ∈ N0 and θ ∈ (0, 1). We have

∥ũ∥W s,p(Rn) = ∥ũ∥Wm,p(Rn) +
∑
|ν|=m

|∂ν ũ|W θ,p(Rn)

Lemma 7.35
= ∥u∥Wm,p(Ω) +

∑
|ν|=m

|∂̃νu|W θ,p(Rn)

Lemma 7.36
⪯ ∥u∥Wm,p(Ω) +

∑
|ν|=m

∥∂νu∥W θ,p(Ω)

⪯ ∥u∥W s,p(Ω) .

The fact that ∥ũ∥W s,p(Rn) ≥ ∥u∥W s,p(Ω) is a direct consequence of the decomposition
stated in item 1. of Remark 7.3. □

Corollary 7.38. Let s ≥ 0 and p ∈ (1,∞). Let Ω and Ω′ be nonempty open sets in Rn

with Ω′ ⊆ Ω and let K ∈ K(Ω′). Suppose u ∈ W s,p
K (Ω′). Then

(1) ext0Ω′,Ωu ∈ W s,p(Ω),
(2) ∥ext0Ω′,Ωu∥W s,p(Ω) ≃ ∥u∥W s,p(Ω′).

Proof.

u ∈ W s,p
K (Ω′) =⇒ ext0Ω′,Rnu ∈ W s,p(Rn) =⇒ ext0Ω′,Rnu|Ω ∈ W s,p(Ω̄) .

As we know, W s,p(Ω̄) ↪→ W s,p(Ω). Also, it is easy to see that ext0Ω′,Rnu|Ω = ext0Ω′,Ωu.
Therefore, ext0Ω′,Ωu ∈ W s,p(Ω). Moreover,

∥ext0Ω′,Ωu∥W s,p(Ω) ≃ ∥ext0Ω,Rn ◦ ext0Ω′,Ωu∥W s,p(Rn) = ∥ext0Ω′,Rnu∥W s,p(Rn) ≃ ∥u∥W s,p(Ω′) .

□

Extension by zero for Sobolev spaces with negative exponents will be discussed in
Theorem 7.45.

Theorem 7.39 (Embedding Theorem IV). Let Ω ⊆ Rn be an arbitrary nonempty open
set.

(1) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s − n
p
≥ t − n

q
. Then W s,p(Ω̄) ↪→

W t,q(Ω̄).

(2) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s − n
p
≥ t − n

q
. Then W s,p

K (Ω) ↪→
W t,q
K (Ω) for all K ∈ K(Ω).

(3) For all k1, k2 ∈ N0 with k1 ≤ k2 and 1 < p <∞, W k2,p(Ω) ↪→ W k1,p(Ω).

(4) If 0 ≤ t ≤ s < 1 and 1 < p <∞, then W s,p(Ω) ↪→ W t,p(Ω).

(5) If 0 ≤ t ≤ s <∞ are such that ⌊s⌋ = ⌊t⌋ and 1 < p <∞, thenW s,p(Ω) ↪→ W t,p(Ω).
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(6) If 0 ≤ t ≤ s <∞, t ∈ N0, and 1 < p <∞, then W s,p(Ω) ↪→ W t,p(Ω).

Proof.

(1) This item can be found in ([40], Section 4.6.1).

(2) For all u ∈ W s,p
K (Ω) we have

∥u∥W t,q(Ω) ≃ ∥ext0Ω,Rnu∥W t,q(Rn) ⪯ ∥ext0Ω,Rnu∥W s,p(Rn) ≃ ∥u∥W s,p(Ω) .

(3) This item is a direct consequence of the definition of integer order Sobolev spaces.

(4) Proof can be found in [32], Page 524.

(5) This is a direct consequence of the previous two items.

(6) This is true because W s,p(Ω) ↪→ W ⌊s⌋,p(Ω) ↪→ W t,p(Ω).

□

Remark 7.40. For an arbitrary open set Ω in Rn and 0 < t < 1, the embedding
W 1,p(Ω) ↪→ W t,p(Ω) does NOT necessarily hold (see e.g. [32], Section 9.). Of course,
as it was discussed, under the extra assumption that Ω is Lipschitz, the latter embedding
holds true. So, if ⌊s⌋ ≠ ⌊t⌋ and t ̸∈ N0, then in order to ensure thatW s,p(Ω) ↪→ W t,p(Ω)
we need to assume some sort of regularity for the domain Ω (for instance it is enough to
assume Ω is Lipschitz).

Theorem 7.41 (Multiplication by smooth functions). Let Ω be any nonempty open set in
Rn. Let p ∈ (1,∞).

(1) If 0 ≤ s < 1 and φ ∈ BC0,1(Ω) (that is, φ is bounded and φ is Lipschitz), then

mφ : W s,p(Ω) → W s,p(Ω), u 7→ φu

is a well-defined bounded linear map.

(2) If k ∈ N0 and φ ∈ BCk(Ω), then

mφ : W k,p(Ω) → W k,p(Ω), u 7→ φu

is a well-defined bounded linear map.

(3) If −1 < s < 0 and φ ∈ BC∞,1(Ω) or s ∈ Z− and φ ∈ BC∞(Ω), then

mφ : W s,p(Ω) → W s,p(Ω), u 7→ φu

is a well-defined bounded linear map. (φu is interpreted as the product of a smooth
function and a distribution.)

Proof.

(1) Proof can be found in [32], Page 547.

(2) Proof can be found in [16], Page 995.

(3) The duality argument in Step 4. of the proof of Theorem 7.28 works for this item
too.

□

Remark 7.42. Suppose φ ∈ BC∞,1(Ω). Note that the above theorem says nothing
about the boundedness of the mapping mφ : W s,p(Ω) → W s,p(Ω) in the case where s is
noninteger such that |s| > 1. Of course, if we assume Ω is Lipschitz, then the continuity
of mφ follows from Theorem 7.28. It is important to note that the proof of that theorem
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for the case s > 1 (noninteger) uses the embedding W k+θ,p(Ω) ↪→ W k′+θ,p(Ω) with
k′ < k which as we discussed does not hold for an arbitrary open set Ω. The proof for
the case s < −1 (noninteger) uses duality to transfer the problem to s > 1 and thus
again we need the extra assumption of regularity of the boundary of Ω.

Theorem 7.43. Let Ω be a nonempty open set in Rn, K ∈ K(Ω), p ∈ (1,∞), and
−1 < s < 0 or s ∈ Z− or s ∈ [0,∞). If φ ∈ C∞(Ω), then the linear map

W s,p
K (Ω) → W s,p

K (Ω), u 7→ φu

is well-defined and bounded.

Proof. There exists ψ ∈ C∞
c (Ω) such that ψ = 1 on K. Clearly ψφ ∈ C∞

c (Ω) and if
u ∈ W s,p

K (Ω), ψφu = φu on Ω. Thus without loss of generality we may assume that
φ ∈ C∞

c (Ω). Since C∞
c (Ω) ⊆ BC∞(Ω) and C∞

c (Ω) ⊆ BC∞,1(Ω), the cases where
−1 < s < 0 or s ∈ Z− follow from Theorem 7.41. For s ≥ 0, the proof of Theorem
7.28 works for this theorem as well. The only place in that proof that the regularity of the
boundary of Ω was used was for the validity of the embedding W s,p(Ω) ↪→ W θ+|β|,p(Ω).
However, as we know (see Theorem 7.39), this embedding holds for Sobolev spaces with
support in a fixed compact set inside Ω for a general open set Ω, that is, for W s,p

K (Ω) ↪→
W

θ+|β|,p
K (Ω) to be true we do not need to assume Ω is Lipschitz. □

Remark 7.44. Note that our proofs for s < 0 are based on duality. As a result, it seems
that for the case where s is a noninteger less than −1 we cannot have a multiplication by
smooth functions result forW s,p

K (Ω) similar to the one stated in the above theorem. (Note
that there is no fixed compact set K such that every v ∈ C∞

c (Ω) has compact support in
K. Thus the technique used in Step 4 of the proof of Theorem 7.28 does not work in this
case.)

Theorem 7.45. Let s < 0 and p ∈ (1,∞). Let Ω and Ω′ be nonempty open sets in Rn

with Ω′ ⊆ Ω and let K ∈ K(Ω′). Suppose u ∈ W s,p
K (Ω′). Then

(1) If ext0Ω′,Ωu ∈ W s,p(Ω), then ∥u∥W s,p(Ω′) ⪯ ∥ext0Ω′,Ωu∥W s,p(Ω) (the implicit constant
may depend on K).

(2) If s ∈ (−∞,−1] ∩ Z or −1 < s < 0, then ext0Ω′,Ωu ∈ W s,p(Ω) and
∥ext0Ω′,Ωu∥W s,p(Ω) ≃ ∥u∥W s,p(Ω′). This result holds for all s < 0 if we further
assume that Ω is Lipschitz or Ω = Rn.

Proof. To be completely rigorous, let iD,W : D(Ω′) → W−s,p′
0 (Ω′) be the identity map

and let i∗D,W : W s,p(Ω′) → D′(Ω′) be its dual with which we identify W s,p(Ω′) with a
subspace ofD′(Ω′). Previously we defined ext0Ω′,Ω for distributions with compact support
in Ω′. For any u ∈ W s,p

K (Ω′) we let

ext0Ω′,Ωu := ext0Ω′,Ω ◦ i∗D,Wu ,

which by definition will be an element of D′(Ω). Note that (see Remark 7.48 and the
discussion right after Remark 4.45)

∥ext0Ω′,Ωu∥W s,p(Ω) = sup
0̸=ψ∈D(Ω)

|⟨ext0Ω′,Ωu, ψ⟩D′(Ω)×D(Ω)|
∥ψ∥W−s,p′ (Ω)

∥u∥W s,p(Ω′) = sup
0̸=φ∈D(Ω′)

|⟨u, φ⟩D′(Ω′)×D(Ω′)|
∥φ∥W−s,p′ (Ω′)

.
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So, in order to prove the first item we just need to show that

∀ 0 ̸= φ ∈ D(Ω′) ∃ψ ∈ D(Ω) s.t.
|⟨u, φ⟩D′(Ω′)×D(Ω′)|

∥φ∥W−s,p′ (Ω′)

⪯
|⟨ext0Ω′,Ωu, ψ⟩D′(Ω)×D(Ω)|

∥ψ∥W−s,p′ (Ω)

.

Let φ ∈ D(Ω′). Define ψ = ext0Ω′,Ωφ. Clearly, ψ ∈ D(Ω) and ψ = φ on Ω′. Therefore,

⟨ext0Ω′,Ωu, ψ⟩D′(Ω)×D(Ω) = ⟨u, ψ|Ω′⟩D′(Ω′)×D(Ω′) = ⟨u, φ⟩D′(Ω′)×D(Ω′) .

Moreover, since −s > 0

∥ψ∥W−s,p′ (Ω) = ∥ext0Ω′,Ωφ∥W−s,p′ (Ω) ⪯ ∥φ∥W−s,p′ (Ω′) .

This completes the proof of the first item. For the second item we just need to prove that
under the given hypotheses

∀ 0 ̸= ψ ∈ D(Ω) ∃φ ∈ D(Ω′) s.t.
|⟨ext0Ω′,Ωu, ψ⟩D′(Ω)×D(Ω)|

∥ψ∥W−s,p′ (Ω)

⪯
|⟨u, φ⟩D′(Ω′)×D(Ω′)|

∥φ∥W−s,p′ (Ω′)

.

To this end suppose ψ ∈ D(Ω). Choose a compact set K̃ such that K ⊂ ˚̃K ⊂ K̃ ⊂
Ω′. Fix χ ∈ D(Ω) such that χ = 1 on K̃ and suppχ ⊂ Ω′. Clearly, ψ = χψ on a
neighborhood of K and if we set φ = χψ|Ω′ , then φ ∈ D(Ω′). Therefore,

⟨ext0Ω′,Ωu, ψ⟩D′(Ω)×D(Ω) = ⟨ext0Ω′,Ωu, χψ⟩D′(Ω)×D(Ω) = ⟨u, χψ|Ω′⟩D′(Ω′)×D(Ω′) = ⟨u, φ⟩D′(Ω′)×D(Ω′) .

Also, since −s > 0, we have

∥φ∥W−s,p′ (Ω′) ≤ ∥ext0Ω′,Ωφ∥W−s,p′ (Ω) = ∥χψ∥W−s,p′ (Ω) ⪯ ∥ψ∥W−s,p′ (Ω) .

The latter inequality is the place where we used the assumption that s ∈ (−∞,−1] ∩ Z
or −1 < s < 0 or Ω is Lipschitz or Ω = Rn. This completes the proof of the second
item. □

Corollary 7.46. Let p ∈ (1,∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω
and let K ∈ K(Ω′). Suppose u ∈ W s,p

K (Ω). It follows from Corollary 7.38 and Theorem
7.45 that

• if s ∈ R is not a noninteger less than −1, then

∥u∥W s,p(Ω) ≃ ∥u∥W s,p(Ω′) ,

• if Ω is Lipschitz or Ω = Rn, then for all s ∈ R

∥u∥W s,p(Ω) ≃ ∥u∥W s,p(Ω′) .

Note that on the right hand sides of the above expressions, u stands for resΩ,Ω′u. Clearly,
ext0Ω′,Ω ◦ resΩ,Ω′u = u.

Theorem 7.47. Let Ω be any nonempty open set in Rn, K ⊆ Ω be compact, s > 0, and
p ∈ (1,∞). Then the following norms on W s,p

K (Ω) are equivalent:

∥u∥W s,p(Ω) := ∥u∥Wk,p(Ω) +
∑
|ν|=k

|∂νu|W θ,p(Ω) ,

[u]W s,p(Ω) := ∥u∥Wk,p(Ω) +
∑

1≤|ν|≤k

|∂νu|W θ,p(Ω) ,

where s = k+ θ, k ∈ N0, θ ∈ (0, 1). Moreover, if we further assume Ω is Lipschitz, then
the above norms are equivalent on W s,p(Ω).
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Proof. Clearly, for all u ∈ W s,p(Ω), ∥u∥W s,p(Ω) ≤ [u]W s,p(Ω). So, it is enough to show
that there is a constant C > 0 such that for all u ∈ W s,p

K (Ω) (or u ∈ W s,p(Ω) if Ω is
Lipschitz)

[u]W s,p(Ω) ≤ C∥u∥W s,p(Ω) .

For each 1 ≤ i ≤ k we have∑
|ν|=i

|∂νu|W θ,p(Ω) = ∥u∥W i+θ,p(Ω) − ∥u∥W i,p(Ω) .

Thus

[u]W s,p(Ω) = ∥u∥W s,p(Ω) +
∑
1≤i<k

∑
|ν|=i

|∂νu|W θ,p(Ω)

= ∥u∥W s,p(Ω) +
∑
1≤i<k

(
∥u∥W i+θ,p(Ω) − ∥u∥W i,p(Ω)

)
.

Therefore, it is enough to show that there exists a constant C ≥ 1 such that∑
1≤i<k

∥u∥W i+θ,p(Ω) ≤ (C − 1)∥u∥W s,p(Ω) +
∑
1≤i<k

∥u∥W i,p(Ω) .

By Theorem 7.39, for each 1 ≤ i < k,W s,p
K (Ω) ↪→ W i+θ,p

K (Ω) (also, we haveW s,p(Ω) ↪→
W i+θ,p(Ω) with the extra assumption that Ω is Lipschitz); so there is a constant Ci such
that ∥u∥W i+θ,p(Ω) ≤ Ci∥u∥W s,p(Ω). Clearly with C = 1+

∑k−1
i=1 Ci the desired inequality

holds. □

Remark 7.48. Let s ≥ 0 and 1 < p < ∞. Here we summarize the connection between
Sobolev spaces and space of distributions.

(1) Question 1: What does it mean to say u ∈ D′(Ω) belongs to W−s,p′(Ω)?
Answer:

u ∈ D′(Ω) is in W−s,p′(Ω) ⇐⇒ u : (D(Ω), ∥.∥s,p) → R is continuous

⇐⇒ u : D(Ω) → R has a unique continuous extension to û : W s,p
0 (Ω) → R

(2) Question 2: How should we interpret W−s,p′(Ω) ⊆ D′(Ω)?
Answer: i : D(Ω) → W s,p

0 (Ω) is continuous with dense image. Therefore, i∗ :
W−s,p′(Ω) → D′(Ω) is an injective continuous linear map. If u ∈ W−s,p′(Ω), then
i∗u ∈ D′(Ω) and

⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, iφ⟩W−s,p′ (Ω)×W s,p
0 (Ω) = ⟨u, φ⟩W−s,p′ (Ω)×W s,p

0 (Ω) .

So, i∗u = u|D(Ω) and if we identify with i∗u with u we can write

⟨u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩W−s,p′ (Ω)×W s,p
0 (Ω), ∥u∥W−s,p′ (Ω) = sup

0 ̸=φ∈C∞
c (Ω)

|⟨u, φ⟩D′(Ω)×D(Ω)|
∥φ∥W s,p(Ω)

.

(3) Question 3: How should we interpret W s,p(Ω) ⊆ D′(Ω)?
Answer: It is a direct consequence of the definition ofW s,p(Ω) thatW s,p(Ω) ↪→ Lp(Ω)
for any open set Ω. So, any f ∈ W s,p(Ω) can be identified with the regular distribution
uf ∈ D′(Ω) where

⟨uf , φ⟩ =
∫
fφ ∀φ ∈ D(Ω) .

(4) Question 4: What does it mean to say u ∈ D′(Ω) belongs to W s,p(Ω)?
Answer: It means there exists f ∈ W s,p(Ω) such that u = uf .
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Remark 7.49. Let Ω be a nonempty open set in Rn and f, g ∈ C∞
c (Ω). Suppose s ∈ R

and p ∈ (1,∞).

• If s ≥ 0, then

∥f∥W−s,p′ (Ω) = sup
0 ̸=φ∈C∞

c (Ω)

|⟨f, φ⟩D′(Ω)×D(Ω)|
∥φ∥W s,p(Ω)

= sup
0̸=φ∈C∞

c (Ω)

|
∫
Ω
fφ dx|

∥φ∥W s,p(Ω)

.

So, for all φ ∈ C∞
c (Ω)

|
∫
Ω

fφ dx| ≤ ∥f∥W−s,p′ (Ω)∥φ∥W s,p(Ω) .

In particular, for g, we have

|
∫
Ω

fg dx| ≤ ∥f∥W−s,p′ (Ω)∥g∥W s,p(Ω) .

• If s < 0, we may replace the roles of f and g, and also (s, p) and (−s, p′) in the above
argument to get the exact same inequality: |

∫
Ω
fg dx| ≤ ∥f∥W−s,p′ (Ω)∥g∥W s,p(Ω).

7.5. Invariance Under Change of Coordinates, Composition.

Theorem 7.50 ([42], Section 4.3). Let s ∈ R and 1 < p < ∞. Suppose that T : Rn →
Rn is a C∞-diffeomorphism (i.e. T is bijective and T and T−1 are C∞) with the property
that the partial derivatives (of any order) of the components of T are bounded on Rn (the
bound may depend on the order of the partial derivative) and infRn |detT ′| > 0. Then
the linear map

W s,p(Rn) → W s,p(Rn), u 7→ u ◦ T
is well-defined and is bounded.

Now, let U and V be two nonempty open sets in Rn. Suppose T : U → V is a bijective
map. Similar to [2] we say T is k-smooth if all the components of T belong to BCk(U)
and all the components of T−1 belong to BCk(V ).

Remark 7.51. It is useful to note that if T is 1-smooth, then

inf
U

|detT ′| > 0 and inf
V

|det (T−1)′| > 0 .

Indeed, since the first order partial derivatives of the components of T and T−1 are
bounded, there exist postive numbers M and M̃ such that for all x ∈ U and y ∈ V

|detT ′(x)| < M, |det (T−1)′(y)| < M̃ .

Since |detT ′(x)| × |det (T−1)′(T (x))| = 1, we can conclude that for all x ∈ U and
y ∈ V

|detT ′(x)| > 1

M̃
, |det (T−1)′(y)| > 1

M
,

which proves the claim.

Remark 7.52. Also, it is interesting to note that, as a consequence of the inverse function
theorem, if T : U → V is a bijective map that is Ck (k ∈ N) with the property that
detT ′(x) ̸= 0 for all x ∈ U , then the inverse of T will be Ck as well, that is, T will
automatically be a Ck-diffeomorphism (see e.g. Appendix C in [31] for more details).

Remark 7.53. Note that since we do not assume that U and V are necessarily convex or
Lipschitz, the continuity and boundedness of the partial derivatives of the components of
T do not imply that the components of T are Lipschitz. (See the “Warning” immediately
after Theorem 4.9.)
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Theorem 7.54. [([16], Page 1003), ([2], Pages 77 and 78 )] Let p ∈ (1,∞) and k ∈ N.
Suppose that U and V are nonempty open subsets of Rn.

(1) If T : U → V is a 1-smooth map, then the map

Lp(V ) → Lp(U), u 7→ u ◦ T

is well-defined and is bounded.

(2) If T : U → V is a k-smooth map, then the map

W k,p(V ) → W k,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Theorem 7.55. Let p ∈ (1,∞) and k ∈ Z− (k is a negative integer). Suppose that U
and V are nonempty open subsets of Rn, and T : U → V is ∞-smooth. Then the map

W k,p(V ) → W k,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Proof. By definition we have (T ∗u denotes the pullback of u by T )

∥T ∗u∥Wk,p(U) = sup
φ∈C∞

c (U)

|⟨T ∗u, φ⟩D′(U)×D(U)|
∥φ∥W−k,p′ (U)

= sup
φ∈C∞

c (U)

|⟨u, |det(T−1)′|φ ◦ T−1⟩D′(V )×D(V )|
∥φ∥W−k,p′ (U)

⪯ sup
φ∈C∞

c (U)

∥u∥Wk,p(V )∥|det(T−1)′|φ ◦ T−1∥W−k,p′ (V )

∥φ∥W−k,p′ (U)

|det(T−1)′|∈BC∞

⪯ sup
φ∈C∞

c (U)

∥u∥Wk,p(V )∥φ ◦ T−1∥W−k,p′ (V )

∥φ∥W−k,p′ (U)

.

Since −k is a positive integer, by Theorem 7.54 we have ∥φ◦T−1∥W−k,p′ (V ) ⪯ ∥φ∥W−k,p′ (U).
Consequently,

∥T ∗u∥Wk,p(U) ⪯ ∥u∥Wk,p(V ) .

□

Theorem 7.56. Let p ∈ (1,∞) and 0 < s < 1. Suppose that U and V are nonempty
open subsets of Rn, T : U → V is 1-smooth, and T is Lipschitz continuous on U . Then
the map

W s,p(V ) → W s,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Proof. Note that

∥u ◦ T∥W s,p(U) = ∥u ◦ T∥Lp(U) + |u ◦ T |W s,p(U)

Theorem7.54

⪯ ∥u∥Lp(V ) + |u ◦ T |W s,p(U) .
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So, it is enough to show that |u ◦ T |W s,p(U) ⪯ |u|W s,p(V ).

|u ◦ T |W s,p(U) =
( ∫ ∫

U×U

|(u ◦ T )(x)− (u ◦ T )(y)|p

|x− y|n+sp
dxdy

) 1
p

z=T (x)

w=T (y)

⪯
( ∫ ∫

V×V

|u(z)− u(w)|p

|T−1(z)− T−1(w)|n+sp
1

|detT ′(x)|
1

|detT ′(y)|
dzdw

) 1
p

⪯
( ∫ ∫

V×V

|u(z)− u(w)|p

|T−1(z)− T−1(w)|n+sp
dzdw

) 1
p .

T is Lipschitz continuous on U ; so, there exists a constant C > 0 such that

|T (x)− T (y)| ≤ C|x− y| =⇒ |z − w| ≤ C|T−1(z)− T−1(w)| .
Therefore,

|u ◦ T |W s,p(U) ⪯
( ∫ ∫

V×V

|u(z)− u(w)|p

|z − w|n+sp
dzdw

) 1
p = |u|W s,p(V ) .

□

Theorem 7.57. Let p ∈ (1,∞) and −1 < s < 0. Suppose that U and V are nonempty
open subsets of Rn, T : U → V is ∞-smooth, T−1 is Lipschitz continuous on V , and
|det(T−1)′| is in BC0,1(V ). Then the map

W s,p(V ) → W s,p(U), u 7→ u ◦ T
is well-defined and is bounded.

Proof. The proof of Theorem 7.55, with obvious modifications, shows the validity of the
above claim. □

Remark 7.58. In the previous theorem, by assumption, the first order partial derivatives
of the components of T−1 are continuous and bounded. Also, it is true that absolute
value of a Lipschitz continuous function and the sum and product of bounded Lipschitz
continuous functions will be Lipschitz continuous. Consequently, in order to ensure that
|det(T−1)′| is in BC0,1(V ), it is enough to make sure that the first order partial deriva-
tives of the components of T−1 are bounded and Lipschitz continuous.

Theorem 7.59. Let s = k+ θ where k ∈ N, θ ∈ (0, 1), and let p ∈ (1,∞). Suppose that
U and V are two nonempty open sets in Rn. Let T : U → V be a Lipschitz continuous
k-smooth map on U such that the partial derivatives up to and including order k of all
the components of T are Lipschitz continuous on U as well. Then

(1) for each K ∈ K(V ) the linear map

T ∗ : W s,p
K (V ) → W s,p

T−1(K)(U), u 7→ u ◦ T

is well-defined and is bounded,
(2) if we further assume that V is Lipschitz (and so U is Lipschitz), the linear map

T ∗ : W s,p(V ) → W s,p(U), u 7→ u ◦ T
is well-defined and is bounded.
Note: When U is a Lipschitz domain, the fact that T is k-smooth automatically
implies that all the partial derivatives of the components of T up to and including
order k−1 are Lipschitz continuous (see Theorem 7.27). So in this case, the only
extra assumption, in addition to T being k-smooth, is that the partial derivatives
of the components of T of order k are Lipschitz continuous on U .
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Proof. Recall that C∞(V ) ∩W s,p(V ) is dense in W s,p(V ). Our proof consists of two
steps: in the first step we addditionally assume that u ∈ C∞(V ). Then in the second step
we prove the validity of the claim for u ∈ W s,p

K (V ) (or u ∈ W s,p(V ) with the assumption
that V is Lipschitz).

• Step 1: We have

∥u ◦ T∥W s,p(U) = ∥u ◦ T∥Wk,p(U) +
∑
|ν|=k

|∂ν(u ◦ T )|W θ,p(U)

Theorem 7.54
⪯ ∥u∥Wk,p(V ) +

∑
|ν|=k

|∂ν(u ◦ T )|W θ,p(U) .

Since u and T are both Ck, it can be proved by induction that (see e.g. [2])

∂ν(u ◦ T )(x) =
∑

β≤ν,1≤|β|

Mνβ(x)[(∂
βu) ◦ T ](x) ,

where Mνβ(x) are polynomials of degree at most |β| in derivatives of order at most
|ν| of the components of T . In particular, Mνβ ∈ BC0,1(U) . Therefore,

|∂ν(u ◦ T )|W θ,p(U) ≤ ∥∂ν(u ◦ T )∥W θ,p(U) = ∥
∑

β≤ν,1≤|β|

Mνβ(x)[(∂
βu) ◦ T ](x)∥W θ,p(U)

Theorem 7.41
⪯

∑
β≤ν,1≤|β|

∥(∂βu) ◦ T∥W θ,p(U) =
∑

β≤ν,1≤|β|

∥(∂βu) ◦ T∥Lp(U) + |(∂βu) ◦ T |W θ,p(U)

Theorem 7.54 and 7.56
⪯

∑
β≤ν,1≤|β|

∥∂βu∥Lp(V ) + |∂βu|W θ,p(V ) ≤ ∥u∥Wk,p(V ) +
∑

β≤ν,1≤|β|

|∂βu|W θ,p(V ) .

(The fact that ∂βu belongs to W θ,p(V ) ↪→ Lp(V ) is a consequence of the defini-
tion of the Slobodeckij norm combined with our embedding theorems for Sobolev
spaces of functions with fixed compact support in an arbitrary domain or embedding
theorems for Sobolev spaces of functions on a Lipschitz domain). Hence

∥u ◦ T∥W s,p(U) ⪯ ∥u∥Wk,p(V ) +
∑

1≤|ν|≤k

∑
β≤ν,1≤|β|

|∂βu|W θ,p(V )

⪯ ∥u∥Wk,p(V ) +
∑

1≤|α|≤k

|∂αu|W θ,p(V )

Theorem7.47≃ ∥u∥W s,p(V ) .

Note that the last equivalence is due to the assumption that u ∈ W s,p
K (V ) ( or u ∈

W s,p(V ) with V being Lipschitz).

• Step 2: Now suppose u is an arbitrary element of W s,p
K (V ) (or W s,p(V ) with V

being Lipschitz). There exists a sequence {um}m≥1 in C∞(V ) such that um → u in
W s,p(V ). In particular, {um} is Cauchy. By the previous steps we have

∥T ∗um − T ∗ul∥W s,p(U) ⪯ ∥um − ul∥W s,p(V ) → 0 (as m, l → ∞) .

Therefore, {T ∗um} is a Cauchy sequence in the Banach space W s,p(U) and subse-
quently there exists v ∈ W s,p(U) such that T ∗um → v as m → ∞. It remains to
show that v = T ∗u as elements ofW s,p(U). As a direct consequence of the definition
of W s,p-norm (s ≥ 0) we have

∥T ∗um − v∥Lp(U) ≤ ∥T ∗um − v∥W s,p(U) → 0 ,

∥um − u∥Lp(V ) ≤ ∥um − u∥W s,p(V ) → 0 .
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Note that by Theorem 7.54, um → u in Lp(V ) implies that T ∗um → T ∗u in Lp(U).
Thus T ∗u = v as elements of Lp(U) and hence as elements of W s,p(U).

□

Theorem 7.60. Let p ∈ (1,∞) and s < −1 be a noninteger number. Suppose that U
and V are two nonempty Lipschitz open sets in Rn and T : U → V is a ∞-smooth map.
Then the linear map

T ∗ : W s,p(V ) → W s,p(U), u 7→ u ◦ T
is well-defined and is bounded.
Note: Since V is a Lipschitz domain, the fact that T is ∞-smooth automatically implies
that T−1 and all the partial derivatives of the components of T−1 are Lipschitz continu-
ous (see Theorem 7.27).

Proof. The proof is completely analogous to the proof of Theorem 7.55. We have

∥T ∗u∥W s,p(U) = sup
φ∈C∞

c (U)

|⟨T ∗u, φ⟩D′(U)×D(U)|
∥φ∥W−s,p′ (U)

= sup
φ∈C∞

c (U)

|⟨u, |det(T−1)′|φ ◦ T−1⟩D′(V )×D(V )|
∥φ∥W−s,p′ (U)

⪯
∥u∥W s,p(V )∥|det(T−1)′|φ ◦ T−1∥W−s,p′ (V )

∥φ∥W−s,p′ (U)

|det(T−1)′|∈BC∞(V )

⪯
∥u∥W s,p(V )∥φ ◦ T−1∥W−s,p′ (V )

∥φ∥W−s,p′ (U)

.

Since −s > 0, it follows from the hypotheses of this theorem and the result of Theorem
7.59 that ∥φ ◦ T−1∥W−s,p′ (V ) ⪯ ∥φ∥W−s,p′ (U). Consequently,

∥T ∗u∥W s,p(U) ⪯ ∥u∥W s,p(V ) .

□

Lemma 7.61. Let U and V be two nonempty open sets in Rn. Suppose T : U → V
(T = (T 1, · · · , T n)) is a Ck+1-diffeomorphism for some k ∈ N0 and let B ⊆ U be a
nonempty bounded open set such that B ⊆ B̄ ⊆ U . Then

(1) T : B → T (B) is a (k + 1)-smooth map.
(2) T : B → T (B) and T−1 : T (B) → B are Lipschitz (the Lipschitz constant may

depend on B).
(3) For all 1 ≤ i ≤ n and |α| ≤ k, ∂αT i ∈ BCk,1(B) and ∂α(T−1)i ∈ BCk,1(T (B)).

Proof. Item 1. is true because B̄ is compact and so T (B̄) is compact and continuous
functions are bounded on compact sets. Items 2. and 3. are direct consequences of
Theorem 4.10. □

Theorem 7.62. Let s ∈ R and p ∈ (1,∞). Suppose that U and V are two nonempty
open sets in Rn and T : U → V is a C∞-diffeomorphism (if s ≥ 0 it is enough to assume
T is a C⌊s⌋+1-diffeomorphism). Let B ⊆ U be a nonempty bounded open set such that
B ⊆ B̄ ⊆ U . Let u ∈ W s,p(V ) be such that suppu ⊆ T (B). (Note that if suppu is
compact in V , then such a B exists.)

(1) If s is NOT a noninteger less than −1, then

∥u ◦ T∥W s,p(U) ⪯ ∥u∥W s,p(V ) .
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(The implicit constant may depend on B but otherwise is independent of u.)
(2) If U and V are Lipschitz or Rn, then the above result holds for all s ∈ R.

Proof. If s is an integer or −1 < s < 1, or if U and V are Lipschitz or Rn and s ∈ R
then as a consequence of the above lemma and the preceding theorems we may write

∥u ◦ T∥W s,p(U)

Corollary 7.46
≃ ∥u ◦ T∥W s,p(B) ⪯ ∥u∥W s,p(T (B))

Corollary 7.46
≃ ∥u∥W s,p(V ) .

For general U and V , if s = k + θ, we let B̂ be an open set such that ¯̂
B is a compact

subset of U and B̄ ⊆ B̂. We can apply the previous lemma to B̂ and write

∥u ◦ T∥W s,p(U)

Corollary 7.46
≃ ∥u ◦ T∥W s,p

B̄
(B̂)

Theorem 7.59
⪯ ∥u∥W s,p

T (B̄)
(T (B̂))

Corollary 7.46
≃ ∥u∥W s,p(V ) .

□

Theorem 7.63. [12] Let s ∈ [1,∞), 1 < p <∞, and let

m =

{
s, if s is an integer
⌊s⌋+ 1, otherwise

.

If F ∈ Cm(R) is such that F (0) = 0 and F, F ′, · · · , F (m) ∈ L∞(R) (in particular,
note that every F ∈ C∞

c (R) with F (0) = 0 satisfies these conditions), then the map
u 7→ F (u) is well-defined and continuous from W s,p(Rn) ∩W 1,sp(Rn) into W s,p(Rn).

Corollary 7.64. Let s, p, and F be as in the previous theorem. Moreover, suppose
sp > n. Then the map u 7→ F (u) is well-defined and continuous from W s,p(Rn) into
W s,p(Rn). The reason is that when sp > n, we have W s,p(Rn) ↪→ W 1,sp(Rn).

7.6. Differentiation.

Theorem 7.65 (([11], Pages 598-605), ([21], Section 1.4)). Let s ∈ R, 1 < p < ∞, and
α ∈ Nn

0 . Suppose Ω is a nonempty open set in Rn. Then

(1) the linear operator ∂α : W s,p(Rn) → W s−|α|,p(Rn) is well-defined and bounded;

(2) for s < 0, the linear operator ∂α : W s,p(Ω) → W s−|α|,p(Ω) is well-defined and
bounded;

(3) for s ≥ 0 and |α| ≤ s, the linear operator ∂α : W s,p(Ω) → W s−|α|,p(Ω) is
well-defined and bounded;

(4) if Ω is bounded with Lipschitz continuous boundary, and if s ≥ 0, s− 1
p
̸= integer

(i.e. the fractional part of s is not equal to 1
p
), then the linear operator ∂α :

W s,p(Ω) → W s−|α|,p(Ω) for |α| > s is well-defined and bounded.

Remark 7.66. Comparing the first and last items of the previous theorem, we see that
not all the properties of Sobolev-Slobodeckij spaces on Rn are fully inherited by Sobolev-
Slobodeckij spaces on bounded domains even when the domain has Lipschitz continuous
boundary. (Note that the above difference is related to the more fundamental fact that for
s > 0, even when Ω is Lipschitz, C∞

c (Ω) is not necessarily dense in W s,p(Ω) and sub-
sequently W−s,p′(Ω) is defined as the dual of W s,p

0 (Ω) rather than the dual of W s,p(Ω)
itself.) For this reason, when working with Sobolev spaces on manifolds, we prefer su-
per nice atlases (i.e. we prefer to work with coordinate charts whose image under the
coordinate map is the entire Rn). The next best choice would be GGL or GL atlases.



72 A. BEHZADAN AND M. HOLST

7.7. Spaces of Locally Sobolev Functions. Material of this section are taken from our
manuscript on the properties of locally Sobolev-Slobodeckij functions [9].

Definition 7.67. Let s ∈ R, 1 < p <∞. Let Ω be a nonempty open set in Rn. We define

W s,p
loc (Ω) := {u ∈ D′(Ω) : ∀φ ∈ C∞

c (Ω) φu ∈ W s,p(Ω)} .
W s,p
loc (Ω) is equipped with the natural topology induced by the separating family of semi-

norms {|.|φ}φ∈C∞
c (Ω)} where

∀u ∈ W s,p
loc (Ω) φ ∈ C∞

c (Ω) |u|φ := ∥φu∥W s,p(Ω) .

Theorem 7.68. Let s ∈ R, 1 < p <∞, and α ∈ Nn
0 . Suppose Ω is a nonempty bounded

open set in Rn with Lipschitz continuous boundary. Then

(1) the linear operator ∂α : W s,p
loc (Rn) → W

s−|α|,p
loc (Rn) is well-defined and continu-

ous;

(2) for s < 0, the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) is well-defined and

continuous;

(3) for s ≥ 0 and |α| ≤ s, the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) is

well-defined and continuous;

(4) if s ≥ 0, s − 1
p
̸= integer (i.e. the fractional part of s is not equal to 1

p
), then

the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) for |α| > s is well-defined and

continuous.

The following statements play a key role in our study of Sobolev spaces on Riemann-
ian manifolds with rough metrics.

Theorem 7.69. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary or Ω = Rn. Suppose u ∈ W s,p

loc (Ω) where sp > n. Then u has a continuous
version.

Lemma 7.70. Let Ω = Rn or Ω be a bounded open set in Rn with Lipschitz continuous
boundary. Suppose s1, s2, s ∈ R and 1 < p1, p2, p <∞ are such that

W s1,p1(Ω)×W s2,p2(Ω) ↪→ W s,p(Ω) .

Then
(1) W s1,p1

loc (Ω)×W s2,p2
loc (Ω) ↪→ W s,p

loc (Ω),
(2) for all K ∈ K(Ω), W s1,p1

loc (Ω) ×W s2,p2
K (Ω) ↪→ W s,p(Ω). In particular, if f ∈

W s1,p1
loc (Ω), then the mapping u 7→ fu is a well-defined continuous linear map

from W s2,p2
K (Ω) to W s,p(Ω).

Remark 7.71. It can be shown that the locally Sobolev spaces on Ω are metrizable, so
the continuity of the mapping

W s1,p1
loc (Ω)×W s2,p2

loc (Ω) → W s,p
loc (Ω), (u, v) 7→ uv

in the above lemma can be interpreted as follows: if ui → u in W s1,p1
loc (Ω) and vi → v in

W s2,p2
loc (Ω), then uivi → uv inW s,p

loc (Ω). Also, sinceW s2,p2
K (Ω) is considered as a normed

subspace of W s2,p2(Ω), we have a similar interpretation of the continuity of the mapping
in item 2.

Lemma 7.72. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz
continuous boundary. Let s ∈ R and p ∈ (1,∞) be such that sp > n. Let B : Ω →
GL(k,R). Suppose for all x ∈ Ω and 1 ≤ i, j ≤ k, Bij(x) ∈ W s,p

loc (Ω). Then
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(1) detB ∈ W s,p
loc (Ω),

(2) moreover, if for each m ∈ N Bm : Ω → GL(k,R) and for all 1 ≤ i, j ≤ k
(Bm)ij → Bij in W s,p

loc (Ω), then detBm → detB in W s,p
loc (Ω).

Theorem 7.73. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lips-
chitz continuous boundary. Let s ≥ 1 and p ∈ (1,∞) be such that sp > n.

(1) Suppose that u ∈ W s,p
loc (Ω) and that u(x) ∈ I for all x ∈ Ω where I is some

interval in R. If F : I → R is a smooth function, then F (u) ∈ W s,p
loc (Ω).

(2) Suppose that um → u inW s,p
loc (Ω) and that for allm ≥ 1 and x ∈ Ω, um(x), u(x) ∈

I where I is some open interval in R. If F : I → R is a smooth function, then
F (um) → F (u) in W s,p

loc (Ω).
(3) If F : R → R is a smooth function, then the map taking u to F (u) is continuous

from W s,p
loc (Ω) to W s,p

loc (Ω).

8. LEBESGUE SPACES ON COMPACT MANIFOLDS

Let Mn be a compact smooth manifold and E → M be a smooth vector bundle of
rank r.

Definition 8.1. A collection {(Uα, φα, ρα, ψα)}1≤α≤N of 4-tuples is called an augmented
total trivialization atlas for E → M provided that {(Uα, φα, ρα)}1≤α≤N is a total trivi-
alization atlas forE →M and {ψα} is a partition of unity subordinate to the open cover
{Uα}.

Let {(Uα, φα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E → M .
Let g be a continuous Riemannian metric on M and ⟨., .⟩E be a fiber metric on E (we
denote the corresponding norm by |.|E). Suppose 1 ≤ q <∞.

(1) Definition 1: The space Lq(M,E) is the completion of C∞(M,E) with respect
to the following norm:

∥u∥Lq(M,E) :=
N∑
α=1

r∑
l=1

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥Lq(φα(Uα)) .

Note that for this definition to make sense it is not necessary to have metric on M
or fiber metric on E.

(2) Definition 2: The space Lq(M,E) is the completion of C∞(M,E) with respect
to the following norm:

|u|Lq(M,E) :=

(∫
M

|u|qEdVg
) 1

q

.

(3) Definition 3: The metric g defines a measure on M . Define the following equiva-
lence relation on Γ(M,E):

u ∼ v ⇐⇒ u = v a.e.

We define

Lq(M,E) :=
{u ∈ Γ(M,E) : ∥u∥qLq(M,E) :=

∫
M
|u|qEdVg <∞}

∼
.

For q = ∞ we define

L∞(M,E) :=
{u ∈ Γ(M,E) : ∥u∥L∞(M,E) := esssup|u|E <∞}

∼
.
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Note: We may define negligible sets (sets of measure zero) on a compact manifold using
charts (see Chapter 6 in [30]); it can be shown that this definition is independent of the
charts and equivalent to the one that is obtained using the metric g. So, it is meaningful
to write u = v a.e even without using a metric.

Theorem 8.2. Definition 1 is equivalent to Definition 2 (i.e. the norms are equivalent).

Proof. Our proof consists of four steps:

• Step 1: In the next section it will be proved that different total trivialization atlases and
partitions of unity result in equivalent norms (note that Lq = W 0,q). Therefore, without
loss of generality we may assume that {(Uα, φα, ρα)}1≤α≤N is a total trivialization atlas
that trivializes the fiber metric ⟨., .⟩E (see Theorem 5.24 and Corollary 5.25). So, on any
bundle chart (U,φ, ρ) and for any section u we have

|u|2E ◦ φ−1 = ⟨u, u⟩E ◦ φ−1 =
r∑
l=1

(ρl ◦ u ◦ φ−1)2 .

• Step 2: In this step we show that if there is 1 ≤ β ≤ N such that suppu ⊆ Uβ , then

|u|qLq(M,E) =

∫
M

|u|qEdVg ≃
r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥qLq(φβ(Uβ)) .

We have

∫
M

|u|qEdVg =
∫
φβ(Uβ)

(|u|E ◦ φ−1
β )q

√
det(gij ◦ φ−1

β )(x) dx1 · · · dxn

≃
∫
φβ(Uβ)

(|u|E ◦ φ−1
β )q dx1 · · · dxn (

√
det(gij ◦ φ−1

β )(x) is bounded by positive constants)

=

∫
φβ(Uβ)

(√√√√ r∑
l=1

(ρlβ ◦ u ◦ φ
−1
β )2

)q

dx1 · · · dxn

≃
∫
φβ(Uβ)

[
r∑
l=1

|ρlβ ◦ u ◦ φ−1
β |]q dx1 · · · dxn (

√∑
a2l ≃

∑
|al|)

≃
∫
φβ(Uβ)

r∑
l=1

|ρlβ ◦ u ◦ φ−1
β |q dx1 · · · dxn ((

∑
al)

q ≃
∑

aql )

=
r∑
l=1

∫
φβ(Uβ)

|ρlβ ◦ u ◦ φ−1
β |q dx1 · · · dxn =

r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥qLq(φβ(Uβ)) .

• Step 3: In this step we will prove that for all u ∈ C∞(M,E)

|u|qLq(M,E) ≃
∑
α

|ψαu|qLq(M,E) .
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We have

|u|qLq(M,E) =

∫
M

|u|qEdVg =
∑
α

∫
M

ψqα∑
β ψ

q
β

|u|qEdVg ({ ψq
α∑

β ψ
q
β

} is a partition of unity subordinate to {Uα})

≃
∑
α

∫
Uα

ψqα|u|
q
EdVg (

1∑
β ψ

q
β

is bounded by positive constants)

=
∑
α

∫
Uα

|ψαu|qEdVg =
∑
α

∫
M

|ψαu|qEdVg

=
∑
α

|ψαu|qLq(M,E) .

• Step 4: Let u be an arbitrary element of C∞(M,E). We have

|u|qLq(M,E)

Step 3
≃

∑
α

|ψαu|qLq(M,E)

Step 2
≃

∑
α

∑
l

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥qLq(φα(Uα))

≃ ∥u∥qLq(M,E) .

□

9. SOBOLEV SPACES ON COMPACT MANIFOLDS AND ALTERNATIVE
CHARACTERIZATIONS

9.1. The Definition. Let Mn be a compact smooth manifold. Let π : E → M be a
smooth vector bundle of rank r. Let Λ = {(Uα, φα, ρα, ψα)}1≤α≤N be an augmented
total trivialization atlas for E → M . For each 1 ≤ α ≤ N , let Hα denote the map
HE∨,Uα,φα which was introduced in Section 6.

Definition 9.1.

W e,q(M,E; Λ) = {u ∈ D′(M,E) : ∥u∥W e,q(M,E;Λ) =

N∑
α=1

r∑
l=1

∥[Hα(ψαu)]
l∥W e,q(φα(Uα)) <∞} .

Remark 9.2.

(1) If u ∈ W e,q(M,E; Λ) is a regular distribution, it follows from Remark 6.27 that

∥u∥W e,q(M,E;Λ) =
N∑
α=1

r∑
l=1

∥(ρα)l ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

(2) It is clear that the collection of functions fromM to R can be identified with sections of
the vector bundleE =M×R. For this reasonW e,q(M ; Λ) is defined asW e,q(M,M×
R; Λ). Note that in this case, for each α, ρα is the identity map. So, we may consider an
augmented total trivialization atlas Λ as a collection of 3-tuples {(Uα, φα, ψα)}1≤α≤N .
In particular, if u ∈ W e,q(M ; Λ) is a regular distribution, then

∥u∥W e,q(M ;Λ) =
N∑
α=1

∥(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

(3) Sometimes, when the underlying manifold M and the augmented total trivialization
atlas are clear from the context (or when they are irrelevant), we may write W e,q(E)
instead ofW e,q(M,E; Λ). In particular, for tensor bundles, we may writeW e,q(T kl M)
instead of W e,q(M,T kl M ; Λ).

Remark 9.3. Here is a list of some alternative, not necessarily equivalent, characteriza-
tions of Sobolev spaces.
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(1) Suppose e ≥ 0.

W e,q(M,E; Λ) = {u ∈ Lq(M,E) : ∥u∥W e,q(M,E;Λ) =

N∑
α=1

r∑
l=1

∥(ρα)l◦(ψαu)◦φ−1
α ∥W e,q(φα(Uα)) <∞} .

(2)

W e,q(M,E; Λ) = {u ∈ D′(M,E) : ∥u∥W e,q(M,E;Λ) =

N∑
α=1

r∑
l=1

∥ext0φα(Uα),Rn [Hα(ψαu)]
l∥W e,q(Rn) <∞} .

(3)

W e,q(M,E; Λ) = {u ∈ D′(M,E) : [Hα(u|Uα
)]l ∈W e,q

loc (φα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

(4) W e,q(M,E; Λ) is the completion of C∞(M,E) with respect to the norm

∥u∥W e,q(M,E;Λ) =
N∑
α=1

r∑
l=1

∥(ρα)l ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

(5) • Let g be a smooth Riemannian metric (i.e a fiber metric on TM ). So, g−1 is
a fiber metric on T ∗M .

• Let ⟨., .⟩E be a smooth fiber metric on E.
• Let ∇E be a metric connection in the vector bundle π : E →M .
For k ∈ N0, W k,q(M,E; g,∇E) is the completion of C∞(M,E) with respect

to the following norm:

∥u∥Wk,q(M,E;g,∇E) =
( k∑
i=0

|(∇E)iu|qLq
) 1
q =

( k∑
i=0

∫
M

| ∇E · · · ∇E︸ ︷︷ ︸
i times

u|q
(T ∗M)⊗i⊗EdVg

) 1
q .

In particular, if we denote the Levi Civita connection corresponding to the smooth
Riemannian metric g by ∇, then W k,q(M ; g) is the completion of C∞(M) with
respect to the following norm

∥u∥Wk,q(M ;g) =
( k∑
i=0

|∇iu|qLq
) 1
q =

( k∑
i=0

∫
M

| ∇ · · ·∇︸ ︷︷ ︸
i times

u|q
T iM

dVg
) 1
q .

In the subsequent discussions we will study the relation between each of these alternative
descriptions of Sobolev spaces and Definition 9.1.

Remark 9.4. As it is discussed for example in [7], Sobolev-Slobodeckij spaces on Rn

with noninteger smoothness degree can be defined using real interpolation. Indeed, for
s ∈ R \ Z and θ = s− ⌊s⌋,

W s,p(Rn) =
(
W ⌊s⌋,p(Rn),W ⌊s⌋+1,p(Rn)

)
θ,p
.

One may use any of the previously mentioned descriptions to define W k,q(M,E) for k ∈
Z, and then use real interpolation to defineW e,q(M,E) for e ̸∈ Z. We postpone the study
of this approach to an independent manuscript with focus on the role of interpolation
theory in investigation of Bessel potential spaces and Sobolev-Slobodeckij spaces on
compact manifolds.

An important question is whether our definition of Sobolev spaces (as topological
spaces) depends on the augmented total trivialization atlas Λ. We will answer this ques-
tion at 3 levels. Although each level can be considered as a generalization of the pre-
ceding level, the proofs will be independent of each other. The following theorems show
that at least when e is not a noninteger less than −1, the space W e,q(M,E; Λ) and its
topology are independent of the choice of augmented total trivialization atlas.
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Remark 9.5. In the following theorems, by the equivalence of two norms ∥.∥1 and ∥.∥2
we mean there exist constants C1 and C2 such that

C1∥.∥1 ≤ ∥.∥2 ≤ C2∥.∥1 ,

where C1 and C2 may depend on

n, e, q, φα, Uα, φ̃β, Ũβ, ψα, ψ̃β .

Theorem 9.6 (Equivalence of norms for functions). Let e ∈ R and q ∈ (1,∞). Let
Λ = {(Uα, φα, ψα)}1≤α≤N and Υ = {(Ũβ, φ̃β, ψ̃β)}1≤β≤Ñ be two augmented total trivi-
alization atlases for the trivial bundle M ×R →M . Also, let W be any vector subspace
of W e,q(M ; Υ) whose elements are regular distributions (e.g C∞(M)).

(1) If e is not a noninteger less than −1, then W is a subspace of W e,q(M ; Λ) as well,
and the norms produced by Λ and Υ are equivalent on W .

(2) If e is a noninteger less than −1, further assume that the total trivialization atlases
corresponding to Λ and Υ are GLC. Then W is a subspace of W e,q(M ; Λ) as well,
and the norms produced by Λ and Υ are equivalent on W .

Proof. Let u ∈ Γreg(M). Our goal is to show that the following expressions are compa-
rable:

N∑
α=1

∥(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) ,

Ñ∑
β=1

∥(ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.

To this end it suffices to show that for each 1 ≤ α ≤ N

∥(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) ⪯

Ñ∑
β=1

∥(ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.

We have

∥(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) = ∥

Ñ∑
β=1

ψ̃β(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

≤
Ñ∑
β=1

∥ψ̃β(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

≃
Ñ∑
β=1

∥(ψ̃βψαu) ◦ φ−1
α ∥W e,q(φα(Uα∩Ũβ)) .

The last equality follows from Corollary 7.46 because (ψ̃βψαu) ◦ φ−1
α has support in

the compact set φα(suppψα ∩ supp ψ̃β) ⊆ φα(Uα ∩ Ũβ). Note that here we used the
assumption that if e is a noninteger less than −1, then φα(Uα) is Lipschitz or the entire
Rn. Clearly,

Ñ∑
β=1

∥(ψ̃βψαu) ◦φ−1
α ∥W e,q(φα(Uα∩Ũβ)) =

Ñ∑
β=1

∥(ψ̃βψαu) ◦ φ̃−1
β ◦ φ̃β ◦φ−1

α ∥W e,q(φα(Uα∩Ũβ)) .
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Since φ̃β◦φ−1
α : φα(Uα∩Ũβ) → φ̃β(Uα∩Ũβ) is aC∞-diffeomorphism and (ψ̃βψαu)◦φ̃−1

β

has compact support in the compact set φ̃β(suppψα∩supp ψ̃β) ⊆ φ̃β(Uα∩Ũβ), it follows
from Theorem 7.62 that
Ñ∑
β=1

∥(ψ̃βψαu) ◦ φ̃−1
β ◦ φ̃β ◦φ−1

α ∥W e,q(φα(Uα∩Ũβ)) ⪯
Ñ∑
β=1

∥(ψ̃βψαu) ◦ φ̃−1
β ∥W e,q(φ̃β(Uα∩Ũβ)) .

Note that here we used the assumption that if e is a noninteger less than −1, then the two
total trivialization atlases are GL compatible. As a direct consequence of Corollary 7.38
and Theorem 7.45 we have

∥(ψ̃βψαu) ◦ φ̃−1
β ∥W e,q(φ̃β(Uα∩Ũβ)) ≃ ∥(ψ̃βψαu) ◦ φ̃−1

β ∥W e,q(φ̃β(Ũβ))

= ∥(ψα ◦ φ̃−1
β )[(ψ̃βu) ◦ φ̃−1

β ]∥W e,q(φ̃β(Ũβ))
.

Now, note that ψα ◦ φ̃−1
β ∈ C∞(φ̃β(Ũβ)) and (ψ̃βu) ◦ φ̃−1

β has support in the compact set
φ̃β(supp ψ̃β). Therefore, by Theorem 7.43 (for the case where e is not a noninteger less
than −1) and Corollary 7.29 (for the case where e is a noninteger less than −1) we have

∥(ψα ◦ φ̃−1
β )[(ψ̃βu) ◦ φ̃−1

β ]∥W e,q(φ̃β(Ũβ))
⪯ ∥(ψ̃βu) ◦ φ̃−1

β ∥W e,q(φ̃β(Ũβ))
.

Hence

∥(ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) ⪯

Ñ∑
β=1

∥(ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.

□

Theorem 9.7 (Equivalence of norms for regular sections). Let e ∈ R and q ∈ (1,∞).
Let Λ = {(Uα, φα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, φ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two augmented
total trivialization atlases for the vector bundle E → M . Also, let W be any vector
subspace ofW e,q(M,E; Υ) whose elements are regular distributions (e.gC∞(M,E)).

(1) If e is not a noninteger less than −1, then W is a subspace of W e,q(M,E; Λ) as
well, and the norms produced by Λ and Υ are equivalent on W .

(2) If e is a noninteger less than −1, further assume that the total trivialization atlases
corresponding to Λ and Υ are GLC. Then W is a subspace of W e,q(M,E; Λ) as
well, and the norms produced by Λ and Υ are equivalent on W .

Proof. Let u ∈ Γreg(M,E). Our goal is to show that the following expressions are
comparable:

N∑
α=1

r∑
l=1

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) ,

Ñ∑
β=1

r∑
l=1

∥ρ̃lβ ◦ (ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.

To this end, it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) ⪯

Ñ∑
β=1

r∑
t=1

∥ρ̃tβ ◦ (ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.
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We have

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) = ∥ρlα ◦ (

Ñ∑
β=1

ψ̃βψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

≤
Ñ∑
β=1

∥ρlα ◦ (ψ̃βψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

≃
Ñ∑
β=1

∥ρlα ◦ (ψ̃βψαu) ◦ φ−1
α ∥W e,q(φα(Uα∩Ũβ)) .

The last equality follows from Corollary 7.46 because ρlα ◦ (ψ̃βψαu) ◦ φ−1
α has support

in the compact set φα(suppψα ∩ supp ψ̃β) ⊆ φα(Uα ∩ Ũβ). Note that here we used the
assumption that if e is a noninteger less than −1, then φα(Uα) is either Lipschitz or equal
to the entire Rn. Note that

Ñ∑
β=1

∥ρlα ◦ (ψ̃βψαu) ◦ φ−1
α ∥W e,q(φα(Uα∩Ũβ))

=
Ñ∑
β=1

∥ρlα ◦ (ψ̃βψαu) ◦ φ̃−1
β ◦ φ̃β ◦ φ−1

α ∥W e,q(φα(Uα∩Ũβ))

Theorem 7.62
⪯

Ñ∑
β=1

∥ρlα ◦ (ψ̃βψαu) ◦ φ̃−1
β ∥W e,q(φ̃β(Uα∩Ũβ))

=
Ñ∑
β=1

∥(ψα ◦ φ̃−1
β )[ρlα ◦ (ψ̃βu) ◦ φ̃−1

β ]∥W e,q(φ̃β(Uα∩Ũβ))

=
Ñ∑
β=1

∥(ψα ◦ φ̃−1
β )

[
πl ◦ π′ ◦ Φα︸ ︷︷ ︸

ρα

◦(ψ̃βu) ◦ φ̃−1
β

]
∥W e,q(φ̃β(Uα∩Ũβ))

=
Ñ∑
β=1

∥(ψα ◦ φ̃−1
β )

[
πl ◦ π′ ◦ Φα ◦ Φ−1

β ◦ Φβ ◦ (ψ̃βu) ◦ φ̃−1
β

]
∥W e,q(φ̃β(Uα∩Ũβ)) .

Let vβ : φ̃β(Ũβ) → E be defined by vβ(x) = (ψ̃βu) ◦ φ̃−1
β . Clearly π(vβ(x)) = φ̃−1

β (x).
Therefore,

Φβ(vβ(x)) =
(
π(vβ(x)), ρ̃β(vβ(x))

)
=

(
φ̃−1
β (x), ρ̃β(vβ(x))

)
.

For all x ∈ φ̃β(Uα ∩ Ũβ) we have

π′ ◦ Φα ◦ Φ−1
β

(
Φβ(vβ(x))

)
= π′ ◦ Φα ◦ Φ−1

β

(
φ̃−1
β (x), ρ̃β(vβ(x))

)
Lemma 5.12

= π′ ◦
(
φ̃−1
β (x), ταβ(φ̃

−1
β (x))ρ̃β(vβ(x))

)
= ταβ(φ̃

−1
β (x))︸ ︷︷ ︸

an r × r matrix

ρ̃β(vβ(x)) .
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Let Aαβ = ταβ ◦ φ̃−1
β on φ̃β(Uα ∩ Ũβ). So, we can write

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φ̃β(Uα∩Ũβ))

⪯
Ñ∑
β=1

∥(ψα ◦ φ̃−1
β )(x)

[
πl ◦ Aαβ(x)ρ̃β(vβ(x))

]
∥W e,q(φ̃β(Uα∩Ũβ))

=
Ñ∑
β=1

∥(ψα ◦ φ̃−1
β )(x)

[ r∑
t=1

(Aαβ(x))ltρ̃
t
β(vβ(x))

]
∥W e,q(φ̃β(Uα∩Ũβ))

≤
Ñ∑
β=1

r∑
t=1

∥(ψα ◦ φ̃−1
β )(x)(Aαβ(x))ltρ̃

t
β(vβ(x))∥W e,q(φ̃β(Uα∩Ũβ)) .

Now, note that (Aαβ(x))lt are in C∞(φ̃β(Uα ∩ Ũβ)) and (ψα ◦ φ̃−1
β )(x)ρ̃tβ(vβ(x)) has

support inside the compact set φ̃β(supp ψ̃β ∩ suppψα). Therefore, by Theorem 7.43 (for
the case where e is not a noninteger less than −1) and Corollary 7.29 (for the case where
e is a noninteger less than −1), we have
r∑
t=1

∥(ψα◦φ̃−1
β )(x)(Aαβ(x))ltρ̃

t
β(vβ(x))∥W e,q(φ̃β(Uα∩Ũβ)) ⪯

r∑
t=1

∥(ψα◦φ̃−1
β )(x)ρ̃tβ(vβ(x))∥W e,q(φ̃β(Uα∩Ũβ)) .

Therefore,

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

⪯
Ñ∑
β=1

r∑
t=1

∥(ψα ◦ φ̃−1
β )(x)ρ̃tβ(vβ(x))∥W e,q(φ̃β(Uα∩Ũβ))

≃
Ñ∑
β=1

r∑
t=1

∥(ψα ◦ φ̃−1
β )(x)ρ̃tβ(vβ(x))∥W e,q(φ̃β(Ũβ))

(Here we used Corollary 7.38 and Theorem 7.45)

⪯
Ñ∑
β=1

r∑
t=1

∥ρ̃tβ(vβ(x))∥W e,q(φ̃β(Ũβ))

(Here we used Theorem 7.43 and Corollary 7.29)

=
Ñ∑
β=1

r∑
t=1

∥ρ̃tβ ◦ (ψ̃βu) ◦ φ̃−1
β ∥W e,q(φ̃β(Ũβ))

.

□

Theorem 9.8 (Equivalence of norms for distributional sections). Let e ∈ R and q ∈
(1,∞). Let Λ = {(Uα, φα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, φ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two
augmented total trivialization atlases for the vector bundle E →M .

(1) If e is not a noninteger less than −1, then W e,q(M,E; Λ) and W e,q(M,E; Υ) are
equivalent normed spaces.

(2) If e is a noninteger less than −1, further assume that the total trivialization atlases
corresponding to Λ and Υ are GLC. Then W e,q(M,E; Λ) and W e,q(M,E; Υ) are
equivalent normed spaces.
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Proof. Let u ∈ D′(M,E). We want to show the following expressions are comparable:

N∑
α=1

r∑
l=1

∥[Hα(ψαu)]
l∥W e,q(φα(Uα)) ,

Ñ∑
β=1

r∑
i=1

∥[H̃β(ψ̃βu)]
i∥W e,q(φ̃β(Ũβ))

.

To this end it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

∥[Hα(ψαu)]
l∥W e,q(φα(Uα)) ⪯

Ñ∑
β=1

r∑
i=1

∥[H̃β(ψ̃βu)]
i∥W e,q(φ̃β(Ũβ))

.

We have

[Hα(ψαu)]
l = [Hα(

Ñ∑
β=1

ψ̃βψαu)]
l Remark 6.26

=
Ñ∑
β=1

[Hα(ψ̃βψαu)]
l .

In what follows we will prove that

[Hα(ψ̃βψαu)]
l =

r∑
i=1

(
(Aαβ)il[H̃β(ψ̃βψαu)]

i
)
◦ φ̃β ◦ φ−1

α , (9.1)

for some functions (Aαβ)il, (1 ≤ i ≤ r) in C∞(φ̃β(Uα ∩ Ũβ)). For now let’s assume the
validity of Equation 9.1 to prove the claim.

∥[Hα(ψαu)]
l∥W e,q(φα(Uα)) = ∥

Ñ∑
β=1

[Hα(ψ̃βψαu)]
l∥W e,q(φα(Uα))

≤
Ñ∑
β=1

∥[Hα(ψ̃βψαu)]
l∥W e,q(φα(Uα))

Corollary 7.46
≃

Ñ∑
β=1

∥[Hα(ψ̃βψαu)]
l∥W e,q(φα(Uα∩Ũβ))

(note that by Remark 6.26 [Hα(ψ̃βψαu)]
l has support in the compact set φα(suppψα ∩ supp ψ̃β))

=
Ñ∑
β=1

∥
r∑
i=1

(
(Aαβ)il[H̃β(ψ̃βψαu)]

i
)
◦ φ̃β ◦ φ−1

α ∥W e,q(φα(Uα∩Ũβ))

≤
Ñ∑
β=1

r∑
i=1

∥
(
(Aαβ)il[H̃β(ψ̃βψαu)]

i
)
◦ φ̃β ◦ φ−1

α ∥W e,q(φα(Uα∩Ũβ))
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Theorem 7.62
⪯

Ñ∑
β=1

r∑
i=1

∥(Aαβ)il[H̃β(ψ̃βψαu)]
i∥W e,q(φ̃β(Uα∩Ũβ))

=
Ñ∑
β=1

r∑
i=1

∥(Aαβ)il(ψα ◦ φ̃−1
β )[H̃β(ψ̃βu)]

i∥W e,q(φ̃β(Uα∩Ũβ))

⪯
Ñ∑
β=1

r∑
i=1

∥(ψα ◦ φ̃−1
β )[H̃β(ψ̃βu)]

i∥W e,q(φ̃β(Uα∩Ũβ))

≃
Ñ∑
β=1

r∑
i=1

∥(ψα ◦ φ̃−1
β )[H̃β(ψ̃βu)]

i∥W e,q(φ̃β(Ũβ))

(Here we used Corollary 7.38 and Theorem 7.45)

⪯
Ñ∑
β=1

r∑
i=1

∥[H̃β(ψ̃βu)]
i∥W e,q(φ̃β(Ũβ))

(Here we used Theorem 7.43 and Corollary 7.29) .

So, it remains to prove Equation 9.1. Since supp[Hα(ψ̃βψαu)]
l is inside the compact set

φα(suppψα∩suppψ̃β) ⊆ φα(Uα∩Ũβ), it is enough to consider the action of [Hα(ψ̃βψαu)]
l

on elements of C∞
c (φα(Uα ∩ Ũβ)). φ̃β ◦ φ−1

α : φα(Uα ∩ Ũβ) → φ̃β(Uα ∩ Ũβ) is a C∞-
diffeomorphism. Therefore, the map

C∞
c [φ̃β(Uα ∩ Ũβ)] → C∞

c [φα(Uα ∩ Ũβ)], η 7→ η ◦ φ̃β ◦ φ−1
α

is bijective. In particular, an arbitrary element of C∞
c [φα(Uα∩ Ũβ)] has the form η ◦ φ̃β ◦

φ−1
α where η is an element of C∞

c [φ̃β(Uα ∩ Ũβ)].
For all η ∈ C∞

c [φ̃β(Uα ∩ Ũβ)] we have (see Section 6.2.2)

⟨[Hα(ψ̃βψαu)]
l, η ◦ φ̃β ◦ φ−1

α ⟩ = ⟨ψ̃βψαu, gαl,η◦φ̃β◦φ−1
α
⟩ , (9.2)

where gα
l,η◦φ̃β◦φ−1

α
stands for gl,η◦φ̃β◦φ−1

α ,Uα,φα
.

For all y ∈ φα(Uα ∩ Ũβ) we have (x = φ−1
α (y))

ρ∨α|E∨
x
◦ gα

l,η◦φ̃β◦φ−1
α

◦ φ−1
α (y)︸ ︷︷ ︸
x

= (0, · · · , 0, η ◦ φ̃β ◦ φ−1
α (y)︸ ︷︷ ︸

lth position

, 0, · · · , 0) ,

ρ̃∨β ◦ g̃
β
l,η ◦ φ̃

−1
β (φ̃β ◦ φ−1

α (y))︸ ︷︷ ︸
x

= (0, · · · , 0, η ◦ φ̃β ◦ φ−1
α (y)︸ ︷︷ ︸

lth position

, 0, · · · , 0) .

Therefore, for all y ∈ φα(Uα ∩ Ũβ)

ρ∨α|E∨
x
◦ gα

l,η◦φ̃β◦φ−1
α

◦ φ−1
α (y) = ρ̃∨β ◦ g̃

β
l,η ◦ φ

−1
α (y) ,

which implies that on Uα ∩ Ũβ
gα
l,η◦φ̃β◦φ−1

α
= [ρ∨α|E∨

x
]−1 ◦ [ρ̃∨β |E∨

x
] ◦ g̃βl,η . (9.3)

It follows from Lemma 5.12 that for all a ∈ E∨
x

[ρ̃∨β |E∨
x
] ◦ [ρ∨α|E∨

x
]−1 ◦ [ρ̃∨β |E∨

x
](a) = τ β̃α(x)︸ ︷︷ ︸

r×r

(ρ̃∨β |E∨
x
(a)) .
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That is,
[ρ∨α|E∨

x
]−1 ◦ [ρ̃∨β |E∨

x
](a) = [ρ̃∨β |E∨

x
]−1[τ β̃α(x)(ρ̃∨β |E∨

x
(a))] .

For a = g̃βl,η(x) we have

ρ̃∨β |E∨
x
(a) = ρ̃∨β |E∨

x
(g̃βl,η(x)) = (0, · · · , 0, η ◦ φ̃β(x)︸ ︷︷ ︸

lth position

, 0, · · · , 0) .

So,

[ρ∨α|E∨
x
]−1 ◦ [ρ̃∨β |E∨

x
] ◦ g̃βl,η = [ρ̃∨β |E∨

x
]−1[τ β̃α(x)(ρ̃∨β |E∨

x
(g̃βl,η(x)))] = [ρ̃∨β |E∨

x
]−1

(
(η ◦ φ̃β)


τ β̃α1l

...
τ β̃αrl

)

= [ρ̃∨β |E∨
x
]−1

(

(η ◦ φ̃β)τ β̃α1l

0
...
0

+ · · ·+


0
...
0

(η ◦ φ̃β)τ β̃αrl

)

= g̃β
1,(τ β̃α

1l ◦φ̃−1
β )η

+ · · ·+ g̃β
r,(τ β̃α

rl ◦φ̃−1
β )η

. (9.4)

It follows from (9.2), (9.3), and (9.4) that for all η ∈ C∞
c [φ̃β(Uα ∩ Ũβ)]

⟨[Hα(ψ̃βψαu)]
l, η ◦ φ̃β ◦ φ−1

α ⟩ = ⟨ψ̃βψαu, [ρ∨α|E∨
x
]−1 ◦ [ρ̃∨β |E∨

x
] ◦ g̃βl,η⟩

= ⟨ψ̃βψαu,
r∑
i=1

g̃β
i,(τ β̃αil ◦φ̃−1

β )η
⟩

=
r∑
i=1

⟨[H̃β(ψ̃βψαu)]
i, (τ β̃αil ◦ φ̃−1

β )η⟩

=
r∑
i=1

⟨(τ β̃αil ◦ φ̃−1
β )[H̃β(ψ̃βψαu)]

i, η⟩

=
r∑
i=1

⟨(τ β̃αil ◦ φ̃−1
β )[H̃β(ψ̃βψαu)]

i, η ◦ φ̃β ◦ φ−1
α ◦ (φα ◦ φ̃−1

β )⟩

=
r∑
i=1

⟨ 1

det(φα ◦ φ̃−1
β )

(τ β̃αil ◦ φ̃−1
β )[H̃β(ψ̃βψαu)]

i ◦ φ̃β ◦ φ−1
α , η ◦ φ̃β ◦ φ−1

α ⟩ .

For the last equality we used the following identity

⟨ 1

detT−1
(u ◦ T ), φ⟩ = ⟨u, φ ◦ T−1⟩ .

Hence

[Hα(ψ̃βψαu)]
l =

r∑
i=1

1

det(φα ◦ φ̃−1
β )

(τ β̃αil ◦ φ̃−1
β )[H̃β(ψ̃βψαu)]

i ◦ φ̃β ◦ φ−1
α ,

and consequently letting

(Aαβ)il =
1

det(φα ◦ φ̃−1
β )

(τ β̃αil ◦ φ̃−1
β )

leads to (9.1). □
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Remark 9.9. Note that the above theorems establish the full independence of W e,q(M,E; Λ)

from Λ at least when e is not a noninteger less than −1. So, it is justified to write
W e,q(M,E) instead of W e,q(M,E; Λ) at least when e is not a noninteger less than −1.
Also see Remark 9.31.

9.2. The Properties.

9.2.1. Multiplication Properties.

Theorem 9.10. Let Mn be a compact smooth manifold and E → M be a vector bundle
with rank r. Let Λ = {(Uα, φα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas
for E. Suppose e ∈ R, q ∈ (1,∞), η ∈ C∞(M). If e is a noninteger less than −1,
further assume that the total trivialization atlas of Λ is GGL. Then the linear map

mη : W
e,q(M,E; Λ) → W e,q(M,E; Λ), u 7→ ηu

is well-defined and bounded.

Proof.

∥ηu∥W e,q(M,E;Λ) : =
N∑
α=1

r∑
l=1

∥(Hα(ψαηu))
l∥W e,q(φα(Uα))

Remark 6.26
=

N∑
α=1

r∑
l=1

∥(η ◦ φ−1
α )(Hα(ψαu))

l∥W e,q(φα(Uα))

⪯
N∑
α=1

r∑
l=1

∥(Hα(ψαu))
l∥W e,q(φα(Uα)) = ∥u∥W e,q(M,E;Λ) .

For the case where e is not a noninteger less than −1, the last inequality follows from
Theorem 7.43. If e is a noninteger less than −1, then by assumption φα(Uα) is either
entire Rn or is Lipschitz, and the last inequality is due to Theorem 7.15 and Corollary
7.29. □

Theorem 9.11. Let Mn be a compact smooth manifold and E → M be a vector bundle
with rank r. Let Λ be an augmented total trivialization atlas for E. Let s1, s2, s ∈ R and
p1, p2, p ∈ (1,∞). If any of s1, s2, or s is a noninteger less than −1, further assume that
the total trivialization atlas of Λ is GL compatible with itself.

(1) If s1, s2, and s are not nonintegers less than −1, and ifW s1,p1(Rn)×W s2,p2(Rn) ↪→
W s,p(Rn), then

W s1,p1(M ; Λ)×W s2,p2(M,E; Λ) ↪→ W s,p(M,E; Λ) .

(2) If s1, s2, and s are not nonintegers less than −1, and if W s1,p1(Ω)×W s2,p2(Ω) ↪→
W s,p(Ω), for any open ball Ω, then

W s1,p1(M ; Λ)×W s2,p2(M,E; Λ) ↪→ W s,p(M,E; Λ) .

(3) If any of s1, s2, or s is a noninteger less than −1, and if W s1,p1(Ω)×W s2,p2(Ω) ↪→
W s,p(Ω) for Ω = Rn and for any bounded open set Ω with Lipschitz continuous
boundary, then

W s1,p1(M ; Λ)×W s2,p2(M,E; Λ) ↪→ W s,p(M,E; Λ) .

Proof. (1) Let Λ1 = {(Uα, φα, ρα, ψα)}1≤α≤N be any augmented total trivialization
atlas which is super nice. Let Λ2 = {(Uα, φα, ρα, ψ̃α)}1≤α≤N where for each
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1 ≤ α ≤ N , ψ̃α = ψ2
α∑N

β=1 ψ
2
β

. Note that 1∑N
β=1 ψ

2
β

◦ φ−1
α ∈ BC∞(φα(Uα)). For

f ∈ W s1,p1(M ; Λ) and u ∈ W s2,p2(M,E; Λ) we have

∥fu∥W s,p(M,E;Λ) ≃ ∥fu∥W s,p(M,E;Λ2) =

N∑
α=1

r∑
j=1

∥[Hα(ψ̃α(fu))]
j∥W s,p(φα(Uα))

⪯
N∑
α=1

r∑
j=1

∥((ψαf) ◦ φ−1
α )[Hα(ψαu)]

j∥W s,p(φα(Uα))

⪯
( N∑
α=1

∥(ψαf) ◦ φ−1
α ∥W s1,p1 (φα(Uα))

)( N∑
α=1

r∑
j=1

∥[Hα(ψαu)]
j∥W s2,p2 (φα(Uα))

)
= ∥f∥W s1,p1 (M ;Λ1)∥u∥W s2,p2 (M,E;Λ1) ≃ ∥f∥W s1,p1 (M ;Λ)∥u∥W s2,p2 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead
of “super nice”.

(3) The exact same argument as item 1. works. Just choose Λ1 = Λ. (The equality
∥fu∥W s,p(M,E;Λ) ≃ ∥fu∥W s,p(M,E;Λ2) holds due to the assumption that Λ = Λ1 is
GL compatible with itself.)

□

Remark 9.12. Suppose e is a noninteger less than −1 and q ∈ (1,∞). We will prove
that if Λ and Λ̃ are two augmented total trivialization atlases and each of Λ and Λ̃ is
GL compatible with itself, then W e,q(M,E; Λ) = W e,q(M,E; Λ̃) (see Remark 9.31).
Considering this and the fact that we can choose Λ1 to be super nice (or nice) and
GL compatible with itself (see Theorem 5.18 and Corollary 5.19), we can remove the
assumption “s1, s2, and s are not nonintegers less than −1” from part 1 and part 2 of
the preceding theorem.

9.2.2. Embedding Properties.

Theorem 9.13. Let Mn be a compact smooth manifold. Let π : E → M be a smooth
vector bundle of rank r over M . Let Λ be an augmented total trivialization atlas for E.
Let e1, e2 ∈ R and q1, q2 ∈ (1,∞). If any of e1 or e2 is a noninteger less than −1, further
assume that the total trivialization atlas in Λ is GGL.

(1) If e1 and e2 are not nonintegers less than −1 and if W e1,q1(Rn) ↪→ W e2,q2(Rn),
then W e1,q1(M,E; Λ) ↪→ W e2,q2(M,E; Λ).

(2) If e1 and e2 are not nonintegers less than −1 and if W e1,q1(Ω) ↪→ W e2,q2(Ω) for
all open balls Ω ⊆ Rn, then W e1,q1(M,E; Λ) ↪→ W e2,q2(M,E; Λ).

(3) If any of e1 or e2 is a noninteger less than −1 and if W e1,q1(Ω) ↪→ W e2,q2(Ω) for
Ω = Rn and for any bounded domain Ω ⊆ Rn with Lipschitz continuous boundary,
then W e1,q1(M,E; Λ) ↪→ W e2,q2(M,E; Λ).
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Proof. (1) Let Λ1 = {(Uα, φα, ρα, ψα)}1≤α≤N be any augmented total trivialization
atlas for E which is super nice. We have

∥u∥W e2,q2 (M,E;Λ) ≃ ∥u∥W e2,q2 (M,E;Λ1) =
N∑
α=1

r∑
l=1

∥[Hα(ψαu)]
l∥W e2,q2 (φα(Uα))

⪯
N∑
α=1

r∑
l=1

∥[Hα(ψαu)]
l∥W e1,q1 (φα(Uα))

= ∥u∥W e1,q1 (M,E;Λ1) ≃ ∥u∥W e1,q1 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead
of “super nice”.

(3) The exact same argument as item 1. works. Just choose Λ1 = Λ.
□

Remark 9.14. If we further assume that Λ is GL compatible with itself, then we can
remove the assumption “e1 and e2 are not nonintegers less than −1” from part 1 and
part 2 of the preceding theorem. (See the explanation in Remark 9.12.)

Theorem 9.15. Let Mn be a compact smooth manifold. Let π : E → M be a smooth
vector bundle of rank r over M equipped with fiber metric ⟨., .⟩E (so it is meaningful to
talk about L∞(M,E)). Suppose s ∈ R and p ∈ (1,∞) are such that sp > n. Then
W s,p(M,E) ↪→ L∞(M,E). Moreover, every element u in W s,p(M,E) has a continuous
version. (Note that since s is not a noninteger less than −1, the choice of the augmented
total trivialization atlas is immaterial.)

Proof. Let {(Uα, φα, ρα)}1≤α≤N be a nice total trivialization atlas for E → M that triv-
ializes the fiber metric. Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}. We
need to show that for every u ∈ W s,p(M,E)

|u|L∞(M,E) ⪯ ∥u∥W s,p(M,E) .

Note that since s > 0, W s,p(M,E) ↪→ Lp(M,E) and we can treat u as an ordinary
section of E. We prove the above inequality in two steps:

• Step 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ . We have

|u|L∞(M,E) = ess sup
x∈M

|u|E = ess sup
x∈Uβ

|u|E

= ess sup
y∈φβ(Uβ)

√√√√ r∑
l=1

|ρlβ ◦ u ◦ φ
−1
β |2 (by assumption the triples trivialize the metric)

≤ ess sup
y∈φβ(Uβ)

r∑
l=1

|ρlβ ◦ u ◦ φ−1
β | ≤

r∑
l=1

ess sup
y∈φβ(Uβ)

|ρlβ ◦ u ◦ φ−1
β |

=
r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥L∞(φβ(Uβ))

⪯
r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥W s,p(φβ(Uβ)) (sp > n so W s,p(φβ(Uβ)) ↪→ L∞(φβ(Uβ))) .
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• Step 2: Now, suppose u is an arbitrary element of W s,p(M,E). We have

|u|L∞(M,E) = |
N∑
α=1

ψαu|L∞(M,E) ≤
N∑
α=1

|ψαu|L∞(M,E)

Step 1
⪯

N∑
α=1

r∑
l=1

∥ρlα ◦ ψαu ◦ φ−1
α ∥W s,p(φα(Uα)) ≃ ∥u∥W s,p(M,E) .

Next we prove that every element u of W s,p(M,E) has a continuous version. Note that
for all x ∈ Uα

ψαu(x) = Φ−1
α (x, ρ1α ◦ ψαu, · · · , ρrα ◦ ψαu) .

Also, for all 1 ≤ l ≤ r and 1 ≤ α ≤ N we have

ρlα ◦ ψαu ◦ φ−1
α ∈ W s,p(φα(Uα)) .

Therefore, ρlα ◦ ψαu ◦ φ−1
α has a continuous version which we denote by vlα. Suppose

Alα is the set of measure zero on which vlα ̸= ρlα ◦ ψαu ◦ φ−1
α . Let Aα = ∪1≤l≤rA

l
α.

Clearly, Aα is a set of measure zero. Since φα : Uα → φα(Uα) is a diffeomorphism,
Bα := φ−1

α (Aα) is a set of measure zero in Uα. (In general, if M and N are smooth
n-manifolds, F : M → N is a smooth map, and A ⊆ M is a subset of measure zero,
then F (A) has measure zero in N . See Page 128 in [31].)
Clearly,

(x, v1α ◦ φα, · · · , vrα ◦ φα) = (x, ρ1α ◦ ψαu, · · · , ρrα ◦ ψαu) .
on Uα \Bα. So,

wα := Φ−1
α (x, v1α ◦ φα, · · · , vrα ◦ φα) = Φ−1

α (x, ρ1α ◦ ψαu, · · · , ρrα ◦ ψαu) = ψαu

on Uα \ Bα. Note that wα : Uα → E is a composition of continuous functions and so it
is continuous on Uα. Let ξα ∈ C∞

c (Uα) be such that ξα = 1 on suppψα. So ξαwα = ψαu

on M \ Bα. Consequently, if we let w =
∑N

α=1 ξαwα, then w is a continuous function
that agrees with u =

∑N
α=1 ψαu on M \B where B = ∪1≤α≤NBα. □

9.2.3. Observations Concerning the Local Representation of Sobolev Functions. Let
Mn be a compact smooth manifold. Let E → M be a smooth vector bundle of rank r
over M . As it was discussed in Section 6, given a total trivialization triple (Uα, φα, ρα),
we can associate with every u ∈ D′(M,E) and every f ∈ Γ(M,E), a local representa-
tion with respect to (Uα, φα, ρα):

u 7→ (ũ1, · · · , ũr) ∈ [D′(φα(Uα))]
×r, ũl = [Hα(u|Uα)]l ,

f 7→ (f̃ 1, · · · , f̃ r) ∈ [Func(φα(Uα),R)]×r, f̃ l = ρlα ◦ (f |Uα) ◦ φ−1
α ,

and of course, as it was pointed out in Remark 6.27, the two representations agree when
u is a regular distribution. The goal of this section is to list some useful facts about the
local representations of elements of Sobolev spaces. In what follows, when there is no
possibility of confusion, we may writeHα(u) instead ofHα(u|Uα), or ρlα◦f ◦φ−1

α instead
of ρlα ◦ (f |Uα) ◦ φ−1

α .

Theorem 9.16. Let Mn be a compact smooth manifold and E → M be a vector bundle
of rank r. Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an augmented total trivialization atlas
for E → M . Let u ∈ D′(M,E), e ∈ R, and q ∈ (1,∞). If for all 1 ≤ α ≤ N and
1 ≤ j ≤ r, [Hα(u)]

j ∈ W e,q
loc (φα(Uα)), then u ∈ W e,q(M,E; Λ).
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Proof.

∥u∥W e,q(M,E;Λ) =
N∑
α=1

r∑
j=1

∥[Hα(ψαu)]
j∥W e,q(φα(Uα))

=
N∑
α=1

r∑
j=1

∥(ψα ◦ φ−1
α ) · ([Hα(u)]

j)∥W e,q(φα(Uα)) .

Now, note that ψα ◦φ−1
α : φα(Uα) → R is smooth with compact support (its support is in

the compact set φα(suppψα)). Therefore, it follows from the assumption that each term
on the right hand side of the above equality is finite. □

Remark 9.17. Note that, as opposed to what is claimed in some references, it is NOT true
in general that if u ∈ W e,q(M,E; Λ), then the components of the local representations
of u will be in the corresponding Euclidean Sobolev space; that is, u ∈ W e,q(M,E; Λ)
does not imply that for all 1 ≤ α ≤ N and 1 ≤ j ≤ r, [Hα(u)]

j ∈ W e,q(φα(Uα)).
Consider the following example:
M = S1, e = 0, q = 1, and f : M → R defined by f ≡ 1. Clearly f ∈ W 0,1(M) =
L1(S1). Now, consider the atlas A = {(U1, φ1), (U2, φ2)} where

U1 = S1 \ {(0, 1)}, φ1(x, y) =
x

1− y
,

U2 = S1 \ {(0,−1)}, φ2(x, y) =
x

1 + y
(stereographic projection) .

Clearly, f ◦ φ−1
1 = f ◦ φ−1

2 = 1 and φ1(U1) = φ2(U2) = R. So, f ◦ φ−1
1 and f ◦ φ−1

2 do
not belong to L1(φ1(U1)) or L1(φ2(U2)).

However, the following theorem holds true.

Theorem 9.18. Let Mn be a compact smooth manifold and E → M be a vector bundle
of rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an
augmented total trivialization atlas for E → M . If e is a noninteger less than −1
further assume that Λ is GL compatible with itself. Let u ∈ W e,q(M,E; Λ) be such that
suppu ⊆ V ⊆ V̄ ⊆ Uβ for some open set V and some 1 ≤ β ≤ N . Then for all
1 ≤ i ≤ r, [Hβ(u)]

i ∈ W e,q(φβ(Uβ)). Indeed,

∥[Hβ(u)]
i∥W e,q(φβ(Uβ)) ≤ ∥u∥W e,q(M,E;Λ) .

Proof. Let Λ1 = {(Uα, φα, ρα, ψ̃α)}Nα=1 where {ψ̃α}1≤α≤N is a partition of unity subordi-
nate to the cover {Uα}1≤α≤N such that ψ̃β = 1 on a neighborhood of V̄ (see Lemma 5.11).
We have

∥[Hβ(u)]
i∥W e,q(φβ(Uβ)) = ∥[Hβ(ψ̃βu)]

i∥W e,q(φβ(Uβ))

≤
N∑
α=1

r∑
j=1

∥[Hα(ψ̃αu)]
j∥W e,q(φα(Uα))

= ∥u∥W e,q(M,E;Λ1) ≃ ∥u∥W e,q(M,E;Λ) .

□

Corollary 9.19. Let Mn be a compact smooth manifold and E →M be a vector bundle
of rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an
augmented total trivialization atlas for E → M . If e is a noninteger less than −1
further assume that Λ is GL compatible with itself. If u ∈ W e,q(M,E; Λ), then for all
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1 ≤ α ≤ N and 1 ≤ i ≤ r, [Hα(u)]
i (i.e. each component of the local representation of

u with respect to (Uα, φα, ρα)) belongs toW e,q
loc (φα(Uα)). Moreover, if ξ ∈ C∞

c (φα(Uα)),
then

∥ξ[Hα(u)]
i∥W e,q(φα(Uα)) ⪯ ∥u∥W e,q(M,E;Λ) ,

where the implicit constant may depend on ξ.

Proof. Define G :M → R by

G(p) =

{
ξ ◦ φα if p ∈ Uα

0 if p ̸∈ Uα
.

Clearly, G ∈ C∞(M). So, by Theorem 9.10, Gu ∈ W e,q(M,E; Λ). Also, since ξ ∈
C∞
c (φα(Uα)), there exists a compact set K such that

supp ξ ⊆ K̊ ⊆ K ⊆ φα(Uα) .

Consequently, there exists an open set Vα (e.g. Vα = φ−1
α (K̊)) such that

supp (Gu) ⊆ supp(ξ ◦ φα) ⊆ Vα ⊆ V̄α ⊆ Uα .

So, by Theorem 9.18, [Hα(Gu)]
i ∈ W e,q(φα(Uα)) and

∥[Hα(Gu)]
i∥W e,q(φα(Uα)) ⪯ ∥Gu∥W e,q(M,E;Λ) ⪯ ∥u∥W e,q(M,E;Λ) .

Now, we just need to notice that on φα(Uα),

[Hα(Gu)]
i = (G ◦ φ−1

α )[Hα(u)]
i = ξ[Hα(u)]

i .

□

9.2.4. Observations Concerning the Riemannian Metric. The Sobolev spaces that ap-
pear in this section all have nonnegative smoothness exponents; therefore, the choice of
the augmented total trivialization atlas is immaterial and will not appear in the notation.

Corollary 9.20. Let (Mn, g) be a compact Riemannian manifold with g ∈ W s,p(T 2M),
sp > n. Let {(Uα, φα, ρα)}1≤α≤N be a standard total trivialization atlas for T 2M →M .
Fix some α and denote the components of the metric with respect to (Uα, φα, ρα) by
gij : Uα → R (gij = (ρα)ij ◦ g). As an immediate consequence of Corollary 9.19 we
have

gij ◦ φ−1
α ∈ W s,p

loc (φα(Uα)) .

Theorem 9.21. Let (Mn, g) be a compact Riemannian manifold with g ∈ W s,p(T 2M),
sp > n, s ≥ 1. Let {(Uα, φα, ρα)}1≤α≤N be a GGL standard total trivialization atlas
for T 2M → M . Fix some α and denote the components of the metric with respect to
(Uα, φα, ρα) by gij : Uα → R (gij = (ρα)ij ◦ g). Then

(1) det gα ∈ W s,p
loc (φα(Uα)) where gα(x) is the matrix whose (i, j)-entry is gij ◦ φ−1

α ,
(2)

√
det g ◦ φ−1

α =
√

det gα ∈ W s,p
loc (φα(Uα)),

(3) 1√
det g◦φ−1

α
∈ W s,p

loc (φα(Uα)).

Proof.

(1) By Corollary 9.19, gij ◦φ−1
α is in W s,p

loc (φα(Uα)). So, it follows from Lemma 7.72 that
det gα ∈ W s,p

loc (φα(Uα)).

(2) This is a direct consequence of item 1 and Theorem 7.73.

(3) This is a direct consequence of item 1 and Theorem 7.73.

□
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Theorem 9.22. Let (Mn, g) be a compact Riemannian manifold with g ∈ W s,p(T 2M),
sp > n, s ≥ 1. Then the inverse metric tensor g−1 (which is a

(
0
2

)
tensor field) is in

W s,p(T2M).

Proof. Let {(Uα, φα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T 2M →
M . Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}1≤α≤N . We have

∥g−1∥W s,p(T2M) =
N∑
α=1

∑
i,j

∥ψαgij ◦ φ−1
α ∥W s,p(φα(Uα)) .

So, it is enough to show that for all i, j and α, gij◦φ−1
α is inW s,p

loc (φα(Uα)). LetB = (Bij)
where Bij = gij ◦ φ−1

α . By assumption, g ∈ W s,p(T 2M); it follows from Corollary 9.19
that Bij ∈ W s,p

loc (φα(Uα)). Our goal is to show that the entries of the inverse of B are in
W s,p
loc (φα(Uα)). Recall that

(B−1)ij =
(−1)i+j

detB
Mij ,

where Mij is the determinant of the (n − 1) × (n − 1) matrix formed by removing the
jth row and ith column of B. Since the entries of B are in W s,p

loc (φα(Uα)), it follows
from Lemma 7.72 and Theorem 7.73 that 1

detB and Mij are in W s,p
loc (φα(Uα)). Also,

sp > n, so W s,p
loc (φα(Uα)) is closed under multiplication. Consequently, (B−1)ij is in

W s,p
loc (φα(Uα)). □

Corollary 9.23. Let (Mn, g) be a compact Riemannian manifold with g ∈ W s,p(T 2M),
sp > n, s ≥ 1. {(Uα, φα)}1≤α≤N be a GGL smooth atlas for M . Denote the standard
components of the inverse metric with respect to this chart by gij : Uα → R. As an
immediate consequence of Theorem 9.22 and Corollary 9.19 we have

gij ◦ φ−1
α ∈ W s,p

loc (φα(Uα)) .

Also, since

Γkij ◦ φ−1
α =

1

2
gkl(∂igjl + ∂jgil − ∂lgij) ◦ φ−1

α ,

it follows from Corollary 9.20, Lemma 7.70, Theorem 7.68, and the fact thatW s,p(φα(Uα))×
W s−1,p(φα(Uα)) ↪→ W s−1,p(φα(Uα)) that

Γkij ◦ φ−1
α ∈ W s−1,p

loc (φα(Uα)) .

9.2.5. A Useful Isomorphism. Let Mn be a compact smooth manifold and E →M be a
vector bundle of rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1

is an augmented total trivialization atlas for E → M . Given a closed subset A ⊆
M , W e,q

A (M,E; Λ) is defined to be the subspace of W e,q(M,E; Λ) consisting of u ∈
W e,q(M,E; Λ) with suppu ⊆ A. Fix 1 ≤ β ≤ N and suppose K ⊆ Uβ is compact.
Then each element of W e,q

K (M,E; Λ) can be identified with an element of D′(Uβ, EUβ)
under the injective map u ∈ W e,q

K (M,E; Λ) ⊆ D′(M,E) 7→ u|U ∈ D′(Uβ, EUβ). So,
we can restrict the domain of Hβ : [D(Uβ, E

∨
Uβ
)]∗ → (D′(φβ(Uβ)))

×r to W e,q
K (M,E; Λ)

which associates with each element u ∈ W e,q
K (M,E; Λ), the r components of Hβ(u) =

(ũ1β, · · · , ũrβ). (Here Hβ stands for HE∨,Uβ ,φβ .)

Lemma 9.24. Consider the above setting and further assume that if e is a noninteger less
than −1, then the total trivialization atlas in Λ is GL compatible with itself. Then the
linear topological isomorphism Hβ : [D(Uβ, E

∨
Uβ
)]∗ = D′(Uβ, EUβ) → (D′(φβ(Uβ)))

×r

restricts to a linear topological isomorphism

Ĥβ : W e,q
K (M,E; Λ) → [W e,q

φβ(K)(φβ(Uβ))]
×r .
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Proof. In order to simplify the notation we will use (U,φ, ρ), H , Ĥ , and ũl instead of
(Uβ, φβ, ρβ), Hβ , Ĥβ , and ũlβ . In order to prove this claim, we proceed as follows:

(1) First we show that suppũl ⊆ φ(K).

(2) Next we show that if u ∈ W e,q
K (M,E; Λ), then ∥u∥W e,q(M,E;Λ) ≃

∑r
l=1 ∥ũl∥W e,q(φ(U))

which proves that
(i.) ũl is indeed an element of W e,q(φ(U)) and

(ii.) Ĥ is continuous.
Note that (i) together with the fact that suppũl ⊆ φ(K) shows that ũl is indeed an
element of W e,q

φ(K)(φ(U)) so Ĥ is well-defined.

(3) We prove that Ĥ is injective.

(4) In order to prove that Ĥ is surjective we use our explicit formula for H−1 (see
Remark 6.26).

Note that the fact that Ĥ is bijective combined with the equality ∥u∥W e,q(M,E;Λ) ≃∑r
l=1 ∥ũl∥W e,q(φ(U)) implies that Ĥ−1 is continuous as well.

Here are the proofs:

(1) This item is a direct consequence of item 1. in Remark 6.26.

(2) Define the augmented total trivialization atlas Λ1 by Λ1 = {(Uα, φα, ρα, ψ̃α)}Nα=1

where {ψ̃α}1≤α≤N is a partition of unity subordinate to {Uα}1≤α≤N such that ψ̃β =

1 on a neighborhood of K. Note that for each α, ψ̃α ≥ 0 and
∑N

α=1 ψ̃α = 1. Thus
the assumption ψ̃β = 1 on K implies that ψ̃α = 0 on K for all α ̸= β. We have

∥u∥W e,q(M,E;Λ) ≃ ∥u∥W e,q(M,E;Λ1) ≃
N∑
α=1

r∑
l=1

∥(Hα(ψ̃αu))
l∥W e,q(φα(Uα))

=
r∑
l=1

∥(H(ψ̃βu))
l∥W e,q(φα(Uα)) =

r∑
l=1

∥[H(u)]l∥W e,q(φα(Uα)) .

Note that suppu ⊆ K and ψ̃β = 1 on K, so ψ̃βu = u|U as elements of D′(U,EU).
Therefore, H(ψ̃βu) = H(u) = (ũ1, · · · , ũr).

(3) Ĥ is injective because it is a restriction of the injective map H .

(4) Let (v1, · · · , vr) ∈ [W e,q
φ(K)(φ(U))]

×r. Our goal is to show that H−1(v1, · · · , vr) ∈
W e,q
K (M,E; Λ) ≃ W e,q

K (M,E; Λ1) (this implies that Ĥ is surjective). By Remark
6.26, for all ξ ∈ D(U,E∨

U)

H−1(v1, · · · , vr)(ξ) =
∑
i

vi[(ρ∨)i ◦ ξ ◦ φ−1] .

First note it follows from Remark 6.23 that suppH−1(v1, · · · , vr) ⊆ K; indeed, if
suppξ ⊆ U \K, then ξ ◦φ−1 = 0 on φ(K). So, (ρ∨)i ◦ ξ ◦φ−1 = 0 on φ(K). That
is, supp[(ρ∨)i ◦ ξ ◦ φ−1] ⊆ φ(U) \ φ(K). Thus for all i, vi[(ρ∨)i ◦ ξ ◦ φ−1] = 0
(because, by assumption, suppvi ⊆ φ(K)). This shows that if suppξ ⊆ U \ K,
then H−1(v1, · · · , vr)(ξ) = 0. Consequently, suppH−1(v1, · · · , vr) ⊆ K.



92 A. BEHZADAN AND M. HOLST

Also, we have

∥H−1(v1, · · · , vr)∥W e,q(M,E;Λ1) ≃
r∑
l=1

∥vl∥W e,q(φ(U)) <∞ .

So, H−1(v1, · · · , vr) ∈ W e,q(M,E; Λ).

□

It is clear that u ∈ W e,q(M,E; Λ) if and only if for all α, ψαu ∈ W e,q
Kα

(M,E; Λ) where
Kα can be taken as any compact set such that suppψα ⊆ Kα ⊆ Uα. In fact as a direct
consequence of the definition of Sobolev spaces and the above mentioned isomorphism
we have

u ∈ W e,q(M,E; Λ) ⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [W e,q
φα(suppψα)(φα(Uα))]

×r

⇐⇒ ∀ 1 ≤ α ≤ N ψαu ∈ W e,q
suppψα(M,E; Λ)

9.2.6. Completeness; Density of Smooth Functions. Our proofs for completeness of
Sobolev spaces and density of smooth functions are based on the ideas presented in [35].

Lemma 9.25. Let Mn be a compact smooth manifold and E →M be a vector bundle of
rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an augmented
total trivialization atlas for E → M . If e is a noninteger less than −1 further assume
that Λ is GL compatible with itself. Let Kα be a compact subset of Uα that contains
the support of ψα. Let S : W e,q(M,E; Λ) →

∏N
α=1W

e,q
Kα

(M,E; Λ) be the linear map
defined by S(u) = (ψ1u, · · · , ψNu). Then S : W e,q(M,E; Λ) → S(W e,q(M,E; Λ)) ⊆∏N

α=1W
e,q
Kα

(M,E; Λ) is a linear topological isomorphism. Moreover, S(W e,q(M,E; Λ))

is closed in
∏N

α=1W
e,q
Kα

(M,E; Λ).

Proof.
Each component of S is continuous (see Theorem 9.10), therefore S is continuous. De-
fine P :

∏N
α=1W

e,q
Kα

(M,E) → W e,q(M,E) by

P (v1, · · · , vN) =
∑
i

vi .

Clearly, P is continuous. Also, P ◦ S = id. Now the claim follows from Theorem
4.42. □

Theorem 9.26. Let Mn be a compact smooth manifold and E → M be a vector bundle
of rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an
augmented total trivialization atlas for E →M . If e is a noninteger less than −1 further
assume that Λ is GL compatible with itself. Then W e,q(M,E; Λ) is a Banach space.

Proof. According to Lemma 9.24, for each 1 ≤ α ≤ N , W e,q
Kα

(M,E; Λ) is isomorphic to
the Banach space [W e,q

φα(Kα)
(φα(Uα))]

×r. So
∏N

α=1W
e,q
Kα

(M,E; Λ) is a Banach space. A
closed subspace of a Banach space is Banach. Therefore, S(W e,q(M,E; Λ)) is a Banach
space. Since S is a linear topological isomorphism onto its image, W e,q(M,E; Λ) is also
a Banach space. □

Theorem 9.27. Let Mn be a compact smooth manifold and E → M be a vector bundle
of rank r. Let e ∈ R and q ∈ (1,∞). Suppose Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an
augmented total trivialization atlas for E →M . If e is a noninteger less than −1 further
assume that Λ is GL compatible with itself. Then D(M,E) is dense in W e,q(M,E; Λ).
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Proof. Let Kα = suppψα. For each 1 ≤ α ≤ N , let Vα be an open set such that

Kα ⊆ Vα ⊆ V̄α ⊆ Uα .

Suppose u ∈ W e,q(M,E; Λ) and let uα = ψαu. Clearly, suppuα ⊆ Kα. Also, according
to Lemma 9.24, for each α there exists a linear topological isomorphism

Ĥα : W e,q

V̄α
(M,E) → [W e,q

φα(V̄α)
(φα(Uα))]

×r .

Note that Ĥα(uα) ∈ [W e,q
φα(Kα)

(φα(Uα))]
×r. Therefore, by Lemma 7.30 there exists a

sequence {(ηα)i} in [C∞
φα(V̄α)

(φα(Uα))]
×r (of course we view each component of (ηα)i

as a distribution) that converges to Ĥα(uα) in W e,q norm as i→ ∞. Since Ĥα is a linear
topological isomorphism, we can conclude that

Ĥ−1
α ((ηα)i) → uα, (in W e,q

V̄α
(M,E; Λ) as i→ ∞) .

(Note that if a sequence converges in W e,q
A (M,E; Λ) where A is a closed subset of M ,

it also obviously converges in W e,q(M,E; Λ).) Let ξi =
∑N

α=1 Ĥ
−1
α ((ηα)i). This sum

makes sense because, as we will shortly prove, each summand is in C∞
c (Uα, Eα) and so

by extension by zero can be viewed as an element of C∞(M,E). Clearly ξi →
∑

α uα =
u in W e,q(M,E; Λ). It remains to show that for each i, ξi is in C∞(M,E). To this
end, it suffices to show that if χ = (χ1, · · · , χr) ∈ [C∞

c (φα(Uα))]
×r, then Ĥ−1

α (χ) is
in C∞

c (Uα, Eα) and so can be considered as an element of C∞(M,E) (by extension
by zero). Note that Ĥ−1

α (χ) is compactly supported in Uα because by definition of Ĥα

any distribution in the codomain of Ĥ−1
α has compact support in V̄α. So, we just need

to prove the smoothness of Ĥ−1
α (χ). That is, we need to show that there is a smooth

section f ∈ C∞(Uα, EUα) such that uf = Ĥ−1
α (χ). It seems that the natural candidate

for f(x) should be (ρα|Ex)−1 ◦ χ ◦ φα(x). In fact, if we define f by this formula, then
Ĥα(uf ) = Hα(uf ) and by Remark 6.27 Hα(uf ) is a distribution that corresponds to the
regular function (f̃ 1, · · · , f̃ r) = ρα ◦ f ◦ φ−1

α . Obviously,

ρα ◦ f ◦ φ−1
α |φα(x) = ρα ◦ (ρα|Ex)−1 ◦ χ ◦ φα ◦ φ−1

α |φα(x) = χ|φα(x) .

So, the regular section f(x) = ρα|−1
Ex

◦χ◦φα(x) corresponds to Ĥ−1
α (χ) and we just need

to show that f is smooth; this is true because f is a composition of smooth functions.
Indeed,

f(x) = ρα|−1
Ex

◦ χ ◦ φα(x) = Φ−1
α (x, χ ◦ φα(x)) =⇒ f = Φ−1

α ◦ (Id, χ ◦ φα) ,
and all the maps involved in the above expression are smooth. □

9.2.7. Dual of Sobolev Spaces.

Lemma 9.28. Let Mn be a compact smooth manifold and let π : E → M be a vector
bundle of rank r equipped with a fiber metric ⟨., .⟩E . Let e ∈ R and q ∈ (1,∞). Suppose
Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an augmented total trivialization atlas for E → M which
trivializes the fiber metric. If e is a noninteger less than −1 further assume that the total
trivialization atlas in Λ is GGL.
Fix a positive smooth density µ on M (for instance we can equip M with a smooth Rie-
mannian metric and consider the corresponding Riemannian density). Let T : D(M,E) →
D(M,E∨) be the map that sends ξ to Tξ where Tξ is defined by

∀x ∈M Tξ(x) : Ex → Dx, a 7→ ⟨a, ξ(x)⟩E µ(x) .
Then T is a linear bijective continuous map. Moreover, T : (C∞(M,E), ∥.∥W e,q(M,E;Λ)) →
(C∞(M,E∨), ∥.∥W e,q(M,E∨;Λ∨)) is a topological isomorphism.
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Note: Since M is compact, D(M,E) and D(M,E∨) are Frechet spaces. So, by
Theorem 4.32, the continuity of the bijective linear map T : D(M,E) → D(M,E∨)
implies the continuity of its inverse. That is, T : D(M,E) → D(M,E∨) is a linear
topological isomorphism. As a consequence, the adjoint of T is a well-defined bijective
continuous map that can be used to identifyD′(M,E) = [D(M,E∨)]∗ with [D(M,E)]∗.

Proof. The fact that T is linear is obvious.

• T is one-to-one: Suppose ξ ∈ D(M,E) is such that Tξ = 0. Then

∀x ∈M Tξ(x) = 0 =⇒ ∀x ∈M, ∀ a ∈ Ex [Tξ(x)](a) = 0

=⇒ ∀x ∈M, ∀ a ∈ Ex ⟨a, ξ(x)⟩E = 0

=⇒ ∀x ∈M ⟨ξ(x), ξ(x)⟩E = 0 =⇒ ∀x ∈M ξ(x) = 0 .

• T is onto: Let u ∈ D(M,E∨). Our goal is to show that there exists ξ ∈ D(M,E)
such that u = Tξ. Note that

∀x ∈M u(x) = Tξ(x) ⇐⇒ ∀x ∈M ∀ a ∈ Ex ⟨a, ξ(x)⟩E µ(x) = [u(x)](a) .

Since Dx is 1-dimensional and both µ(x) (which is a positive smooth density) and
[u(x)][a] belong to Dx,, there exists a number b(x, a) such that

[u(x)](a) = b(x, a)µ(x) .

So, we need to show that there exists ξ ∈ D(M,E) such that

∀x ∈M ∀ a ∈ Ex ⟨a, ξ(x)⟩E = b(x, a) .

The above equality uniquely defines a functional on Ex which gives us a unique
element ξ(x) ∈ Ex by the Riesz representation theorem. It remains to prove that ξ is
smooth. To this end, we will show that for each α, ξ|Uα is smooth. Let (s1, · · · , sr)
be a smooth orthonormal frame for EUα .

∀x ∈ Uα ξ(x) = ξ1(x)s1(x) + · · ·+ ξr(x)sr(x) .

It suffices to show that ξ1, · · · , ξr are smooth functions (see Theorem 5.22). We have

ξi(x) = ⟨ξ(x), si(x)⟩E .
It follows from the definition of ξ(x) that

[u(x)][si(x)] = ⟨si(x), ξ(x)⟩E µ(x) .
Therefore, ξi(x) satisfies the following equality

[u(x)][si(x)] = ξi(x)µ(x) .

That is, if we define a section of D → Uα by

[u, si] : Uα → D, x 7→ [u(x)][si(x)] ,

then ξi is the component of this section with respect to the smooth frame {µ(x)} on
Uα. The smoothness of ξi follows from the fact that if N is any manifold, E → N
is a vector bundle and u and v are in E(N,E∨) and E(N,E), respectively, then [u, v]
is in E(N,D); indeed, the local representation of [u, v] is

∑
l ũ

lṽl which is a smooth
function because ũl and ṽl are smooth functions.

• T : D(M,E) → D(M,E∨) is continuous:
We make use of Theorem 4.37. Recall that
(1) The topology on D(M,E) is induced by the seminorms:

∀ 1 ≤ l ≤ r, ∀ 1 ≤ α ≤ N,∀ k ∈ N, ∀K ⊆ Uα(compact) pl,α,k,K(ξ) = ∥ρlα ◦ ξ ◦ φ−1
α ∥φα(K),k .
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(2) The topology on D(M,E∨) is induced by the seminorms:

∀ 1 ≤ l ≤ r,∀ 1 ≤ α ≤ N, ∀ k ∈ N, ∀K ⊆ Uα(compact) ql,α,k,K(η) = ∥(ρ∨α)l ◦ η ◦ φ−1
α ∥φα(K),k .

For all ξ ∈ D(M,E) we have

ql,α,k,K(Tξ) = ∥(ρ∨α)l ◦ Tξ ◦ φ−1
α ∥φα(K),k = ∥(ρD,φα

) ◦ (Tξ ◦ φ−1
α ) ◦ (ρα|Ex

)−1(el)︸ ︷︷ ︸
sl(x)

∥φα(K),k ,

where (e1, · · · , er) is the standard basis for Rr. Let y = φα(x). Note that

[Tξ(φ
−1
α (y))][sl(x)] = ⟨sl(x), ξ(x)⟩E µ(x) .

Therefore, if we define the smooth function fα on Uα by µ(x) = fα(x)|dx1 ∧ · · · ∧
dxn|, then

(ρD,φα) ◦ (Tξ ◦ φ
−1
α ) ◦ sl(x) = ⟨sl(x), ξ(x)⟩Efα(x) = ξl(x)fα(x) = (ρlα ◦ ξ ◦ φ−1

α (y))(fα ◦ φ−1
α (y)) . (9.5)

So, if we let
C = max

y∈φα(K),|β|≤k
|∂β(fα ◦ φ−1

α (y))| ,

then

ql,α,k,K(Tξ) = ∥(ρlα ◦ ξ ◦ φ−1
α (y))(fα ◦ φ−1

α (y))∥φα(K),k ≤ C∥ρlα ◦ ξ ◦ φ−1
α (y))∥φα(K),k = C pl,α,k,K(ξ) .

• T : (C∞(M,E), ∥.∥e,q) → (C∞(M,E∨), ∥.∥e,q) is a topological isomorphism:

∥ξ∥W e,q(M,E;Λ) =
N∑
α=1

r∑
l=1

∥ρlα ◦ ψαξ ◦ φ−1
α ∥W e,q(φα(Uα)) ,

∥Tξ∥W e,q(M,E∨;Λ∨) =
N∑
α=1

r∑
l=1

∥(ρ∨α)l ◦ ψαTξ ◦ φ−1
α ∥W e,q(φα(Uα)) .

By Equation 9.5, we have

(ρ∨α)
l ◦ ψαTξ ◦ φ−1

α = ρD,φα ◦ (ψαTξ ◦ φ−1
α ) ◦ sl(x) = (ρlα ◦ ψαξ ◦ φ−1

α )(fα ◦ φ−1
α ) .

Therefore,

∥Tξ∥W e,q(M,E∨;Λ∨) =
N∑
α=1

r∑
l=1

∥(ρlα ◦ ψαξ ◦ φ−1
α )(fα ◦ φ−1

α )∥W e,q(φα(Uα)) .

Now, we just need to notice that fα ◦ φ−1
α is a positive function and belongs to

C∞(φα(Uα)) (so 1
fα◦φ−1

α
is also smooth) and ρlα◦ψαξ◦φ−1

α has support in the compact
set φα(supp(ψα)) to conclude that

∥ξ∥W e,q(M,E;Λ) ≃ ∥Tξ∥W e,q(M,E∨;Λ∨) .

□

Lemma 9.29. Let Mn be a compact smooth manifold and let π : E → M be a vector
bundle of rank r equipped with a fiber metric ⟨., .⟩E . Let e ∈ R and q ∈ (1,∞). Suppose
Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an augmented total trivialization atlas for E →M . If e is
a noninteger less than −1 further assume that the total trivialization atlas in Λ is GGL.
Then D(M,E) ↪→ W e,q(M,E) ↪→ D′(M,E).
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Proof. We refer to [35] for discussion about the case where e ∈ Z. For e ∈ R \ Z we
have

W e,q(M,E; Λ) ↪→ W ⌊e⌋,q(M,E; Λ) ↪→ D′(M,E) ,

D(M,E) ↪→ W ⌊e⌋+1,q(M,E; Λ) ↪→ W e,q(M,E; Λ) .

□

Theorem 9.30. Let Mn be a compact smooth manifold and let π : E → M be a vector
bundle of rank r equipped with a fiber metric ⟨., .⟩E . Let e ∈ R and q ∈ (1,∞). Suppose
Λ = {(Uα, φα, ρα, ψα)}Nα=1 is an augmented total trivialization atlas for E → M which
trivializes the fiber metric. If e is a noninteger whose magnitude is greater than 1 further
assume that the total trivialization atlas in Λ is GL compatible with itself. Fix a positive
smooth density µ on M .
Consider the L2 inner product on D(M,E) defined by

⟨u, v⟩2 =
∫
M

⟨u, v⟩Eµ .

Then

(i) ⟨., .⟩2 extends uniquely to a continuous bilinear pairing ⟨., .⟩2 : W−e,q′(M,E; Λ)×
W e,q(M,E; Λ) → R. (We are using the same notation (i.e. ⟨., .⟩2) for the extended
bilinear map!)

(ii) The map S : W−e,q′(M,E; Λ) → [W e,q(M,E; Λ)]∗ defined by S(u) = lu where

lu : W
e,q(M,E; Λ) → R, lu(v) = ⟨u, v⟩2

is a well-defined topological isomorphism.

In particular, [W e,q(M,E; Λ)]∗ can be identified with W−e,q′(M,E; Λ).

Proof.

(1) By Theorem 4.11, in order to prove (i) it is enough to show that

⟨., .⟩2 : (C∞(M,E), ∥.∥−e,q′)× (C∞(M,E), ∥.∥e,q) → R

is a continuous bilinear map. Denote the corresponding standard trivialization
map for the density bundle D → M by ρD,φα . Let Λ1 = {(Uα, φα, ρα, ψ̃α)}Nα=1

be an augmented total trivialization atlas for E where ψ̃α = ψ3
α∑N

β=1 ψ
3
β

. Note that
1∑N

β=1 ψ
3
β

◦ φ−1
α ∈ BC∞(φα(Uα)). Let Kα = suppψα. Recall that on Uα we may

write µ = hα|dx1 ∧ · · · ∧ dxn| where hα = ρD,φα ◦µ is smooth. Moreover, for any
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continuous function f :M → R,∫
M

fµ =
N∑
α=1

∫
M

ψ̃αfµ

=
N∑
α=1

∫
φα(Uα)

(φ−1
α )∗(ψ̃αfµ)

=
N∑
α=1

∫
φα(Uα)

(ψ̃αf ◦ φ−1
α )(φ−1

α )∗µ

=
N∑
α=1

∫
φα(Uα)

(ψ̃αf ◦ φ−1
α )(hα ◦ φ−1

α ) dV

⪯
N∑
α=1

∫
φα(Uα)

(ψ2
αf ◦ φ−1

α )(ψαhα ◦ φ−1
α ) dV (

1∑N
β=1 ψ

3
β

◦ φ−1
α ∈ BC∞(φα(Uα))) .

Therefore, we have

|
∫
M

⟨u, v⟩Eµ| = |
N∑
α=1

∫
M

ψ̃α⟨u, v⟩Eµ|

⪯ |
N∑
α=1

∫
φα(Uα)

(ψ2
α⟨u, v⟩E ◦ φ−1

α )(ψαhα ◦ φ−1
α )dV | .

Since by assumption the total trivialization atlas in Λ trivializes the metric, we get

|
∫
M

⟨u, v⟩Eµ| ⪯
N∑
α=1

r∑
i=1

|
∫
φα(Uα)

(ψα ◦ φ−1
α ũi)(ψα ◦ φ−1

α ṽi)(ψαhα ◦ φ−1
α )dV |

Remark 7.49
⪯

N∑
α=1

r∑
i=1

∥(ψα ◦ φ−1
α ũi)∥W−e,q′ (φα(Uα))

∥(ψα ◦ φ−1
α ṽi)(ψαhα ◦ φ−1

α )∥W e,q(φα(Uα))

⪯
N∑
α=1

r∑
i=1

∥(ψα ◦ φ−1
α ũi)∥W−e,q′ (φα(Uα))

∥(ψα ◦ φ−1
α ṽi)∥W e,q(φα(Uα))

⪯
[ N∑
α=1

r∑
i=1

∥(ψα ◦ φ−1
α ũi)∥W−e,q′ (φα(Uα))

][ N∑
α=1

r∑
i=1

∥(ψα ◦ φ−1
α ṽi)∥W e,q(φα(Uα))

]
= ∥u∥W−e,q′ (M,E;Λ)∥v∥W e,q(M,E;Λ) .

(2) For each u ∈ W−e,q′(M,E; Λ), lu is continuous because ⟨., .⟩2 is continuous. So,
S is well-defined.

(3) S is a continuous linear map because

∀u ∈ W−e,q′(M,E; Λ) ∥S(u)∥(W e,q(M,E;Λ))∗ = sup
0̸=v∈W e,q(M,E;Λ)

|S(u)v|
∥v∥W e,q(M,E;Λ)

= sup
0 ̸=v∈W e,q(M,E;Λ)

|⟨u, v⟩2|
∥v∥W e,q(M,E;Λ)

≤ C∥u∥W−e,q′ (M,E;Λ) ,

where C is the norm of the continuous bilinear form ⟨., .⟩2.
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(4) S is injective: suppose u ∈ W−e,q′(M,E; Λ) is such that S(u) = 0, then

∀ v ∈ W e,q(M,E; Λ) lu(v) = ⟨u, v⟩2 = 0 .

We need to show that u = 0.

• Step 1: For ξ and η in D(M,E) we have

⟨ξ, η⟩2 = ⟨uξ, T η⟩[D(M,E∨)]∗×D(M,E∨) ,

where T is the map introduced in Lemma 9.28. (Note that if we identify
D(M,E) with a subset of [D(M,E∨)]∗, then we may write ξ instead of uξ
on the right hand side of the above equality.) The reason is as follows:

⟨uξ, T η⟩[D(M,E∨)]∗×D(M,E∨) =

∫
M

[Tη(x)][ξ(x)] (by definition of uξ).

Recall that by definition of Tη we have

∀x ∈M ∀a ∈ Ex [Tη(x)][a] = ⟨a, η(x)⟩E µ .
In particular,

[Tη(x)][ξ(x)] = ⟨ξ(x), η(x)⟩E µ .
Therefore,

⟨uξ, T η⟩[D(M,E∨)]∗×D(M,E∨) =

∫
M

⟨ξ(x), η(x)⟩Eµ = ⟨ξ, η⟩2 .

• Step 2: For w ∈ W−e,q′(M,E; Λ) and η ∈ D(M,E) ⊆ W e,q(M,E; Λ) we
have

⟨w, η⟩2 = ⟨w, Tη⟩[D(M,E∨)]∗×D(M,E∨) .

Indeed, let {ξm} be a sequence in D(M,E) that converges to w in W−e,q′ (M,E; Λ).
Note that W−e,q′(M,E; Λ) ↪→ [D(M,E∨)]∗, so the sequence converges to w
in [D(M,E∨)]∗ as well. By what was proved in the first step, for all m

⟨ξm, η⟩2 = ⟨ξm, T η⟩[D(M,E∨)]∗×D(M,E∨) .

Taking the limit as m→ ∞ proves the claim.

• Step 3: Finally note that for all v ∈ D(M,E) ⊆ W e,q(M,E; Λ)

⟨T ∗u, v⟩[D(M,E)]∗×D(M,E) = ⟨u, Tv⟩[D(M,E∨)]∗×D(M,E∨) = ⟨u, v⟩2 = 0 .

Therefore, T ∗u = 0 as an element of [D(M,E)]∗. T is a continuous bijective
map, so T ∗ is injective. It follows that u = 0 as an element of [D(M,E∨)]∗

and so u = 0 as an element of W−e,q′(M,E; Λ).

(5) S is surjective. Let F ∈ [W e,q(M,E; Λ)]∗. We need to show that there is an
element u ∈ W−e,q′(M,E; Λ) such that S(u) = F . Since D(M,E) is dense in
W e,q(M,E; Λ), it is enough to show that there exists an element u ∈ W−e,q′ (M,E; Λ)

with the property that

∀ ξ ∈ D(M,E) F (ξ) = ⟨u, ξ⟩2 .
Note that, according to what was proved in Step 2,

⟨u, ξ⟩2 = ⟨u, Tξ⟩[D(M,E∨)]∗×D(M,E∨) = ⟨T ∗u, ξ⟩[D(M,E)]∗×D(M,E) .

So, we need to show that there exists an element u ∈ W−e,q′(M,E; Λ) such that

∀ ξ ∈ D(M,E) F (ξ) = ⟨T ∗u, ξ⟩[D(M,E)]∗×D(M,E) .
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SinceD(M,E) ↪→ W e,q(M,E; Λ), F |D(M,E) is an element of [D(M,E)]∗. We let

u := [T−1]∗(F |D(M,E)) ∈ [D(M,E∨)]∗ .

Clearly, u satisfies the desired equality (note that [T−1]∗ = [T ∗]−1). So, we just
need to show that u is indeed an element of W−e,q′(M,E; Λ). Note that

u ∈ W−e,q′(M,E; Λ) ⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [W−e,q′
φα(suppψα)(φα(Uα))]

×r .

Since supp(ψαu) ⊆ suppψα, it follows from Remark 6.26 that

∀ 1 ≤ l ≤ r supp([Hα(ψαu)]
l) ⊂ φα(suppψα) .

It remains to prove that [Hα(ψαu)]
l ∈ W−e,q′(φα(Uα)). Note that

for e ≥ 0 [W e,q
0 (φα(Uα))]

∗ =W−e,q′(φα(Uα)) ,

for e < 0 [W e,q
0 (φα(Uα))]

∗ = [W e,q(φα(Uα))]
∗ =W−e,q′

0 (φα(Uα)) ⊆W−e,q′(φα(Uα)) .

Consequently, for all e

[W e,q
0 (φα(Uα))]

∗ ⊆ W−e,q′(φα(Uα)) .

Therefore, it is enough to show that

[Hα(ψαu)]
l ∈ [W e,q

0 (φα(Uα))]
∗ .

To this end, we need to prove that

[Hα(ψαu)]
l : (C∞

c (φα(Uα)), ∥.∥e,q) → R
is continuous. For all ξ ∈ C∞

c (φα(Uα)) we have

[Hα(ψαu)]
l(ξ) = ⟨ψαu, gl,ξ,Uα,φα

⟩[D(Uα,E∨
Uα

)]∗×D(Uα,E∨
Uα

) = ⟨u, ψαgl,ξ,Uα,φα
⟩[D(M,E∨)]∗×D(M,E∨)

= ⟨[T−1]∗F |D(M,E), ψαgl,ξ,Uα,φα⟩[D(M,E∨)]∗×D(M,E∨)

= ⟨F |D(M,E), T
−1(ψαgl,ξ,Uα,φα

)⟩D∗(M,E)×D(M,E) = F (T−1(ψαgl,ξ,Uα,φα
)) .

Thus [Hα(ψαu)]
l is the composition of the following maps:

(C∞
c (φα(Uα)), ∥.∥e,q) → [W e,q

φα(suppψα)
(φα(Uα))]

×r ∩ [C∞
c (φα(Uα))]

×r →W e,q
suppψα

(M,E∨; Λ∨) ∩ C∞(M,E∨)

→ (C∞(M,E), ∥∥e,q) → R

ξ 7→ (0, · · · , 0, (ψα ◦ φ−1
α )ξ︸ ︷︷ ︸

lth position

, 0, · · · , 0) 7→ H−1
E∨,Uα,φα

(0, · · · , 0, (ψα ◦ φ−1
α )ξ, 0, · · · , 0) = ψαgl,ξ,Uα,φα

7→ T−1(ψαgl,ξ,Uα,φα ) 7→ F (T−1(ψαgl,ξ,Uα,φα )) ,

which is a composition of continuous maps.

(6) S : W−e,q′(M,E; Λ) → [W e,q(M,E; Λ)]∗ is a continuous bijective map, so by the
Banach isomorphism theorem, it is a topological isomorphism.

□

Remark 9.31.

(1) The result of Theorem 9.30 remains valid even if Λ = {(Uα, φα, ρα, ψα)} does
not trivialize the fiber metric. Indeed, if e is not a noninteger whose magnitude
is greater than 1, then the Sobolev spaces W e,q and W−e,q′ are independent of
the choice of augmented total trivialization atlas. If e is a noninteger whose mag-
nitude is greater than 1, then by Theorem 5.24 there exists an augmented total
trivialization atlas Λ̃ = {(Uα, φα, ρ̃α, ψα)} that trivializes the metric and has the
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same base atlas as Λ (so it is GL compatible with Λ because by assumption Λ is
GL compatible with itself). So, we can replace Λ by Λ̃.

(2) Let Λ be an augmented total trivialization atlas that is GL compatible with itself.
Let e be a noninteger less than −1 and q ∈ (1,∞). By Theorem 9.30 and the above
observation, W e,q(M,E; Λ) is topologically isomorphic to [W−e,q′(M,E; Λ)]∗.
However, the space W−e,q′(M,E; Λ) is independent of Λ. So, we may conclude
that even when e is a noninteger less than −1, the space W e,q(M,E; Λ) is in-
dependent of the choice of the augmented total trivialization atlas as long as the
corresponding total trivialization atlas is GL compatible with itself.

9.3. On the Relationship Between Various Characterizations. Here we discuss the
relationship between the characterizations of Sobolev spaces given in Remark 9.3 and
our original definition (Definition 9.1).

(1) Suppose e ≥ 0.

W e,q(M,E; Λ) = {u ∈ Lq(M,E) : ∥u∥W e,q(M,E;Λ) =

N∑
α=1

r∑
l=1

∥(ρα)l◦(ψαu)◦φ−1
α ∥W e,q(φα(Uα)) <∞} .

As a direct consequence of Theorem 9.13, for e ≥ 0,W e,q(M,E; Λ) ↪→ Lq(M,E)
with the original definition of W e,q(M,E; Λ). Therefore, the above characteriza-
tion is completely consistent with the original definition.

(2)

W e,q(M,E; Λ) = {u ∈ D′(M,E) : ∥u∥W e,q(M,E;Λ) =

N∑
α=1

r∑
l=1

∥ext0φα(Uα),Rn [Hα(ψαu)]
l∥W e,q(Rn) <∞} .

It follows from Corollary 7.46 that

• if e is not a noninteger less than −1, then

∥[Hα(ψαu)]
l∥W e,q(φα(Uα)) ≃ ∥ext0φα(Uα),Rn [Hα(ψαu)]

l∥W e,q(Rn) ,

• if e is a noninteger less than −1 and φα(Uα) is Rn or a bounded open set with
Lipschitz continuous boundary, then again the above equality holds.

Therefore, when e is not a noninteger less than −1, the above characterization
completely agrees with the original definition. If e is a noninteger less than −1
and the total trivialization atlas corresponding to Λ is GGL, then again the two
definitions agree.

(3)

W e,q(M,E; Λ) = {u ∈ D′(M,E) : [Hα(u|Uα
)]l ∈W e,q

loc (φα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

It follows immediately from Theorem 9.16 and Corollary 9.19 that the above
characterization of the set of Sobolev functions is equivalent to the set given in
the original definition provided we assume that if e is a noninteger less than −1,
then Λ is GL compatible with itself.

(4) W e,q(M,E; Λ) is the completion of C∞(M,E) with respect to the norm

∥u∥W e,q(M,E;Λ) =
N∑
α=1

r∑
l=1

∥(ρα)l ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

It follows from Theorem 9.27 that if e is not a noninteger less than −1 the above
characterization of Sobolev spaces is equivalent to the original definition. Also,
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if e is a noninteger less than −1 and Λ is GL compatible with itself, the two
characterizations are equivalent.

Now, we will focus on proving the equivalence of the original definition and the fifth
characterization of Sobolev spaces. In what follows instead of ∥.∥Wk,q(M,E;g,∇E) we just
write |.|Wk,q(M,E). Also, note that since k is a nonnegative integer, the choice of the
augmented total trivialization atlas in Definition 9.1 is immaterial. Our proof follows the
argument presented in [22] and is based on the following five facts:

• Fact 1: Let u ∈ C∞(M,E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N . Then

|u|qLq(M,E) =

∫
M

|u|qEdVg ≃
∑
l

∥ ρlβ ◦ u︸ ︷︷ ︸
ul

◦φ−1
β ∥qLq(φβ(Uβ)) .

• Fact 2: Let u ∈ C∞(M,E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N . Then

|u|q
Wk,q(M,E)

≃
k∑
s=0

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
(
(∇E)su

)a
j1···js

◦ φ−1
β ∥qLq(φβ(Uβ)) .

Proof.

|u|q
Wk,q(M,E)

≃
k∑
s=0

|(∇E)su|q
Lq(M,(T ∗M)⊗i⊗E)

Fact 1≃
k∑
s=0

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
(
(∇E)su

)a
j1···js︸ ︷︷ ︸

components w.r.t (Uβ , φβ , ρβ)

◦φ−1
β ∥qLq(φβ(Uβ)) .

□

• Fact 3: Let u ∈ C∞(M,E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N . Then

∥u∥W e,q(M,E) ≃
r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥W e,q(φβ(Uβ)) .

Proof. Let {ψα} be a partition of unity such that ψβ = 1 on suppu (note that since
elements of a partition of unity are nonnegative and their sum is equal to 1, we can
conclude that if α ̸= β then ψα = 0 on suppu). We have

∥u∥W e,q(M,E) ≃
N∑
α=1

r∑
l=1

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα))

=
r∑
l=1

∥ρlβ ◦ (ψβu) ◦ φ−1
β ∥W e,q(φβ(Uβ)) =

r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥W e,q(φβ(Uβ)) .

□

• Fact 4: Let u ∈ C∞(M,E). Then for any multi-index γ and all 1 ≤ l ≤ r we have
(on any total trivialization triple (U,φ, ρ)):

|∂γ[ρl ◦ u ◦ φ−1]| ⪯
∑
s≤|γ|

r∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1···js

◦ φ−1| .
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Proof. For any multi-index γ = (γ1, · · · , γn) we define seq γ to be the following list
of numbers:

seq γ = 1 · · · 1︸ ︷︷ ︸
γ1 times

2 · · · 2︸ ︷︷ ︸
γ2 times

· · ·n · · ·n︸ ︷︷ ︸
γn times

.

Note that there are exactly |γ| = γ1 + · · · + γn numbers in seq γ. By Observation 2
in Section 5.5.4 we have(

(∇E)|γ|u
)l

seq γ ◦ φ
−1 = ∂γ[ρl ◦ u ◦ φ−1] +

r∑
a=1

∑
α:|α|<|γ|

Cαa∂
α[ρa ◦ u ◦ φ−1] .

Thus

∂γ[ρl ◦ u ◦ φ−1] =
(
(∇E)|γ|u

)l
seq γ ◦ φ

−1 −
r∑

a=1

∑
α:|α|<|γ|

Cαa∂
α[ρa ◦ u ◦ φ−1] ,

∂α[ρa ◦ u ◦ φ−1] =
(
(∇E)|α|u

)a
seqα ◦ φ

−1 −
r∑
b=1

∑
β:|β|<|α|

Cβb∂
β[ρb ◦ u ◦ φ−1] ,

...

where the coefficients Cαa, Cβb, etc. are polynomials in terms of christoffel symbols
and the metric and so they are all bounded on the compact manifold M . Conse-
quently,

|∂γ[ρl ◦ u ◦ φ−1]| ⪯
∑
s≤|γ|

r∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1···js

◦ φ−1
β | .

□

• Fact 5: Let f ∈ C∞(M,E) and u ∈ W k,q(M, Ẽ) where Ẽ is another vector bundle
over M . Then

∥f ⊗ u∥Wk,q(M,E⊗Ẽ) ⪯ ∥u∥Wk,q(M,Ẽ) ,

where the implicit constant may depend on f but it does not depend on u.

Proof. Let {(Uα, φα, ρα)}1≤α≤N and {(Uα, φα, ρ̃α)}1≤α≤N be total trivialization at-
lases for E and Ẽ, respectively. Let {sα,a = ρ−1

α (ea)}ra=1 be the corresponding local
frame for E on Uα and {tα,b = ρ̃−1

α (eb)}r̃b=1 be the corresponding local frame for Ẽ
on Uα. Let G : {1, · · · , r} × {1, · · · , r̃} → {1, · · · , rr̃} be an arbitrary but fixed
bijective function. Then {(Uα, φα, ρ̂α)} is a total trivialization atlas for E⊗ Ẽ where

ρ̂α(sα,a ⊗ tα,b) = eG(a,b) (as an element of Rrr̃) ,

and it is extended by linearity to the E ⊗ Ẽ|Uα . Now we have

∥f ⊗ u∥Wk,q(M,E⊗Ẽ) =
N∑
α=1

r∑
a=1

r̃∑
b=1

∥ρ̂a,bα ◦ (ψαf ⊗ u) ◦ φ−1
α ∥Wk,q(φα(Uα))

=
N∑
α=1

r∑
a=1

r̃∑
b=1

∥(ψα ◦ φ−1
α )(faα ◦ φ−1

α )(ubα ◦ φ−1
α )∥Wk,q(φα(Uα)) ,
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where f = faαsα,a and u = ubαtα,b on Uα. Clearly faα ◦ φ−1
α ∈ C∞(φα(Uα)). There-

fore,

∥f ⊗ u∥Wk,q(M,E⊗Ẽ) ⪯
N∑
α=1

r̃∑
b=1

∥(ψα ◦ φ−1
α )(ubα ◦ φ−1

α )∥Wk,q(φα(Uα)) ≃ ∥u∥Wk,q(M,Ẽ) .

□

• Part I: First we prove that ∥u∥Wk,q(M,E) ⪯ |u|Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ . We have

∥u∥q
Wk,q(M,E)

Fact 3≃
r∑
l=1

∥ρlβ ◦ u ◦ φ−1
β ∥q

Wk,q(φβ(Uβ))
≃

r∑
l=1

∑
|γ|≤k

∥∂γ(ρlβ ◦ u ◦ φ−1
β )∥qLq(φβ(Uβ))

Fact 4
⪯

r∑
l=1

∑
|γ|≤k

∑
s≤|γ|

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
(
(∇E)su

)a
j1···js

◦ φ−1
β ∥qLq(φβ(Uβ))

⪯
k∑
s=0

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
(
(∇E)su

)a
j1···js

◦ φ−1
β ∥qLq(φβ(Uβ))

Fact 2≃ |u|q
Wk,q(M,E)

.

(2) Case 2: Now let u be an arbitrary element of C∞(M,E). We have

∥u∥Wk,q(M,E) = ∥
N∑
α=1

ψαu∥Wk,q(M,E) ≤
N∑
α=1

∥ψαu∥Wk,q(M,E)

⪯
N∑
α=1

|ψαu|Wk,q(M,E) (by what was proved in Case 1)

⪯
N∑
α=1

|u|Wk,q(M,E) ≃ |u|Wk,q(M,E) .

We note that the last inequality holds because

|ψαu|qWk,q(M,E)
=

k∑
i=0

∥(∇E)i(ψαu)∥qLq(M,(T ∗M)⊗i⊗E)

=
k∑
i=0

∥
i∑

j=0

(
i

j

)
∇jψα ⊗ (∇E)i−ju∥q

Lq(M,(T ∗M)⊗i⊗E)

Fact 5
⪯

k∑
i=0

i∑
j=0

∥(∇E)i−ju∥q
Lq(M,(T ∗M)⊗(i−j)⊗E)

⪯
k∑
s=0

∥(∇E)su∥qLq(M,(T ∗M)⊗s⊗E) ≃ |u|q
Wk,q(M,E)

.
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• Part II: Now we show that |u|Wk,q(M,E) ⪯ ∥u∥Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ .

|u|q
Wk,q(M,E)

Fact 2≃
k∑
s=0

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
(
(∇E)su

)a
j1···js

◦ φ−1
β ∥qLq(φβ(Uβ))

Observation 1 in 5.5.4
=

k∑
s=0

r∑
a=1

∑
1≤j1,··· ,js≤n

∥
∑
|η|≤s

r∑
l=1

(Cηl)
a
j1···js∂

η( ul︸︷︷︸
ρlβ◦u

◦φ−1
β )∥qLq(φβ(Uβ))

⪯
r∑
l=1

∑
|η|≤k

∥∂η(ul ◦ φ−1
β )∥qLq(φβ(Uβ)) =

r∑
l=1

∥ul ◦ φ−1
β ∥q

Wk,q(φβ(Uβ))

≃ ∥u∥q
Wk,q(M,E)

.

(2) Case 2: Now let u be an arbitrary element of C∞(M,E).

|u|Wk,q(M,E) = |
N∑
α=1

ψαu|Wk,q(M,E) ≤
N∑
α=1

|ψαu|Wk,q(M,E)

Case 1
⪯

N∑
α=1

∥ψαu∥Wk,q(M,E)

Fact 3≃
N∑
α=1

r∑
l=1

∥ρlα ◦ (ψαu) ◦ φ−1
α ∥Wk,q(φα(Uα))

≃ ∥u∥Wk,q(M,E) .

10. SOME RESULTS ON DIFFERENTIAL OPERATORS

Let Mn be a compact smooth manifold. Let E and Ẽ be two vector bundles over M
of ranks r and r̃, respectively. A linear operator P : C∞(M,E) → Γ(M, Ẽ) is called
local if

∀u ∈ C∞(M,E) suppPu ⊆ suppu .

If P is a local operator, then it is possible to have a well-defined notion of restriction of
P to open sets U ⊆ M , that is, if P : C∞(M,E) → Γ(M, Ẽ) is local and U ⊆ M is
open, then we can define a map

P |U : C∞(U,EU) → Γ(U, ẼU)

with the property that

∀u ∈ C∞(M,E) (Pu)|U = P |U(u|U) .

Indeed, suppose u, ũ ∈ C∞(M,E) agree on U , then as a result of P being local we have

supp (Pu− Pũ) ⊆ supp (u− ũ) ⊆M \ U .

Therefore, if u|U = ũ|U , then (Pu)|U = (Pũ)|U . Thus, if v ∈ C∞(U,EU) and x ∈ U ,
we can define (P |U)(v)(x) as follows: choose any u ∈ C∞(M,E) such that u = v on a
neighborhood of x and then let (P |U)(v)(x) = (Pu)(x).

Recall that for any nonempty set V , Func(V,Rt) denotes the vector space of all func-
tions from V to Rt. By the local representation of P with respect to the total triv-
ialization triples (U,φ, ρ) of E and (U,φ, ρ̃) of Ẽ we mean the linear transformation
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Q : C∞(φ(U),Rr) → Func(φ(U),Rr̃) defined by

Q(f) = ρ̃ ◦ P (ρ−1 ◦ f ◦ φ) ◦ φ−1 .

Note that ρ−1 ◦ f ◦ φ is a section of EU → U . Also, note that for all u ∈ C∞(M,E)

ρ̃ ◦ (P (u|U)) ◦ φ−1 = Q(ρ ◦ (u|U) ◦ φ−1) . (10.1)

Let’s denote the components of f ∈ C∞(φ(U),Rr) by (f 1, · · · , f r). Then we can write
Q(f 1, · · · , f r) = (h1, · · · , hr̃) where for all 1 ≤ k ≤ r̃

hk = πk ◦Q(f 1, · · · , f r) Q is linear
= πk ◦Q(f 1, 0, · · · , 0) + · · ·+ πk ◦Q(0, · · · , 0, f r) .

So, if for each 1 ≤ k ≤ r̃ and 1 ≤ i ≤ r we defineQki : C
∞(φ(U),R) → Func(φ(U),R)

by
Qki(g) = πk ◦Q(0, · · · , 0, g︸︷︷︸

ith position

, 0, · · · , 0) ,

then we have

Q(f 1, · · · , f r) = (
r∑
i=1

Q1i(f
i), · · · ,

r∑
i=1

Qr̃i(f
i)) .

In particular, note that the sth component of ρ̃ ◦ Pu ◦ φ−1, that is ρ̃s ◦ Pu ◦ φ−1, is equal
to the sth component of Q(ρ1 ◦ u ◦ φ−1, · · · , ρr ◦ u ◦ φ−1) (see Equation 10.1) which is
equal to

r∑
i=1

Qsi(ρ
i ◦ u ◦ φ−1) .

Theorem 10.1. Let Mn be a compact smooth manifold. Let P : C∞(M,E) → Γ(M, Ẽ)
be a local operator. Let Λ = {(Uα, φα, ρα, ψα)}1≤α≤N and Λ̃ = {(Uα, φα, ρ̃α, ψα)}1≤α≤N
be two augmented total trivialization atlases forE and Ẽ, respectively. Suppose the atlas
{(Uα, φα)}1≤α≤N is GL compatible with itself. For each 1 ≤ α ≤ N , let Qα denote the
local representation of P with respect to the total trivialization triples (Uα, φα, ρα) and
(Uα, φα, ρ̃α) of E and Ẽ, respectively. Suppose e, ẽ ∈ R, 1 < q, q̃ < ∞, and for each
1 ≤ α ≤ N , 1 ≤ i ≤ r̃, and 1 ≤ j ≤ r,

Qα
ij : (C

∞
c (φα(Uα)), ∥.∥e,q) → W ẽ,q̃

loc (φα(Uα))

is well-defined and continuous and does not increase support. Then
• P (C∞(M,E)) ⊆ W ẽ,q̃(M, Ẽ; Λ̃),
• P : (C∞(M,E), ∥.∥e,q) → W ẽ,q̃(M, Ẽ; Λ̃) is continuous and so it can be ex-

tended to a continuous linear map P : W e,q(M,E; Λ) → W ẽ,q̃(M, Ẽ; Λ̃).

Proof. First note that

∥Pu∥W ẽ,q̃(M,Ẽ;Λ̃) =
N∑
α=1

r̃∑
i=1

∥ρ̃iα ◦ (ψα(Pu)) ◦ φ−1
α ∥W ẽ,q̃(φα(Uα)) ,

∥u∥W e,q(M,E;Λ) =
N∑
α=1

r∑
j=1

∥ρjα ◦ (ψαu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

It is enough to show that for all 1 ≤ α ≤ N , 1 ≤ i ≤ r̃

∥ρ̃iα ◦ (ψα(Pu)) ◦ φ−1
α ∥W ẽ,q̃(φα(Uα)) ⪯

N∑
β=1

r∑
j=1

∥ρjβ ◦ (ψβu) ◦ φ
−1
β ∥W e,q(φβ(Uβ)) .
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We have

∥ρ̃iα ◦ (ψα(Pu)) ◦ φ−1
α ∥W ẽ,q̃(φα(Uα)) = ∥(ψα ◦ φ−1

α ) · (ρ̃iα ◦ (Pu) ◦ φ−1
α )∥W ẽ,q̃(φα(Uα))

≤
r∑
j=1

∥(ψα ◦ φ−1
α ) ·Qα

ij(ρ
j
α ◦ (

N∑
β=1

ψβu) ◦ φ−1
α )∥W ẽ,q̃(φα(Uα))

(see the paragraph above Theorem 10.1)

≤
N∑
β=1

r∑
j=1

∥(ψα ◦ φ−1
α ) ·Qα

ij(ρ
j
α ◦ (ψβu) ◦ φ−1

α )∥W ẽ,q̃(φα(Uα))

=
N∑
β=1

r∑
j=1

∥(ψα ◦ φ−1
α ) ·Qα

ij(ρ
j
α ◦ (ξψβu) ◦ φ−1

α )∥W ẽ,q̃(φα(Uα)) ,

where ξ ∈ C∞
c (Uα) is a fixed function such that ξ = 1 on suppψα. Using the assumption

that Qα
ij : (C

∞
c (φα(Uα)), ∥.∥e,q) → W ẽ,q̃

loc (φα(Uα)) is continuous we get

∥ρ̃iα ◦ (ψα(Pu)) ◦ φ−1
α ∥W ẽ,q̃(φα(Uα)) ⪯

N∑
β=1

r∑
j=1

∥ρjα ◦ (ξψβu) ◦ φ−1
α ∥W e,q(φα(Uα)) .

Note that ρjα ◦ (ξψβu) ◦ φ−1
α = (ξψβ ◦ φ−1

α )(ρjα ◦ u ◦ φ−1
α ) has compact support in

φα(Uα ∩ Uβ). So, it follows from Corollary 7.46 that

∥ρjα ◦ (ξψβu) ◦ φ−1
α ∥W e,q(φα(Uα)) ≃ ∥ρjα ◦ (ξψβu) ◦ φ−1

α ∥W e,q(φα(Uα∩Uβ)) .

Therefore,

∥ρ̃iα ◦ (ψα(Pu)) ◦ φ−1
α ∥W ẽ,q̃(φα(Uα))

⪯
N∑
β=1

r∑
j=1

∥ρjα ◦ (ξψβu) ◦ φ−1
α ∥W e,q(φα(Uα∩Uβ))

=
N∑
β=1

r∑
j=1

∥ρjα ◦ (ξψβu) ◦ φ−1
β ◦ φβ ◦ φ−1

α ∥W e,q(φα(Uα∩Uβ))

Theorem 7.62
⪯

N∑
β=1

r∑
j=1

∥ρjα ◦ (ξψβu) ◦ φ−1
β ∥W e,q(φβ(Uα∩Uβ)) .

So, it is enough to prove that ∥ρjα ◦ (ξψβu) ◦ φ−1
β ∥W e,q(φβ(Uα∩Uβ)) can be bounded by∑N

β=1

∑r
j=1 ∥ρ

j
β ◦ (ψβu) ◦ φ−1

β ∥W e,q(φβ(Uβ)). Since this can be done in the exact same
way as the proof of Theorem 9.7, we do not repeat the argument here. □

Here we will discuss one simple application of the above theorem. Let (Mn, g) be a
compact Riemannian manifold with g ∈ W s,p(M,T 2M), sp > n, and s ≥ 1. Consider
d : C∞(M) → C∞(T ∗M). The local representations are all assumed to be with respect
to charts in a super nice total trivialization atlas that is GL compatible with itself. The
local representation of d is Q : C∞(φ(U)) → C∞(φ(U),Rn) which is defined by

Q(f)(a) = ρ̃ ◦ d(ρ−1 ◦ f ◦ φ) ◦ φ−1(a)

= ρ̃ ◦ ( ∂f
∂xi

|φ(φ−1(a))dx
i|φ−1(a))

= (
∂f

∂x1
|a, · · · ,

∂f

∂xn
|a) .
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Here we used ρ = Id and the fact that if g :M → R is smooth, then

(dg)(p) =
∂(g ◦ φ−1)

∂xi
|φ(p)dxi|p .

Clearly, each component of Q is a continuous operator from (C∞
c (φ(U)), ∥.∥e,q) to

W e−1,q(φ(U)) ↪→ W e−1,q
loc (φ(U)) (see Theorem 7.65; note that φ(U) = Rn). Hence

d can be viewed as a continuous operator from W e,q(M) to W e−1,q(T ∗M).

Several other interesting applications of Theorem 10.1 can be found in [8].

11. CONCLUSION

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential oper-
ators in nonsmooth setting. In this manuscript, we focused on establishing certain fun-
damental properties of Sobolev-Slobodeckij spaces that are particularly useful in better
understanding the behavior of elliptic differential operators on compact manifolds. In
particular, we built a general framework for developing multiplication theorems, embed-
ding results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. We paid special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. We established in particular that, as long as 1 < q <∞ and e ≥ 0 or e ∈ Z,

• various common standard characterizations of W e,q (as discussed in Section 9)
are equivalent,

• the local charts definition of W e,q is independent of the chosen atlas, and
• nice properties of W e,q for smooth domains in Rn (such as embedding proper-

ties and multiplication properties) will carry over to W e,q of sections of vector
bundles.

Also, we noticed that the local representations of elements of W e,q (for functions on M
or, more generally, sections of vector bundles) will not necessarily be in the correspond-
ing Euclidean Sobolev-Slobodeckij space; they should be viewed as elements of locally
Sobolev-Slobodeckij spaces on the Euclidean space (we have devoted a separate manu-
script ([9]) to the study of the properties of locally Sobolev-Slobodeckij spaces on the
Euclidean space). In the same spirit, in Section 10 we observed that locally Sobolev-
Slobodeckij spaces can be considered as the appropriate target spaces in the study of
the local representations of differential operators between Sobolev-Slobodeckij spaces
of sections of vector bundles. For the case where e < −1 is noninteger, we were not
able to prove the validity of these properties in a general setting; however, by introduc-
ing notions such as “geometrically Lipschitz atlases”, we found sufficient conditions that
guarantee the validity of similar results as those we have for the case where e ∈ Z.
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