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ABSTRACT. In this article we present a coherent rigorous overview of the main proper-
ties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds;
results of this type are scattered through the literature and can be difficult to find. A spe-
cial emphasis has been put on spaces with noninteger smoothness order, and a special
attention has been paid to the peculiar fact that for a general nonsmooth domain €2 in R”,
0<t<l,and1 < p < oo, it is not necessarily true that W1?(Q2) < WHP(Q). This
has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces
and subsequently in the study of Sobolev spaces on manifolds. We focus on establish-
ing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact
manifolds. In particular, by introducing notions such as “geometrically Lipschitz at-
lases” we build a general framework for developing multiplication theorems, embedding
results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’
knowledge, some of the proofs, especially those that are pertinent to the properties of
Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in
the literature in the generality appearing here.
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2 A. BEHZADAN AND M. HOLST

1. INTRODUCTION

Suppose s € R and p € (1,00). With each nonempty open set 2 in R™ we can
associate a complete normed function space denoted by W*P((2) called the Sobolev-
Slobodeckij space with smoothness degree s and integrability degree p. Similarly, given
a compact smooth manifold M and a vector bundle £ over M, there are several ways to
define the normed spaces W*?(M) and more generally W*?(E). The main goal of this
manuscript is to review these various definitions and rigorously study the key properties
of these spaces. Some of the properties that we are interested in are as follows:

e Density of smooth functions

e Completeness, separability, reflexivity
e Embedding properties

e Behavior under differentiation

e Being closed under multiplication by smooth functions

u e WP pis smooth — pu € WP,

e Invariance under change of coordinates

ue WP T is adiffeomorphism — uoT € WP,

e Invariance under composition by a smooth function

we WP, Fis smooth = F(u) e W#P.

As we shall see, there are several ways to define W*P(E). In particular, ||u||ysrx) can
be defined using the components of the local representations of u with respect to a fixed
augmented total trivialization atlas A, or it can be defined using the notion of connection
in /. Here are some of the questions that we have studied in this paper regarding this
issue:

e Are the different characterizations that exist in the literature equivalent? If not,
what is the relationship between the various characterizations of Sobolev-Slobodeckij
spaces on M ?

e In particular, does the corresponding space depend on the chosen atlas (more pre-
cisely the chosen augmented total trivialization atlas) used in the definition?

e Suppose f € W*P(M). Does this imply that the local representation of f with
respect to each chart (U, o) is in W*P(p,(U,))? If g is a metric on M and g €
W*P, can we conclude that g;; o @' € WP(p,(U,))?

e Suppose that P : C°(M) — C>°(M) is a linear differential operator. Is it possible to
gain information about the mapping properties of P by studying the mapping proper-
ties of its local representations with respects to charts in a given atlas? For example,
suppose that the local representations of P with respect to each chart (U, ¢, ) in an
atlas is continuous from W*? (¢, (U,)) to W?(p,(U,)). Is it possible to extend P
to a continuous linear map from W*? (M) to WP (M)?

To further motivate the questions that are studied in this paper and the study of the key
properties mentioned above, let us consider a concrete example. For any two sets A
and B, let Func(A, B) denote the collection of all functions from A to B. Consider the
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differential operator
div, : C*°(T'M) — Func(M,R), divy X = (tr o sharp, o V o flat) X,

on a compact Riemannian manifold (), g) with g € W*P. Let {(U,, ¢.)} be a smooth
atlas for M. It can be shown that for each «

(divgX) 0 it = L2 [(Vdetga) (X7 03],
V/det g, Ox7
j=1 “

where g, () is the matrix whose (4, j)-entry is (g;; 0 ¢, )(x). As it will be discussed in
detail in Section 10, we call Q : C*°(p,(U,), R™) — Func(p, (U, ), R) defined by

0°(Y) = ;ﬁ%[(@)@ﬂﬂ

J/

-

Qs (v9)
the local representation of div, with respect to the local chart (U,, p,). Let’s say we
can prove that for each v and j, Q5 maps Wi (¢ (Ua)) to W H9(4(U,)). Can we

conclude that div, maps W*(T'M) to W %9(M)? And how can we find exponents e
and ¢ such that

Q;y W (palUa)) — We_l’q(90a<Ua))
is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W°?(Q) = LP(1), Sobolev-Slobodeckij spaces can be viewed as a generaliza-
tion of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key
properties of W*P(Q) (for s # 0) depend on the geometry of the boundary of 2. Indeed,
to thoroughly study the properties of WP ()) one should consider the following cases
independently:

(1) Q = R”
2a)bounded
2b)unbounded

3a)bounded
3b)unbounded

Let us mention here four facts to highlight the dependence on domain and some atypical
behaviors of certain fractional Sobolev spaces. Let s € (0,00) and p € (1, 00).

e Fact 1:

(2) €21is an arbitrary open subset of R” {

(3) €2 is an open subset of R™ with smooth boundary {

. a . S, n s—1, n

is a well-defined bounded linear operator.
e Fact 2: If we further assume that s # i and 2 has smooth boundary then

. 8 . S, s—1,

is a well-defined bounded linear operator.
e Fact3: If 5 < s, then
WHP(R™) < WP (R™).
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e Fact4: If 2 does NOT have Lipschitz boundary, then it is NOT necessarily true that
WP(Q) — W5P(Q)

for0 < 5 < 1.

Let M be an n-dimensional compact smooth manifold and let {(U.,, ¢,)} be a smooth
atlas for M. As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in R". Primarily we will be interested in the prop-
erties of W%P(p,(U,)) and WP (o, (U,)). Also, when we want to patch things to-
gether consistently and move from “local” to “global”, we will need to consider spaces
WP (0o (Uy NUg)) and W*P(ps(U, N Up)). However, as we pointed out earlier, some
of the properties of W*?()) depend heavily on the geometry of the boundary of €.
Considering that the intersection of two Lipschitz domains is not necessarily a Lipschitz

domain, we need to consider the following question:

e Isitpossible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire R™ or a nonempty bounded set
with smooth boundary? And if we define the Sobolev spaces using such an atlas, will
the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in R" (cf. [2, 18, 34]), real
order Sobolev spaces of functions ([21, 41, 37, 32, 11]), Sobolev spaces of functions
on manifolds ([42, 25, 4, 26]), and Sobolev spaces of sections of vector bundles on
manifolds ([33, 17]). However, most of these works focus on spaces of functions rather
than general sections, and in many cases the focus is on integer order spaces. This paper
should be viewed as a part of our efforts to build a more complete foundation for the
study and use of Sobolev-Slobodeckij spaces on manifolds through a sequence of related
manuscripts [7, 8, 9].

Outline of Paper. In Section 2 we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3 we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some
less well-known facts about topics such as higher order covariant derivatives in the con-
text of vector bundles. In Section 6 we collect the results that we need from the theory
of generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Section 8 and Section 9 we
introduce Lebesgue spaces and Sobolev-Slobodeckij spaces of sections of vector bun-
dles and we present a rigorous account of their various properties. Finally in Section 10



SOBOLEV SPACES ON COMPACT MANIFOLDS 5

we study the continuity of certain differential operators between Sobolev spaces of sec-
tions of vector bundles. Although the purpose of sections 3 through 7 is to give a quick
overview of the prerequisites that are needed to understand the proofs of the results in
later sections and set the notation straight, as it was pointed out earlier, several theorems
and proofs that appear in these sections cannot be found elsewhere in the generality that
are stated here.

2. NOTATION AND CONVENTIONS

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and Ny denotes the set of nonnegative integers. For any nonnegative real num-
ber s, the integer part of s is denoted by |s|. The letter n is a positive integer and stands
for the dimension of the space.

(2 is a nonempty open set in R™. The collection of all compact subsets of 2 will be
denoted by K(€2). Lipschitz domain in R™ refers to a nonempty bounded open set in R"
with Lipschitz continuous boundary.

Each element of Nj is called a multi-index. For a multi-index oo = (v, - -+ , o) € N,
we let
o o] :==a;+ -+ ap,
o al =04l

() = mam= () ()

Suppose that o € Njj. For sufficiently smooth functions « : 2 — R (or for any distribu-
tion u) we define the ath order partial derivative of u as follows:

0 ooy
U = =———.
a1 n
ox{'---0x&

We use the notation A < B to mean A < ¢B, where c is a positive constant that
does not depend on the non-fixed parameters appearing in A and B. We write A ~ B if
A< Band B < A.

If o, p € NI, we say 5 < « provided that 5; < o; forall 1 < < n.If < a, we let

For any nonempty set X and r € N, X*" stands for X x --- x X.

For any two nonempty sets X and Y, Func(X,Y") denotes the collection of all func-
tions from X to Y.

We write L(X,Y’) for the space of all continuous linear maps from the normed space
X to the normed space Y. L(X, R) is called the (topological) dual of X and is denoted by
X*. We use the notation X — Y to mean X C Y and the inclusion map is continuous.

GL(n, R) is the set of all n x nn invertible matrices with real entries. Note that GL(n, R)
can be identified with an open subset of R™ and so it can be viewed as a smooth manifold
(more precisely, GL(n,R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the man-
ifold M at point p € M is denoted by 7),M, and the cotangent space by T;M. If
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(U, = (z")) is a local coordinate chart and p € U, we denote the corresponding coor-
dinate basis for 7,,M by 0;|, while % « denotes the basis for the tangent space to R™ at
r = ¢(p) € R™; that is,

0
7 ozt
Note that for any smooth function f : M — R we have
0
ai -1 == : -1 .
(0if) o &ﬁﬁow )

The vector space of all k-covariant, [-contravariant tensors on 7, M is denoted by T}*(T,,M ).
So, each element of 7}*(T,,M) is a multilinear map of the form

F:\T;M><-~~><T;MJ><\T],M><~~><TPMJ%R.

~\~ VT
[ copies k copies

We are primarily interested in the vector bundle of (’;) -tensors on M whose total space
1s
THM) = || THT,M).
peEM

A section of this bundle is called a (¥)-tensor field. We set TM = T¥(M). TM
denotes the tangent bundle of M and 7™ M is the cotangent bundle of M. We set

(M) = C>(M,T}(M)) = collection of smooth (]f )-tensor fields on M
and
X(M) = C*(M,TM) = the collection of smooth vector fields on M .

A symmetric positive definite section of 72 is called a Riemannian metric on M. If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as
a Riemannian manifold. If there is no possibility of confusion, we may write (X,Y’) in-
stead of g(X,Y’). The norm induced by ¢ on each tangent space will be denoted by ||. ||,
We say that g is smooth (or the Riemannian manifold is smooth) if g € C* (M, T?M).

d denotes the exterior derivative and grad : C*°(M) — C°°(M,TM) denotes the
gradient operator which is defined by g(grad f, X)) = d f(X) for all f € C°°(M) and
X € C®(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flat, : T,M — Ty M
X=X =g(X, ),
sharp,, : TyM — T,M
¥ pf = flat ! (¥) .

Using sharp, we can define the (g) -tensor field g~! (which is called the inverse metric
tensor) as follows

g~ (th1,12) 1= g(sharp, (v1), sharp, (112)) .

Let { E;} be a local frame on an open subset U C M and {n'} be the corresponding dual
coframe. So we can write X = X'F; and v = ;n". It is standard practice to denote the
™™ component of flat, X by X; and the i*" component of sharp g(@/)) by ¢

flat, X = X;n', sharp ¢y = ¢'E; .
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It is easy to show that

X =gy X7, ' =g"Y;,
where g;; = g(E;, E;) and g = g~ '(n*, ). It is said that flat, X is obtained from X by
lowering an index and sharp, is obtained from ¢ by raising an index.

3. REVIEW OF SOME RESULTS FROM LINEAR ALGEBRA

In this section we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators on
manifolds.

There are several ways to construct new vector spaces from old ones: subspaces, prod-
ucts, direct sums, quotients, etc. The ones that are particularly important for the study of
Sobolev spaces of sections of vector bundles are the vector space of linear maps between
two given vector spaces, the tensor product of vector spaces, and the vector space of all
densities on a given vector space which we briefly review here in order to set the notation
straight.

e Let V and IV be two vector spaces. The collection of all linear maps from V' to W is
a new vector space which we denote by Hom(V, W). In particular, Hom(V, R) is the
(algebraic) dual of V. If V and W are finite-dimensional, then Hom(V, W) is a vector
space whose dimension is equal to the product of dimensions of V' and W. Indeed, if
we choose a basis for V' and a basis for IV, then Hom(V, W) is isomorphic with the
space of matrices with dim W rows and dim V' columns.

e Let U and V' be two vector spaces. Roughly speaking, the tensor product of U and V'
(denoted by U @ V') is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W, Hom(U ® V, W) is isomorphic to the collection of
bilinear maps from U x V' to W. Informally, U @ V' consists of finite linear combinations
of symbols u ® v, where u € U and v € V. Itis assumed that these symbols satisfy the
following identities:

(U1 +u) @V —u Qv —us v =0,
u® (V1 4+ 1) UV —u®Rvy =0,
a(u®@v) — (au) ®@v =10,
a(u®v) —u® (aw) =0,
for all u, uy,us € U, v,v1,v9 € V and a € R. These identities simply say that the map
R:UXxV-URV, (u,v)—u®u,
is a bilinear map. The image of this map spans U @ V.

Definition 3.1. Let U and V be two vector spaces. Tensor product is a vector space
U ® V together with a bilinear map @ : U x V. — U ® V, (u,v) — u ® v such that
given any vector space W and any bilinear map b : U x V. — W, there is a unique
linear map b : U @ V — W with b(u ® v) = b(u,v). That is, the following diagram
commutes:

UV

bJ
UxV — W
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V,IW) =2V @ W .

Indeed, the following map is an isomorphism of vector spaces:

F:V*®@W — Hom(V, W), Fuo'@w) (v)= ' (v)] w.
an element of Hom(V, W) a real number

It is useful to obtain an expression for the inverse of ' too. That is, given T’ €
Hom(V, W), we want to find an expression for the corresponding element of V* & V.
To this end, let {e; }1<;<, be a basis for V and {e’},<;<,, denote the corresponding dual
basis. Let {s,}1<q< be a basis for W. Then {¢’ ® s} is a basis for V* @ . Suppose
D ia Rl ® s, is the element of V* @ W that corresponds to 7. We have

F() Rie®s,)=T=YuecV Y RiFle'®s,)(u)=T(u)

—=VueV Z Rée'(u)s, = T(u) .
In particular, forall 1 < 5 <mn,

T(e;) = ZR“ “ e] ZRGSG.

1,a 51
J

That is, R? is the entry in the o row and i"* column of the matrix of the linear trans-
formation 7'.

e Let 1 be an n-dimensional vector space. A density on Visafunctionp: V X --- x V —
————

n copies

R with the property that
w(Twvy, - To,) = |detT|u(vy, -+ o),

for all T € Hom(V, V).

We denote the collection of all densities on V' by D(V). It can be shown that D(V') is
a one dimensional vector space under the obvious vector space operations. Indeed, if

(e1,--+ ,ey,) is a basis for V, then each element ;1 € D(V') is uniquely determined by
its value at (e, - - - ,e,) because for any (vy,--- ,v,) € VX", we have (v, - ,v,) =
|detT'|uu(eq, - ,e,) where T : V' — V is the linear transformation defined by 7'(e;) = v;

forall 1 < i < n. Thus
F:DV) =R, F(p) =pler, - ,en),

will be an isomorphism of vector spaces.

Moreover, if w € A™(V)) where A"(V) is the collection of all alternating covariant
n-tensors, then |w| belongs to D(V'). Thus if w is any nonzero element of A™(V'), then
{|w|} will be a basis for D(V) ([31], Page 428).
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4. REVIEW OF SOME RESULTS FROM ANALYSIS AND TOPOLOGY

4.1. Euclidean Space. Let ) be a nonempty open set in R"” and m € N,. Here is a list
of several useful function spaces on 2:

C(Q)={f:Q—R: fis continuous}
C"() ={f:Q=>R:V]a|<m 0feC(Q)} (CY(Q) = C(Q))
BC(R2) ={f :Q — R: fis continuous and bounded on 2}
BC™(Q)={feC™Q):V|a] <m 0%fisbounded on Q}
BC(Q) ={f:Q—=>R: fe BC(Q)and f is uniformly continuous on Q}
(Q) ={f:Q—=>R: feBC"Q),Y|a|<m 0“fis uniformly continuous on {2 }
Q=) C™Q), BC*(Q)= () BC™(Q), BC¥(Q)= () BC™(
meNy meNy meNy

Remark 4.1. (2] If g : Q@ — R is in BC (Q), then it possesses a unique, bounded,
continuous extension to the closure <) of 2.

Notation : Let () be a nonempty open set in R”. The collection of all compact sets in €2
is denoted by K(2). If f : 2 — R is a function, the support of f is denoted by supp f.
Notice that, in some references supp f is defined as the closure of {x € Q : f(z) # 0}
in €2, while in certain other references it is defined as the closure of {x € Q0 : f(z) # 0}
in R". Of course, if we are concerned with functions whose support is inside an element
of K(£2), then the two definitions agree. For the sake of definiteness, in this manuscript
we always use the former interpretation of support. Also, support of a distribution will
be discussed in Section 6.

Remark 4.2. If F(2) is any function space on 2 and K € K(S), then F(€)) denotes
the collection of elements in F(S)) whose support is inside K. Also,

}—C(Q> = comp U -FK

Kek()

Let 0 < A\ < 1. A function F : Q C R® — R* is called \-Holder continuous if there
exists a constant L such that

|F(z) = F(y)| < Llz —y[* Ya,yeQ.

Clearly, a A-Holder continuous function on 2 is uniformly continuous on 2. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BC™ Q) ={f:Q —=R:V|a| <m 0“f is \-Holder continuous and bounded}
={f e BC™(Q):V]a|] <m 0”fis \-Holder continuous }
={f € BC™Q):Y]a| <m 0°fis \-Holder continuous}

and
BC¥(Q) == (] BC™(Q)

meENy

Remark 4.3. Let F : Q CR" — R¥ (F = (F',--- | F*)). Then
Fis Lipschit; <= V1 <i <k F'is Lipschitz .
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Indeed, for each 1

|[Fi(x) = F'(y)| < ZIFJ W)? = [F(z) = F(y)| < Llz —yl,

which shows that if F'is szschltz so will be its components. Also, if for each 1, there
exists L; such that ' '
|F(x) = F'(y)| < Ll =y,

then

ZIF] Hy)|? < nlPle -yl
where L = max{Lq,- -, Lk}. This proves that if each component of F' is Lipschitz so
is F itself.

Theorem 4.4. [24] Let ) be a nonempty open set in R" and let K € K(2). There is a
function i € C°(Q) taking values in [0, 1] such that 1 = 1 on a neighborhood of K.

Theorem 4.5 (Exhaustion by Compact Sets). [24] Let () be a nonempty open subset of
R™. There exists a sequence of compact subsets (K;);en such that UjenK; = Q and

Ky CKyCKyC--CK;CK;C-
Moreover, as a direct consequence, if K is any compact subset of the open set (2, then
there exists an open set V such that K C'V CV C Q.

Theorem 4.6. [24] Let 2 be a nonempty open subset of R". Let { K;};en be an exhaus-
tion of ) by compact sets. Define
Vo = K, VieN Vi=Kju\K;.
Then
(1) each V; is an open bounded set and €} = U;V/,

(2) the cover {V;}jen, is locally finite in ), that is, each compact subset of () has nonempty
intersection with only a finite number of the V;’s,
(3) there is a family of functions 1p; € C°(Q) taking values in [0, 1] such that supp 1); C
V; and
Zz/)j(x)zl forallx € Q.
Jj€Ng

Theorem 4.7 ([19], Page 74). Suppose 2 is an open set in R" and G : Q@ — G(Q) C
R" is a C'-diffeomorphism (i.e. G and G=' are both C* maps). If f is a Lebesgue
measurable function on G(Q), then f o G is Lebesgue measurable on Q. If f > 0 or
f e LYG()), then

/ f(x)dx=/foG(x)\derG’(g;)ux.
G() Q

Theorem 4.8 ([19], Page 79). If f is a nonnegative measurable function on R™ such that
f(x) = g(|z|) for some function g on (0, 00), then

[ sayie = otsmy | " gty dr,

where o(S™1) is the surface area of (n — 1)-sphere.
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Theorem 4.9. ([3], Section 12.11) Suppose U is an open set in R" and [ : U — R is
differentiable. Let x and y be two points in U and suppose the line segment joining x and
y is contained in U. Then there exists a point z on the line joining x to y such that

fy) = f(@) =V [(z).(y —2).
As a consequence, if U is convex and all first order partial derivatives of f are bounded,

then f is Lipschitz on U.

Warning: Suppose f € BC*(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
U y(n,n + 1) and define

f:U—R, flx)=(-D)",Vx e (n,n+1).

Clearly, all derivatives of U are equal to zero, so f € BC*°(U). But f is not uniformly
continuous and thus it is not Lipschitz. Indeed, forany 1 > § > 0, wecanletx = 2—§/4
and y = 2+ §/4. Clearly |x — y| < 6, however, |f(z) — f(y)| = 2.

Of course, if f € C}(U), then f can be extended by zero to a function in C}(R").
Since R™ is convex, we may conclude that the extension by zero of f is Lipschitz which
implies that f : U — R is Lipschitz. As a consequence, C}(U) C BC%(U) and
C>(U) C BC*'(U). Also, Theorem 7.27 and the following theorem provide useful
information regarding this issue.

Theorem 4.10. Let U C R™ and V C R* be two nonempty open sets and let T : U — V
(T = (T",---,T%)) be a C" map (that is, for each 1 < i < k, T* € C'(U)). Suppose
B C U is a bounded set such that B C B C U. Then'l' : B — V is Lipschitz.

Proof. By Remark 4.3 it is enough to show that each T" is Lipschitz on B. Fix a function
¢ € C%(R") such that ¢ = 1 on B and ¢ = 0 on R™\ U. Then ©T" can be viewed as an
element of C}(R™). Therefore, it is Lipschitz (R is convex) and there exists a constant
L, which may depend on ¢, B and 1%, such that

T (x) — T (y)| < Llz —y| Y,y e R".
Since ¢ = 1 on B, it follows that
T (x) = T'(y)| < Lz —y| Vz,yeB.

4.2. Normed Spaces.

Theorem 4.11. Let X and Y be normed spaces. Let A be a dense subspace of X and B
be a dense subspace of Y. Then

e AX Bisdensein X xXY;

o ifT : Ax B — Risa continuous bilinear map, then T has a unique extension to a
continuous bilinear operatorT : X XY — R.

Theorem 4.12. [2] Let X be a normed space and let M be a closed vector subspace of
X.

(1) If X is reflexive, then X is a Banach space.
(2) X is reflexive if and only if X* is reflexive.
(3) If X* is separable, then X is separable.
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(4) If X is reflexive and separable, then so is X*.
(5) If X is a reflexive Banach space, then so is M.
(6) If X is a separable Banach space, then so is M.

Moreover, if X1,--- , X, are reflexive Banach spaces, then X, X - - - X X, equipped with
the norm
(1, = Nl + -+ el x,

is also a reflexive Banach space.

4.3. Topological Vector Spaces. There are different, generally nonequivalent, ways to
define topological vector spaces. The conventions in this section mainly follow Rudin’s
functional analysis [36]. Statements in this section are either taken from Rudin’s func-
tional analysis, Grubb’s distributions and operators [24], excellent presentation of Reus

[35], and Treves’ topological vector spaces [39] or are direct consequences of statements
in the aforementioned references. Therefore we will not give the proofs.

Definition 4.13. A topological vector space is a vector space X together with a topology
T with the following properties:
(i) For all x € X, the singleton {x} is a closed set.
(ii) The maps
(x,y) —z+y (from X x X into X),
(A, z) = Az (fromR x X into X),

are continuous where X X X and R x X are equipped with the product topology.

Definition 4.14. Suppose (X, 7) is a topological vector space and Y C X.

e Y is said to be convex if for all y;,y» € Y and t € (0, 1) it is true that ty; + (1 — t)y, €
Y.

e Y is said to be balanced if for ally € Y and |\| < 1 it holds that \y € Y. In particular,
any balanced set contains the origin.

o We say Y is bounded if for any neighborhood U of the origin (i.e. any open set contain-
ing the origin), there exits t > 0 such that Y C tU.

Theorem 4.15 (Important Properties of Topological Vector Spaces).
e Every topological vector space is Hausdorff.

e If (X, 7) is a topological vector space, then
(1) foralla € X: E € 1 <= a+ E € 7 (that is, T is translation invariant),
(2) forall \ € R\ {0}: E € 71 <= \E € 7 (that is, T is scale invariant),
(3) if A C X is convex and x € X, then sois A + =,
(4) if {A;}ier is a family of convex subsets of X, then N;c; A; is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4.16. Let (X, 7) be a topological space.

e A collection B C T is said to be a basis for T, if every element of T is a union of elements
in B.
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o Letp € X. If v C 7 is such that each element of v contains p and every neighborhood
of p (i.e. every open set containing p) contains at least one element of vy, then we say y
is a local base at p. If X is a vector space, then the local base vy is said to be convex if
each element of v is a convex set.

e (X, 7) is called first-countable if each point has a countable local base.
e (X, 1) is called second-countable if there is a countable basis for T.

Theorem 4.17. Let (X, 7T) be a topological space and suppose for all © € X, v, is a
local base at x. Then B = U, cx", is a basis for T.

Theorem 4.18. Let X be a vector space and suppose T is a translation invariant topology
on X. Then for all x1,r5 € X we have

the collection 7y, is a local base at x1 <= the collection {A + (z2 — 1)} A, is a local base at x5
Remark 4.19. Let X be a vector space and suppose T is a translation invariant topology

on X. As a direct consequence of the previous theorems the topology T is uniquely
determined by giving a local base vy, at some point x, € X.

Definition 4.20. Ler (X, T) be a topological vector space. X is said to be metrizable if
there exists a metric d : X x X — [0, 00) whose induced topology is T. In this case we
say that the metric d is compatible with the topology T.

Theorem 4.21. Let (X, 7) be a topological vector space.

o X is metrizable <= there exists a metric d on X such that forall v € X, {B(z, 1)} en
is a local base at x.

e A metric d on X is compatible with T <= forall x € X, {B(x, %)}neN is a local base
at x.

(B(z, %) is the open ball of radius % centered at x.)

Definition 4.22. Let X be a vector space and d be a metric on X. d is said to be
translation invariant provided that

Vo,y,a€ X  d(x+a,y+a)=d(z,y).

Remark 4.23. Let (X, T) be a topological vector space and suppose d is a translation
invariant metric on X. Then the following statements are equivalent:

(1) Forallz € X, {B(z, %)}neN is a local base at x.
(2) There exists xo € X such that { B(xy, %)}neN is a local base at x.

Therefore, d is compatible with T if and only if { B(0, %)}neN is a local base at the origin.

Theorem 4.24. Let (X, ) be a topological vector space. Then (X, T) is metrizable if
and only if it has a countable local base at the origin. Moreover, if (X, T) is metrizable,
then one can find a translation invariant metric that is compatible with 7.

Definition 4.25. Let (X, 7) be a topological vector space and let {x,} be a sequence in
X.

e We say that {x,} converges to a point x € X provided that
vUer,zeU dN Vn>N =xz,€U.

e We say that {x,} is a Cauchy sequence provided that
vUer,0eU dN Vmn>N xz,—x,€U.
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Theorem 4.26. Let (X, 7) be a topological vector space, {x,} be a sequence in X, and
x,y € X. Also suppose v is a local base at the origin. The following statements are
equivalent:

(1) v, - x

(2) (x, —x) =0

(3) zn+y—>x+y

(4)vVVey dN Vn>N x,—xz€V

Moreover, {x,} is a Cauchy sequence if and only if
vVey dN Vonm>N x,—z,€V.

Remark 4.27. In contrast with properties like continuity of a function and convergence
of a sequence which depend only on the topology of the space, the property of being a
Cauchy sequence is not a topological property. Indeed, it is easy to construct examples
of two metrics dy and dy on a vector space X that induce the same topology (i.e. the
metrics are equivalent) but have different collection of Cauchy sequences. However, it
can be shown that if d, and ds are two translation invariant metrics that induce the same
topology on X, then the Cauchy sequences of (X, d;) will be exactly the same as the
Cauchy sequences of (X, d).

Theorem 4.28. Let (X, T) be a metrizable topological vector space and d be a transla-
tion invariant metric on X that is compatible with T. Let {x,} be a sequence in X. The
following statements are equivalent:

(1) {x,} is a Cauchy sequence in the topological vector space (X, T).
(2) {x,} is a Cauchy sequence in the metric space (X, d).

Definition 4.29. Let (X, 7) be a topological vector space. We say (X, 1) is locally
convex if it has a convex local base at the origin.

Note that, as a consequence of theorems (4.15) and (4.18), the following statements
are equivalent:

(1) (X, 7) is alocally convex topological vector space.
(2) There exists p € X with a convex local base at p.
(3) For every p € X there exists a convex local base at p.

Definition 4.30. Let (X, 7) be a metrizable locally convex topological vector space. Let
d be a translation invariant metric on X that is compatible with 7. We say that X is
complete if and only if the metric space (X, d) is a complete metric space. A complete
metrizable locally convex topological vector space is called a Frechet space.

Remark 4.31. Our previous remark about Cauchy sequences shows that the above defi-
nition of completeness is independent of the chosen translation invariant metric d. Indeed
one can show that the locally convex topological vector space (X, T) is complete in the
above sense if and only if every Cauchy net in (X, T) is convergent.

Theorem 4.32. ([13], Page 63) A linear continuous bijective mapping of a Frechet space
X onto a Frechet space Y has a continuous linear inverse.

Definition 4.33. A seminorm on a vector space X is a real-valued functionp : X — R
such that

i Vo,ye X plr+y) <plr)+py)
i. Vze XVaeR  plax) = |alp(x)
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If P is a family of seminorms on X, then we say P is separating provided that for all
x # 0 there exists at least one p € P such that p(x) # 0 (that is, if p(x) = 0 for all
p € P, then x = 0).

Remark 4.34. It follows from conditions (i) and (ii) that if p : X — R is a seminorm,
then p(x) > 0 forall x € X.

Theorem 4.35. Suppose P is a separating family of seminorms on a vector space X.
Forallp € Pandn € N let

Vip,n):={re X :p(x) < %}
Also, let 7y be the collection of all finite intersections of V (p,n)’s. That is,
Acy<=3keN, 3p,- ,pr €P, Ing, - ,np € N such that A = 0F_,V(p;,n;)
Then each element of 7y is a convex balanced subset of X. Moreover, there exists a unique

topology T on X that satisfies both of the following properties:

(1) T is translation invariant (that is, if U € T and a € X, thena+ U € 7).
(2) v is a local base at the origin for T.

This unique topology is called the natural topology induced by the family of seminorms
P. Furthermore, if X is equipped with the natural topology T, then

i) (X, ) is a locally convex topological vector space,
ii) every p € P is a continuous function from X to R.

Theorem 4.36. Suppose P is a separating family of seminorms on a vector space X. Let
T be the natural topology induced by P. Then

(1) 7 is the smallest topology on X that is translation invariant and with respect to
which every p € P is continuous,

(2) T is the smallest topology on X with respect to which addition is continuous and
every p € P is continuous.

Theorem 4.37. Let X and Y be two vector spaces and suppose P and Q are two sepa-
rating families of seminorms on X and Y, respectively. Equip X and Y with the corre-
sponding natural topologies.

(1) A sequence x,, converges to x in X if and only if for all p € P, p(x, — x) — 0.

(2) A linear operator T : X — Y is continuous if and only if

Vge @ Jec>0,keN, p1,--,pxr €P  suchthat Vxre X |qu(x)|§clrga<xkpi(x).

(3) A linear operator T : X — R is continuous if and only if

Je>0,keN, p1,-- ,pr €P suchthat Yr e X |T(x)| <cmax p;(z).

1<i<k
Theorem 4.38. Let X be a Frechet space and let Y be a topological vector space. When
T is a linear map of X into Y, the following two properties are equivalent:
(1) T is continuous.
(2) x, > 0in X = Tx, > 0inY.

Theorem 4.39. Let P = {py.}ren be a countable separating family of seminorms on a
vector space X. Let T be the corresponding natural topology. Then the locally convex
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topological vector space (X, T) is metrizable and the following translation invariant
metric on X is compatible with T:

Let (X, 7) be alocally convex topological vector space. Consider the topological dual

of X,
X*:={f: X — R: fislinear and continuous} .

There are several ways to topologize X*: the weak® topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [39], Chapter 19). Here we describe the weak* topology and the strong topology on
X*.
Definition 4.40. Let (X, 7) be a locally convex topological vector space.

e The weak™ topology on X* is the natural topology induced by the separating family of
seminorms {p, }.cx where

VeeX  p,: X" =R, p(f):=1f(2)].

A sequence { f,,} converges to f in X* with respect to the weak* topology if and only if
fm(z) = f(x)inR forall x € X.

o The strong topology on X* is the natural topology induced by the separating family of
seminorms {pp } B Xboundea Where for any bounded subset B of X

pg: X" — R pe(f) :=sup{|f(z)|: z € B}.

(It can be shown that for any bounded subset B of X and f € X*, f(B) is a bounded
subset of R.)

Remark 4.41.

(1) If X is a normed space, then the topology induced by the norm
vieX®  |flle= Sup | ()]
x||x=1

on X* is the same as the strong topology on X* ([39], Page 198).

(2) In this manuscript we always consider the topological dual of a locally convex topo-
logical vector space with the strong topology. Of course, it is worth mentioning that
for many of the spaces that we will consider (including X = £(Q) or X = D(Q)
where () is an open subset of R") a sequence in X* converges with respect to the
weak™ topology if and only if it converges with respect to the strong topology (for more
details on this see the definition and properties of Montel spaces in section 34.4, page
356 of [39]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 4.42 ([35], Page 160). If X and Y are topological vector spaces and I :
X - Yand P : Y — X are continuous linear maps such that P o I = idy, then
I: X — I(X) CY is a linear topological isomorphism and 1(X) is closed in Y .

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.
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Let Xy, .-, X, be topological vector spaces. Recall that the product topology on X; X
-+ x X, is the smallest topology such that the projection maps

T‘—k:Xlx"'XXr%ka 7Tk(£17'“7x7‘):xk7

are continuous for all 1 < k < r. It can be shown that if each X} is a locally convex
topological vector space whose topology is induced by a family of seminorms P, then
X7 x -+ x X, equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{prom~+- - +pom pp €PVI<k<r}.

Theorem 4.43 ([35], Page 164). Let X4,--- , X, be locally convex topological vector
spaces. Equip Xy X --- X X, and X{ X - - - x X with the product topology. The mapping
L:X{x- - x X (Xyx--xX,)* defined by

f}(ul,--~ JUp) =Up0m + -+ U0,
is a linear topological isomorphism. Its inverse is
L) = (Woir, -+ ,v0i,),
where forall 1 < k <, i : X — Xy X -+ X X, is defined by
ir(z) = (0,---,0, Z ,0,-+-,0).
kth position

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.

Theorem 4.44 ([35], Page 163). Let X and Y be locally convex topological vector
spaces and suppose ' : X — Y is a continuous linear map. Then

(1) the map
T Y* = X* <T*y7$>X*><X = <y,T§C>y*Xy,
is well-defined, linear, and continuous. (T is called the adjoint of T'.)
(2) If T(X) is dense in'Y, then T* : Y* — X* is injective.

Remark 4.45. In the subsequent sections we will focus heavily on certain function spaces
on domains () in the Euclidean space. For approximation purposes, it is always desirable
to have D(Q)(= C°(2)) as a dense subspace of our function spaces. However, there is
another, may be more profound, reason for being interested in having D(S)) as a dense
subspace. It is important to note that we would like to use the term “function spaces” for
topological vector spaces that can be continuously embedded in D' () (see Section 6 for
the definition of D'())) so that concepts such as differentiation will be meaningful for
the elements of our function spaces. Given a function space A(SY) it is usually helpful to
consider its dual too. In order to be able to view the dual of A(S2) as a function space we
need to ensure that [A(Q)]* can be viewed as a subspace of D'(Q)). To this end, according
to the above theorem, it is enough to ensure that the identity map from D(2) to A(Q) is
continuous with dense image in A(f2).

Let us consider more closely two special cases of Theorem 4.44.

(1) Suppose Y is a normed space and H is a dense subspace of Y. Clearly, the identity
map ¢ : H — Y is continuous with dense image. Therefore, :* : Y* — H* (F' —
F|p) is continuous and injective. Furthermore, by the Hahn-Banach theorem for all
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@ € H* there exists F' € Y* such that F|y = ¢ and ||F|ly- = ||¢|lg-. So the
above map is indeed bijective and Y* and H* are isometrically isomorphic. As an
important example, let {2 be a nonempty open set in R”, s > 0, and 1 < p < oc.
Consider the space W;*(Q2) (see Section 7 for the definition of W (2)). C°(Q) is
a dense subspace of W;?(Q). Therefore, W=7 (Q) := [W;P(Q)]* is isometrically
isomorphic to [(C(Q), ||.||s,)]*. In particular, if ' € W~ (Q), then

|F(v)]
| E|ly-sw' () =  Sup .
W) T peczo) Ul

(2) Suppose (Y, ||.||y) is a normed space, (X, 7) is a locally convex topological vector
space, X C Y, and the identity map i : (X,7) — (Y, ||.||y) is continuous with dense
image. Soi* : Y* — X* (F — F|x) is continuous and injective and can be used to
identify Y* with a subspace of X™.

e Question: Exactly what elements of X* are in the image of ¢*? That is, which
elements of X* “belong to” Y*?
e Answer: ¢ € X* belongs to the image of ¢* if and only if ¢ : (X, |.|ly) —

R is continuous, that is, ¢ € X* belongs to the image of ¢* if and only if

SUPzex\ {0} Hﬁfﬁ' < 00.

So, an element ¢ € X* can be considered as an element of Y* if and only if
(@)l _
zex\(oy [[zlly
Furthermore if we denote the unique corresponding element in Y* by ¢ (normally we
identify ¢ and ¢ and we use the same notation for both) then since X is dense in Y
2(y)| (@)

|@lly= = sup = sup “—~4 < oo
yeY\{0} ||yHy zeX\{0} ||ZL"HY

Remark 4.46. 7o sum up, given an element ¢ € X* in order to show that ¢ can
o ()]

be considered as an element of Y we just need to show that sup,c x\ (o} Ty <
and in that case, norm of  as an element of Y™ is sup,¢ x\ oy %. However, it is

important to notice that if ' : Y — R is a linear map, X is a dense subspace of Y,
and F|x : (X,||.|ly) — R is bounded, that does NOT imply that F' € Y*. It just
shows that there exists G € Y* such that G|x = F|x.

We conclude this section by a quick review of the inductive limit topology.

Definition 4.47. Let X be a vector space and let { X, } nc1 be a family of vector subspaces
of X with the property that
e for each o € I, X, is equipped with a topology that makes it a locally convex
topological vector space, and
o U, Xo = X.
The inductive limit topology on X with respect to the family { X, }ac; is defined to be
the largest topology with respect to which

(1) X is a locally convex topological vector space, and
(2) all the inclusions X, C X are continuous.

Theorem 4.48. ([35], Page 161) Let X be a vector space equipped with the inductive
limit topology with respect to { X, } as described above. If Y is a locally convex vector
space, then a linear map T : X — Y is continuous if and only if T'|x, : Xo — Y is
continuous for all o € 1.
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Theorem 4.49. ([35], Page 162) Let X be a vector space equipped with the inductive
limit topology with respect to {X,} as described above. A convex subset W of X is a
neighborhood of the origin (i.e. an open set containing the origin) in X if and only if for
all a, the set W N X, is a neighborhood of the origin in X,,.

Theorem 4.50. ([35], Page 165) Let X be a vector space and let { X} cn, be a nested
family of vector subspaces of X :

XoCXi G- CX;Coee

Suppose each X is equipped with a topology that makes it a locally convex topological
vector space. Equip X with the inductive limit topology with respect to {X;}. Then the
following topologies on X" are equivalent (=they are the same):

(1) The product topology
(2) The inductive limit topology with respect to the family { X" }. (For each j, X"
is equipped with the product topology.)
As a consequence, if Y is a locally convex vector space, then a linear mapT : X*" — Y
is continuous if and only if T'| v xr ij — Y is continuous for all j € Ny.
J

5. REVIEW OF SOME RESULTS FROM DIFFERENTIAL GEOMETRY

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties
that we will frequently use. The main reference for the majority of the definitions is one
of the invaluable books by John M. Lee ([31]).

5.1. Smooth Manifolds. Suppose M is a topological space. We say that M is a topolog-
ical manifold of dimension n if it is Hausdorff, second-countable, and locally Euclidean
in the sense that each point of M has a neighborhood that is homeomorphic to an open
subset of R". It is easy to see that the following statements are equivalent ([31], Page
3):

(1) Each point of M has a neighborhood that is homeomorphic to an open subset of R".
(2) Each point of M has a neighborhood that is homeomorphic to an open ball in R".
(3) Each point of M has a neighborhood that is homeomorphic to R".

By a coordinate chart (or just chart) on M we mean a pair (U, ), where U is an
open subset of M and ¢ : U — Uisa homeomorphism from U to an open subset
U = p(U) C R™ U is called a coordinate domain or a coordinate neighborhood of
each of its points and ¢ is called a coordinate map. An atlas for ) is a collection of
charts whose domains cover M. Two charts (U, ) and (V1) are said to be smoothly
compatible if either UNV = () or the transition map o1 is a C*°-diffeomorphism. An
atlas A is called a smooth atlas if any two charts in .A are smoothly compatible with each
other. A smooth atlas A on M is maximal if it is not properly contained in any larger
smooth atlas. A smooth structure on )/ is a maximal smooth atlas. A smooth manifold
is a pair (M, .A), where M is a topological manifold and A is a smooth structure on M.
Any chart (U, ¢) contained in the given maximal smooth atlas is called a smooth chart.
If M and N are two smooth manifolds, a map /' : M — N is said to be a smooth
(C*°) map if for every p € M, there exist smooth charts (U, ¢) containing p and (V1))
containing F'(p) such that F(U) C V and ¢ o F o o' € C*®(p(U)). It can be shown
that if F' is smooth, then its restriction to every open subset of M is smooth. Also, if
every p € M has a neighborhood U such that F'|;; is smooth, then F' is smooth.



20

A. BEHZADAN AND M. HOLST

Remark 5.1.

o Sometimes we use the shorthand notation M™ to indicate that M is n-dimensional.

o Clearly, if (U, ) is a chart in a maximal smooth atlas and V' is an open subset of

U, then (V1)) where 1 = |y is also a smooth chart (i.e. it belongs to the same
maximal atlas).

e Every smooth atlas A for M is contained in a unique maximal smooth atlas, called

the smooth structure determined by A.

o If M is a compact smooth manifold, then there exists a smooth atlas with finitely

many elements that determines the smooth structure of M (this is immediate from the
definition of compactness).

Definition 5.2.

o We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz

(GL) smooth atlas if the image of each coordinate domain in the atlas under the cor-
responding coordinate map is a nonempty bounded open set with Lipschitz boundary.

o We say that a smooth atlas for a smooth manifold M" is a generalized geometrically

Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas
under the corresponding coordinate map is the entire R" or a nonempty bounded
open set with Lipschitz boundary.

o We say that a smooth atlas for a smooth manifold M" is a nice smooth atlas if the

image of each coordinate domain in the atlas under the corresponding coordinate
map is a ball in R".

o We say that a smooth atlas for a smooth manifold M" is a super nice smooth atlas if

the image of each coordinate domain in the atlas under the corresponding coordinate
map is the entire R".

o We say that two smooth atlases {(Uy, 00 ) }acr and {(Us, $5)} ses for a smooth man-

ifold M" are geometrically Lipschitz compatible (GLC) smooth atlases provided
that each atlas is GGL and moreover for all o € I and 5 € J with U, N 05 # 0,
0o (UaNUg) and $5(U,NUg) are nonempty bounded open sets with Lipschitz bound-
ary or the entire R™.

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth

atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.

Also, note that two arbitrary GL smooth atlases are not necessarily GLC smooth atlases
because the intersection of two Lipschitz domains is not necessarily Lipschitz (see e.g.

[5], pages 115-117).

Given a smooth atlas {(U,, ¢,)} for a compact smooth manifold M, it is not neces-

sarily possible to construct a new atlas {(U,, Po)} such that this new atlas is nice; for

instance if U,, is not connected we cannot find ¢, such that ¢, (U,) = R" (or any ball in
R™). However, as the following lemma states, it is always possible to find a refinement

that is nice.

Lemma 5.3. Suppose {(U,, ¢a) }1<a<n is a smooth atlas for a compact smooth manifold

M. Then there exists a finite open cover {V}1<s<r, of M such that

V5 1 <a(f) <N st Vs CUyp), @ap(Vp)isaballinR™.
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Therefore, {(Vs, ua(s)lvs) }1<p<L is a nice smooth atlas.

Proof. Foreach1 < o < N and p € U,, there exists 7, > 0 such that B, (¢.(p)) C
Pa(Us). Let Vap := 03" (Br,, (9a(P))- Uicacy Uper, Vap is an open cover of M and
so it has a finite subcover { Vo, -+, Vayp, }- Let Vg = Vi, p,. Clearly, Vg C Uy, and
®as(Va) is a ball in R,

Remark 5.4. Every open ball in R" is C*°-diffeomorphic to R". Also, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas
on a compact smooth manifold, which is guaranteed by the above lemma, implies the
existence of a finite super nice smooth atlas.

Lemma 5.5. Let M be a compact smooth manifold. Let {U,}1<o<n be an open cover
of M. Suppose C' is a closed set in M (so C is compact) which is contained in Ug
for some 1 < B < N. Then there exists an open cover {A,}1<a<n of M such that
C CAg gAﬁ C Ugand A, C A, C U, forall o # p.

Proof. Without loss of generality we may assume that 5 = 1. Foreach1 < o < N
and p € U,, there exists 7, > 0 such that By, (¢a(p)) € ¢a(Us). Let Vg, =
ot (Bro, (a(p))). Cleatly, p € Vo, C V,, C U,. Since M is compact, the open
cover |J,.,<n U, e, Vap of M has a finite subcover A. For each 1 < o < N let
E,={peU,:V,, € A} and

L ={a:E,#0}.

If « € I, welet W, = | Vap. For a & I, choose one point p € U, and let

Wy = Vap.
C' is compact so 1(C') is a compact set inside the open set ¢, (U;). Therefore, there
exists an open set I3 such that

©1(C) C BC BCp(l).
Let W = ¢, }(B). Clearly, C C W C W C U,. Now Let
Ay =w i,
A, =W, Va>1.

pEE.

Clearly, A; contains W which contains C'. Also, union of A,’s contains fovzl Up6 £, Vap
which is equal to M. Closure of a union of sets is a subset of the union of closures of

those sets. Therefore, for each o, A, C U, O

Theorem 5.6 (Exhaustion by Compact Sets for Manifolds). Let M be a smooth manifold.
There exists a sequence of compact subsets (K ;) jen such that UjeNf(j =M, f(jﬂ \K; #
0 for all j and

Ky CKyCKy € CKCR;Caee

Definition 5.7. A C'™ partition of unity on a smooth manifold is a collection of nonneg-
ative C* functions {1, : M — R} ,ca such that

(i) the collection of supports, {supp s }aca is locally finite in the sense that every
point in M has a neighborhood that intersects only finitely many of the sets in
{Supp wa}aEA-

(i) D nea Vo = 1.

Given an open cover {U, }aca of M, we say that a partition of unity {14 }aca is subor-
dinate to the open cover {U, }oca if supp b, C U, for every o € A.
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Theorem 5.8. ([44], Page 146) Let M be a compact smooth manifold and {U, },ca an
open cover of M. There exists a C* partition of unity {1, }neca subordinate to {U, } oe a.
(Notice that the index sets are the same.)

Theorem 5.9. ([44], Page 347) Let {U, } ac 4 be an open cover of a smooth manifold M.

(i) There is a C™ partition of unity {py}3, with every o, having compact support
such that for each k, supp o C U, for some o € A.

(ii) If we do not require compact support, then there is a C* partition of unity {1, }aca
subordinate to {U, } 4e a-

Remark 5.10. Let M be a compact smooth manifold. Suppose {U, }oc 4 is an open cover
of M and {1s, }aca is a partition of unity subordiante to {U, } e a-

o Forallm e N, {1/?01 =5 %:wm} is another partition of unity subordinate to {Uy, } e a-
ac @

o If {Vs}sen is an open cover of M and {&g} is a partition of unity subordinate to
{Vis}sen, then {1a&s}(apycaxp is a partition of unity subordinate to the open cover
{Ua N VB}(a,B)eAxB-

Lemma 5.11. Let M be a compact smooth manifold. Suppose {U,}1<a<n is an open
cover of M. Suppose C'is a closed set in M (so C'is compact) which is contained in Ug
for some 1 < B < N. Then there exists a partition of unity {\, }1<a<n subordinate to
{Ua}lsoé]v such that 1[)5 =1lonC.

Proof. We follow the argument in [16]. Without loss of generality we may assume J = 1.
We can construct a partition of unity with the desired property as follows: Let A, be a
collection of open sets that covers M and such that C C A; C A, C U, and for a > 1,
A, € A, C U, (see Lemma 5.5). Let n, € C>°(U,) be such that 0 < 7, < 1 and
Ne = 1 on a neighborhood of A,. Of course Zgzl 7)o 18 not necessarily equal to 1 for all
x € M. However, if we define ¢; = n; and for o > 1

Vo =1l —m) - (1= na-1),
by induction one can easily show that for 1 <[ < N

1—2%_ T—m)---(1—n).
In particular,
1—2%— L—m)--(1—ny) =0,

since for each x € M there exists « such that x € A, and so 7, (x) = 1. Consequently,

SN . =1 0

5.2. Vector Bundles, Basic Definitions. Let M/ be a smooth manifold. A (smooth real)
vector bundle of rank r over M is a smooth manifold F together with a surjective
smooth map 7 : £ — M such that

(1) foreach x € M, E, = 7=~ !(x) is an r-dimensional (real) vector space,
(2) for each x € M, there exists a neighborhood U of z in M and a smooth map
p=(p -, p") from E|y := 771 (U) onto R" such that
e forevery z € U, p|g, : E, — R” is an isomorphism of vector spaces,
o &= (7|g,,p): By — U x R is a diffeomorphism.
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We denote the projection onto the last 7 components by 7’. So 7’ o & = p. The expres-
sions “F is a vector bundle over M”, or “E — M is a vector bundle”, or “m : E — M
is a vector bundle” are all considered to be equivalent in this manuscript.

If 7 : E — M is a vector bundle of rank r, U is an open set in M, p : Fy =
7Y U) = R and ® = (7|g,,p) : By — U x R" satisfy the properties stated in item
(2), then we refer to both @ : £y — U x R"and p : Ey — R" as a (smooth) local
trivialization of £ over U (it will be clear from the context which one we are referring
to). We say that F|y is trivial. The pair (U, p) (or (U, ®)) is sometimes called a vector
bundle chart. It is easy to see that if (U, p) is a vector bundle chart and ) # V' C U is
open, then (V, p|g,, ) is also a vector bundle chart for £. Moreover, if V' is any nonempty
open subset of M, then £y is a vector bundle over the manifold V. We say that a triple
(U, ¢, p) is a total trivialization triple of the vector bundle 7 : £ — M provided that
(U, ¢) is a smooth coordinate chart and p = (p',- -+, p") : Eyy — R" is a trivialization of
E over U. A collection {(U,, ¢a, pa)} is called a total trivialization atlas for the vector
bundle £ — M provided that for each «, (U,, ¢4, pa) is a total trivialization triple and
{(Ua, ¢a)} is a smooth atlas for M.

Lemma 5.12. ([31],Page 252) Let m : E — M be a smooth vector bundle of rank r over
M. Suppose ® : 77 (U) - U x R" and ¥ : 7= 4(V) — V x R" are two smooth local
trivializations of E with U NV # (). There exists a smoothmap 7 : U NV — GL(r,R)
such that the composition

PoVU ! (UNV)xR = (UNV)xR"

has the form
® o0 (p,v) = (p,7(p)v).

Remark 5.13. Let E be a vector bundle over an n-dimensional smooth manifold M.
Suppose {(Uy, Pa, Pa) tacr is a total trivialization atlas for the vector bundle 7 : E —
M. Then for each o € I, the mapping

Ey, = 7T_l(UOz) - Spa(UOJ x R" C Rn—i—r’ St (9004(”(5))7 pa(s))

will be a coordinate map for the manifold E over the coordinate domain Ey_,. The
collection {(Ey,, (¢a © T, pa)) tacr will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5.14. ([45], Page 77) Let E be a vector bundle over an n-dimensional smooth
manifold M (M does not need to be compact). Then M can be covered by n + 1 open
sets Vo, - -, V,, where the restriction E|y; is trivial.

Theorem 5.15. Let E be a vector bundle of rank r over an n-dimensional smooth man-
ifold M. Then E — M has a total trivialization atlas. In particular, if M is compact,
then it has a total trivialization atlas that consists of only finitely many total trivialization
triples.

Proof. Let Vy,--- ,V,, be an open cover of M such that F is trivial over Vs with the
mapping ps : By, — R". Let {(Ua, ¥a) }acr be a smooth atlas for M (if M is compact,
the index set I can be chosen to be finite). Foralla € I and 0 < 3 < nlet W,5 =
Us N Vs Let J = {(a,8) : Wag # 0}. Clearly, {(Was, Pag, Pas)}(a,8es Where
Pap = g0a|Wa5 and p,5 = p5|ﬂ_1(Wa5) is a total trivialization atlas for £ — M. [

Definition 5.16.
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o We say that a total trivialization triple (U, p, p) is geometrically Lipschitz (GL) pro-
vided that p(U) is a nonempty bounded open set with Lipschitz boundary. A total
trivialization atlas is called geometrically Lipschitz if each of its total trivialization
triples is GL.

e We say that a total trivialization triple (U, v, p) is nice provided that p(U) is equal to
a ball in R™. A total trivialization atlas is called nice if each of its total trivialization
triples is nice.

e We say that a total trivialization triple (U, p, p) is super nice provided that ¢(U)
is equal to R™. A total trivialization atlas is called super nice if each of its total
trivialization triples is super nice.

e A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if
each of its total trivialization triples is GL or super nice.

e We say that two total trivialization atlases {(Un, Yo, po) }acr and {(Us, &, ps)} ses
are geometrically Lipschitz compatible (GLC) if the corresponding atlases

{(Uom Spa)}ael and {(Uﬁ, 955)}56] are GLC.

Theorem 5.17. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M. Then E has a nice total trivialization atlas (and a super nice total
trivialization atlas) that consists of only finitely many total trivialization triples.

Proof. By Theorem 5.15, E — M has a finite total trivialization atlas {(Us,, ®a, Pa) }-
By Lemma 5.3 (and Remark 5.4) there exists a finite open cover {Vjs}1<p<, of M such
that

V5 1< af) S Nst. VzCUyp, @ap(Vp)isaballinR"
(orvg 1 <af) < Nst. VzCUsp), ¢ap(Vs)=R"),

and thus {(V3, ©a(s)|vs) }1<p<r is a nice (resp. super nice) smooth atlas. Now, clearly,
{(Vs, 0ad) v, pas)| By, ) h1<p<1 is a nice (resp. super nice) total trivialization atlas. [J

Theorem 5.18. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M. Then E admits a finite total trivialization atlas that is GL compat-
ible with itself. In fact, there exists a total trivialization atlas {(Uy, Pa, Po) 1<a<n Such
that

o foralll < a < N, ¢,(U,) is bounded with Lipschitz continuous boundary, and,

o foralll < a, < N, U,NUg is either empty or else p,(U, NUg) and ¢3(U, NUp)
are bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [27]. Equip M with a smooth Riemannian metric g. Let r;,; denote the
injectivity radius of M which is strictly positive because M is compact. Let Vj, -, V,
be an open cover of M such that F is trivial over V3 with the mapping ps : Ey, — R".
For every © € M choose 0 < i(z) < n such that x € V). Forallz € M letr, be a
positive number less than “22 such that exp, (B,,) C Vi) where B, denotes the open
ball in T, M of radius r, (with respect to the inner product induced by the Riemannian
metric ¢g) and exp, : T, M — M denotes the exponential map at z. For every z € M
define the normal coordinate chart centered at x , (U,, ¢,.), as follows:

U, =exp,(B.,), ©.:=\, " oexp,':U, = R",
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where )\, : R" — T, M is an isomorphism defined by A\, (y',-- ,y") = y'Ej,; Here
{Ei;}?_, is a an arbitrary but fixed orthonormal basis for 7, M. It is well-known that
(see e.g. [29])

b SOI('T) = (Oa T 70)’
e g;;(x) = 4;; where g;; denotes the components of the metric with respect to the
normal coordinate chart (U, ),

o [, = 0i|, where {0; }1<i<, is the coordinate basis induced by (U,, ¢, ).

As a consequence of the previous items, it is easy to show that if X € T, M (X =
X"0;|.), then the Euclidean norm of X will be equal to the norm of X with respect to
the metric g, that is, | X |, = |X|; where

[Xlg = VX2 +- (X)X = V(X X).
Consequently, for every x € M, o, (U,) will be a ball in the Euclidean space, in partic-

ular, {(U,, ¢x)}zen is a GL atlas. The proof of Lemma 3.1 in [27] in part shows that
the atlas {(Uy, ©.) }zen is GL compatible with itself. Since M is compact there exists

r1,--+, 2y € M such that {U,, }1<j<n also covers M.
Now, clearly, {(Us;, ¥e; Pi(x;) \Uzj ) }1<j<n is a total trivialization atlas for £ that is GL
compatible with itself. U

Corollary 5.19. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M. Then E admits a finite super nice total trivialization atlas that is
GL compatible with itself.

Proof. Let {(Uy, ¥as Pa) }1<a<n be the total trivialization atlas that was constructed above.
For each «, ¢, (U, ) is a ball in the Euclidean space and so it is diffeomorphic to R"; let
£a @ pa(Us) — R™ be such a diffeomorphism. We let ¢, := &, 0 ¢, : U, — R™.
A composition of diffeomorphisms is a diffeomorphism, so for all 1 < «,8 < N,
Pa 0 @5 @p(Ua NUs) = @a(Us N Up) is a diffeomorphism. So {(Ua, @a; pa) <a<n
is clearly a smooth super nice total trivialization atlas. Moreover, if 1 < «, < N are
such that U, N Uy is nonempty, then ¢, (U, N Us) is R™ or a bounded open set with
Lipschitz continuous boundary. The reason is that @, = &, © ¥4, and ¢, (U, N Up) is R™
or Lipschitz, &, is a diffeomorphism and being equal to R™ or Lipschitz is a property that
is preserved under diffeomorphisms. Therefore, {(U,, Pa; pa) }1<a<n is a finite super
nice total trivialization atlas that is GL compatible with itself. U

A section of // is amap v : M — FE such that m o u = Id,;. The collection of
all sections of £ is denoted by I'(M, E). A section u € I'(M, E) is said to be smooth
if it 1s smooth as a map from the smooth manifold M to the smooth manifold £. The
collection of all smooth sections of £ — M is denoted by C*°(M, E). Note that if
{(Ua; @a; pa) taer is a total trivialization atlas for the vector bundle 7 : E — M of rank
r, then for u € I'(M, E') we have u € C°(M, FE) if and only if for all « € I, the local
representation of u with respect to the coordinate charts (Us, ¢o) and (Ey,,, (oo, pa))
is smooth, that is,

ue C®(M,E)<=Vael z+ (paomouop,’, pyouoyp,")issmooth
< Vael z+ (z,paouoyp,’)issmooth
<=Vacl z+ p,ouoy,"issmooth
—=Vael,V1<I<r plouop,t e C®p,(U,)).
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A local section of E over an open set U € M is amap v : U — E where u has the
property that m o u = Idy (that is, u is a section of the vector bundle £y, — U). We
denote the collection of all local sections on U by I'(U, E) or I'(U, Ey).

Remark 5.20. As a consequence of p|g, : E, — R” being an isomorphism, if u is a
section of E|y — U and f : U — R is a function, then p(fu) = fp(u). In particular,

p(0) = 0.

Given a total trivialization triple (U, ¢, p) we have the following commutative diagram:

Ely ¥ o(U) xR

[ |
U—"= o(U) CR"

If s is a section of E|y — U, then by definition the pushforward of s by p’ (the ;"
component of p) is a section of ¢(U) x R — (U) which is defined by

pls)=posop™ (ie.z2€ pU)r (2,0 0s0p(2))).

Let £ — M be a vector bundle of rank » and U C M be an open set. A (smooth)
local frame for £ over U is an ordered r-tuple (si,--- ,s,) of (smooth) local sections
over U such that for each z € U, (s1(z),- -, s.(z)) is a basis for E,. Given any vector
bundle chart (V, p), we can define the associated (smooth) local frame on V" as follows:

Vi<i<rvzeV  s(z)=pl5(a),

where (eq, - - - , e,) is the standard basis of R". The following theorem states the converse
of this observation is also true.

Theorem 5.21. ([31], Page 258) Let E© — M be a vector bundle of rank r and let
(s1,---, ) be a smooth local frame over an open set U C M. Then (U, p) is a vector
bundle chart where the map p : Ey — R" is defined by

VeeUVu€eE, pu) =u'e; + - +ue,,
where u = utsi(z) 4+ -+ + u” s, ().
Theorem 5.22. ([31], Page 260) Let E — M be a vector bundle of rank r and let
(s1,-++,8,) be a smooth local frame over an open set U C M. If f € T'(M, E), then

f is smooth on U if and only if its component functions with respect to (s, - ,s,) are
smooth.

A (smooth) fiber metric on a vector bundle £ is a (smooth) function which assigns to
each x € M an inner product

(,)p:E,x E, —R.
Note that the smoothness of the fiber metric means that for all u,v € C*°(M, E) the
mapping
M — R, x— (u(z),v(z))E
is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([38], Page 72).

Remark 5.23. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber
metric on the tangent bundle. The metric g induces fiber metrics on all tensor bundles; it
can be shown that ([29]) if (M, g) is a Riemannian manifold, then there exists a unique
inner product on each fiber of TF(M) with the property that for all x € M, if {e;}
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is an orthonormal basis of T, M with dual basis {n'}, then the corresponding basis of
TF(T, M) is orthonormal. We denote this inner product by (., .)r and the corresponding
norm by |.|p. If A and B are two tensor fields, then with respect to any local coordinate
system

(A, B)p = g™ -+ githg, gy AT B

211k 1Tk
Theorem 5.24. Let m : EE — M be a vector bundle with rank r equipped with a fiber
metric {.,.)p. Then given any total trivialization triple (U, @, p), there exists a smooth
map p . Ey — R” such that with respect to the new total trivialization triple (U, p, p)
the fiber metric trivializes on U, that is,
VeeUVu,v € E, (u,v)p = urv' 4+ - Fu"v",

where for each 1 < | < r, u' and v' denote the I'" components of u and v, respectively
(with respect to the local frame associated with the bundle chart (U, p)).

Proof. Let (t1,--- ,t,) be the local frame on U associated with the vector bundle chart
(U, p). That is,

VeeUVI<I<r t(z) = plg(er) .
Now, we apply the Gram-Schmidt algorithm to the local frame (¢1,- - ,t,) to construct
an orthonormal frame (sy, - - - , s,) where

b= Yyt 85 Bsj

Vi<i<r = = )
[t = 22521 (b 85) 5]

s; : U — E is smooth because

(1) smooth local sections over U form a module over the ring C*>(U),

(2) the function z +— (t;(x), s;(z))g from U to R is smooth,

(3) since Span{sy,---,s,_1} = Span{ty,--- ,t;_1}, t; — Zé;ll (ti, sj) ps; is nonzero
on U and x — |t;(z) — Zé;ll (ti(z), s;(z))ps;(z)| as a function from U to R is
nonzero on U and it is a composition of smooth functions.

Thus for each [, s; is a linear combination of elements of the C*°(U )-module of smooth
local sections over U, and so it is a smooth local section over U. Now, we let (U, p) be
the associated vector bundle chart described in Theorem 5.21. For all € U and for all
u,v € F, we have

(u,v)g = <ulsl,vjsj)E = v’ (s, Sj)E = ulvj5lj =ulvt U

U

Corollary 5.25. As a consequence of Theorem 5.24, Theorem 5.18, and Theorem 5.17
every vector bundle on a compact manifold equipped with a fiber metric admits a nice
finite total trivialization atlas (and a super nice finite total trivialization atlas and a finite
total trivialization atlas that is GL compatible with itself) such that the fiber metric is
trivialized with respect to each total trivialization triple in the atlas.

5.3. Standard Total Trivialization Triples. Let M/™ be a smooth manifold and 7 :
E — M be a vector bundle of rank r. For certain vector bundles there are standard
methods to associate with any given smooth coordinate chart (U, p = (z*)) a total trivi-
alization triple (U, ¢, p). We call such a total trivialization triple the standard total triv-
ialization associated with (U, ). Usually this is done by first associating with (U, ¢)
a local frame for Fy and then applying Theorem 5.21 to construct a total trivialization
triple.
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e E = TJ(M): The collection of the following tensor fields on U forms a local frame for
FEy associated with (U, p = (x))

aiil ®---®%®da£ﬁ®---®da§jk.
So, given any atlas {(U,, ¢,)} of a manifold M™", there is a corresponding total trivi-
alization atlas for the tensor bundle 7}*(M), namely {(Ua; Pas pa)} where for each a,
po has n**! components which we denote by (p,)7'7". Forall F € (M, T}(M)), we
have

(p) iy (F) = (F)IL
Here (F, )fll f’ denotes the components of F' with respect to the standard frame for

TFU, described above. When there is no possibility of confusion, we may write Ffl ' Zil
instead of (F,)7' 7.

Q1 ig

e E = A*(M): This is the bundle whose fiber over each = € M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for Ey associated with (U, ¢ = (z%))

dz’ A+~ Adx’*  ((ji,--- ,jx) is increasing) .

e [/ = D(M) (the density bundle): The density bundle over M is the vector bundle whose
fiber over each x € M is D(T, M ). More precisely, if we let

= [[ oM,

then D(M) is a smooth vector bundle of rank 1 over M ([31], Page 429). Indeed, for
every smooth chart (U, ¢ = (z')), |[dz' A --- A dz"| on U is a local frame for D(M ).
We denote the corresponding trivialization by pp ., that is, given u € D(T, M), there
exists a number a such that

p=a(ldz' A+ Adz"|,)
and pp,, sends yi to a. Sometimes we write D instead of D(M) if M is clear from the
context. Also, when there is no possibility of confusion we may write pp instead of
PD,p-
Remark 5.26 (Integration of densities on manifolds). Elements of C.(M,D) can be
integrated over M. Indeed, for ;1 € C.(M, D) we may consider two cases

e Case 1: There exists a smooth chart (U, ) such that suppp C U.

/u —/ ppp oo dV.

e Case 2: If p is an arbitrary element of C.(M, D), then we consider a smooth atlas
{(Uas ¥a) Yaer and a partition of unity {14 } acr subordinate to {U,} and we let

[ n=3 [ an.

ael

It can be shown that the above definitions are independent of the choices (charts and
partition of unity) involved ([31], Pages 431 and 432).
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5.4. Constructing New Bundles From Old Ones.
5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle.

e The construction Hom(., .) can be applied fiberwise to a pair of vector bundles £ and
E over a manifold M to give a new vector bundle denoted by Hom(E, E) The fiber
of Hom(E, E) at any given point p € M is the vector space Hom(E,, E »). Clearly, if
rank ' = 7 and rank £ = 7, then rank Hom(E, E) = r7.

If{(Uas Pa: pa) } and { (U, ¢a, fa) } are total trivialization atlases for the vector bundles
7:E—> Mand7: E — M, respectively, then {U,, p., po} Will be a total trivializa-
tion atlas for e : Hom(E, E) — M where Pa : Taa (Us) — Hom(R”, R™) = R is
defined as follows: for p € U,, A, € Hom(E,, E,) is mapped to [Palg,] 0 Ao [palE,]

eletnm : £ — M be a vector bundle. The dual bundle E* is defined by E* =
Hom(E, E = M x R).

e Let 7 : EF — M be a vector bundle and let D denote the density bundle of M. The
functional dual bundle £V is defined by £Y = Hom(FE, D)(see [35]). Let’s describe
explicitly what the standard total trivialization triples of this bundle are. Let (U, ¢, p) be
a total trivialization triple for £. We can associate with this triple the total trivialization
triple (U, ¢, p¥) for EY where p¥ : Eyj — R is defined as follows: forp € U, L, €
Hom(E,, D,) is mapped to pp , o L, o (p|g,)”" € (R")* ~ R". Note that (R")* ~ R"
under the following isomorphism

(R")" — R", u— uler)er + -+ +uler)e, .

That is, u as an element of R" is the vector whose components are (u(e;),--- ,u(e,)).
In particular, if 2z = z1e; + - - - + z,e, is an arbitrary vector in R", then

U,(Z) = u<2161 + .+ Z,,GT) = Z1U(€1) + .+ Zru(er) =z-u,

where on the LHS w is viewed as an element of (R”)* and on the RHS u is viewed as an
element of R".
In short, p¥ : Ef — R" is given by

VISI<r  (0)(Ly) = (oo Lyo (pls,) ) (e).

5.4.2. Tensor Product Of Bundles. Letm : EF — M and 7 : E — M be two vector
bundles. Then £ ® E is a new vector bundle whose fiber at p € M is £, ® E If
{(Ua; ¢a; pa)} and {(Ua; ¢a, fa)} are total trivialization atlases for the vector bundles
7:E — Mand 7 : E — M, respectively, then {(Us, ©a, o))} Will be a total trivializa-
tion atlas for Tngr : £ @ E — M where fy : Miopor(Ua) — (R” @ R7) = R'7 is defined
as follows: for p € U,, a, ® @, € E, ® E, is mapped to p,|z, (a,) ® Palp, (Gp).

It can be shown that Hom (£, E) >~ F* @ E (isomorphism of vector bundles over M).

Remark 5.27 (Fiber Metric on Tensor Product). Consider the inner product spaces
(U, (., .)v) and (V,{.,.)v). We can turn the tensor product of U and V, U ® V into
an inner product space by defining

(U1 @ v1,u2 ® V2)ygy = (U1, U2)y (U1, Va)v

and extending by linearity. As a consequence, if I is a vector bundle (on a Riemann-
ian manifold (M, g)) equipped with a fiber metric {.,.)g, then there is a natural fiber
metric on the bundle (T*M V®% and subsequently on the bundle (T*M)** @ E. If
F=F _di"® ---@dt"™ @s,and G = G% . do" @ --- ® dz’* ® s, are two

i1l JiJk
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local sections of this bundle on a domain U of a total trivialization triple, then at any
point in U we have

<F7 G)(T*M)®k®E =F., G

i1 jl-~~jk<dxi17 d$j1>T*M T <d$ik7 dxjk>T*M<5a> Sh)E

= gi1j1 . .gikjk habﬂ?~~~ikG§1~--jk 7
where hgy, = (Sa,Sp)p. (Here {s, = p~(es)}1<a<r is a local frame for E over

U.{€q}1<a<r is the standard basis for R" where r = rank E.)

5.5. Connection on Vector Bundles, Covariant Derivative.

5.5.1. Basic Definitions. Let m : . — M be a vector bundle.
Definition 5.28. A connection in E is a map
V:C®M,TM) x C*(M,E) - C*(M,E), (X,u)— Vxu

satisfying the following properties:
(1) Vxu is linear over C>*(M) in X

Vf,g€ C®(M) Vixitexot = fVx,u+ gVx,u.
(2) Vxuis linear over R in u.:
Va,beR Vx(auy + bus) = aVxus + bVxus .
(3) V satisfies the following product rule
VfeC™®(M) Vx(fu) = fVxu+ (Xf)u.

A metric connection in a real vector bundle E with a fiber metric is a connection V such
that

VX e C®M,TM),Yu,ve C®M,FE) X(u,v)p = (Vxu,v)g + (u, Vxv)g.

Here is a list of useful facts about connections:

o ([28],Page183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection

e ([31], Page 50) If V is a connection in abundle F, X € C*°(M,TM),u € C*(M, E),
and p € M, then V xu|, depends only on the values of  in a neighborhood of p and the
value of X at p. More precisely, if © = @ on a neighborhood of p and X, = )~(p, then
qu‘p = VXﬂ]p.

e ([31], Page 53) If V is a connection in 7'M, then there exists a unique connection in
each tensor bundle T/“(M ), also denoted by V, such that the following conditions are
satisfied:

(1) On the tangent bundle, V agrees with the given connection.

(2) On T°(M), V is given by ordinary differentiation of functions, that is, for all real-
valued smooth functions f : M — R: Vxf = Xf.

B) Vx(F®G)=(VxF)® G+ F® (VxG).

(4) If tr denotes the trace on any pair of indices, then Vx (trF') = tr(Vx F).
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This connection satisfies the following additional property: forany T' € C*°(M, T} (M)),
vector fields Y;, and differential 1-forms w’,

(VxT)(w', ... W'Yy, ) = X(T(W ..., o' Y1, .. YR))

!
—ZT(wl,...,Vij,...,wl,Yl,...,Yk)
j=1

k
=) T, WY VXYY
=1

Definition 5.29. Let V be a connection in m : & — M. We define the corresponding
covariant derivative on F, also denoted V, as follows

V:C®M,E)— C°(M,Hom(TM,E)) = C*(M, T"M ® E), u— Vu
where for all p € M, Vu(p) : T,M — E, is defined by
X, — Vxul,,
where X on the RHS is any smooth vector field whose value at p is X,

Remark 5.30. Let V be a connection in T'M. As it was discussed V induces a con-
nection in any tensor bundle E = T}(M), also denoted by V. Some authors (including
Lee in [31], Page 53) define the corresponding covariant derivative on E = TF(M) as
follows:

V:C®(M,TH(M)) = C*(M,T}*"(M)),  F~—VF
where

VF(WI,"' 7wl7Y17"' )kaX):<vXF)(w17 7wl7)/17"' 7}/}9)

This definition agrees with the previous definition of covariant derivative that we had for
general vector bundles because

TMOTIM 2T MOT'M®- - @ T"M@TM@ - @ TM = T} M.

vV Vv
k factors l factors

Therefore,
C>(M,Hom(TM,T}M)) = C®(M,T*M @ Tf M) = C=(M, T} M).

More concretely, we have the following one-to-one correspondence between
C=(M,Hom(TM,TFM)) and C®(M, T} M):

(1) Given u € C*(M, leHM), the corresponding element a € ¢ (M, Hom(TM,T}M))
is given by

VpeM  a(p): T,M — THT,M), X —u)(--, -, X).

(2) Given @ € C>(M,Hom(TM,TFM)), the corresponding element u € C>(M, T} M)
is given by

Vpe M u(p)(wl,--- Wi Yy, Y, X) = [a(p)(X)](wl,--- LWl Yy, ,Yi) .
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5.5.2. Covariant Derivative on Tensor Product of Bundles. ([33], Page 87)If E an E are
vector bundles over M with covariant derivatives VE : C*°(M, E) — C*°(M, T*M®FE)

and VE : C°(M,E) — C®(M,T*M ® E), respectively, then there is a uniquely
determined covariant derivative
VFEEE . (M, E® E) —» C®(M,T*M ® E ® E)
such that ) )
VEE( @) =Viue i+ Viiou.

The above sum makes sense because of the following isomorphisms:
(T"MQE)QE=2T"MRFEQE=2T"MQEQE=(T"MQE)®FE.
Remark 5.31. Recall that for tensor fields covariant derivative can be considered as
a map from C®(M,TFM) — C=(M, T M). Using this, we can give a second de-
scription of covariant derivative on E @ FE when E = T} M. In this new description we

have

VIMEE . 0o\ TFM @ E) — C®(M, TF'"M ® E) .
Indeed, for F € C°(M, TFM) and u € C=(M, E)

VIMOE(F @ y) = (VIVYFYou+ F ® VFu .

——— ~ =~
TEHL TFM  T*M®E
~—— —

/1—\lk+1M®E

In particular, if f € C=(M) and v € C*(M, E) we have V¥(fu) € C®(M,T*MQE)
and it is equal to
VE(fu) =df @ u+ fVFu.

5.5.3. Higher Order Covariant Derivatives. Let m : EE — M be a vector bundle. Let

V'~ be a connection in E and V be a connection in 7'M which induces a connection in
T M. We have the following chain

00 VE o'} * VT*JM(@E
C®(M,E) Y= C®(M,T*M ® E) ~———»

v(T*M)®2QE

C™®(M,(T*M)** ® E)

v m)®Fk-gp v(T*M)®FeE
. % oo

C> (M, (T*M)®* @ E)

In what follows we denote all the maps in the above chain by VZ. That s, for any k € N,
we consider V¥ as a map from C=(M, (T*M)®* @ E) to C®(M, (T*M)®*+) @ E).
So,

(VEYE . C®°(M,E) = C*(M,(T*"M)** ® E).
As an example, let’s consider (VEZ)*(fu) where f € C*°(M) and u € C*(M, E). We
have

VE(fu) =df @ u+ fV¥u.
(VP2 (fu) = VMO df @ u+ fVP0]
= [VIM(df) @ u + df @ VFu] + [df © VPu+ f(VF)?]

3 () e e

In general, we can show by induction that

k
(VEYE(fu) = (lj) (VEMYi f @ (V)

Jj=0
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where (VI'M)0 = [d. Here (VI ™)J f should be interpreted as applying V (in the
sense described in Remark 5.30) j times; so (VI"M)i f at each point is an element of
TIM = (T*M)®.

5.5.4. Three Useful Rules, Two Important Observations. Letm : E — M and 7 : E —
M be two vector bundles over M with ranks r and 7, respectively. Let V be a connec-
tion in 7'M (which automatically induces a connection in all tensor bundles), V¥ be a

connection in £ and V¥ be a connection in £. Let (U, ¢, p) be a total trivialization triple
for .

(1) {0; = ;5% }i<i<n is a coordinate frame for TM over U.

(2) {sa = p~'(eq) }1<a<r is a local frame for E over U.({e,}1<q<, is the standard
basis for R” where » = rank F.)

(3) Christoffel Symbols for V on (U, ¢, p): V,0; = T'F;0%.

(4) Christoffel Symbols for VZ on (U, ¢, p): Va,5. = (T'r)%,sb.

Also, recall that for any 1-form w,
Vxw = (X 0w — X'w;T, )da* .
Therefore,

Vo, da? = T da* .

e Rule 1: Forall u € C*(M, E)
VEu:d:Ui@VaEiu onU.

The reason is as follows: Recall that for all p € M, VFu(p) € T*M @ E. Since
{dz" ® s,} is a local frame for T*M ® E on U we have

VPu = Ridx' ® s, = do' @ (R%s,) .
According to what was discussed in the study of the isomorphism Hom(V, W) = V* ®
W in Section 3 we know that at any point p € M, R} is the element in column 7 and
row a of the matrix of VFu(p) as an element of Hom(7,,M, E,)). Therefore,
VaEZ_ u= Rs,.
Consequently, we have VPu = dz’ @ (R?s,) = da' ® V5 u.
e Rule 2: For all v; € C®°(M, E) and v, € C®(M, E)
VECE (0 @ vy) = (VE01) ® 02 + 11 ® (V5 v2)
e Rule 3: Forall u € C*°(M, E) and f € C>*(M)

VE(fu) = fVPu+df @u.

The following two examples are taken from [20].
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e Example 1: Let u € C*°(M, E). On U we may write u = u®s,. We have

VP = VP (u's,) "5 uV s, + du @ s, = u'VPs, + (Ouda’) @ s,

Rae ! adrt & Vgsa + (Oudx’) @ s,

=u'dr' @ (Tg)h,s) + (Ouda’) @ s, = dz' @ (u*(Tp)l,sp) + da’ @ (Oju’s,)
=dz' @ (W' (Tp)s.) + dz' @ (Oju’s,)

= [Ou® + (Tp)%u’]dr' @ s, .

That is, VEu = (VFu)dr' ® s, where

(VEw)? = u® + (Tp)4u’.
e Example 2: Let u € C*°(M, E). On U we may write u = u®s,. We have

(VEY2u = VT*M®E([8Z‘U‘Z + (Tp)%Hubldz’ @ sq)

RIS 19,00 + (D)% ul)VT MEE (dgt @ 5,) + d[diu® + (T p)%u] ® (da' @ sa)

0t + (Dp)fullde’ @ VMO (da' © sa) + dlu® + (Dp)fu’] @ (do’ @ sa)

Def. of d [Biu® + (Tg)%ul)dz? ® Vg; MOE (42" © s,) + 9j[0iu® + (Tp)%ublde’! @ da’ @ sq

Rule 2 [Biu® + (Mg)%ub)dz? @ [Vg: Mir? @ 5o + da* ® ng sa] + 0;[0;u® + ()% ublds? ® di’ ® sq

= [9;u® + (Tg)%ublde! @ [- F;kdwk ®sq +dr' ® (FE);TGSC] + 8;[0;u + (Tg)%ublds! ® di’ ® sq

b bintelnimmand (g, 0 4 (T )ty ublde? @ [ - Thde' @ s + dz¥ @ (Tp)5ese] + 0;10iu® + (Tp)%ullde’ ® da’ © sa
= {9;[0;u® + (FE)gbub] — F?i[akua + (FE)Zbub]}dacj ® da’ @ sq + [Opu + (FE)zbub](FE)§adacj ® dz® ® s
i <> kin thezlast summand {aj [alua + (FE)?bub] _ Ffi[akua + (FE)Zbub]}dzj ® d:ﬂi ® Sa

+ [Qiu® + (FE)fbub](FE)§adxj Qda’ ® se
c <> ain the:h\st summand {8J [aiua + (FE)?bub} _ F;cz [8kua + (FE)Zbub]}dl'j ® d$z ® Sa

+[05u® + (Tp)5u’)(Tp) . de? @ da’ @ sq .
Considering the above examples we make the following two useful observations that can
be proved by induction.

e Observation 1: In general (VF)*u = ((VF)*u)

a

de" @ -+ @ dr'* @ s, (1 <

i1eeig
a <r 1 <y - ,i < n) where ((VE)ku)jlzk o ¢! is a linear combination of
ul oo™t -+ u" o ¢! and their partial derivatives up to order k and the coefficients

are polynomials in terms of Christoffel symbols (of the linear connection on M and
connection in F£) and their derivatives (on a compact manifold these coefficients are
uniformly bounded provided that the metric and the fiber metric are smooth). That is,

In|<k =1

where for each 77 and [, Cy; is a polynomial in terms of Christoffel symbols (of the linear
connection on M and connection in £) and their derivatives.
e Observation 2: The highest order term in ((VZ)*u) sz optis L L(utoph);
that is,

(Vs o0 = 52

co = —— ... ——(u%op~!)+terms that contain derivatives of order at most k — 1 of u' 0 ™! (1 <1 < 7).
etk Oz Ox'k
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So,

a _ oF
((VE>ku)“Zk op t= ax“— u? 0<,0 ‘|‘ Z ZC 18’7 u OSD )

Oxik
inl<k =1

6. SOME RESULTS FROM THE THEORY OF GENERALIZED FUNCTIONS

In this section we collect some results from the theory of distributions that will be
needed for our definition of function spaces on manifolds. Our main reference for this
part is the exquisite exposition by Marcel De Reus ([35]).

6.1. Distributions on Domains in Euclidean Space. Let {2 be a nonempty open set in
R™.

(1) Recall that
e K(1) is the collection of all compact subsets of €).
e (C°°(Q)) = the collection of all infinitely differentiable (real-valued) functions on 2.
e Forall K € KC(2), COO(Q) ={p e C>®(Q) :suppp C K}.
o C2°() = Ugex CK (1) = {p € C>(Q) : supp pis compact in 2}.
(2) Forall p € C*(Q2), j € Nand K € K(2) we define
lelljx = sup{[0%p(z)| - |a] < j,z € K}

(3) For all j € Nand K € K(Q), ||.|l;x is a seminorm on C*°(Q2). We define £(1?)
to be C*°(£2) equipped with the natural topology induced by the separating family of
seminorms {||.||; x }jen kex (). It can be shown that £(£2) is a Frechet space.

(4) For all K € IC(Q2) we define Ex(Q2) to be C7P(2) equipped with the subspace topol-
ogy. This subspace topology on C%°(€2) is the natural topology induced by the separat-
ing family of seminorms {||.||, x }jen. Since C¥(€2) is a closed subset of the Frechet
space £(12), Ex(Q) is also a Frechet space.

(5) We define D(€2) = Uiy € (§2) equipped with the inductive limit topology with
respect to the family of vector subspaces {Ex(£2)} kex (o). It can be shown that if
{K};en, is an exhaustion by compacts sets of 2, then the inductive limit topology on
D(£2) with respect to the family {€x; } jen, is exactly the same as the inductive limit
topology with respect to {Ex () } kex()-

Remark 6.1. Let us mention a trivial but extremely useful consequence of the above
description of the inductive limit topology on D(Q)). Suppose Y is a topological space
and the mapping T : Y — D(Q) is such that T(Y') C Ex(Q) for some K € KC(Q).
Since Ex(Q) — D(Q), if T 1Y — Ex(Q) is continuous, then T : Y — D(QY) will be
CONtinuous.

Theorem 6.2 (Convergence and Continuity for £(€2)). Let ) be a nonempty open set
in R™. Let'Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {p,,} converges to ¢ in E(XY) if and only if ||y, — ||k — 0 forall j € N
and K € K(Q).

(2) Suppose T : £(Q) — Y is a linear map. Then the followings are equivalent
o T’ is continuous.
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e Forevery q € Q, there exist j € Nand K € K({0), and C > 0 such that
Ve &)  qT(p) <Clellx-
o If o, — 0in&E(Q), then T () — 0inY.

(3) In particular, a linear map T : £(2) — R is continuous if and only if there exist j € N
and K € K(Q), and C > 0 such that

Ve ()  |T(o)| < Cllellx -
(4) A linear map T : Y — E(Q) is continuous if and only if

VjieN, VK € K(2) I3C>0,keN,q, - ,q € Q suchthatVy || T(y)|l;,x < C max ¢;(y).

1<i<k

Theorem 6.3 (Convergence and Continuity for Ex(2)). Let 2 be a nonempty open set
inR"and K € IC(Q0). Let Y be a topological vector space whose topology is induced by
a separating family of seminorms Q.

(1) A sequence {p.,} converges to ¢ in Ex () if and only if ||¢m — ¢||;xk — 0 for all
jeN

(2) Suppose T : Ex(Q) — Y is a linear map. Then the followings are equivalent
e T is continuous.
e Forevery q € Q, there exists j € N and C' > 0 such that

Voe&k()  aT(p) <Clleollx -
o If o, — 0inEx(Q), then T(py) = 0inY.
Theorem 6.4 (Convergence and Continuity for D(£2)). Let Q2 be a nonempty open set

in R". Let'Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {p,,} converges to ¢ in D(Y) if and only if there is a K € K(Q) such that
supppm C K and p,, — p in Ex(Q).

(2) Suppose T : D(Q2) — Y is a linear map. Then the followings are equivalent
o T'is continuous.
o Forall K € K(Q), T : Ex(Q2) — Y is continuous.
e Forevery q € Qand K € K(Q), there exists j € N and C > 0 such that
Voelk()  a(T(p) <Cllellx-
o If o, = 0in D(Q), then T(p,,) = 0inY.

(3) In particular, a linear map T : D(Q2) — R is continuous if and only if for every
K € K(R), there exists j € N and C > 0 such that

Veelr() Tl <Cllellx-

Remark 6.5. Let Q) be a nonempty open set in R". Here are two immediate consequences
of the previous theorems and remark:

(1) The identity map
Z'Dyg : D(Q) — g(Q)
is continuous (that is, D()) — £(Q2) ).
(2) If T : £(Q) — E(Q) is a continuous linear map such that supp(T ) C suppy for all

© € E(Q) (i.e. T is alocal continuous linear map), then T restricts to a continuous
linear map from D(Q2) to D(QY). Indeed, the assumption supp(Typ) C suppy implies
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that T(D(Q2)) € D(Q2). Moreover, T : D(Q2) — D(R) is continuous if and only if
for K € K(Q) T : Ex(Q) — D(Q) is continuous. Since T'(Ex () C Ex (), this
map is continuous if and only if T : Ex(Q) — Ex(Q) is continuous (see Remark
6.1). However, since the topology of Ex(2) is the induced topology from E(XY), the
continuity of the preceding map follows from the continuity of T : £(Q2) — E(Q).

Theorem 6.6. Let () be a nonempty open set in R™. Let Y be a topological vector
space whose topology is induced by a separating family of seminorms Q. Suppose T :
[D()]*" — Y is a linear map. The following are equivalent: (product spaces are
equipped with the product topology)

(1) T : [D(Q)]*" — Y is continuous.

(2) Forall K € K(Q), T : [Ex(Q)]*" — Y is continuous.

(3) Forall g € Qand K € K(X), there exists jy,- - - , j, € N such that

Ve, o) € Ex (] goT(e1, -, o) < Clleilljng + -+ llerll i) -

Theorem 6.7. Let §) be a nonempty open set in R™.
(1) A set B C D(Q) is bounded if and only if there exists K € K () such that B is a
bounded subset of Ex () which is in turn equivalent to the following statement:
VjeN3r; >0 suchthat Yo e B |o|jx <r;.

(2) If {¢m} is a Cauchy sequence in D(S), then it converges to a function ¢ € D(X).
We say D(Q) is sequentially complete.

Remark 6.8. Topological spaces whose topology is determined by knowing the conver-
gent sequences and their limits exhibit nice properties and are of particular interest. Let
us recall a number of useful definitions related to this topic:

Let X be a topological space and let E C X. The sequential closure of F, denoted
scl(E) is defined as follows:

scl(E) = {x € X : there is a sequence {x,} in E such that x,, — x} .
Clearly, scl(F) is contained in the closure if E.

e A topological space X is called a Frechet-Urysohn space if for every E C X the
sequential closure of E is equal to the closure of E.

A subset E of a topological space X is said to be sequentially closed if E = scl(E).

e A topological space X is said to be sequential if for every ! C X, E is closed if and
only if F is sequentially closed. If X is a sequential topological space and Y is any
topological space, then amap f : X — Y is continuous if and only if

Al F(@e) = 7T, 2n)
for each convergent sequence {x,} in X.
The following implications hold for a topological space X :
X is metrizable — X is first-countable — X is Frechet-Urysohn — X is sequential

As it was stated, £ and Ex (For all K € K(X2)) are Frechet and subsequently they are
metrizable. However, it can be shown that D(SQ) is not first-countable and subsequently
it is not metrizable. In fact, although according to Theorem 6.4, the elements of the dual
of D(Q2) can be determined by knowing the convergent sequences in D(S), it can be
proved that D(S2) is not sequential.
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Definition 6.9. Let ) be a nonempty open set in R™. The topological dual of D(f2),
denoted D'(Q)) (D'(2) = [D(Q)]*), is called the space of distributions on ). Each
element of D' (1) is called a distribution on ).

Remark 6.10. Every function f € L}, (Q) defines a distribution uy € D'(Q) as follows:

loc
Vo e D(Q) us(p) = /chpdx. (6.1)

In particular, every function ¢ € £(S)) defines a distribution u.,. It can be shown that the
map j : E(Q) — D'(2) which sends ¢ to ., is an injective linear continuous map ([35],
Page 11). Therefore, we can identify £()) with a subspace of D'(Q2).

Remark 6.11. Ler Q2 C R™ be a nonempty open set. Recall that f : Q0 — R is locally
integrable (f € L;,.(Q)) if it satisfies any of the following equivalent conditions:

(1) f € LMK) forall K € K(Q).

(2) Forall p € C*(Q), fo € L'(Q).

(3) For every nonempty open set V. C Q such that V is compact and contained in ,
fe LYV).
(It can be shown that every locally integrable function is measurable ([14], Page 70).)
As a consequence, if we define Func,.,(€2) to be the set

{f: Q= R:us: D(Q) — Rdefined by Equation 6.1 is well-defined and continuous}
then Func,.,(Q?) = L,

loc

(62).
Definition 6.12 (Calculus Rules for Distributions). Let €2 be a nonempty open set in R™.
Letw € D'(Q).

e Forall p € C*(Q), pu is defined by

Vipe CE(Q)  lpul(y) = ulpy).
It can be shown that pu € D' ().

e For all multiindices o, 0*u is defined by

Ve CQ)  [0%)(W) = (—1)Iu(@*y).
It can be shown that 0“u € D'(1Q).

Also, it is possible to make sense of “change of coordinates” for distributions. Let {2 and
2 be two open sets in R™. Suppose 7" : 2 — €' is a C* diffeomorphism. 7" can be used
to move any function on §2 to a function on €2’ and vice versa.

T* : Func(£Y', R) — Func(Q, R), T(f)=foT,
T. : Func(Q2, R) — Func(Q', R), T.(f)=foT™ .

T f is called the pullback of the function f under the mapping 7" and 7. f is called the
pushforward of the function f under the mapping 7. Clearly, 7™ and 7T, are inverses of
each other and T, = (T')*. One can show that T}, sends functions in L;,.(Q2) to L;,.(Q")

loc loc

and furthermore 7, restricts to linear topological isomorphisms 7, : £(2) — £(£’) and
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T. : D(Q) — D(€). Note that for all f € L], (Q2) and p € C(Q)

loc

<ur oo = | DW= [ (70T ) 0)el)iy

/

x:Tzl(y)/Qf(x)<p(T(x))]detT’(x)|dx

=< uy,|detT"(z)|p(T(x)) >p1@)xD@) -

The above observation motivates us to define the pushforward of any distribution v €
D'(€2) as follows:

Yy € D(Y) (Teu, 0) pravyxpiary = (u, |detT” (z)|o(T'(2))) pr )< D0 -

It can be shown that T,u : D(£2') — R is continuous and so it is in fact an element of
D'(€Y). Similarly, the pullback 7* : D'(Q') — D'(£2) is defined by

Vo e D(Q)  (T"u, @) pra)xn(@ = (u, [det(T™) (1) |o(T () preryxne) -
It can be shown that 7*u : D(€2) — R is continuous and so it is in fact an element of
D'(Q).

Definition 6.13 (Extension by Zero of a Function). Let ) be an open subset of R" and
V' be an open susbset of ). We define the linear map exty,, : Func(V,R) — Func(€2, R)
as follows:

ext(‘)/@(f)(x) - {g(xz)fxl];xQG\“//

exty, o, restricts to a continuous linear map D(V) — D(Q).

Definition 6.14 (Restriction of a Distribution). Let €2 be an open subset of R™ and V' be
an open susbset of ). We define the restriction map resqy : D'(Q2) — D'(V) as follows:

(resqvu, S0>D/(V)><D(V) = (u, eﬂ?z,g@)D'(Q)xD(Q) .

This is well-defined; indeed, resqy : D'(2) — D'(V) is a continuous linear map as
it is the adjoint of the continuous map exty, o, : D(V) — D(Q). Given u € D'(52), we
sometimes write u|y instead of resq v u.

Remark 6.15. It is easy to see that the restriction of the map resq = D'(Q2) — D'(V)
to £(S)) agrees with the usual restriction of smooth functions.

Definition 6.16 (Support of a Distribution). Let 2 be a nonempty open set in R". Let
u € D'(Q).

o We say u is equal to zero on some open subset V of Q) if u|y = 0.

o Let {V;}icr be the collection of all open subsets of ) such that u is equal to zero on V.
Let V = J,c; Vi. The support of u is defined as follows:

suppu = Q\ V.
Note that suppu is closed in ) but it is not necessarily closed in R".

Theorem 6.17 (Properties of the Support). [35, 36, 24] Let Q2 and €)' be nonempty open
sets in R"™.

o If f € L} (), then suppf = supp uy.
e Forallu € D'(Q), u=0o0nQ\ supp u.
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o Letu € D'(Q). If p € D(Q) vanishes on an open neighborhood of supp u, then
u(p) = 0.

e For every closed subset A of Q) and every u € D'(2), we have suppu C A if and only
if u(e) = 0 for every ¢ € D(QY) with supp o C Q\ A.

e Foreveryu € D'(Q) and ¢ € £(Q), supp(Yu) C supp(1)) N supp(u).

o Letu,v € D'(Q). If there exists a nonempty open subset U of Q) such that suppu C U
and suppv C U and

(ulv, ¥ prwyxpw) = W, L)ooy Ve € CEU),
then v = v as elements of D' ((2).
o Letu,v € D'(Q). Then supp(u + v) C supp u U supp v.

o Let {u;} be a sequence in D' (), u € D(Q), and K € K(2) such that u; — w in D'(2)
and supp u; C K for all i. Then also suppu C K.

o Foreveryu € D'(2) and o € Ni}, supp(0*u) C supp(u).

o If T : Q) — O is a diffeomorphism, then supp(T.u) = T (supp u). In particular, if u has
compact support, then so has T u.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {u;} be a sequence in D(f2) such that u; — u in D'(),
and suppose there exists K € /C(£2) such that suppu C K. Does the fact that the
limiting distribution has compact support imply that there exists a compact set K such
that suppu; C K for all i? The answer is negative. For example, for each 7 € N let
u; € D(R) be a nonnegative function such that u; = 0 outside the interval (7,7 4 1) and
[ uyde = 1. Clearly, u; — 0in L'(R) and so u; — 0 in D’(R). However, there is no
compact set & such that supp u; C K for all ;.

Theorem 6.18. ([35], Pages 10 and 20) Let Q) be a nonempty open set in R". Let £'(2)
denote the topological dual of €(Y) equipped with the strong topology. Then

o The map that sends uw € E'(Q) to u|p(q) is an injective continuous linear map from
E'(Q) into D'(Q).

e The image of the above map consists precisely of those v € D'(Q) for which supp u is
compact.

Due to the above theorem we may identify £'(€2) with distributions on 2 with compact
support.

Definition 6.19 (Extension by Zero of Distributions With Compact Support). Let ) be a
nonempty open set in R™ and V' be a nonempty open subset of C). We define the linear map
exty, : E'(V) — E'(Q) as the adjoint of the continuous linear map resq,y : E(2) —
E(V); that is,

(exty qu, p)er)xe() = (U, Plv)ev)xew)

Suppose €2 and (2 are two nonempty open sets in R such that ' C Q and K € IC(Y).
One can easily show that:
e Forall u € Ex (), resgn g © Xty pntt = extoy gu.
e Forall u € Ex (), extd gn 0 extd, gu = extey pni.
e Forall u € £x(Q), extey o resq o = u.
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We summarize the important topological properties of the spaces of test functions and
distributions in the table below.

p@) e [ PO 1EE) [D(Q) | €(Q)

Strong | Strong | Weak | Weak

Sequential No Yes No No No No
First-Countable No Yes No No No No
Metrizable No Yes No No No No
Second-Countable No Yes No No No No
Sequentially Complete Yes Yes Yes Yes Yes Yes
Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles.

6.2.1. Basic Definitions, Notation. Let M" be a smooth manifold (M is not necessarily
compact). Let 7 : £ — M be a vector bundle of rank r.

(1) E(M, E) is defined as C*°(M, F) equipped with the locally convex topology induced
by the following family of seminorms: let {(U,, ©u, pa) }acr be a total trivialization
atlas. Then forevery o € 1,1 <1 < r,and f € C®°(M, E), f. == pl o fo ;" isan
element of C*°(p, (U, )). For every 4-tuple ([, v, j, K) with1 <[l <r,a € l,j €N,
K a compact subset of U, (i.e. K € K(U,)) we define

IMiasr - C¥(ME) =R, f e gy 0 f o0 ljpatr -

It is easy to check that ||.||; . jx is a seminorm on C°°(M, E') and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write ||.||; . ; x instead of ||.|/;.a,jx-

(2) For any compact subset X' C M we define
Ex(M,E) :={fe€&(M,FE):suppf C K} equipped with the subspace topology .

(3) D(M,E) := C*(M,E) = Ugexn€x (M, E) (union over all compact subsets of
M) equipped with the inductive limit topology with respect to the family (e (v, B)} e cicar)-
Clearly, if M is compact, then D(M, E) = £(M, E) (as topological vector spaces).

Remark 6.20.
o [ffor each o € I, { K },en is an exhaustion by compact sets of U, then the topology

induced by the family of seminorms
{||'||l70t7j7Kf,‘L 1< [ < r,o € I,j S N,m € N}

on C*(M, E) is the same as the topology of E(M, E). This together with the fact
that every manifold has a countable total trivialization atlas shows that the topology of
E(M, E) is induced by a countable family of seminorms. So E(M, E) is metrizable.

o If {K;}jen is an exhuastion by compact sets of M, then the inductive limit topology
on C°(M, E) with respect to the family {Ex (M, E)} is the same as the topology on
D(M, E).

Definition 6.21. The space of distributions on the vector bundle E, denoted D' (M, E),
is defined as the topological dual of D(M, EY). That is,

D'(M,E) = [D(M, EV)]".
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As usual we equip the dual space with the strong topology. Recall that EV denotes the
bundle Hom(E,D(M)) where D(M) is the density bundle of M.

Remark 6.22. The reason that space of distributions on the vector bundle F is defined
as the dual of D(M, E) rather than the dual of the seemingly natural choice D(M, E)
is well explained in [23] and [35]. Of course, there are other nonequivalent ways to make
sense of distributions on vector bundles (see [23] for a detailed discussion). Also, see
Lemma 9.28 where it is proved that Riemannian density can be used to identify D'(M, F)
with [D(M, E)]*.

Remark 6.23. Let U and V' be nonempty open sets in M with V' C U.
e As in the Euclidean case, the linear map exty,; : T(V, Ey,) — I'(U, Ey7) defined by

flz) ze€V

0 _
ety f(r) = {o relU\V

restricts to a continuous linear map from D(V, E\,) to D(U, E)).

e As in the Euclidean case, the restriction map resyy : D'(U, Ey) — D'(V, Ev) is
defined as the adjoint of ext&U.'

<r€SU,Vu: §0>D’(V,EV)><D(V7E‘\}) = <U> €Xf(€/,US0>D/(U,EU)xD(U,E5) .
e Support of a distribution w € D'(M, E) is defined in the exact same way as for
distributions in the Euclidean space. It can be shown that
(1) ([35], Page 105) If u € D'(M, E) and ¢ € D(M, EY) vanishes on an open
neighborhood of suppu, then u(yp) = 0.
(2) ([35], Page 104) For every closed subset A of M and every u € D'(M, E),
we have suppu C A if and only if u(p) = 0 for every ¢ € D(M, EY) with
suppyp C M \ A.
The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions.
A question that arises is that whether there is a natural way to identify regular sections
of E (i.e. elements of I'(M, E)) with distributions. The following theorem provides a

partial answer to this question. Recall that compactly supported continuous sections of
the density bundle can be integrated over M.

Theorem 6.24. Every f € £(M, E) defines the following continuous map:
u i DOMLE) >R v [ [b1), 62)
M
where the pairing |1, f] defines a compactly supported continuous section of the density
bundle:
VeeM [, fl(z):=(x)[f(z)] ((zr)e€ Hom(E,,D,) evaluated at f(x) € E,).
In general, we define I',.., (M, E) as the set

{f € I'(M, E) : uy defined by Equation 6.2 is well-defined and continuous} .

(Compare this with the definition of Func,.,({2) in Remark 6.11.) Theorem 6.24 tells us
that £(M, E) is contained in I',.., (M, E). If u € D'(M, E) is such that © = u for some
[ € 'veg(M, E), then we say that u is a regular distribution.
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Now, let (U, ¢, p) be a total trivialization triple for £ and let (U, ¢, pp) and (U, ¢, p")
be the corresponding standard total trivialization triples for D(M) and EV, respectively.
The local representation of the pairing [¢, f]| has a very simple expression in terms of the
local representations of f and :

f€Tvey(M,E) = (ffy )= (o™ frop ) i=po fop™t € [Func(p(U),R)*"
(fY,---, f7) is the local representation of f .

1/1 € D(Ma Ev) = (1231, e a'l/;T) = (Z/Jl ° 90717 T >¢T o ()071) = p\/ o w o §071 € [Func(gp(U),R)]Xr
(', --- ") is the local representation of 1) .

Our claim is that the local representation of [, f] (that is, pp o [1), f] o ¢ 1) is equal to
the Euclidean dot product of the local representations of f and 1):

pp o, flow™ =" fi'.

)

The reason is as follows: Lety € o(U) and x = ¢~ (y)

(oo o [, flo ™' (y) = po ([W(@)[f(2)]) = po (W@ [(pl) " (1), F®))])
= [pp o v(x) o (pl) I (W), (W)
= [pY@W@)(f*(y),--- . f(y))] the left bracket is applied to the right bracket
= p'((x) - (f'(y), -, f"(y)) dot product! p"(v)(z)) viewed as an element of R”

= ('), W) (), FT ().

6.2.2. Local Representation of Distributions. Let (U, p, p) be a total trivialization triple
for 7 : E — M. We know that each f € I'(M, E) can locally be represented by r
components f!, .-, f" defined by

Vi<i<r flioU)—=R, fl=plofopt.

These components play a crucial role in our study of Sobolev spaces. Now the ques-
tion is that whether we can similarly use the total trivialization triple (U, ¢, p) to locally
associate with each distribution v € D'(M, E), r components @', - - - , 4" belonging to
D'(¢(U)). That is, we want to see whether we can define a nice map

D(U, Ey) = [D(U, Eg)]" = D'((U)) x -+ x D'(p(U)) .

~~
7T times

(Note that according to Remark 6.23, if w € D'(M, E), then u|y € D'(U, Ey).) Such a
map, in particular, will be important when we want to make sense of Sobolev spaces with
negative exponents of sections of vector bundles. Also, it would be desirable to ensure
that if w 1s a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of I'( M, F).

We begin with the following map at the level of compactly supported smooth functions:
Tev,ve : DU, EY) = D))", €—=pYotop ™ =((p") 0bop™ -, (p¥) 0fop™).
Note that TE\/’U#, has the property that for all ) € C>°(U) and £ € D(U, Ey))

Tov (€)= (o @ ) Tpv yyu(€) .

Theorem 6.25. The map Tyvy, : D(U, EY}) — [D(p(U))]*" is a linear topological
isomorphism. ([D((U))]*" is equipped with the product topology.)
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Proof. Clearly, TEV,U,@ is linear. Also, the map TE\/7U7W is bijective. Indeed, the inverse
of Tgv v, (which we denote by Tgv /) 1s given by

Trvue + [D(eU)]" — DU, Ey)
VeelU TEV:UM(gb T ,fr)(l’) = (pv‘Ezv)_l © (517 T agr) © 90(1') .

Now, we show that Tgv 17, : D(U, EYf) — [D(p(U))]*" is continuous. To this end, it is
enough to prove that for each 1 < [ < r the map

o Tpvye: DU EY) = D(p(U)), & (p") ofop™

is continuous. The topology on D(U, Ey;) is the inductive limit topology with respect
to {Ex (U, BY})} kex(w)» 0 it is enough to show that for each K € K(U), 7' o Tppv i :
Ex (U, EY) — D(p(U)) is continuous. Note that 0Ty 17, [Ex (U, E})] € E ey ((U)).
Considering that £,k (¢(U)) < D(p(U)), it is enough to show that

T o Tev vy : Ex(U, EY) — Exuy (p(U))

is continuous. For all £ € £ (U, Ey7) and j € N we have

7t T, &) oty = 16) 0 € © 6™ gtz = €l

which implies the continuity (note that even an inequality in place of the last equality
would have been enough to prove the continuity). It remains to prove the continuity of
Tevue : [D@U)])*" — D(U, EY). By Theorem 6.6 it is enough to show that for
all K € K(¢(U)), Tpvuy : [Ex(p(U))]*" — D(U, Eyy) is continuous. It is clear that
Tevu([Ex(eU))]*) C 5<P71(K)(U, Ey). Since E,-1x)(U, Eyr) — D(U, Ey), it is
sufficient to show that Tpv 17, : [Ex((U))]*" — E,-1(k) (U, £y7) is continuous. To this
end, by Theorem 6.6, we just need to show that for all j € Nand 1 <[ < r there exists
J1, , J such that

1Tev 0,6(&s &) g1y < CUlE G + - 160 1l,5) -

But this obviously holds because

| Tev.u0(&1s - &) i) = 1l -

The adjoint of Tgv 7, is
Tiv g+ (DU EQ)]" = ([D(p(0))]*7)"
< EV U<p (517"' 75r>> = <U7TEV,U,@<£1>"' 7£r>>'

Note that, since Tgv y,, is a linear topological isomorphism, 7% ;; , 1s also a linear
topological isomorphism (and in particular it is bijective). For every u € [D(U, Ey))]*,
Thv p uisin ([D(p(U))] ”) ; we can combine this with the bijective map

L: ([D(UN")" = [D'(@U)]",  L(v) = (voir,--,voi)
(see Theorem 4.43) to send u € [D(U, E7)]* into an element of [D'(p(U))]*":

L(Tgvpou) = (Tpv peu) 0 i, -+, (Tpv o) i)
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where forall 1 <[ <, (Tiv ;; ,u) o4 € D'((U)) is given by
(Tpv ppw) 0 u)(€) = (Tev ypuw)(U(§)) = (Tev ypu)(0,---,0, & ,0,---,0)
—~—

1P position
= <U,TEV’U7@(O,"' 707 5 7Oa"' 70)>
~~~
17 position
If we define g, ¢, € D(U, Ey) by
gl,é,U,go(:[;) = TEV,U,QO(O? -0, § ;0,0 7O>($)
~~~
1" position
~1
:(pV’E}/> O(Oa"'707 £ 707"'7O)ng(£)7
~~
1" position

then we may write

(TEv v 1) © i1, §) D (o) x D) = (U JueUp)DW,EY]* xDW,EY) -
Summary: We can associate with u € D'(U, Ey) = (D(U, EY))* the following r
distributions in D' (p(U)):

VI<I<r @ =Th youoi,
that is,

V&€ D(p(U)) (@,€) = (u, qreve)
where g, ¢ v, € D(U, Ey}) is defined by

1
(pV’EgX) O(O,-'-’O, g 707'”70)0()0(37)'
~—

1" position
In particular,
pvogl,g,UmO@_l:(O,“',0, & ,0,---,0),
17 position

and so (p” o Jueup © 9071)1 =¢.

Let’s give a name to the composition of L with T, , , that we used above. We set
HEV7U7<)0 = L © TE\/J],SO:

Hpvpe: [DUEG)] — (D'(@U)", ue L(Tp ppu) = (@', a7).
Remark 6.26. Here we make three observations about the mapping Hgv i .
(1) Foreveryu € [D(U, EY)|*

supp[Hpv .o u]' = suppi' C p(suppu).

Indeed, let A = p(suppu). By Theorem 6.17, it is enough to show that if n €
D(p(U)) is such that suppn C o(U) \ A, then @ (n) = 0. Note that

<ala ?7> = <u7 gl,n,U,s&> :
So, by Remark 6.23 we just need to show that g, ,, v7,, = 0 on an open neighborhood

of suppu. Let K = suppn. Clearly, U\ o' (K) is an open neighborhood of suppu.
We will show that g, ,, v, vanishes on this open neighborhood. Note that

glﬂ%U#P(x) = (plezv;)_1<07 e 707 no QO(Z'), 07 e 70) .
——

1th position
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Since p¥|gy is an isomorphism and 1 = 0 on o(U)\ K, we conclude that g, , v, =
Oon o~ (p(U)\ K) =U\ ¢~ '(K).

(2) Clearly, Hpv iy, = D'(U, Eyy) — [D'(¢(U))]*" preserves addition. Moreover, if
feC®U)andu € D'(U, Ey), then Hgv y,(fu) = (fop ') Hpv y,(u). Recall
that H == L @) TEV,U,QD'

(Tev v (fu), (&, &) = (fu, Tev ue(&s -1 60))
= (u, f[Tpv (&1, 1 &)
= (u, Tev vl (f oo™ )&, ,&)])
= (
= (

TEVU<p (fo 90_1)(517"‘afr)>
( ) EV U (617"' agT»

(The third equality follows directly from the definition of Trv v ,.) Therefore,
TE'V,U,go(fu) = (f © QO_I)TEV,U,apu

The fact that L((f o o™ )Tpv y,u) = (f o o )L(Thy 1y u) is an immediate

consequence of the definition of L.

(3) Since Tgv v, and L are both linear topological isomorphisms, HE;U’ o = (Lo
Tivp,) o (D'(p(U)" — D*(U, Ey) is also a linear topological isomor-
phism. It is useful for our later considerations to find an explicit formula for this
map. Note that

HEV Ue = (LoTgy U<p>_1 = (TEV,U,¢>_1 oL ' = (TE_VI,U#;)* oL
= (Tpvpe) o L' = (Tpvue) o L.

Recall that

L [DX(pU)]* = [(DeU))T, (W) otom -+ o,
Tiv v (D)) = DU, Eyy) .-

Therefore, for all ¢ € D(U, EY))

Hié,U,Qp(Ul’.. V") (&) = ( EVUcp(U om +---+v" om),§)
= ((v'om +---+0" om,),TE)
=<(v1O?T1+---+UT07TT>7((/)V)1O£os0‘1,---,(pV)TO£os0‘1)>

—Zv ofop™].

Remark 6.27. Suppose v € D'(M, E) is a regular distribution, that is, u = uy where
f € Lyey(M, E). We want to see whether the local components of such a distribution
agree with its components as an element of I'(M, E'). With respect to the total trivializa-
tion triple (U, ¢, p) we have

() [ (floe f), fr=plofop™,
(2) Uf'-)(’df, e Ufl).
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The question is whether uj = u, fl? Here we will show that the answer is positive.
Indeed, for all { € D(p(U)) we have

(', €) = (us, greve) :/ Gie v | / Z (Grev) fldV = / )(Ql,g,U,@)lfldV

:/ Fledv = (ug,€).
w(U)

Note that the above calculation in fact shows that the restriction of Hgv 17, to D(U, Ey)
s TE,U,@-

7. SPACES OF SOBOLEV AND LOCALLY SOBOLEV FUNCTIONS IN R"
In this section we present a brief overview of the basic definitions and properties re-
lated to Sobolev spaces on Euclidean spaces.
7.1. Basic Definitions.

Definition 7.1. Let s > 0 and p € [1, 00|. The Sobolev-Slobodeckij space W*P(R™) is
defined as follows:

e I[fs=keNypell,o0,
WhP(R") = {u € LP(R") : [|ullwro@ny = Y [10"ull, < oo}

vI<h
o Ifs=0¢€(0,1),pell,o00),
n n u(y)[? 1
WOP(R™) = {u € LP(R") : [ulyongan) = //R ey < oc)
e I[fs=0€(0,1), p= o0,

WO (R") = {u € L®(R") : [u|yyo.cogn) := esssup Ju(z) = uly)| < oo}

z,yER™ £y |ZL‘ - y|6
o lfs=k+0,keNy 0ec(0,1),pe[l,ox)]

WP (RY) = {u € WHP(RY) ¢ ullwosn = [ullwroe) + 3 10 ulwosqan < o0}
lv|=k

Remark 7.2. Clearly, for all s > 0, W*P(R™) C LP(R"). Recall that L*(R™) C
L. .(R") C D'(R™). So, we may consider elements of W*?(R"™) as distributions in

loc

D'(R™). Indeed, for s > 0, p € (1,00), and u € D'(R"™) we define

|ullwer@ny == | fllwsr@ny if u=uy for some f € LP(R")
l|w|lwspmny := 00 otherwise '

As a consequence, we may write
WP(R") = {u € D'(R") : ullwsszn < 00}

Remark 7.3. Let us make some observations that will be helpful in the proof of a number
of important theorems. Let A be a nonempty measurable set in R".
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(1) We may write:

v _ av P
[[ e -rr,,
R" xR" |z — y|" o
:// ---dxdy+// ---dmdy—l—/ /---dxdy+/ / - dxdy .
AxA A JRM\A R\A J A R\A JR7\ A

In particular, if suppu C A, then the last integral vanishes and the sum of the two

middle integrals will be equal to 2 [ ) fRn\ ) %dydm. Therefore, in this case

14 _ Av p
// |07 u(x) — 0"u(y)] dedy =
nxR" Ix— |”+"p
|0"u(x) — 0"u // |0"u(
" i dy + 2 LCICO] P
//AxA Ix— I"” ma |7 — I"”p

(2) If A is open, K C A is compact and o« > n, then there exists a number C' such that

forall x € K we have
1
/ dy < C.
r\a [T — y[*

(C' ' may depend on A, K, n, and o but is independent of x.) The reason is as follows:
Let R = 3dist(K, A°) > 0. Clearly, for all x € K, the ball Bg(x) is inside A.
Therefore, for all v € K, R"\ A C R"\ Bg(x) which implies that for all x € K

1 1 r=y—zx 1
/ —dy S/ T—dy £ / —dz =o(S"~ 1)/ —arn_ldr,
R™\ A |z -y R\ Br(x) |z -y R\ Br(0) |2 R T

which converges because o > n. We can let C' = o(S"!) ;O r%r”_ldr.

(3) If A is bounded and o« < n, then there exists a number C such that for all x € A

1
/ dy < C'.
Alz =yl

(C' depends on A, n, and « but is independent of x.) The reason is as follows: Since
A is bounded there exists R > 0 such that for all x,y € A we have |z — y| < R. So,

forallz € A
1 o
dy < U(Sn_1>/ —r"dr,
Al =yl o T

which converges because o < n.

Theorem 7.4. Let s > 0 and p € (1,00). CX(R™) is dense in W*P(R™). In fact, the
identity map ipw : D(R") — W*P(R"™) is a linear continuous map with dense image.

Proof. The fact that C2°(R™) is dense in W*P?(R™) follows from Theorem 7.38 and
Lemma 7.44 in [1] combined with Remark 7.13. Linearity of ¢p y is obvious. It re-
mains to prove that this map is continuous. By Theorem 6.4 it is enough to show that

VK e K(R"),Vpe&kg(R") FjeN st |¢fwsrmn) 2 |olljx -

Let s = m + 6 where m € Ny and 6 € [0,1). If § # 0, by definition ||¢||ws»@n) =
lollwmp@ny + ZM:m 10" olwo.pmny. It is enough to show that each summand can be
bounded by a constant multiple of ||¢||; x for some j.
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e Step1: If 6 =0,
lellwmr@n = > 10" Clle@n = > 10¢llLr)

lv|<m [v|<m

= > (llmxl K17) 2 Illmic

[v|<m
where the implicit constant depends on m, p, and K but is independent of .

e Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was
pointed out in Remark 7.3 we may write

10" p(x) — 0" p(y)|P
dxdy =
//R"XR” |x_y|n+9p Y
10" p(x) — 0¥ / / 0" p(
d dy + 2 d dz
/ / \x—y\%@p Y " |x—y|n+9p

First note that R" is a convex open set; so by Theorem 4 9 every function f € Ex(R™)

is Lipschitz; indeed, for all z,y € R" we have |f(z) — \ < IfllLxllz — y||. Hence
10" p(x) — 0"¢(y)[” / — gy
dedy < [ 10"0lf | g dyde
//AXA |z — y[mtor A | |"+9”

~ [ el / s

By part 3 of Remark 7.3 f A Wdy is bounded by a constant independent of x;
also, clearly, ||0"¢||1.x < ||¢]|m+1,x. Considering that | A| is finite we get

dxdy =< P
//AxA |l‘ — y|"+913 ||<10|| +1,K -

Finally, for the remaining integral we have

1o [ [ e
Rn\A|5F— |"+p R"\Alx_ |"+p

because the inner integral is zero for x ¢ K. Now, we can write

10" p( / / 1
d dr < ———dydx .
/ /n\A |x - |n+9p Y H‘PH R7\A ‘I - ?/‘MGP Y

By part 2 of Remark 7.3 for all x € K, the inner integral is bounded by a constant.
Since | K| is finite we conclude that

"
d d b
[ e = el

lullwer@ey =2 1@lmtt,k -

Hence

Definition 7.5. Let s > 0 and p € (1, 00). We define

WS (R = (WRR) (4= 1),
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Remark 7.6. Note that since the identity map from D(R") to W*P?(R") is continuous
with dense image, the dual space W% (R") can be viewed as a subspace of D'(R™).

Indeed, by Theorem 4.44 the adjoint of the identity map, i}, y, : WP (R") — D'(R")
is an injective linear continuous map and we can use this map to identify W% (R™)
with a subspace of D'(R™). It is a direct consequence of the definition of adjoint that
for all w € W37 (R"), i}, yyu = ulpgn). So, by identifying u : W*P(R") — R with
u|pny : D(R™) — R, we can view W=7 (R") as a subspace of D'(R").

Remark 7.7.

e [t is a direct consequence of the contents of pages 88 and 178 of [41] that for m € Z
and1 <p < oo
WmP(R") = H'(R") = F5(R").

e [t is a direct consequence of the contents of pages 38, 51, 90 and 178 of [41] that for
s¢€Zandl <p < oo
W=P(R") = B, (R").

Theorem 7.8. Forall s € Rand 1 < p < oo, W*P(R") is reflexive.
Proof. See the proof of Theorem 7.32. Also see [40], Section 2.6, page 198. U

Note that by definition for all s > 0 we have [W*?(R")]* = W~*'(R"). Now, since
WeP(R") is reflexive, [W =% (R™)]* is isometrically isomorphic to W*?(R") and so
they can be identified with one another. Thus forall s € Rand 1 < p < oo we may write

(WP (R™)]" = W (R").

Let s > 0 and p € (1,00). Every function ¢ € C°(R") defines a linear functional
L, : W*P(R") — R defined by

L¢(u):/ updx .

L., is continuous because by Holder’s inequality

Lo (u)] = |/Rn updz| < lull o@n) 19l Lo @ny < @l Lo oy 1l wer ny -
Also, the map L : C°(R") — W= (R") which maps ¢ to L, is injective because
L,= Ly —YueW(R") / u(p —Y)der =0 — : lo —|Pde =0 —= p=1.

Thus we may identify ¢ with L, and consider C°(R™) as a subspace of W~ (R").
Theorem 7.9. For all s > 0 and p € (1,00), C®(R") is dense in W~ (R™).

Proof. The proof given in page 65 of [2] for the density of L' in the integer order Sobolev
space W, which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C2°(R™) in W =% (R"). O

Remark 7.10. As a consequence of the above theorems, for all s € R and p € (1,0),
W#P(R™) can be considered as a subspace of D'(R™). See Theorem 4.44 and the discus-
sion thereafter for further insights. Also see Remark 7.48.

Next we list several definitions pertinent to Sobolev spaces on open subsets of R”.

Definition 7.11. Let € be a nonempty open set in R". Let s € Rand p € (1, 00).
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(1) e lIfs=keN,
WHP(Q) = {u € LP(Q) : [lullwrs@) = Y 0"ullmso() < o0}

lv|<k

e Ifs=0¢c(0,1),
p 1
W (Q) = LP(9Q) 00() )‘ddE :
() = {u e 17(9) : July // |x_y|n+9p y)? < oo}
o Ifs=k+0,kecNy6e(0,1),

Wor(Q) = {u € WE(Q) : [ullwen) = [ullwro + Y 10*ulwosg) < 00} .

lv|=k
o [fs <,
S -8, / * 1 1
WER(@) = W™ (@) C+ 5 =1),
whe