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Abstract. This paper is the first of two papers on the adaptive multilevel finite element treat-
ment of the nonlinear Poisson-Boltzmann equation (PBE), a nonlinear elliptic equation arising in
biomolecular modeling. Fast and accurate numerical solution of the PBE is usually difficult to
accomplish, due to presence of discontinuous coefficients, delta functions, three spatial dimensions,
unbounded domain, and rapid (exponential) nonlinearity. In this first paper, we explain how adap-
tive multilevel finite element methods can be used to obtain extremely accurate solutions to the
PBE with very modest computational resources, and we present some illustrative examples using
two well-known test problems. The PBE is first discretized with piecewise linear finite elements over
a very coarse simplex triangulation of the domain. The resulting nonlinear algebraic equations are
solved with global inexact-Newton methods, which we have described in a paper appearing previ-
ously in this journal [55]. A posteriori error estimates are then computed from this discrete solution,
which then drives a simplex subdivision algorithm for performing adaptive mesh refinement. The
discretize-solve-estimate-refine procedure is then repeated, until a nearly uniform solution quality is
obtained. The sequence of unstructured meshes is used to apply multilevel methods in conjunction
with global inexact-Newton methods, so that the cost of solving the nonlinear algebraic equations
at each step approaches optimal O(N) linear complexity. All of the numerical procedures are im-
plemented in Manifold Code (MC), a computer program designed and built by the first author over
several years at Caltech and UC San Diego. MC is designed solve a very general class of nonlinear
elliptic equations on complicated domains in two and three dimensions. We describe some of the key
features of MC, and give a detailed analysis of its performance for two model PBE problems, with
comparisons to the alternative methods. It is shown that the best available uniform-mesh-based
finite difference or box-method algorithms, including multilevel methods, require substantially more
time to reach a target PBE solution accuracy than the adaptive multilevel methods in MC. In the
second paper [6], we develop an error estimator based on geometric solvent accessibility, and present
a series of detailed numerical experiments for several complex biomolecules.

1. Introduction

This paper is the first in a series of two papers on the adaptive multilevel finite element treatment
of the nonlinear Poisson-Boltzmann equation (PBE), a second order nonlinear partial differential
equation (PDE) which is fundamental to Debye-Hückel continuum electrostatic theory [40]. The
PBE determines a dimensionless potential u(x) = ecΦ(x)/(kBT ) around a charged biological struc-
ture immersed in a salt solution, where Φ(x) is the electrostatic potential at x ∈ Rd, with d = 2 or
d = 3. For a 1 : 1 electrolyte, the PBE can be written as

(1.1) −∇ · (ε(x)∇u(x)) + κ̄2(x) sinh(u(x)) =
4πe2

c

kBT

Nm∑
i=1

ziδ(x− xi), u(∞) = 0.

In this equation, the dielectric ε jumps by one or two orders of magnitude at the interface between
the charged structure and the solvent, and the modified Debye-Hückel parameter κ̄ (a function
of the ionic strength of the solvent) is discontinuous at an ion exclusion region surrounding the
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biological structure. The structure itself (e.g., a biological molecule, or a membrane) is represented
implicitly by ε and κ̄, as well as explicitly by the Nm point charges qi = ziec at the positions x̄i
(with the distributions δ(·) reflecting the point-charge behavior).

The importance of this equation in biomolecular modeling is well-established; cf. [31, 80] for
thorough discussions. For a derivation of the equation from first principles and for various analyt-
ical results, see [82, 51]. Some analytical solutions are known, but only for unrealistic structure
geometries, and usually only for linearizations of the equation; cf. [51] for a collection of these
solutions, and for references to the large amount of literature on analytical solutions to the PBE
and similar equations. References [51, 58] contain some (non-constructive) existence and unique-
ness results for the nonlinear PBE in a general setting. References [58, 59] also contain a finite
element approximation theory framework for the PBE, including both a priori and a posteriori
error estimates for driving the adaptive numerical methods appearing in this paper.

The various features of (1.1) which cause difficulties in analytical approaches, namely the infinite
domain, delta functions, discontinuities in ε(x) and κ̄(x), and rapid nonlinearity, also make for a
formidable numerical problem. A number of papers have appeared in the literature in the last ten
years presenting various numerical techniques for approximating the solution to (1.1) with widely
varying degrees of accuracy and efficiency. Uniform-mesh finite difference solutions of linearizations
of (1.1), as well as some integral equation-based solutions (necessarily restricted to linearizations),
include [38, 46, 61, 71, 72, 80, 92]. Results with uniform-mesh finite difference methods applied
to the nonlinear problem (1.1) have also appeared, including [2, 46, 55, 60, 67, 71, 73, 80, 79].
In [55, 51], a global inexact-Newton approach was combined with a fast linear multilevel method,
which proved to be an extremely robust and efficient method for the nonlinear algebraic equations
produced by finite difference or box-method discretizations of (1.1).

A non-adaptive, single-level finite element method, based on simplices in three dimensions (tetra-
hedra), was recently applied to the linearized PBE in [36, 37], employing a preconditioned conju-
gate gradient (PCG) method for the solution of the resulting linear algebraic systems. In a related
paper [44], the linearized PBE fields are used together with an analytical technique to produce
gradients for dynamical calculations. As reported in [37], an improvement of about a factor of two
in solution time was observed, when compared to the time taken by an efficient finite difference
uniform-mesh approach (DelPhi’s linear SOR solver) to reach a solution of the same discretization
accuracy. The authors of [36, 37] were able to achieve this factor of two reduction in solution time
by taking advantage of the natural support for unstructured meshes inherent in finite element meth-
ods; mesh points were placed a priori more densely around the molecular surface, reducing the total
number of mesh points required to achieve a desired accuracy when compared to a uniform-mesh
approach. A simplex mesh generation technique (constrained incremental point-insertion Delau-
nay) was then applied to produce a set of simplices which employed the mesh points as vertices. A
two-level solution procedure was also attempted in [37] as an alternative to PCG, but was unsuc-
cessful due to the various difficult features of the PBE alluded to earlier; cf. [51] for an analysis of
the difficulties. In this paper, we will show that in fact an order of magnitude or more reduction in
solution time (compared to uniform-mesh approaches) are possible for finite element methods on un-
structured simplex meshes, when robust a posteriori error estimation is used to drive adaptive mesh
refinement, and when appropriate multilevel methods are used for the resulting discrete systems.
Moreover, we will show how the full nonlinear problem (1.1) can be handled as well, by combining
these adaptive finite element methods with the global inexact-Newton procedures described in [55].
Such a fully adaptive multilevel finite element solution strategy for two-dimensional nonlinear el-
liptic problems in the plane has been implemented in R. Bank’s PLTMG software [9], and has been
publicly available for a number of years. However, only recently have (non-commercial) codes with
similar capabilities for three-dimensional nonlinear problems appeared [50, 70, 25, 26, 24].
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An attempt to use adaptive finite element methods and software from the structural engineering
community for the Poisson-Boltzmann equation appears in [27]. While their approach allowed for
the nonlinearities in the Poisson-Boltzmann equation, they considered only axi-symmetric situations
so that the problem reduced to a two-dimensional case. Moreover, the error estimator they employed
(the well-known ZZ-esimator from the finite element literature) involves only gradient recovery,
meaning that the estimator only indicates where the gradients in the potential are changing rapidly.
The residual estimator we employ estimates not only the gradient behavior but also boundary error
as well as the error in representing the charge density term in the Poisson-Boltzmann equation.

We will discretize equation (1.1) with piecewise linear (P1) finite elements over a simplex tesse-
lation of a truncated solvent-filled sphere around the biomolecule, producing an implicitly defined
set of nonlinear algebraic equations. (The local O(h2) accuracy of the discretization with P1 ele-
ments is comparable to the usual finite difference or box-methods, where the edge lengths of the
simplices in the finite element mesh are comparable to the cell sizes in a finite difference mesh.)
These nonlinear algebraic equations can be evaluated by traversing the simplex mesh, but can not
be formed explicitly. A linearization for performing Newton-like iterations is formed explicitly as a
sparse matrix. The nonlinear algebraic equations are solved with global inexact-Newton-multilevel
methods, which we have described in a paper appearing previously in this journal. (These Newton-
multilevel methods have provably optimal complexity in certain situations, in that the number of
arithmetic operations performed to reach a converged solution is a constant multiple of the number
of vertices in the simplex mesh; cf. [55, 51].) Such discrete solutions obtained on initial coarse
simplex meshes are used together with a posteriori error estimation to drive adaptive refinement
algorithms, refining simplices into smaller simplices only when needed for obtaining a target so-
lution accuracy within each element. After several solve-estimate-refine steps, a nearly uniform
distribution of discretization error is obtained, so that the target solution accuracy is reached with
a nearly minimal number of discretization points. Combined with the optimal complexity methods
for obtaining the solutions on each mesh, the result is an extremely efficient procedure for obtaining
a final discrete solution with a desired accuracy.

All of the numerical procedures are implemented in Manifold Code (MC), a computer program
designed by one of the authors (M.H.) over several years at Caltech and UC San Diego. MC is de-
signed to solve a general class of nonlinear elliptic equations on complicated 2- and 3-dimensional
domains [50], a general class of problems which includes the PBE. MC employs a posteriori er-
ror estimation, adaptive simplex subdivision, unstructured algebraic multilevel methods, global
inexact-Newton methods, and numerical continuation methods, for the highly accurate numerical
solution of this class of problems. We describe some of the key features of MC, and give a detailed
analysis of its performance for two model PBE problems, with comparisons to the alternative
methods. It is shown that the best available uniform-mesh-based finite difference or box-method
algorithms, including multilevel methods, require substantially more time and memory to reach a
target solution accuracy than the time required by MC to reach the same solution accuracy.

Outline of the paper. In §2, we derive a weak formulation of the nonlinear PBE, identifying a
nonlinear integral form, or functional, representing the equation, and a bilinear form representing
a linearization. Our finite element approximations will operate entirely on these two forms. In §3,
we outline our finite element approximation approach, employing simplex-based piecewise-linear
functions on simplex triangulations of finite regions of solvent containing the biological molecules of
interest. Global inexact-Newton multilevel algorithms for solution of the resulting discrete equations
are then also described entirely in terms of the two weak forms. The error estimation and adaptive
simplex subdivision procedures we employ are then discussed. In §4, the MC software is described,
including some of its special features. The key geometry datastructure, the “ringed vertex” is
presented, and the implementation of mesh refinement, residual and matrix assembly, and other
operations employing this datastructure, are outlined. Some of the other features of MC are also
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described. In §5, we apply MC to two model PBE problems, and compare the results to those
obtainable with the standard non-adaptive methods currently in use. We summarize the results
in §6. In the second paper [6], we develop an error estimator based on geometric solvent accessibility,
and present a series of detailed numerical experiments for several complex biomolecules.

2. Weak formulation of the nonlinear Poisson-Boltzmann equation

In this section we will first give an overview of weak formulations of nonlinear elliptic equations,
as required for the use of finite element methods. Some standard references for this material
are [45, 48]. We finish the section with a derivation of a nonlinear weak formulation of the PBE,
along with an associated bilinear linearization form, both of which are required to use MC to
produce a adaptive finite element approximation. This material can be found in [51, 52].

2.1. Nonlinear elliptic equations, weak forms, and linearizations. Let Ω ⊂ Rd be an open
set, and let ∂Ω denote the boundary, which can be thought of as a set in Rd−1. Consider now the
following nonlinear scalar elliptic equation on Ω, a class of elliptic equations of which the PBE is
an example:

−∇ · (a(x)∇u(x)) + b(x, u(x)) = 0 in Ω,(2.1)
u(x) = g(x) on ∂Ω,(2.2)

where

(2.3) a : Ω 7→ R
3×3, b : Ω× R 7→ R, g : ∂Ω 7→ R.

The above form of the equation is sometimes referred to as the strong form, in that the solution
is required to be twice differentiable for the equation to hold in the classical sense. To produce
a weak formulation, which is more suitable for finite element methods in that it will require that
fewer derivatives of the solution exist in the classical sense, we first choose trial and test spaces
of functions. For second order scalar elliptic equations of this form, the appropriate trial and test
space can be seen to be H1(Ω), the Sobolev space of functions which are differentiable one time
under the integral. This function space is simply the set of all scalar-valued functions over the
domain Ω for which the following integral (the energy norm, or H1-norm) is always finite:

(2.4) ‖u‖H1(Ω) =
(∫

Ω
|∇u|2 + |u|2dx

)1/2

.

In other words, the set (or space) of functions H1(Ω) is defined as:

(2.5) H1(Ω) =
{
u : ‖u‖H1(Ω) <∞

}
.

A closely related function space is that of square-integrable functions:

(2.6) L2(Ω) =
{
u : ‖u‖L2(Ω) <∞

}
, where ‖u‖L2(Ω) =

(∫
Ω
|u|2dx

)1/2

.

(To be precise, all integrals here and below must be interpreted in the Lebesgue rather than Riemann
sense, but we will ignore the distinction here.) It is important that the trial and test spaces satisfy
a zero boundary condition on the boundary ∂Ω on which the Dirichlet boundary condition (2.2)
holds, so that in fact we choose the following subspace of H1(Ω):

(2.7) H1
0 (Ω) =

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
.

Now, multiplying our elliptic equation by a test function v ∈ H1
0 (Ω) produces:

(2.8)
∫

Ω
(−∇ · (a∇u) + b(x, u)) v dx = 0,
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which becomes, after applying a generalized form of Green’s integral identities,

(2.9)
∫

Ω
(a∇u) · ∇v dx−

∫
∂Ω
v(a∇u) · n ds+

∫
Ω
b(x, u)v dx = 0.

Note that the boundary integral above vanishes due to the fact that the test function v vanishes
on the boundary.

If the boundary function g is smooth enough, there is a mathematical result called the Trace
Theorem [1] which guarantees the existence of a function ū ∈ H1(Ω) such that g = ū |∂Ω . (We will
not be able to construct such a trace function ū in practice, but we will be able to approximate it as
accurately as necessary in order to use this weak formulation in finite element methods.) Employing
such a function ū ∈ H1(Ω), it is easily verified that the solution u to the problem (2.1)–(2.2), if
one exists, lies in the space of functions ū+H1

0 (Ω).
We have therefore shown that the solution to the original problem (2.1)–(2.2) also solves the

following problem:

(2.10) Find u ∈ ū+H1
0 (Ω) such that 〈F (u), v〉 = 0 ∀v ∈ H1

0 (Ω),

where from equation (2.9) the scalar-valued function of u and v (also called a form), nonlinear in
u but linear in v, is defined as:

(2.11) 〈F (u), v〉 =
∫

Ω
(a∇u · ∇v + b(x, u)v) dx.

Clearly, the “weak” formulation of the problem given by equation (2.10) imposes only one order of
differentiability on the solution u, and only in the weak sense (under an integral). Under suitable
growth restrictions on the nonlinearities b and c, it can be shown that this weak formulation makes
sense, in that the form 〈F (·), ·〉 is finite for all arguments. Moreover, it can be shown under
somewhat stronger assumptions that the weak formulation is well-posed, in that there exists a
unique solution depending continuously on the problem data. These types of results for the PBE
are shown in [51, 58, 59].

To apply a Newton iteration to solve this nonlinear problem numerically, we will need a lin-
earization of some sort. Rather than discretize and then linearize the discretized equations, we will
exploit the fact that with projection-type discretizations such as the finite element method, these
operations actually commute; we can first linearize the differential equation, and then discretize the
linearization in order to employ a Newton iteration. To linearize the weak form operator 〈F (u), v〉,
a bilinear linearization form 〈DF (u)w, v〉 is produced as its directional (variational, Gateaux) de-
rivative as follows:

〈DF (u)w, v〉 =
d

dt
〈F (u+ tw), v〉

∣∣∣∣
t=0

=
d

dt

∫
Ω

(a∇(u+ tw) · ∇v + b(x, (u+ tw))v) dx

∣∣∣∣
t=0

(2.12) =
∫

Ω

(
a∇w · ∇v +

∂b(x, u)
∂u

wv

)
dx.

This scalar-valued function of the three arguments u,v, and w, is linear in w and v, but possibly
nonlinear in u. For fixed (or frozen) u, it is referred to as a bilinear form (linear in each of the
remaining arguments w and v). We will see shortly that the nonlinear weak form 〈F (u), v〉, and the
associated bilinear linearization form 〈DF (u)w, v〉, together with a continuous piecewise polynomial
subspace of the solution space ū + H1

0 (Ω), are all that are required to employ the finite element
method for numerical solution of the original elliptic equation.
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2.2. The Poisson-Boltzmann equation: weak form and linearization. In the case of the
PBE on a truncated finite domain Ω ⊂ R3, the strong form is:

−∇ · (ε(x)∇u(x)) + κ̄2(x) sinh(u(x))−
(

4πe2
c

kBT

) Nm∑
i=1

ziδ(x− xi) = 0 in Ω,(2.13)

u(x) = g(x) on ∂Ω.(2.14)

The boundary function g(x) is usually taken to be induced by a known analytical solution to one
of several possible simplifications of the linearized PBE. Far from the molecule, such analytical
solutions provide a highly-accurate boundary condition approximation for the general nonlinear
PBE on a truncation of R3. Another approach to handling the boundary condition more elegantly
with adaptive finite element methods is to use “infinite” elements, which we don’t consider in the
present paper.

The corresponding weak formulation then follows from the previous discussion, where a(x) =
ε(x)I3×3, b(x, u) = κ̄2(x) sinh(u)−(4πe2

c/(kBT ))
∑Nm

i=1 ziδ(x−xi). For technical reasons, we assume
that the sum of delta functions appearing in (2.13) is approximated by a sum of square integrable
functions, which we denote as f ∈ L2(Ω). This leads to:

(2.15) Find u ∈ ū+H1
0 (Ω) such that 〈F (u), v〉 = 0 ∀v ∈ H1

0 (Ω),

where

(2.16) 〈F (u), v〉 =
∫

Ω
(ε∇u) · ∇v + κ̄2 sinh(u)v − fv dx.

The bilinear linearization form 〈DF (u)w, v〉 in the case of the PBE is again produced as the
Gateaux derivative of the nonlinear form 〈F (u), v〉 above:

(2.17) 〈DF (u)w, v〉 =
d

dt
〈F (u+ tw), v〉

∣∣∣∣
t=0

=
∫

Ω
(ε∇w · ∇v + cosh(u)wv) dx.

3. Multilevel adaptive finite element methods

3.1. The finite element method for nonlinear elliptic equations. A Galerkin approximation
of the solution to (2.15) or (2.10) is the solution to the following subspace problem:

(3.1) Find uh ∈ ūh + Vh ⊂ H1
0 (Ω) such that 〈F (uh), vh〉 = 0, ∀vh ∈ Vh ⊂ H1

0 (Ω),

for some chosen subspace Vh of H1
0 (Ω), and some approximation ūh to ū. A finite element method is

simply a Galerkin approximation method in which the subspace Vh is chosen to have the extremely
simple form of continuous piecewise low-degree polynomials with local support, defined over a
disjoint covering of the domain Ω by elements, typically simple polyhedra. For example, in the case
of continuous piecewise linear polynomials defined over a disjoint covering with 2- or 3-simplices
(cf. Figure 1), the basis functions are easily defined element-wise using the unit 2-simplex (triangle)
and unit 3-simplex (tetrahedron) as follows:

(3.2)
φ̃0(x̃, ỹ) = 1− x̃− ỹ
φ̃1(x̃, ỹ) = x̃

φ̃2(x̃, ỹ) = ỹ

φ̃0(x̃, ỹ, z̃) = 1− x̃− ỹ − z̃
φ̃1(x̃, ỹ, z̃) = ỹ

φ̃2(x̃, ỹ, z̃) = x̃

φ̃3(x̃, ỹ, z̃) = z̃

.

For a simplex mesh with n vertices, a set of n global basis functions {φi(x, y, z), i = 1, . . . , n} are
defined, as in the right-most picture in Figure 1, by combining the support regions around a given
vertex, and extending the unit simplex basis functions to each arbitrary simplex using (affine)
coordinate transformations.
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Figure 1. Reference and arbitrary 2- and 3-simplex elements, and a global (2D)
basis function.

The above basis functions clearly do not form any subspace of C2(Ω), the space of twice con-
tinuously differentiable functions on Ω, which is the natural function space in which to look for
the solutions to second order elliptic equations written in the strong form, such as equation (2.1).
This is due to the fact that they are discontinuous along simplex faces and simplex vertices in the
disjoint simplex covering of Ω. However, one can show that in fact [34]:

(3.3) span{φ1, . . . , φn} ⊂ H1
0 (Ω), Ω ⊂ Rd,

so that these continuous, piecewise defined, low-order polynomial spaces do in fact form a subspace
of the solution space to the weak formulation of the problems we are considering here. Taking
then Vh = span{φ1, φ2, . . . , φn}, equation (3.1) reduces to a set of n nonlinear algebraic relations
(implicitly defined) for n coefficients {αj} in the expansion

(3.4) uh =
n∑
j=1

αjφj .

In particular, regardless of the complexity of the form 〈F (u), v〉, as long as we can evaluate it for
given arguments u and v, then we can evaluate the nonlinear discrete residual of the finite element
approximation uh as:

(3.5) ri = 〈F (
n∑
j=1

αjφj), φi〉, i = 1, . . . , n.

Since the form 〈F (u), v〉 involves an integral in this setting, if we employ quadrature then we can
simply sample the integrand at quadrature points; this is a standard technique in finite element
technology. Given the local support nature of the functions φj , all but a small constant number
of terms in the sum

∑n
j=1 αjφj are zero at a particular spatial point in the domain, so that the

residual ri is inexpensive to evaluate when quadrature is employed.
The two primary issues in applying this approximation method are then:
(1) The approximation error ‖u− uh‖X , for various norms X,
(2) The computational complexity of solving the n algebraic equations.

The first of these issues represents the core of finite element approximation theory, which itself rests
on the results of classical approximation theory. Classical references to both topics include [34, 42,
39]. The second issue is addressed by the complexity theory of direct and iterative solution methods
for sparse systems of linear and nonlinear algebraic equations, cf. [49, 85].

3.2. Error estimation, adaptive simplex subdivision, and conformity. A priori error anal-
ysis for the finite element method addressing the first issue is a well-understood subject [30, 34].
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Much activity has recently been centered around a posteriori error estimation, and its use in adap-
tive mesh refinement algorithms [5, 4, 9, 86, 87, 91]. These estimators include weak and strong
residual-based estimators [5, 4, 86], as well as estimators based on solving local problems [17, 19].
The challenge for a numerical method is to be as efficient as possible, and a posteriori estimates
are a basic tool in deciding which parts of the solution require additional attention. While the
majority of the work on a posteriori estimates has been for linear problems, nonlinear extensions
are possible through linearization theorems (cf. [86, 87]).

The solve-estimate-refine structure in simplex-based adaptive finite element codes such as MC [50]
and PLTMG [9], exploiting these a posteriori estimators, is as follows:
Algorithm 3.1. (Adaptive multilevel finite element approximation)

• While (‖u− uh‖X > ε) do:
(1) Find uh ∈ ūh + Vh ⊂ H1

0 (Ω) such that 〈F (uh), vh〉 = 0, ∀ vh ∈ Vh ⊂ H1
0 (Ω).

(2) Estimate ‖u− uh‖X over each element.
(3) Initialize two temporary simplex lists as empty: Q1 = Q2 = ∅.
(4) Place simplices with large error on the “refinement” list Q1.
(5) Bisect all simplices in Q1 (removing them from Q1),

and place any nonconforming simplices created on the list Q2.
(6) Q1 is now empty; set Q1 = Q2, Q2 = ∅.
(7) If Q1 is not empty, goto (5).

• End While.

The conformity loop (5)–(7), required to produce a globally “conforming” mesh (described below)
at the end of a refinement step, is guaranteed to terminate in a finite number of steps (cf. [74, 75]),
so that the refinements remain local. Element shape is crucial for approximation quality; the
bisection procedure in step (5) is guaranteed to produce nondegenerate families if the longest
edge is bisected in two dimensions [76, 81], and if marking or homogeneity methods are used in
three dimensions [3, 70, 23, 22, 64, 68]. Whether longest edge bisection is nondegenerate in three
dimensions apparently remains an open question.

Figure 2 shows a single subdivision of a 2-simplex or a 3-simplex using either 4-section (first figure
from left), 8-section (fourth figure from left), or bisection (third and sixth figures from left). The

Figure 2. Refinement of 2- and 3-simplices using 4-section, 8-section, and bisection.

paired triangle in the 2-simplex case of Figure 2 illustrates the nature of conformity and its violation
during refinement. A globally conforming simplex mesh is defined as a collection of simplices which
meet only at vertices and faces; for example, removing the dotted bisection in the third figure
from the left in Figure 2 produces a non-conforming mesh. Non-conforming simplex meshes create
several theoretical as well as practical implementation difficulties, and the algorithms in MC (as
well as those in PLTMG [9] and similar simplex-based adaptive codes [50, 70, 25, 26, 24]) enforce
conformity using the above finite queue swapping strategy or a similar approach.
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3.3. Inexact-Newton methods and linear multilevel methods. Addressing the complexity
of Step 1 of the algorithm above, Newton methods are often the most effective:
Algorithm 3.2. (Damped-inexact-Newton)

• Given an initial u
• While (|〈F (u), v〉| > TOL for some v) do:

(1) Find δ such that 〈DF (u)δ, v〉 = −〈F (u), v〉+ r, ∀v
(2) Set u = u+ λδ

• end while

The bilinear form 〈DF (u)w, v〉 in the algorithm above is the (Gateaux) linearization of the
nonlinear form 〈F (u), v〉, defined earlier. This form is easily computed from most nonlinear forms
〈F (u), v〉 which arise from second order nonlinear elliptic problems, as we saw in the case of the
PBE. The possibly nonzero “residual” term r is to allow for inexactness in the Jacobian solve for
efficiency, which is quite effective in many cases; cf. [16, 41, 43]. The parameter λ brings robustness
to the algorithm [14, 15, 43]. If folds or bifurcations are present, then the iteration is modified to
incorporate path-following [13, 62].

As was the case for the nonlinear residual 〈F (·), ·〉, the matrix representing the bilinear form in the
Newton iteration is easily assembled, regardless of the complexity of the bilinear form 〈DF (·)·, ·〉.
In particular, the matrix equation for w =

∑n
j=1 βiφi has the form:

(3.6) AU = F,

where

(3.7) Aij = 〈DF (
n∑
k=1

αkφk)φj , φi〉, Fi = 〈F (
n∑
j=1

αjφj), φi〉, Ui = βi.

As long as the integral-based forms 〈F (·), ·〉 and 〈DF (·)·, ·〉 can be evaluated at individual points
in the domain, then quadrature can be used to build the Newton equations, regardless of the
complexity of the forms. This is one of the most powerful features of the finite element method,
and is exploited to an extreme in the code MC (see §4 and [50]).

It can be shown that the Newton iteration above is dominated by the computational complex-
ity of solving the n linear algebraic equations in each iteration; cf. [16, 47]. Multilevel methods
are the only known provably optimal or nearly optimal methods for solving these types of linear
algebraic equations, resulting from discretizations of a large class of general linear elliptic prob-
lems [10, 47, 88]. An obstacle to applying multilevel methods to the PBE is the presence of the
geometrically complex discontinuities in the dielectric ε and in the Debye-Hückel parameter κ̄; their
presence destroys multilevel method efficiency, and can in fact cause divergence of multilevel meth-
ods. This problem effects both adaptive and uniform mesh approaches; a feasible solution is to
employ algebraic multilevel methods [20, 21, 28, 32, 33, 29, 77, 83, 84], which effectively “smear” the
discontinuities appropriately on coarser meshes so that multilevel methods can be made convergent
again, and can even regain their near optimal complexity in some cases. Such an approach was
taken in [51, 55] for meshes with non-uniform but Cartesian structure; we employ an unstructured
version of this algebraic multilevel approach here. In particular, we enforce the following condition
algebraically at each level of the multilevel hierarchy:

(3.8) Ac = P TAP,

where, A is the discretization of the linearized PBE on a given mesh, Ac is the discretization on a
coarser mesh, and where P is the interpolation operator relating finite element basis functions on
the two meshes. It can be shown that a multilevel method based on such a construction is provably
convergent, and even optimal under certain conditions. See §4 below and also [50] for more details
on the implementation of this triple sparse matrix product in MC.
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4. The computer program MC

MC [50] (see also [53, 8]) is an adaptive multilevel finite element code developed by one of the
authors (M.H.) over several years at Caltech and UC San Diego. It is designed to produce prov-
ably accurate numerical solutions to a general class of nonlinear elliptic equations on complicated
2- and 3-dimensional domains in an optimal or nearly-optimal way. MC employs a posteriori er-
ror estimation, adaptive simplex subdivision, unstructured algebraic multilevel methods, global
inexact-Newton methods, and numerical continuation methods, for the highly accurate numerical
solution of this class of problems.

4.1. The overall design of MC. The MC code is an implementation of Algorithm 3.1, employing
Algorithm 3.2 for nonlinear elliptic systems that arise in Step 1 of Algorithm 3.1. The linear Newton
equations in each iteration of Algorithm 3.2 are solved with algebraic multilevel methods, and the
algorithm is supplemented with a continuation technique when necessary. Several of the features
of MC are somewhat unusual, allowing for the treatment of very general nonlinear elliptic systems
of tensor equations on domains with the structure of 2- and 3-manifolds. In particular, some of
these features are:

• Abstraction of the elliptic system: The elliptic system is defined only through a nonlinear
weak form over the domain manifold, along with an associated linearization form, also
defined everywhere on the domain manifold (precisely the forms 〈F (u), v〉 and 〈DF (u)w, v〉
in the discussions above). To use the a posteriori error estimator, a third function must
also be provided (essentially the strong form of the problem).
• Abstraction of the domain manifold: The domain manifold is specified by giving a polyhedral

representation of the topology, along with an abstract set of coordinate labels of the user’s
interpretation, possibly consisting of multiple charts. MC works only with the topology of
the domain, the connectivity of the polyhedral representation. The geometry of the domain
manifold is provided only through the form definitions, which contain the manifold metric
information, and through a oneChart() routine that the user provides to resolve chart
boundaries.
• Dimension independence: Exactly the same code paths are taken for both two- and three-

dimensional problems (as well as for higher-dimensional problems). To achieve this di-
mension independence, MC employs the simplex as its fundamental geometrical object for
defining finite element bases.

As a consequence of the abstract weak form approach to defining the problem, the complete defi-
nition of the nonlinear Poisson-Boltzmann requires writing only 1000 lines of C to define the two
weak forms, and to define the oneChart() routine. Changing to a different problem, e.g. large
deformation nonlinear elasticity, involves providing only a different definition of the forms and a
different domain description.

4.2. Topology and geometry representation in MC. A datastructure referred to as the
ringed-vertex (cf. [50]) is used to represent meshes of d-simplices of arbitrary topology. This datas-
tructure is illustrated in Figure 3. The ringed-vertex datastructure is similar to the winged-edge,
quad-edge, and edge-facet datastructures commonly used in the computational geometry commu-
nity for representing 2-manifolds [69], but it can be used more generally to represent arbitrary
d-manifolds, d = 2, 3, . . .. It maintains a mesh of d-simplices with near minimal storage, yet for
shape-regular (non-degenerate) meshes, it provides O(1)-time access to all information necessary
for refinement, un-refinement, and discretization of an elliptic operator. The ringed-vertex datas-
tructure also allows for dimension independent implementations of mesh refinement and mesh
manipulation, with one implementation covering arbitrary dimension d. An interesting feature of
this datastructure is that the C structures used for vertices, simplices, and edges are all of fixed
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Figure 3. Polyhedral manifold representation. The figure on the left shows two
overlapping polyhedral (vertex) charts consisting of the two rings of simplices around
two vertices sharing an edge. The region consisting of the two darkened triangles
around the face f is denoted ωf , and represents the overlap of the two vertex charts.
Polyhedral manifold topology is represented by MC using the ringed vertex datas-
tructure. The datastructure is illustrated for a given simplex s in the figure on
the right; the topology primitives are vertices and d-simplices. The collection of
the simplices which meet the simplex s at its vertices (which then includes those
simplices that share faces as well) is denoted as ωs. (The set ωs includes s itself.)
Edges are temporarily created during subdivision but are then destroyed (a similar
ring datastructure is used to represent the edge topology).

size, so that a fast array-based implementation is possible, as opposed to a less-efficient list-based
approach commonly taken for finite element implementations on unstructured meshes. A detailed
description of the ringed-vertex datastructure, along with a complexity analysis of various traversal
algorithms, can be found in [50].

Since MC is based entirely on the d-simplex, for adaptive refinement it employs simplex bisection,
using one of the simplex bisection strategies outlined earlier. Bisection is first used to refine an
initial subset of the simplices in the mesh (selected according to some error estimates, discussed
below), and then a closure algorithm is performed in which bisection is used recursively on any
non-conforming simplices, until a conforming mesh is obtained. If it is necessary to improve element
shape, MC attempts to optimize the following simplex shape measure function for a given d-simplex
s, in an iterative fashion, similar to the approach taken in [18]:

(4.1) η(s, d) =
22(1− 1

d
)3

d−1
2 |s|

2
d∑

0≤i<j≤d |eij |2
.

The quantity |s| represents the (possibly negative) volume of the d-simplex, and |eij | represents the
length of the edge that connects vertex i to vertex j in the simplex. For d = 2 this is the shape-
measure used in [18] with a slightly different normalization. For d = 3 this is the shape-measure
developed in [63] again with a slightly different normalization.

4.3. Discretization and adaptivity in MC. Given a nonlinear weak form 〈F (u), v〉, its lineariza-
tion bilinear form 〈DF (u)w, v〉, a Dirichlet function ū, and collection of simplices representing the
domain, MC uses a default linear element to produce and then solve the implicitly defined nonlin-
ear algebraic equations for the basis function coefficients in the expansion (3.4). The user can also
provide his own element, specifying the number of degrees of freedom to be located on vertices,
edges, faces, and in the interior of simplices, along with a quadrature rule, and the values of the
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basis functions at the quadrature points on the master element. Different element types may be
used for different components of a coupled elliptic system.

Once the equations are assembled and solved (discussed below), a posteriori error estimates are
computed from the discrete solution to drive adaptive mesh refinement. The idea of adaptive error
control in finite element methods is to estimate the behavior of the actual solution to the problem
using only a previously computed numerical solution, and then use the estimate to build an im-
proved numerical solution by increasing the polynomial order (p-refinement) or refining the mesh
(h-refinement) where appropriate. Note that this approach to adapting the mesh (or polynomial
order) to the local solution behavior affects not only approximation quality, but also solution com-
plexity: if a target solution accuracy can be obtained with fewer mesh points by their judicious
placement in the domain, the cost of solving the discrete equations is reduced (sometimes dramat-
ically) because the number of unknowns is reduced (again, sometimes dramatically). Generally
speaking, if an elliptic equation has a solution with local singular behavior, such as would result
from the presence of abrupt changes in the coefficients of the equation (e.g., the functions ε and κ̄
in the present case), then adaptive methods tend to give dramatic improvements over non-adaptive
methods in terms of accuracy achieved for a given complexity price. Two examples illustrating
bisection-based adaptivity patterns (driven by a completely geometrical “error” indicator simply
for illustration) are shown in Figure 4.

Figure 4. Examples illustrating the 2D and 3D adaptive mesh refinement algo-
rithms in MC. The right-most figure in each row shows a close-up of the area where
most of the refinement occurred in each example.

4.4. A posteriori error estimation in MC. There are several approaches to adaptive error
control, although the approaches based on a posteriori error estimation are usually the most effective
and most general. While most existing work on a posteriori estimates has been for linear problems,
extensions to the nonlinear case can be made through linearization. For example, consider the
nonlinear problem:

(4.2) F (u) = 0, F ∈ C1(B1,B∗2),
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where B1 and B2 are typically function spaces such as our now familiar H1
0 (Ω). The notation

B∗ above represents the dual space of bounded linear functionals on the space B, and features
prominently in partial differential operator equations and in error estimation analysis. Consider
now also a discretization of the equation above:

(4.3) Fh(uh) = 0, Fh ∈ C0(Uh, V ∗h ),

where Uh ⊂ B1 and Vh ⊂ B2. For example, this could be the nonlinear Poisson-Boltzmann equation
and a finite element discretization. In this case, the function spaces would be taken to be B1 =
B2 = H1

0 (Ω). The nonlinear residual F (uh) can be used to estimate the error in the approximation
‖u − uh‖B1 , through the use of a linearization theorem [65, 86]. In particular, under fairly mild
assumptions, one can establish the following set of inequalities:

(4.4) C1‖F (uh)‖B∗2 ≤ ‖u− uh‖B1 ≤ C2‖F (uh)‖B∗2 .

The error measure ‖v‖B1 would typically be the H1-norm defined in (2.4). The measure ‖f‖B∗2 is
the dual space norm of a functional in the dual space of B2; it is defined clearly in Appendix A.
The effect of linearization is absorbed by the positive constants C1 and C2, and one focuses on
two-sided estimates for the nonlinear residual ‖F (uh)‖B∗2 appearing on each side of (4.4). However,
since we typically construct highly refined meshes where needed, such local linearized estimates are
reasonable. Note that ‖F (uh)‖B∗2 can be estimated in several ways, including

(1) Approximation by ‖Fh(uh)‖B∗2 (strong and weak residual estimates) [86, 87, 65, 66].
(2) Solution of local problems (Dirichlet or Neumann) [17, 19].

The two approaches are often equivalent up to constants (cf. [86]). For reasons of efficiency in the
case of elliptic systems in spatial dimension three, we employ the first approach in MC, referred
to as estimation by strong residuals. The error estimator can also be user-specified in MC; the
user is given all of the information about an element and the current discrete solution in the
element, and is asked to produce an error estimate for the element. This can be as simple as
computing the average of the jumps in the normal derivatives of the solution gradient across the
edges shared with neighboring elements, or the complete calculation of a bound on the strong form
of the residual [86]. In particular, one employs the linearization theorem above, together with some
derived (and computable) upper and lower bounds on the nonlinear residual ‖F (uh)‖B∗2 given by
the following pair of inequalities:

(4.5) A ≤ ‖F (uh)‖B∗2 ≤ B.
While it is clear that the upper bound B is the key to bounding the error, the lower bound A can
also be quite useful; it can help to ensure that the adaptive procedure doesn’t do too much work by
over-refining an area where it is unnecessary. The effectiveness of an adaptive finite element code
can hinge on the implementation details of the estimator, and implementing it efficiently can be
quite an art form (cf. [86, 17, 19]).

We employ a residual error estimator in MC, based on computing an upper bound on the non-
linear residual as in (4.5). Appendix A contains the detailed derivation of the upper bound in
equation (4.5) that is used in MC for general nonlinear elliptic equations. In Appendix B, we
instantiate the estimator in the case of the nonlinear Poisson-Boltzmann equation, and we give the
error estimator which we employ for the experiments here and in the a follow-on paper [6].

4.5. Solution of linear and nonlinear systems with MC. When a system of nonlinear finite
element equations must be solved in MC, the global inexact-Newton Algorithm 3.2 is employed,
where the linearization systems are solved by linear multilevel methods. This is the algorithm orig-
inally presented in [55], but now used in conjunction with error estimation and adaptivity. When
necessary, the Newton procedure in Algorithm 3.2 is supplemented with a user-defined normal-
ization equation for performing an augmented system continuation algorithm. The linear systems
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arising as the Newton equations in each iteration of Algorithm 3.2 are solved using a completely al-
gebraic multilevel algorithm. Either refinement-generated prolongation matrices Pk, or user-defined
prolongation matrices Pk in a standard YSMP-row-wise sparse matrix format, are used to define
the multilevel hierarchy algebraically. In particular, once the single “fine” mesh is used to produce
the discrete nonlinear problem F (u) = 0 along with its linearization Au = f for use in the Newton
iteration in Algorithm 3.2, a J-level hierarchy of linear problems is produced algebraically using
the following recursion:

(4.6) Ak+1 = P Tk AkPk, k = 1, . . . , J − 1, A1 ≡ A.

As a result, the underlying multilevel algorithm is provably convergent in the case of self-adjoint-
positive matrices [57]. Moreover, the multilevel algorithm has provably optimal O(N) convergence
properties under the standard assumptions for uniform refinements [88], and is nearly-optimal
O(N logN) under very weak assumptions on adaptively refined problems [11].

Coupled with the superlinear convergence properties of the outer inexact Newton iteration in
Algorithm 3.2, this leads to an overall complexity of O(N) or O(N logN) for the solution of the
discrete nonlinear problems in Step 1 of Algorithm 3.1. Combining this low-complexity solver with
the judicious placement of unknowns only where needed due to the error estimation in Step 2 and
the subdivision algorithm in Steps 3-7 of Algorithm 3.1, leads to a very effective low-complexity
approximation technique for solving a general class of nonlinear elliptic equations such as the
Poisson-Boltzmann equation.

4.6. Parallel computing with MC through local estimate decoupling. MC incorporates a
new approach to the use of parallel computers with adaptive finite element methods, based on the
idea of decoupling the problem through local error estimation [8, 12]. The idea of the algorithm,
described in detail in [8], is as follows. MC solves a small problem sequentially on one processor,
employing an initially very coarse mesh. The mesh is then partitioned (e.g., inertially or spectrally),
where the partitioning strategy is weighted by a posteriori error estimates. The entire coarse mesh is
then distributed to all of the processors, along with the list of elements that the particular processor
“owns”, in which it is to compute a posteriori error estimates as it performs its solve-estimate-refine
loop (Step 2 through Step 7 in Algorithm 3.1). When a processor has reached an error tolerance
locally, computation stops on that processor. An example showing the types of local refinements
that occur within each subdomain is depicted in Figure 5.

Figure 5. An example showing the types of local refinements that are created by
the local estimate-based parallel algorithm. The distinct colors correspond to the
elements assigned to a particular processor. The initial spectrally-bisected coarse
mesh is shown in the left-most figure, followed by the locally adapted subdomains
on two of four processors at the end of the computation. No communication took
place during the calculations.
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Mesh conformity algorithms will necessarily lead the refinement regions into the surrounding
areas, which will in most cases lead to nonconforming interfaces between the regions. This is not
a concern in that the subdomain solutions themselves are taken to be the final discrete solution
represented subdomain-wise. To evaluate the solution at any point in the domain, one simply must
determine which subdomain contains the point, and then fetch the solution value from the particular
subdomain. While this approach seems naive, some recent theoretical results [91] support this as
provably good, and even optimal in some cases. The principle idea underlying the results in [91] is
that while elliptic problems are globally coupled, this global coupling is essentially a “low-frequency”
coupling, and can be handled on the initial mesh which is much coarser than that required for
approximation accuracy considerations. This idea has been exploited, for example, in [89, 90], and
is in fact why the construction of a coarse problem in overlapping domain decomposition methods
is the key to obtaining convergence rates which are independent of the number of subdomains
(cf. [88]). A complete description of the algorithm and an explanation of why it actually works can
be found in [8], along with examples using MC and the 2D adaptive code PLTMG [9],

4.7. Availability of MC. A fully-functional MATLAB version of MC for 2-manifolds, called
MClab, is available under the GNU copyleft license at the following website:

http://www.scicomp.ucsd.edu/~mholst/

MClab employs the ringed-vertex datastructure and implements the same adaptivity and solution
algorithms that are used in MC. A number of additional tools developed for use with MC and
MClab are also available under a GNU license at the site above, include MCsg (an OpenGL-based
X11/Win32 polygon display tool) and MCps (an OpenGL-to-Postscript generator used to generate
the pictures of finite element meshes appearing in this paper; it is described in [7]).

5. Numerical results for two model problems

The effectiveness of the adaptive multilevel finite element method will now be demonstrated by
using two well-known model problems (illustrated by the two cartoons in Figure 6) with known
analytical solutions. The application to a number of more complex systems appears in [6]. To

Figure 6. Two-dimensional cartoons illustrating the form of the two model problems.

make the following numerical results as interesting as possible, we will tabulate the accuracy,
discretization cell (tetrahedron) number and cell size (tetrahedral diameter), memory usage, and
solution time of the adaptive method implemented in MC when applied to the two model problems.
We will then compare to the same measures (where the discretization cells are now cubical boxes) for
the highly optimized (non-uniform) Cartesian mesh algebraic multigrid Poisson-Boltzmann solver
PMG. The PMG solver has been described in detail in two papers appearing previously in this
journal [54, 55]. Although the PMG solver is non-adaptive and can only employ non-uniform
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Cartesian meshes, it shares a number of crucial core algorithms with MC. These include the global
inexact Newton algorithm described in [52, 55], and the linear complexity algebraic multilevel
solver described in [52, 54]. We believe that PMG is one of the fastest and most robust of the
Cartesian mesh solvers for the nonlinear Poisson-Boltzmann equation that are publically available
in source form. The version of PMG we employed for this paper has been freely available under
the GNU copyleft license for more than four years, and can be downloaded from the website
given in Section 4.7. Therefore, the following results should be viewed as a fair but conservative
demonstration of what might be gained by the use of an adaptive method.

It should be noted that there are a number of uniform mesh solvers for these types of prob-
lems that are publically available. In addition, several codes written specifically for the Poisson-
Boltzmann equation, while not publically available, may be obtained for a small fee. Chief among
these is the well-known highly-optimized DelPhi software from the Honig lab at Columbia Univer-
sity. For small problem sizes, such as cubical meshes with 63 mesh lines in each coordinate direction
or less, DelPhi and similar approaches are probably unmatched in producing a solution in the least
amount of execution time. However, our interest here is developing techniques for producing highly
accurate solutions for very large and complex systems, and uniform mesh approaches require much
larger meshes than these codes allow. For example, in DelPhi one may only employ cubical meshes
with 63 mesh lines in each direction. Moreover, the algorithm employed by DelPhi is based on SOR
with an intelligent (nearly optimal) parameter estimation scheme (described in detail in [71]). It is
well-known (cf. [94]) that SOR with optimal parameter has complexity O(N1.33lnN), and decays to
O(N1.67lnN) if the parameter is not optimal, where N is the number of unknowns in the discrete
system. The multilevel methods employed here and previously in [54, 55] have both theoretical
and emperically demonstrated complexity of O(N), and a simple back-of-the-envelope calculation
will convince the reader that for large problem sizes one has no choice but to employ multilevel
methods. Since PMG is the only publically available PB solver that demononstrates this linear
scaling with the problem size, we will use PMG in our numerical experiments.

To use MC to adaptively solve the Poisson-Boltzmann equation requires several preprocessing
steps. To begin, our coarse simplex mesh generation procedure (described in more detail in [6])
involves using the charge locations from the PDB file as the interior vertices of an initial coarse
tetrahedral mesh. After scattering some additional shells of vertices around the charges, with
sparsity of the shell vertices increasing with the shell diameter, we employ a standard 3D Delaunay
mesh generator to produce an initial mesh of tetrahedra. The tetrahedral meshes produced by
this procedure for the two model problems considered here appear in Figures 7 and 8. Since the

Figure 7. The initial coarse tetrahedral mesh for the single atom example. The
mesh contains 59 vertices and 318 tetrahedra.

solution to the PBE changes rapidly near the “molecular surface” as defined by the discontinuities
in the dielectric ε and the Debye-Hückel parameter κ̄, and near the delta functions in the source
term representing the charges in the protein, one expects the residual-based error estimator (derived
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Figure 8. The initial coarse tetrahedral mesh for the rod-like molecule example.
The mesh contains 258 vertices and 1,621 tetrahedra.

in Appendices A and B) to automatically refine the mesh near the dielectric boundaries and the
charge locations. In the first test problem, we can define the molecular surface quite easily, since
the problem contains only a single atom. The refinement in this case will occur at both the
molecular surface and the charge locations. In the second test problem, there is no such surface;
the biomolecule is taken to be a fictitious rod-like molecule with 200 atoms of varying charges,
with complete solvent penetration. The refinement in this example should occur primarily near the
charge locations.

To apply the finite element approximation techniques presented here to more complex problems
would require an expensive calculation to determine whether or not a point in the domain is
solvent accessible, given the description of complex molecule from a PDB file. Since we have no
underlying Cartesian mesh to exploit, this calculation typically involves an expensive traversal of
the tetrahedral mesh. In any event, the calculation determines (implicitly) the piecewise-constant
dielectric ε and the Debye-Hückel parameter κ̄. We discuss two efficient approaches for handling
the solvent accessibility problem in the second paper [6]. The first approach involves the use of the
Solvent Accessible Volume library of Bashford and You [93]. We present an alternative approach
in [6] based on atomic hash lists, which was developed by one of the authors (N.B.). It appears
to be somewhat faster than the approach in [93], and is fast enough to make solvent accessibility
evaluation negligible compared to the other computational costs in MC. This allows MC to be used
effectively for arbitrarily complex charged biological structures with arbitrarily complicated solvent
accessibility surfaces. These issues are discussed at length in [6].

5.1. A single atom. The first test problem consists of a single atom of radius 2 Å, centered at the
origin. This allows for an analytical solution to the linearized Poisson-Boltzmann equation for the
evaluation of accuracy. Due to spherical symmetry, there is only radial dependence in the solution
to the linearized PBE, which is easily verified to have the following analytical form in the three
subregions of R3 (cf. [51, 52]):

u(r) =
q

εwR

(
1− κR

1 + κa

)
, r ≤ R,(5.1)

u(r) =
q

εwr

(
1− κr

1 + κa

)
, R < r < a,(5.2)

u(r) =
qeκa

εw(1 + κa)
· e
−κr

r
, r ≥ R.(5.3)

Here, a = R is the 2 Å radius of the atom in the left frame in Figure 6, q is the charge of the
atom, εw is the dielectric over all of R3, κ = κ̄/

√
εw, and where the other terms are as described

following (1.1). For both the uniform and adaptive calculations, we use (5.3) as an exact boundary
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condition on the exterior surface of the solvent-filled box containing the atom (in the adaptive
case, we employ a solvent-filled sphere). We use a 12 Å box in the uniform case; in the adaptive
case, we use a 100 Å sphere to illustrate the advantage of the unstructured mesh approach. Note
that since the boundary condition we employ is exact, the smaller domain size gives the uniform
mesh method an advantage. It is more typical that the exact boundary condition is not known, in
which case the much larger domain gives the adaptive method a more accurate boundary condition
approximation.

For both the non-adaptive code PMG and the adaptive code MC, Table 1 lists the number of
refinements, the smallest cell size (box length or tetrahedral diameter), the accuracy in the solution
(relative error) at a selected point in the solvent near the atom (at (x, y, z) = (0, 0, 2.1)), the number
of vertices and cells (boxes or tetrahedra), the memory usage, and the total CPU time required
to solve the problem. By extrapolating from the discretization error reduction in the table for the
uniform mesh method as the mesh is uniformly refined, it is clear from the table that at least an
additional order of magnitude in memory and solution time are required by the uniform method
to reach the same accuracy and resolution as the adaptive method. Moreover, using the adaptive
method we can obtain cell resolutions smaller than would be obtainable with uniform methods using
the largest supercomputers available (again extrapolating the memory and CPU time to achieve
the cell diameter potential of the adaptive method).

Table 1. Performance comparison: The single atom example is first solved with
the non-adaptive Cartesian code PMG, and is then solved adaptively using MC. The
“Diameter” column refers to the smallest cell size in the mesh. The “Error” column
refers to the point-wise error in the solution at a selected point near the atom. All
calculations are in double precision, and execution times are for a 350Mhz Pentium II
running Linux.

Method Levels Diameter Error #Vertices #Cells Memory Time
PMG 5 3.8e-1 Å 2.2e-1 35,937 32,768 9 MB 5.6 sec
PMG 6 1.9e-1 Å 5.8e-2 274,625 262,144 66 MB 47.3 sec
PMG 7 9.4e-2 Å 1.6e-2 2,146,689 2,097,152 515 MB 393.0 sec
MC 10 7.0e-3 Å 5.2e-3 67,288 373,978 109 MB 122.2 sec

Figure 9 shows the uniform mesh, a cutting plane, and a projected isosurface for the solution
produced by the Cartesian mesh code PMG. Shown also are collection of isosurfaces of varying
magnitudes, illustrating the lack of resolution obtainable with the uniform method. In Figure 10
we show the corresponding calculation using the adaptive code MC. First shown is the adapted
mesh, a cutting plane through the unstructured mesh, followed by a sequence of highly-resolved
isosurfaces of the solution.

5.2. A rod-like molecule with complete solvent penetration. The second test problem con-
sists of a collection of 200 atoms at arbitrary locations, of which there are nine atom types with
differing charges. The charges all lie within a box of length 20 Å on each side. The solvent is
assumed to completely penetrate the (fictitious) molecule, which allows for an analytical solution
to the linearized Poisson-Boltzmann equation for the evaluation of accuracy. In this case, the
linearized PBE is known to have the following analytical solution in all of R3 (cf. [51, 52]):

(5.4) u(x) =
(

e2
c

kBT

) Nm∑
i=1

e−κ|x−xi|

εw|x− xi|
zi,

where εw is the dielectric over all of R3, κ = κ̄/
√
εw, and where the other terms are as described

following (1.1). For both the uniform and adaptive calculations, we use (5.4) as an exact boundary
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Figure 9. The single atom example solved non-adaptively by the Cartesian mesh
code PMG. The uniform 65× 65× 65 mesh used is shown, which contains 262, 144
box elements and 274, 625 box vertices. Also shown are several isosurfaces of the
solution at the 274, 625 box vertices. The x− y plane is also shown cutting through
the solution, with isosurfaces projected onto the plane. The uniform mesh is also
projected onto the cutting plane, illustrating the large uniform cell volumes. Al-
though the mesh contains an enormous number of cells and vertices, note that the
isosurfaces near the singularity are very poorly resolved.

condition on the exterior surface of the solvent-filled box containing the atom (again, in the adaptive
case, we employ a solvent-filled sphere). We use a box with 60 Å sides in the uniform case; in the
adaptive case, we use a 500 Å diameter sphere to again illustrate the flexibility of the unstructured
mesh approach. (Again, since the boundary condition we employ is exact, the smaller domain size
gives the uniform mesh method an advantage.)

For both the non-adaptive code PMG and the adaptive code MC, Table 2 lists the number of
refinements, the smallest cell size (box length or tetrahedral diameter), the accuracy in the solution
(relative error) at a selected point in the solvent (at (x, y, z) = (0, 0, 0)), the number of vertices
and cells (boxes or tetrahedra), the memory usage, and the total CPU time required to solve the
problem. It is again clear from the table that at least an additional order of magnitude in memory
and solution time are required by the uniform method in order to reach the same accuracy and
resolution as the adaptive method.

Figure 11 shows the uniform mesh, a cutting plane, a projected isosurface for the solution pro-
duced by the uniform mesh calculation, and then a collection of isosurfaces of varying magnitudes,
illustrating the lack of resolution obtainable with the uniform method. In Figure 12, we show the
corresponding calculation with the adaptive methods. First shown is the adapted mesh, a cutting
plane through the unstructured mesh, followed by a sequence of highly-resolved isosurfaces of the
solution.

6. Some remarks on the theoretical justification of “focussing”

A common technique used with numerical solution of the Poisson-Boltzmann equation has been
“focussing”. This is a technique where one solves the equation on a uniform mesh (typically fixed
for all time at 65 × 65 × 65) using a large mesh spacing containing the molecule well within the
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Figure 10. The single atom example solved adaptively using MC, where the
adapted mesh containing 67,288 vertices and 373,978 tetrahedra is automatically
determined adaptively, without human intervention. Shown is the final adapted
mesh and several isosurfaces of the adapted solution computed by MC at the 67, 288
tetrahedral vertices. The x − y plane is also shown cutting through the solution,
with isosurfaces projected onto the plane. The adapted mesh is also projected onto
the cutting plane, illustrating the small non-uniform cell volumes near the dielectric
boundary and near the singularity.

Table 2. Performance comparison: the rod-like molecule example is first solved
with the non-adaptive Cartesian code PMG, and is then solved adaptively using
MC. The “Diameter” column refers to the smallest cell size in the mesh. The
“Error” column refers to the point-wise error in the solution at a selected point near
the atom. All calculations are in double precision, and execution times are for a
350Mhz Pentium II running Linux.

Method Levels Diameter Error #Vertices #Cells Memory Time
PMG 5 6.25e0 Å 1.3e0 35,937 32,768 9 MB 7.2 sec
PMG 6 3.13e0 Å 3.6e-1 274,625 262,144 66 MB 68.7 sec
PMG 7 1.56e0 Å 1.1e-1 2,146,689 2,097,152 515 MB 453.3 sec
MC 11 1.7e-3 Å 4.1e-2 78,113 434,804 131 MB 158.4 sec

interior, so that well-known analytical solutions can be used as accurate approximations to the
boundary conditions. One then solves the problem a second time, but using a mesh spacing that
results in the uniform 65×65×65 mesh barely covering the biomolecule, with boundary conditions
provided by the earlier coarse mesh solution. This technique has been used a number of times in
the literature (cf. [71, 80]).

While this technique seems intuitively reasonable in some sense, there has so far been no theo-
retical justification of the approach. However, some recent results in finite element error estimation
appearing in [91] can be used to justify this two-mesh technique. The principle idea underlying the
results in [91] is that while elliptic problems are globally coupled (in particular, to their boundary
conditions), this global coupling is essentially a “low-frequency” coupling, and can be handled on
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Figure 11. The rod-like molecule example solved non-adaptively by the Cartesian
mesh code PMG. The uniform 65 × 65 × 65 mesh used is shown, which contains
262, 144 box elements and 274, 625 box vertices. Also shown are several isosurfaces
of the uniform mesh rod-like molecule solution computed by PMG at the 274, 625 box
vertices. The x−y plane is also shown cutting through the solution, with isosurfaces
projected onto the plane. The uniform mesh is also projected onto the cutting plane,
illustrating the large uniform cell volumes. Again, while the mesh contains a very
large number of cells and vertices, the isosurfaces near the singularities are poorly
resolved, and reflect a very inaccurate, “smeared” potential.

a mesh which is much coarser than that required for approximation accuracy considerations. This
idea has been exploited for example in [89, 90], and is in fact why the construction of a coarse
problem in overlapping domain decomposition methods is the key to obtaining convergence rates
which are independent of the number of subdomains (cf. [88]).

The key result in [91] for our purposes is the following a priori error estimate. To explain, let
Ωk be the collection of disjoint subregions of the domain Ω, and let Ω0

k to be an extension of the
disjoint Ωk, such that Ωk ⊂⊂ Ω0

k, and so that the sizes of the overlap regions Ω0
i

⋂
Ω0
j are on the

order of the sizes of the regions Ωk. We can think about one of the Ωk regions as being a mesh
which barely covers the biomolecule, and Ω0

k as a slightly larger mesh that includes a small amount
of additional solvent region around the biomolecule. Now, under some reasonable assumptions
about the approximation properties of a finite element space Sh0 defined over Ω, the following a
priori error estimate holds for the global Galerkin solution uh to Poisson-like equations similar to
the Poisson-Boltzmann equation:

‖u− uh‖H1(Ωk) ≤ C

(
inf
v∈Sh0

‖u− v‖H1(Ω0
k) + ‖u− uh‖L2(Ω)

)
.

This a priori result states that the error in the global Galerkin solution uh restricted to a subdomain
Ωk can be bounded by the error in the best approximation from the finite element space Sh0
measured only over the extended subdomain Ω0

k, plus a higher-order global term (the global L2-
norm of the error). In the context of the focussing technique, if the large coarse mesh used during
the first step of focussing is quasi-uniform and shape-regular with element diameter H, and if we
make some reasonable smoothness assumptions about the solution u, then standard finite element
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Figure 12. The rod-like molecule example solved adaptively using MC, where the
adapted mesh containing 78,113 vertices and 434,804 tetrahedra is automatically de-
termined adaptively (without human intervention). Shown is the final adapted mesh
and several isosurfaces of the solution computed by MC at the 78, 113 tetrahedral
vertices. One advantage of the unstructured mesh is clear in the second frame: the
boundaries can be placed quite far from the biomolecule, which provides for accu-
rate boundary condition approximation. The remarkable resolution gain over the
non-adaptive method becomes clear when one compares the isosurfaces above with
those in Figure 11. The x−y plane is also shown cutting through the solution in the
last two frames, illustrating the extremely small non-uniform cell volumes near the
singularities in the source, which drives the adaptivity through the residual-based
error estimator.

interpolation theory can be used to bound the global term by an O(H2) factor. Moreover, if the
mesh used in the second step of focussing covers only the extended subdomain Ω0

k but is again
quasi-uniform and shape-regular, and now has smaller element diameter h, then the local term can
be bounded using standard interpolation theory by an O(h) factor. This implies that if the two-step
focussing technique respects the relationship h = O(H2) between the coarse and fine regions, then
asymptotically the global term based on the much coarser mesh outside Ω0

k does not pollute the
accuracy of the adapted solution in the subdomain Ωk.
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The above discussion justifies the focussing approach for finite element discretizations of the
Poisson-Boltzmann equation. An algorithm similar in spirit to focussing, but constructed for purely
parallel computing considerations, is employed in MC; the algorithm is discussed in detail in [8],
and was described briefly in Section 4.6.

7. Summary

In this paper we derived a weak form for the nonlinear PBE, and calculated the bilinear form
representing a linearization for use in Newton-like iterations. We outlined our finite element approx-
imation approach, employing simplex-based piecewise-linear functions on simplex triangulations of
finite regions of solvent containing the biological molecule. Global inexact-Newton multilevel algo-
rithms were then described for solution of the resulting discrete equations. The error estimation and
adaptive simplex subdivision procedures we employ were then discussed, and a detailed derivation
of the general error estimator was given in Appendix A, followed by the estimator specifically for the
Poisson-Boltzmann equation in Appendix B. We described the implementation of these techniques
in the MC software package, and outlined some of its more interesting features. The geometry
datastructures were described, and the implementation of mesh refinement, residual and matrix as-
sembly, and other operations employing this datastructure, were outlined. We then applied MC to
two simple model PBE problems, and compared the results to those obtainable with the standard
non-adaptive methods currently in use. It was seen that substantial reductions on computational
costs, as well as memory usage, are possible when compared to a uniform-mesh-based approach
reaching the same accuracy. In the second paper [6], we develop an improved error estimator based
on geometric solvent accessibility, and present a series of detailed numerical experiments for several
complex biomolecules.
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Appendix A. The a posteriori error estimator in MC

We now outline the derivation of the a posteriori error estimator that we use in MC for Galerkin
approximations (3.1) to the solutions of nonlinear elliptic systems of the form (2.1)–(2.2). This is
a special case of the derivations appearing in [50, 53] for more general nonlinear elliptic systems of
tensor equations. In Appendix B, instantiate this estimator for the case of the nonlinear Poisson-
Boltzmann equation. Our derivation here and in [50, 53] follows closely that of Verfürth [86, 87].

The starting point for our residual-based error estimator is the linearization inequality (4.4). In
our setting of the weak formulation (2.10)–(2.11), we have:

(A.1) C1‖F (uh)‖H−1(Ω) ≤ ‖u− uh‖H1(Ω) ≤ C2‖F (uh)‖H−1(Ω).

The linearization constants in (4.4) have been denoted as C1 and C2. The norm of the nonlinear
residual F (·) in the dual space of bounded linear functionals on H1(Ω) is defined in a standard
way:

(A.2) ‖F (u)‖H−1(Ω) = sup
0 6=v∈H1(Ω)

〈F (u), v〉
‖v‖H1(Ω)

.



24 M. HOLST, N. BAKER, AND F. WANG

The numerator is the general nonlinear weak form 〈F (u), v〉 appearing in (2.11). In order to derive
a bound on the weak form in the numerator we must first introduce quite a bit of notation that we
have managed to avoid until now.

To begin, we assume that the domain Ω has been exactly triangulated with a set S of shape-
regular d-simplices (the finite dimension d is arbitrary throughout this discussion). A family of
simplices will be referred to here as shape-regular if for all simplices in the family the ratio of the
diameter of the circumscribing sphere to that of the inscribing sphere, is bounded by an absolute
fixed constant, independent of the numbers and sizes of the simplices that may be generated through
refinements. (For a more careful definition of shape-regularity and related concepts, see [34].) It
will be convenient to introduce the following notation:
S = The complete set of shape-regular simplices which (exactly) triangulates Ω
N (s) = The union of the faces contained in the set of simplices s which lie on ∂Ω
I(s) = The union of the faces contained in the set of simplices s not contained in N (s)
F(s) = N (s) ∪ I(s)
ωs =

⋃
{ s̃ ∈ S | s

⋂
s̃ 6= ∅, where s ∈ S }

ωf =
⋃
{ s̃ ∈ S | f

⋂
s̃ 6= ∅, where f ∈ F }

hs = The diameter of the simplex s (either circumscribing or inscribing sphere diameter)
hf = The diameter of the face f (either circumscribing or inscribing sphere diameter).

When the argument to one of the face set functions N , I, or F is in fact the entire set of simplices
S, we will leave off the explicit dependence on S without danger of confusion. Referring back to
Figure 4.2 is now convenient. The two darkened triangles in the left picture in Figure 4.2 represents
the set wf for the face f shared by the two triangles. The clear triangles in the right picture in
Figure 4.2 represents the set ws for the darkened triangle s in the center (the set ws also includes
the darkened triangle).

Finally, we will also need some notation to represent discontinuous jumps in function values
across faces interior to the triangulation. To begin, for any face f ∈ N , let nf denote the unit
outward normal; for any face f ∈ I, take nf to be an arbitrary (but fixed) choice of one of the two
possible face normal orientations. Now, for any v ∈ L2(Ω) such that v ∈ C0(s) ∀s ∈ S, define the
jump function:

(A.3) [v]f (x) = lim
ε→0+

v(x+ εnf )− lim
ε→0−

v(x− εnf ).

We now begin the analysis by splitting the volume and surface integrals in (2.11) into sums of
integrals over the individual elements and faces, and we then employ the Green’s integral identities
again to work backward towards the strong form in each element:

〈F (u), v〉 =
∫

Ω
(a∇u · ∇v + b(u)v) dx =

∑
s∈S

∫
s
(a∇u · ∇v + b(u)v) dx

(A.4) =
∑
s∈S

∫
s
(b(u)−∇ · (a∇u)v dx+

∑
s∈S

∫
∂s
n · (a∇u)v ds

Using the fact that (3.1) holds for the solution to the discrete problem, we employ the jump function
and write

|〈F (uh), v〉| = |〈F (uh), v − vh〉|

=
∑
s∈S

∫
s
(b(uh)−∇ · (a∇uh))(v − vh) dx+

∑
s∈S

∫
∂s
n · (a∇uh)(v − vh) ds

=
∑
s∈S

∫
s
(b(uh)−∇ · (a∇uh))(v − vh) dx+

∑
f∈I

∫
f

[n · (a∇uh)]f (v − vh) ds
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(A.5) ≤
∑
s∈S

(
‖b(uh)−∇ · (a∇uh)‖L2(s)‖v − vh‖L2(s)

)
+
∑
f∈I

(
‖ [n · (a∇uh)]f ‖L2(f)‖v − vh‖L2(f)

)
,

where we have applied the Cauchy-Schwarz inequality to each integral.
In order to bound the sums on the right, we will employ a standard technical tool known as a H1-

quasi-interpolant Ih. An example of such an interpolant is due to Scott and Zhang [78], which we
refer to as the SZ-interpolant (see also Clément’s interpolant in [35]). Unlike point-wise polynomial
interpolation, which is not always well-defined for functions in H1(Ω), the SZ-interpolant Ih can
be constructed quite generally for H1-functions on shape-regular meshes of 2- and 3-simplices.
Moreover, it can be shown to have the following remarkable local approximation properties: For
all v ∈ H1(Ω), it holds that

(A.6) ‖v − Ihv‖L2(s) ≤ Cshs‖v‖H1(ωs), and ‖v − Ihv‖L2(f) ≤ Cfh
1/2
f ‖v‖H1(ωf ).

For the construction of the SZ-interpolant, and for a proof of the approximation inequalities in
Lp-spaces for p 6= 2, see [78]. A simple construction and the proof of the first inequality can also
be found in the appendix of [56]. (Note that this interpolant is only employed as a proof technique
here; it is not required in the actual implementation of the error estimator.)

Employing now the SZ-interpolant by taking vh = Ihv in (A.5), using (A.6), we have

|〈F (uh), v〉| ≤
∑
s∈S

Cshs‖b(uh)−∇ · (a∇uh)‖L2(s)‖v‖H1(ωs)

+
∑
f∈I

Cfh
1/2
f ‖ [n · (a∇uh)]f ‖L2(f)‖v‖H1(ωf )

≤ max{Cs, Cf}

(∑
s∈S

h2
s‖b(uh)−∇ · (a∇uh)‖2L2(s)

)1/2(∑
s∈S
‖v‖2H1(ωs)

)1/2

(A.7) +

∑
f∈I

hf‖ [n · (a∇uh)]f ‖
2
L2(f)

1/2∑
f∈I
‖v‖2H1(ωf )

1/2

where we have used the discrete Cauchy-Schwarz inequality on each separate sum to obtain the
last inequality.

It is not difficult to show (cf. [86]) that the simplex shape regularity assumption makes it possible
to establish the following two inequalities:

(A.8)
∑
s∈S
‖v‖2H1(s) ≤ Ds‖v‖2H1(Ω), and

∑
f∈F
‖v‖2H1(f) ≤ Df‖v‖2H1(Ω),

where Ds and Df depend on the shape regularity constants. Therefore, since I ⊂ F and N ⊂ F ,
we have finally that

|〈F (uh), v〉| ≤ C3‖v‖H1(Ω)

(A.9) ·

∑
s∈S

h2
s‖b(uh)−∇ · (a∇uh)‖2L2(s) +

∑
f∈I

hf‖ [n · (a∇uh)]f ‖
2
L2(f)

1/2

,

where C3 = max{Cs, Cf} × max{D1/2
s , D

1/2
f } depends on the shape regularity of the simplices in

S.
We can finally use this last result in (A.2) to achieve the upper bound in (A.1):

‖u− uh‖H1(Ω) ≤ C2‖F (uh)‖H−1(Ω) = C2 sup
0 6=v∈H1(Ω)

〈F (uh), v〉
‖v‖H1(Ω)
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(A.10) ≤ C2C3

∑
s∈S

h2
s‖b(uh)−∇ · (a∇uh)‖2L2(s) +

∑
f∈I

hf‖ [n · (a∇uh)]f ‖
2
L2(f)

1/2

.

We now make one final transformation that will turn this into a sum of element-wise error indicators
that will be easier to work with in an implementation. We only need to account for the interior
face integrals (which would otherwise be counted twice) when we combine the sum over the faces
into the sum over the elements. This leave us with the following
Theorem A.1. Let u ∈ H1(Ω) be a weak solution of (2.1)–(2.2), or equivalently of (2.10)–(2.11).
If the linearization inequality (4.4) is valid, then the following a posteriori error estimate holds for
a Galerkin approximation uh satisfying (3.1):

(A.11) ‖u− uh‖H1(Ω) ≤ C0

(∑
s∈S

η2
s

)1/2

,

where
C0 = C2 ·max{Cs, Cf} ·max{D1/2

s , D
1/2
f },

and where the element-wise error indicator ηs is defined as:

(A.12) ηs =

h2
s‖b(uh)−∇ · (a∇uh)‖2L2(s) +

1
2

∑
f∈I(s)

hf‖ [n · (a∇uh)]f ‖
2
L2(f)

1/2

.

Proof. See the discussion above. �

The element-wise error indicator in (A.12) is employed in MC in the general case of a nonlinear
elliptic system of the form (2.1)–(2.2).

Of course, we can’t perform the integrals in (A.12) exactly in most cases, so we employ quadrature
in MC. Note that ηs is computable by quadrature, since most terms appearing in the definition
depend only on the (available) computed solution uh; the remaining quantities (the normal vector
nq and the mesh parameters hs and hf ) are completely geometrical and can be computed from
the local simplex geometry information. The indicator is very inexpensive when compared to the
typical cost of producing the discrete solution uh itself; the number of function evaluations and
arithmetic operations (for performing quadrature) is always linear in the total number of simplices.

Appendix B. An a posteriori error estimator for the Poisson-Boltzmann equation

In Appendix A we derived the general form of the error estimator used in MC. Here, we use
the estimator from Appendix A to instantiate an estimator specifically for the Poisson-Boltzmann
equation. In this case, we have where a(x) = ε(x)I3×3, b(x, u) = κ̄2(x) sinh(u) − f(x), where
f(x) = (4πe2

c/(kBT ))
∑Nm

i=1 ziδ(x− xi). This produces the following element-wise error indicator:

(B.1) ηs =

h2
s‖κ̄2 sinh(uh)− f −∇ · (ε∇uh)‖2L2(s) +

1
2

∑
f∈I(s)

hf‖ [n · (ε∇uh)]f ‖
2
L2(f)

1/2

.

The element-wise error estimator in (B.1) is used for all numerical examples in the present paper.
It is used in conjunction with a geometric solvent accessibility-based error estimator the numerical
results appearing in the companion paper [6]. The jump discontinuities in the dielectric are detected
by the second term in the sum containing the jump function, leading to refinement at the dielectric
boundary as seen in Section 5 and in [6]. The delta functions produce steep gradients in the
solution, which are also detected by the jump function, and the discrete approximation to the delta
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functions themselves are detected directly by the volume integral in the first term in the estimator
above.
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