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CONVERGENCE OF GOAL-ORIENTED ADAPTIVE FINITE ELEMENT
METHODS FOR SEMILINEAR PROBLEMS

MICHAEL HOLST, SARA POLLOCK, AND YUNRONG ZHU

ABSTRACT. In this article we develop convergence theory for a clasgoatf-oriented
adaptive finite element algorithms for second order semgalirelliptic equations. We
first introduce several approximate dual problems, andlprikscuss the target prob-
lem class. We then review some standard facts concerninfgreoimg finite element
discretization and error-estimate-driven adaptive fieiement methods (AFEM). We
include a brief summary & priori estimates for semilinear problems, and then describe
goal-oriented variations of the standard approach to AFE@AFEM). Following the
recent approach of Mommer-Stevenson and Holst-Pollockrfear problems, we then
establish a contraction result for the primal problem. Wanthevelop some additional
estimates that make it possible to establish contractisheofombined quasi-error, and
subsequently show convergence in the sense of the quahiityeoest. Our analysis
is based on the recent contraction frameworks for the seeaili problem developed
by Holst, Tsogtgerel and Zhu and Bank, Holst, Szypowski almd @nd those for linear
problems as in Cascon, Kreuzer, Nochetto and Siebert, aokdtto, Siebert and Veeser.
In addressing the goal-oriented problem we base our framiesvothat of Mommer and
Stevenson for symmetric linear problems and Holst and Bloflor nonsymmetric prob-
lems. Unlike the linear case, one must track linearized @pdeximate dual sequences
in order to establish contraction with respect to the qianfiinterest.
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1. INTRODUCTION

In this article we develop convergence theory for a classoal-griented adaptive
finite element methods for second order semilinear equatiorparticular, we establish
strong contraction results for a method of this type for trebjem

—V - (AVu) 4+ b(u) = f, in Q,
u=0, on 0,

with f € Ly(Q) andQ c R? a polyhedral domain, fo = 2 or3. We consider the
problem withA: Q — R¥*? Lipschitz and almost-everywhere (a.e.) symmetric positiv
definite (SPD). The standard weak formulation of the prinrabfem reads: Find €

H} () such that

(1.1)

a(u,v) + (b(u),v) = f(v), Vv € Hy(Q), (1.2)
where
a(u,v) = / AVu - Vo dx. (1.3)
Q

In goal-oriented adaptive methods (¢f. [10, 9] and the efees therein for a detailed
survey of these methods), one is are interested in a (uduradbyr) functional of the solu-
tion g(u) rather than in the solutiomitself. Our interest is in developing such an adaptive
algorithm for semilinear problems along with a correspagdtrong contraction result,
following the recent approach in [19,/14] for linear probkenin particular, we develop
a method for semilinear problems in which adaptive meshesfant is driven both by
residual-based approximations to the errot;jrand in a sequence of approximate dual
problems. While globally reducing the error in the primablplem necessarily yields a
good approximation to the goa{«), methods of the type we describe here bias the error
reduction in the direction of the goal-functignn the interest of achieving an accurate
approximation tgy(u) in fewer adaptive iterations, and hence fewer degrees efltnm.

Contraction for the semilinear problem is established @] [@nd [2]. Here we re-
call the contraction argument for the primal problem and aggeneralization of this
technique to establish the contraction of a linear commnaif the primal and limiting
dual problems by means of a computable sequence of apprtexanal problems. We
relate this result to a bound on the error in a goal-funct@muantity of interest. Fol-
lowing [16], the contraction argument follows from first &slishing three preliminary
results for two successive AFEM approximatiansandu,, and respectively; andz,
of the primal and limiting dual problems.

1) Quasi-orthogonality: There exists; > 1 such that
e = uall® < Acllu — wi I = flus — w]*.
2) Error estimator as upper bound on error: There exists 0 such that
lu = will* < Comic(uw, Te), B =1,2.

3) Estimator reduction: FaM the marked set that takes refinemé&nt— 7, for
positive constanta < 1 andA; and anyy > 0

M3 (v2, T2) < (1+0){ni(vr, To) = Mg (01, M)} + (1 + 67 ) Aunggloz — v .

In the case of the primal problem, the mesh at each iteratiynlme marked for refine-
ment with respect to the error indicators following the fé&rmarking strategy. In the
case of the limiting dual problem, the limiting estimatonased in the contraction argu-
ment is related to a computable quantity. This quantity ésdbal estimator, based on
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the residual of the approximate dual sequence. The meshriethtor refinement with
respect to this set of error indicators. The transformakietween limiting and approx-
imate dual estimators couples the contraction of error énlithiting dual to the primal

problem. The final result is the contraction of what we retehére as theombined

quasi-error

Quj, 25) =112 = I + 16 (%) + wllu — wyll* + w3 (uy),

which is the sum of the quasi-error aslin [6] for the limitingadiproblem and a multiple
of the quasi-error for the primal problem. The contractidéthis property as shown in
Theoren 5.1]1 establishes the contraction of the error irgtia function as shown in
Corollary[5.12.

Our analysis is based on the recent contraction framework&é semilinear problem
developed by Holst, Tsogtgerel, and Zhu![16] and Bank, H&sypowski and Zhu [2]
and those for linear problems as in Cascon, Kreuzer, Nazheti Siebert 6], and No-
chetto, Siebert, and Veeseér [20]. In addressing the goaht@d problem we base our
framework on that of Mommer and Stevensbn! [19] for symmédimiear problems and
Holst and Pollockl[14] for nonsymmetric problems, and by boring these techniques
we establish strong contraction of the method. The anabfdise goal-oriented method
for nonlinear problems is signficantly more complex thangrexious analysis for linear
problems in[[19, 14], where a much simpler analysis appragh possible. Here, we
are faced with analyzing linearized and approximate dugliseces as well in order to
establish contraction with respect to the quantity of ieser The linearized dual in the
context of goal-oriented adaptive methods is describealdbllowing e.g. Estep et. al
in [10] and [8].

Outline of the paper. The remainder of the paper is structured as followsy2nwe
introduce the approximate, linear and limiting dual proide We briefly discuss the
problem class and review some standard facts concernirfigrooing finite element dis-
cretization and error-estimate-driven adaptive finitarelet methods (AFEM). 1n2.4
we include a brief summary @f priori estimates for the semilinear problem. §8, we
then describe a goal-oriented variation of the standardoagp to AFEM (GOAFEM).
In §4 we discuss contraction theorems for the primal problenstlizain §5 we intro-
duce additional estimates necessary for the contractitimeofombined quasi-error and
convergence in the sense of the quantity of interest.

2. PRELIMINARIES

In this section, we state both the (nonlinear) primal problnd its finite element
discretization. We then introduce the linearized dual fgat) and consider several more
practical and useful variants for computation and analysis

2.1. Linearized dual problem. Unlike the linear case as in [14] and [18], the primal
problem does not have an exact formal adjoint. Instead, wsider the linearized dual
problem as in[13],[10] and [8] associated to the averagwakdre of the nonlinear term.

The linearized dual operatd#; based on exact solutiom and approximation; is
given by

B; = /01 V'(Eu+ (1= &uy) d = /01 O (uj + (u — uy)§) dE. (2.1)
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By the integral mean value theorem [10] or equivalently aegelived Taylor expan-
sion [13], the linearized dual operator satisfies the rahati

By (u — ) = blu) — buy). (22)

In order to introduce a computable dual operator, one thadis function of the exact
solutionu, we define the approximate dual operat¢r;). This operator is instrumental
for defining a computabla posteriorierror indicator for the dual problem.

Our analysis also uses the limiting approximate dual opeb&t:). While this opera-
tor is a function of the exact solutianand is not a computable quantity, it is the operator
used in the limit of both the linearized dual and approxinthtal problems as; — .
The contraction result Theordm 5111 is written with respecthe limiting dual problem
as defined by the operatti(u).

Consider the semilinear problem (11.2), where a§in (1.3) aveh

a(u,v) = (AVu, Vv)

with (-, -) denoting theL, inner-product ovef2 C R?. The operator#;, j = 1,2,...
define a sequence of linearized dual problems: Eind H{(€2) such that

a(z?,v) + (B;j2),v) = g(v), Vv € Hy(9). (2.3)

Similarly, the operator8(v;), j = 1,2,... define a sequence of approximate dual prob-
lems: Find2/ € H}(2) such that

a(#,v) + (V' (u) 27, v) = g(v), Vv e Hy(Q). (2.4)

Both the linearized and approximate sequences approashthe limiting problem, find
z € H}(Q) such that

a(2,v) + (b ()2, v) = g(v), Vv e Hy(Q). (2.5)

Here,a*( -, -) the formal adjoint ofa( -, - ), is equivalent tax( -, - ) for symmetricA.
The goal functional is defined through

ow) = [ guds (2.6)
Q
for given L, functiong: H}(Q) — R.
2.2. Prablem class, weak formulation, spaces and norms. We will make the follow-
ing assumptions on the data:

Assumption 2.1 (Problem data)The problem dat® = (A, b, f) and quantity of interest
g satisfy
1) A:Q — R4 Lipschitz, and a.e. symmetric positive-definite:
ess inf, .o Amin(A(z)) = po > 0, (2.7)
€SS SURcqAmad( A(x)) = 11 < o0. (2.8)

2) b : Q x R — R satisfies Assumption (A3) [8]. For simplicity we writeb(u)
instead of(z, u). Assumeé monotone (increasing)

bV (€) >0, forall ¢ € R.
3) fvg S LZ(Q)
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The native norm is the Sobolé¥!' norm given by
v]12 = (Vo, Vo) + (v, v). (2.9)

Continuity ofa( -, - ) follows from the Holder inequality, and bounding the norm
of the function and its gradient by th&' norm

a(u,v) < pul[ull g ||v]l g = Me||ullg o] g0 (2.10)
Define the energy semi-norm by the principal part of the déiféial operator
Jof* = a(v, v). (2.11)
Non-negativity follows from the Poincaré inequality witbnstantCq,
a(v,v) > polv|in > Copollvl|Fn = melvl/ 7, (2.12)

which establishes the energy semi-norm as a norm. Puttisgdgether with[(2.10)
establishes the equivalence between the native and enenggn

2.3. FiniteElement Approximation. We employ a standard conforming piecewise poly-
nomial finite element approximation below.

Assumption 2.2 (Finite element mesh)We make the following assumptions on the un-
derlying simplex mesh:

1) The initial mesly, is conforming.
2) The mesh is refined by newest vertex bise¢@thr{19] at each iteration.
3) The initial mesHy, is sufficiently fine. In particular, it satisfiels (4120).

Based on assumptions 2.2 we have the following mesh cosstant
1) Define
hy :=maxhy, wherehy = |[T|Y4. (2.13)
TeT

In particular,hy is the initial mesh diameter.
2) Define the mesh constant = 2+, where

ho
and h,,;,, = min h
hmin min TeTs T

Yr =

then for any two elements, 7' in the same generation
hT < ’thf

and as neighboring elements may differ by at most one geoertdr any two
neighboring elements and7”

hr < 2y,.hpr = ynhy (2.14)

3) The minimal angle condition satisfied by newest vertegdtisn implies the mesh-
sizehr is comparable ta.,, the size of any true-hyperfaceof T'. In particular,
there is a constant

hy
—Z <A*forall T. (2.15)
hr

Let T the set of conforming meshes derived from the initial m&shDefineTy Cc T
by
Ty ={T € T | #T — #T5 < N}.
For a conforming mesf; with a conforming refinemenf; we say7; > 7.
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Define the finite element space

Vr=Hy(Q)n [[Pu(T) andVy =V, (2.16)
TeT
For subsets C 7T,
V7 (S) = Hy(Q) N[ [Pu(T), (2.17)
TeS

wherelP,, (T') is the space of polynomials degree degrerer?. Denote the patch about
TeT
wr =TU{T € T | TNT is atrue-hyperface ¢f}. (2.18)
For ad-simplexT’, an true-hyperface is@— 1 dimensional face dt’, e.g., aface in 3D
or an edge in 2D.
Define the discrete primal problem: Fimngl € V;, such that

aluy, vg) + (b(ug), vi) = f(vr), vi € Vi, (2.19)
and the approximate dual problem linearized abgus given by: findéi € V;, such that
a(z], ) + (U (u)) 3, v) = g(vg)  forallvy, € V. (2.20)

Finally, the discrete limiting dual problem is given by: fiade V, such that
a(Zg, vg) + (V' (u) 2k, v) = g(vg)  forall v, € V. (2.21)

Existence and uniqueness of solutions to the primal probldn®) and((2.19) follow
from standard variational or fixed-point arguments ad if] @& [17]. For the dual
problems[(2.4) {(2]5) and (2.0} - (2]21) the result may b&vdé from the Lax-Milgram
Theorem as in[12].

2.4. A priori estimates. We require the solutions to the primal and limiting and ap-
proximate dual problems satisfly,, bounds. As discussed below, such bounds have
been established assuming various additional conditionsitber the nonlinearity or

on the angles of the mesh.

Assumption 2.3 (A priori bound3. Let u the solution to(1.2), and «; the solution
to (2.19) We assume the following,, bounds on the primal and discrete primal so-
lutions.

There areu_, u, € L., which satisfy

u_(z) < u(z),ur(r) < us(x)for almost every € €. (2.22)

The L., bound onu is discussed in [16] Lemma 7.9,/ [3] Theorem 2.4 and [15] Theo-
rem 2.3 noting that Assumption 2.2 In [15] is a consequen@®odlition (2) of Assump-
tion[2.1. TheL., bound on the discrete solution is demonstrated in [16] LerirBand
[15] Theorem 3.2 with the additional condition Assumptiof 8f [15]. TheL,, bound
on the discrete solution, is also demonstrated without angle conditions on the mesh
in [3] Corollary 4.4 . This case requires that the nonlingydrisatisfies the (sub)critical
growth condition, as stated in/[3] Assumption (A4).

Assumptiori 2.1l together with Assumption]2.3 yield the failag properties as sum-
marized below.

Proposition 2.4. Let the problem data satisfy Assumption 2.1 and AssumpignThe
following properties hold:

1) bis Lipschitz onu_,u,] N Hy(Q) for a.e.z € Q with constantB.
2) V' is Lipschitz orfu_, u, | N Hy(Q2) for a.e.xz € Q with constan®.
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3) Let the mesh satisfy conditions (1) and (2) of Assumptign etz the solution
to (2.8), 2/ the solution to(2.20) and z; the solution to(2.21) Then there are
z_,z4 € Lo Which satisfy

z_(z) < 2(x), %(x), £(z) < 2z, (x) for almost every: € Q, j € N (2.23)
and there is a constant’; := max{||z_||z.., [|z+ |2 }-

Remark 2.5. The L., bounds on the dual solutions as in (1) of Proposit{@g™) follow
from the maximum principle as [&2] and L., error estimates as if@].

3. GOAL ORIENTED AFEM

The goal oriented adaptive finite element method (GOAFENased on the standard
AFEM algorithm:

SOLVE — ESTIMATE — MARK — REFINE.

Procedure SOLVE. The procedure SOLVE involves solvirlg (21 19) for, computing
V' (u;) to form problem[(2.20) and solving (2]20) féf. In the analysis that follows, we
suppose for simplicity the exact Galerkin solution is fowmdeach mesh refinement.

In practice the nonlinear problein (2119) may be solved byadsird inexact Newton
+ multilevel algorithm as in [2]. The approximate dual prernl (2.20) may be solved by
any standard linear-time iterative method so that the ®alesolution to each problem
is found up to a given tolerance. Convergence of the goahted method assuming
an inexact solution to the primal problem is currently undeestigation by the present
authors.

Procedure ESTIMATE. The estimation of the error on each element is determined by
a fairly standard residual-based estimator, which we vaivrdefine. Thdocal strong
formof the nonlinear operator is

N (W) =V - (AVv) — b(v); (3.1)
Theresidualfor the primal problem, following the sign convention in [6]
R(v) == f + N(v). (3.2)

For the limiting and approximate dual problems, we definddbal strong form by
L*(v) =V - (AVv) — V' (u)(v), and ﬁ;(v) =V (AVv) = V' (u;)(v). (3.3)
The limiting and approximate dual residuals given respebtiby

R*(v) = g+ L*(v), and Ri(v) = g+ L3(v). (3.4)
Thejump residuafor both the primal and linearized dual problems is:
Jr(v) = [[AVv] - n]or (3.5)
wherejump operatorf - | is given by
[olor = %g% ¢(x +tn) — op(x —tn) (3.6)

andn is taken to be the appropriate outward normal defined piesseand’’. On bound-
ary edgesr, we have

[[AVv] -n],, =0
so that[[AVv] - n]ar = [[AV] - n]arnq. For clarity, we will also employ the notation

Rr(v) = R(v)

o VE VT,
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and similarly for the other strong form operators. The emdicator is given as

(v, T) = hp||RO)[ L) + hrllJr (o) Ly0m), v € V7 3.7)
The dual error-indicator is then given by the approximasedeal
(G5 (w, T) = W ||R; (w)l[3 ) + hrll Jr(w) |y 0r)s  w € Vr, (3.8)
and the limiting dual error-indicator by
(GHw, T) = hgl| R (W)l 3,y + bl Jr(w)l[Ey0r),  w € Vr. (3.9)

The dual indicator is defined in terms of the approximate dparator’(u;) as thisis a
computable quantity given an an approximatign The limiting dual indicator as given
by (3.9) is not computable, but remains useful in the analyShe error estimators are
given by thel; sum of error indicators over elements in the space.

nr(v) =Y @ T), veVr (3.10)
TeT
The dual energy estimator is:
GFiw) =) G wT), weVr, (3.11)
TeT
and the limiting estimator

Gw) =Y Gw,T), weVr. (3.12)
TeT
To simplify the notation, welow we will usg; to denoteny,, and similarly usej;. to

denote(y, ..
As in [6] the indicators for the primal and approximate (@sprely limiting) dual
problems satisfy the monotonicity property foe 7; and7; > T;

m2(v, T2) <m(v,Th), Coj(v, o) < (v, Th) and Go(v, o) < Gi(v, 7). (3.13)
Foranelement € 7,NT;
772(117 T) - 771(117 T)7 CZ,j('Uv T) = Cl,j(vv T) and CZ('Uv T) - Cl(va)' (314)

The data estimator over the megtor a subsef”’ C 7 is given by the maximum data
estimator over elements in the mesh or subset/JFar T

77T(D> T,) = max 77T(D> T)
TeT!
The data estimator on the initial mesh
o = U%(D7 76)

As the grid is refined, the data estimator satisfies the maomoity property [6] for re-
finements/y > T

Procedure MARK. The Dorfler marking strategy for the goal-oriented problesm
based on the following steps aslin[19]:

1) Givend € (0, 1), mark sets for each of the primal and dual problems:
e Mark a setM,, C 7, such that,

> ni(un, T) > 0% (u, Tr) (3.16)

TeM,
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e Mark a setM, C 7} such that,

> G T) 2 PG T (3.17)
TeMy
2) Let M = M, U M, the union of sets found for the primal and dual problems

respectively.

As in [14] the setM differs from that in [19], where the set of lesser cardiryalit
betweenM, and M, is used. As seen in_(3.17) the mesh is marked with respect to
the dual indicators of the approximate-sequence solutifres these are computable
quantities. In the case of the semilinear problem the esduced at each iteration is
the combined quasi-error, a linear combination of energgreand estimators of the
primal and limiting dual problems. This combined error igrséo contract based on
the refinement satisfying the Dorfler property in terms @&f pimal and corresponding
approximate dual problems. As such, the mesh is refined isfysttie Dorfler property
in each. Sets\1,, and M, with optimal cardinality (up to a factor of 2) can be chosen in
linear time by binning the elements rather than performifiglasort [19].

In the present paper we assume the primal and approximatsalugons are solved
on the same mesh at each iteration. The determination afgsttonvergence results for
a method which solves the primal (nonlinear) problem on assomesh and the dual on
a fine mesh is the subject of future investigation.

Procedure REFINE. The refinement (including the completion) is performed ade€o
ing to newest vertex bisection/[4]. The complexity and ottreperties of this procedure
are now well-understood, and will simply be exploited here.

4. CONTRACTION FOR THE PRIMAL PROBLEM

Here we discuss the contraction of the primal problem (te2glling results from [16],
[15] and [2]. The contraction argument relies on three mamvergence results, namely
guasi-orthogonality, error-estimator as upper bound oor @nd estimator reduction. We
include the analogous results here for the limiting duabjam when they are identical
or nearly identical .

4.1. Quasi-orthogonality. Orthogonality in the energy-northu — us||? = |Ju — uq[|>—
llus — u1]|*> does not generally hold in the semilinear problem. We relghenweaker
quasi-orthogonality result to establish contraction oEMF(GOAFEM). The following
is a variation on the quasi-orthogonality discussion_ if] [d&d is related to the version
for nonsymmetric linear problems as in [18] ahd/[14]. Thegrmthogonality proof re-
lies on L,-lifting, a fairly standard result included here for contgleess. Here we show
foro € Vo >V,

e = uall® < Afu — B)1* — flus — %,

and in particular for; € V; C V,
lu = uall® < Acllu — wifI* = flus — w]*.

Lemma4.1 (L,-lifting). Let the problem data satisfy Assumpfiod 2.1 and Assunipiin 2
and the mesh satisfy Assumpfion 2.2. #te variational solution t1.2), andu; € V;

the Galerkin solution td2.19) Let B the constant given in Proposition 2.4. Assume
for anyg € L(2) the solutionw to the linearized dual problerf?.3) with 5, as given

by (4.3) belongs taH'*5(Q) N H}(Q) for somed < s < 1 and

|’LU‘H1+S(Q) S KRHgHL2(Q) (4'1)
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then
Ju =iz, < Cuhgllu — uql. (4.2)

As discussed in |7] and [11] and![1] the regularity assumstiare reasonable based
on the continuity of the diffusion coefficients; andB; € L..(£2) where as in[(2]1) the
linearized dual operator with respectitp

B, - / V(€ut (1 - E)u) de = / Vs + (u— w)e) de. @.3)

Proof. The proof follows the duality arguments in [1], [14] and [&}lapted for the semi-
linear problem.
Letw € H}(Q) the solution to the dual problem

a(w,v) + (Biw,v) = (u—uy,v), ve Hi(Q). (4.4)

Let Z" a global interpolator based on refineméht AssumeZ’w is C° and the
corresponding shape functions have approximation ordeior m = 2 we have the
bounds

lw = T"w|[ 1 < Crh; [wlgies (4.5)
Jw — T"wl| 1, < CrhdF*|w] e (4.6)

as discussed in[1], [21] and [14].
Consider the linearized dual problem (4.4) with= u — u; € H}(2) expressed in
primal form

a(u —uy,w) + (Bi(u — w),w) = |lu— w7, 4.7)
By Galerkin orthogonality, foZ"w € V,
a(u —uy, T"w) + (By(u — up), T"w) = 0. (4.8)
Subtracting[(4.8) froni(417)
a(u —uy,w — T"w) + (Bi(u — uy),w — T"w) = [Ju — wi[3,. (4.9)

Then by [(2.1D) continuity ofi( -, - ), the relation[(2), the Holder inequality and Lips-
chitz continuity ofb

lu = willZ, < Mellu—wllz lw — 0| + Bllu — w1, w — T"wl|,.  (4.10)

By coercivity (2.12), interpolation estimafe (#.5), andukarity (4.1) on the first term on
the RHS of [4.1D)

M,
Me[u = willmllw =Tl < =Crhillu = unllewlmn--
M
< —EKpCrhillu — wllu— w])z,. (4.12)
E

For the second term of (4.110), apply (4.6) followed by {4 .49 @oercivity to the inter-
polation error yielding

< KrCr(Bho)hillu — ||, ]|u — w |,
< mg' KrCr(Bho)hyllu — w |, llu — w ). (4.12)
Applying (4.11) and[{4.12) t¢ (4.10)
= wllz, < mg' Kn (MsCr + Co(Bho) ) e — u]. (4.13)

Bllu — wi||p,]lw — T"w]| 1, < BCTAG[|u — ua || 1y |w] rass
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O

Remark 4.2. As the dual problem as given 4.3) and (4.4) changes at each iteration,
so may the regularity constant as given(@yl) as well as the interpolation constants as
given by(d.5)and (4.6). As such, the previous lemma showS.g, for k = 1,2,.... As
the algorithm is run finitely many times, we consolidate &s; into a single constant
C, for simplicity of presentation.

Remark 4.3 (Membership inf/!¢). Depending on the regularity of the boundai{?
the solutionw to (4.4) may have less thai* regularity: w € Hi o, butw ¢ H?(Q). In

particular, we may have) € H'** for somes € (0, 1). In particular, if Q is a nonconvex
polyhedral domain, then the value ©fs found by considering all corners of boundary
0€). Writing the interior angle at each corner hy = 7/« it holds fora > 0 and
arbitrary ¢ > 0

w=m/a = we H"T"
andifr/(p; +1) <w < n/p; for a set of integerp; characterizing the corners @i
lw = T"w]| e < Ch*lw|iys

wheres = min{p;, 1} ands = 1 in the case of a smooth boundary or a convex polyhedral
domain. Details may be found ] and[21].

Lemma 4.4 (Quasi-orthogonality)Let the problem data satisfy Assumption 2.1 and As-
sumptior_Z.B and the mesh satisfy Assumiiioh 2.2.7.65 < T with 7, > 7;. Let

u € H}(Q) the solution tal.2), u;, € V), the solution to2.19) k£ = 1,2 andv € V, ar-
bitrary. Let B the constant given in Proposition 2.4. There exists a congta > 0
depending on the problem data and initial mesh7,, and a numbel) < s < 1
related to the angles ofS2, such that if the meshsizg of the initial mesh satisfies
A = Bmg'C,h§ < 1, then

e = uall® < Affu — B)1* — flus — %, (4.14)
and in particular forv = u,
e = uall® < Acllu — wi]]* = fluz — wall?, (4.15)
where
A= (1 - Bm:'C.h)™" and Ag = (1 — BC?hZ)™!
andC, is the constant from Lemnia 4.1.
Proof. Recombining terms
lw — us||* = alu — 0+ (0 — ug),u — 0+ (0 — ug))
= lu = l* + 17 — wall* + 2a(u — 7,7 — us)
= Jlu—o||* = ||o — ua|* + 2a(u — ug, ¥ — uy). (4.16)
By Galerkin orthogonality
a(u — ug,v) + (b(u) — b(uz),v) = 0forallv € V. (4.17)
Takingv = v — uy in (4.17), by Holder inequality and the Lipschitz assuroptonb
2a(u — ug, 0 — ug) < 2{b(u) — b(ug), v — usg)|
< 2B||lu — usl| 1, |0 — usal| L, - (4.18)
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In the case of[(4.14) applying,-lifting &.1] to the first factor on the RHS anld (2112)
coercivity to the second followed by Young’s inequality

2Blu — a1, |0 — a2z, < 2Bmg* Cuhgllu — usf||o — ue

< Bm;'C.hi||lu — ug||* + Bmg ' C.hi||o — uof|®.  (4.19)

Applying (4.19) via[(4.1B) to(4.16)
(1 = Bmg ' Cuhg)lu — ua|* < lu = 9]* = (1 — Bmg ' Cuhg)||o — ua|*.
Assuming
A= Bm;'C.h§ < 1 (4.20)
we have
Jlu = usll® < Aflu—o)l* — | — usll? (4.21)
with A = (1 — Bm;'C.hg)~L.
In the case of[(4.15) applying,-lifting B.1] to each norm on the RHS df(4]18) then
applying Young’s inequality
2B||u — us|| o [lur — w2, < 2Bhg*CPlu — us|lur — o]
< BhgCflu — usa|l* + BCZh [lun — uof|®. (4.22)
Following the same procedure as above yields
lu — waf* < Agllu — wi||* — flur — sl (4.23)
with Ag = (1 — BC2h2%)~! with the weaker mesh assumptidp := BC?h2° < 1. O

4.2. Error Estimator as Global Upper-bound. The second key result for the contrac-
tion of the primal problem is the error estimator as a glolpgdar bound on the energy
error, up to a global constant. The result for the semilin@ablem is established in

[16] and [2] with a clear generalization to the approximat@ldsequence. Also see [6]
and [18].

Lemma 4.5 (Error estimator as global upper-boundet the problem data satisfy As-
sumptiori 2l and Assumptibn 2.3 and the mesh satisfy Assmi@®. Let7;, 7, € T
with 75 > 7. Letu; € V; the solution ta2.19)andu the solution tq[1.2). Let2, € V,
the solution to(2.21) and 2 the solution to(2.8). Then there is a global constant,
depending on the problem dafaand initial mesh7, with

lw —will < Cimi(ua, o) (4.24)

and
12 = 21| < Ci¢i(21,Th). (4.25)

4.3. Estimator Reduction. The local Lipschitz property as in [16], analogous to the
local perturbation property establishedlin [6], is a keysteestablishing estimator re-
duction leading to the contraction result.

Lemma 4.6 (Local Lipschitz property)Let the problem data satisfy Assumpfiond 2.1 and
Assumption 2]3 and the mesh satisfy condition (1) of Assonip2. LetB the constant
given in Proposition 2J4. Lef € T. Forall T € T and for anyv,w € V.

nr (0, T) < nr(w, T) + Mnr(D, T)[v — w1 () (4.26)

where recalling(2.18)wy is the union off” with elements ify” sharing a true-hyperface
with T'. The constanh; > 0 depends on the dimensidrand the regularity of the initial
mesh7.
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The proof follows those iri [6] and [14]. The main steps arengihbere.
Proof of (4.26) From (3.7)
(v, T) = hp || RO)[ ) + hrllJr(0)|1y0m), v € V7 (4.27)

Denotens(v,T) by n(v,T). Sete = v — w. Applying linearity and a generalized Taylor
expansion to the definition of the residual as givenbyi (3nt) &.2)

R(v) =f+N(w+e)

:f+V-(AVw)—b(w)+V-(AVe)—/1b’(w+§e)d§e

0
= R(w) + V- (AVe) — /1 V(w + Ee) dée
= R(w) + D(e), 0
whereD(e) .= V- (AVe) — fol b'(w+Ee) dée. Using the generalized triangle-inequality
V0a+0)2+ (c+d?<Va>+c+b+d, fora,bec,d>0
and linearity of the jump residual we have
(v, T) = (|| R(w) + D(e)|[L ) + hrll I (w) + J(e) |1 0m)
< 0w, T) + hel| D) acry + bl 17(€)]| Lagory- (4.28)
Consider the second term on the RHS. By the triangle inetguali

1/2

1
D) ary < IV - (AVE) || Loy + H/O b (w+ &e) dge (4.29)

Lo(T)
As shown in [6] and[[14] the diffusion term satisfies the bound
IV - (AVe) |l Loy < |divA - Vel L) + [|A 2 Del| o)
< (1divAl zocry + Crhz! | All L)) IVl Lo, (4.30)

where(’ is the constant associated with an inverse inequality &) inThe second term
in (4.29) is bounded by

1
/ V(w + &e) dée < Blle||Ly(r)- (4.31)
0 Lo(T)

As shown in[[6] and[14] the jump term ib.(4.28) satsifies

(&)l aory < 2(d + 1) Cr(3) VN2 hr I All b for) | Ve Lo
= Cyh 1| All Lo o V€l aor) s (4.32)

wherey and~, are constants of proportionality with respect to the ihiti@sh as given
by (2.14) and[(2.15) and th€ is the constant associated with the trace theorem as
in [11].
Putting togethef(4.28), (4.80), (4131) ahd (4.32) obtain
(v, T) < n(w, T) + hy (|divA| poery + (Cr + Co)RT | Al e wor) + B) llellmror
< n(w, T) + Cror T]T(D, T) HU — wHHl(wT). (433)

O
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The local perturbation property as demonstrated in Leninthadd 5.6 leads to esti-
mator reduction, one of the three key ingredients for cativa of the both the primal
and combined quasi-errors. This result for both the primdllaniting dual problems is
essentially that of [6] Corollary 2.4, [14] Theorem 3.4 ad@][Lemma 7.2. It is stated
here for completeness.

Theorem 4.7 (Estimator reduction)Let the problem data satisfy Assumption| 2.1 and
Assumptiof 2]3 and the mesh satisfy conditions (1) and (8ssdimptioh Z]12. Le&f; €
T, M C 7; andT; = REFINET;, M). Let

Ay = (d+2)A2mz2 and A:=1-2"Y1>0

with A, from Lemma 4]6 (local Lipschitz property). Then for anyc V, andv, € V,
andé > 0

15 (v2, T2) <(1+6) {07 (v1, Ti) = Mg (o, M)} + (1 + 0~ Angllue — v [*. (4.34)
Analogously for the limiting dual problem
CZZ(UQ, T2) <(1+9) {Cl v, Th) — )\Cl v, M } + (144~ )A1773|||1)2 —u||*>. (4.35)

The contraction of the primal (semilinear) problem is eksled in [16] and[[2] based
on satisfying Lemm@a4l4, Lemrha 4.5 and Theofer 4.7 as abowetaté the result here
and use it to establish our main result, Theorem|5.11.

Theorem 4.8 (Contraction of the primal problem).et the problem data satisfy Assump-
tion[2.1 and Assumptidn 2.3 and the mesh satisfy Assuniponl2t« the solution

to (1.2). Letd € (0,1], and let{7;,V;,u,};>0 be the sequence of meshes, finite ele-
ment spaces and discrete solutions produced by GOAFEM. fheze exist constants
v, > 0and0 < a < 1, depending on the initial mesh and marking parametef such
that

I = wjal® + 3emjsn < o (lu = wll* + 7om5) - (4.36)

5. CONTRACTION AND CONVERGENCE OF THE QUANTITY OF INTEREST

In addition to the contraction of the primal error as showr§idh we require the
analogous convergence results for the limiting dual problguasi-orthogonality, error-
estimator as upper bound on error and estimator reductiere We discuss the relevant
results for the limiting dual problem with an emphasis orsththat differ significantly
from the corresponding results for the primal problem.

Remark 5.1. The dual part of the combined quasi-error is written in teiwhthe limiting
dual problem in both energy error and estimator. As suchhinee convergence results
listed above need only be satisfied by the limiting dual mwblAs the limiting, approx-
imate, and linearized dual problems differ only by the d&bniof reaction coefficient,
given respectively by

V), b(u), / (o + (u— )€ d,

it follows that the same types of estimates that hold forith&ihg dual hold as well for
the approximate and linearized dual sequences. This iginoteemarks 5]3 arid 8.5 with
respect to the approximate dual sequence. The correspgedimmates for the linearized
dual sequence are not mentioned as this sequence of prodieessnot naturally arise
in the present convergence analysis.
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To complete the analysis, we introduce the Lemima 5.9, ctingebetween limiting
and approximate estimators in order to apply the Dorfleperty to a computable quan-
tity; and Lemmd_5.10, bounding the discrete error betwegagmate and limiting
dual solutions in terms of the primal error.

We put these results together in Theofiem5.11 to estabksbdhtraction of the com-
bined quasi-error. Finally, the contraction of this formtloé error is related to the error
in the quantity of interest in Corollafy 5.112.

5.1. Limiting-dual quasi-orthogonality.

Lemma 5.2 (Limiting-dual L-lifting) . Let the problem data satisfy Assumption 2.1 and
Assumptioi_2]3 and the mesh satisfy Assumpfidn 2.2.7\L.et T. Let: € H}(Q)

the solution toZ.8) and 2, € V, the solution to2.21) Let B the constant given in
Proposition 2.4. Assume for amgye L,(£2) the solutiony to the limiting problem: find

y € H}(Q) such that

a(y,v) + (b'(u)y,v) = g(v) forall v € H(Q) (5.1)
belongs taH!*5(Q) N H} () for somed < s < 1 and
Wl ) < KrllgllLa@- (5.2)
Then
12 = 2]l < CLhllz = 2]l. (5.3)

Proof. The proof follows that of Lemm@a_4.1. As if_(4]13) obtain foetlhmiting dual
estimate[(5.3)

12— 21lla < mg" Kin (MeCr + Cx(Bho)) hillz = 2l (5.4)
]

Remark 5.3. Under the analogous regularity assumption, Lenima 5.2 hinldthe er-
ror 27 — 27 in the approximate dual sequence as defined by prob@m$and (2.20)
respectively.

Lemma 5.4 (Limiting-dual quasi-orthogonality)Let the problem data satisfy Assump-
tion 2.1 and the mesh satisfy Assumpfion 2.2. Tet/;, € T with 7, > 7;. Let

z € H{(Q) the solution to(2.8) and 2, € V, the solution to(Z.21) k = 1,2. Let

v € V, arbitrary. Let B the constant given in Proposition 2.4. There exists a carsta
C. > 0 depending on the problem dafaand initial mesh7;, and a numbef < s < 1
related to the angles of<2, such that if the meshsizg of the initial mesh satisfies
A, = Bmglé* < 1, then

12 = 2l* < A2 = o)) — |12 — off° (5.5)
and in particular fors = 2/ (respectively; )
I2 = 20 < Acllz = 2007 = [122 — 27 (5.6)

where
A= (1-Bm;'C.hy)™" and Ag = (1 — BC?h2)™!
andC, is the constant from Lemmab.2.
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Proof. The proof follows Lemma_4l4, quasi-orthogonality in thenpai problem, except
in place of the inequality i (4.17) we have for the limitingad problem

a(u — ug,v) + (b'(u)(Z — 23),v) = 0forall v € Vy, (5.7)

yielding
2a(2 = 22,0 — %) < 2B||2 = % 1,]|V — 22| 1., (5.8)
asin [(4.18). O

Remark 5.5. By the same reasoning quasi-orthogonality as given by
127 = 217 < A2 - al* - 12 - o))?
127 — 201* < Aall2 — AP - 12 - 21
holds in the approximate dual sequence as defined by prolf&dsaand (2.20) respec-
tively.

5.2. Dual sequenceestimator perturbations. The Local Lipschitz property, Lemna 4.6
(dually,[5.6) is the necessary tool to derive the estimaduction property used to con-
vert between estimators on different refinement levels th tiee primal and limiting dual
problems as in Theorem 4.7. Lemmal5.6 additionally leadsdacbrollaries used in the
main contraction argument, Theoréem 5.11 where we convevelidetween estimators
of the approximate and limiting problems on the same refiméreyel. Corollary 5.7
addresses error induced by switching between dual indikatbhen Corollary 518 is
an immediate consequence squaring the result of Cordll@aid summing over the
elements. It is stated here for convenience.

Lemma 5.6 (Dual sequence local Lipschitz property)et the problem data satisfy As-
sumption 21 and Assumptibn2.3 and the mesh satisfy comdit) of Assumption 2.2.
Let7 € T. Forall T € T and for anyv, w € V-

1675 (0,T) = 7 (w, T)| < Anr(D, T)[v = wl] 1 (- (5.9)
In particular, for the limiting estimator
G (0, T) = Cr(w, T)| < Mngr(D, T)[[o = w11 (- (5.10)

The constanf\; > 0 depends on the dimensidrand the regularity of the initial mesh
To-

The proof follows those in[[6],[[14] and is nearly identical temmal4.b and is
sketched here.

Proof of (5.9). From [3.8)
G50, T) = hgl| B (0) |7,y + bl Jr ()| 40m), v € V- (5.11)
Sete = v —w. Applying linearity to the definition of the dual residualgisen by [3.3B) -
.4
Ri(v) =g+ Li(w+e) = Ri(w) + L;(e).
By the same reasoning &s (4.28)
Gri(0,T) < Grj(w, T) + hr | £5(6) | acry + by 1T (€) | aor- (5.12)

The termZ (respectivelyC* for the limiting dual) in [5.1P) satisfies the same bound as
the analogous terr® in (4.28) of Lemma 4J6. Hence the bounds(5.9) dnd (5.10) hold
with the same constants asfin (4.26). O
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Corollary 5.7 (Perturbation over approximate dual problemsjyt the problem data sat-
isfy Assumption 211 and Assumptionl 2.3 and the mesh satisfiitions (1) and (2)
of Assumption 212. Lef € T, u; the solution to2.19) and « the solution to(1.2).
Let © and K the constants given in Proposition 2.4. For dll € 7 and forv,w €
VN [z, 21| the dual indicator or/” satisfies

630, T) = Cra(w, T)| < Aing (D, T)l|[v = w1 r) + OK zhr|luy — well Lory-
(5.13)
In particular, for 7 = 7y, we have for the limiting estimator

G110, T) = Gi(w, T)| < Ay (D, T)||v — wll g1y + OKzhrllu — ur ||y (5.14)
and

G(w, T) = i (v, T)| < My (D, T)[v = wl| 1wy + OKzhr|lu — wi||yer)- (5.15)
Proof. Relating dual residuals
Ri(w) =g+ V- (AVw) + V' (we)w + (¥ (u;) — ¥ (up,)) w
= Ry(w) + (' (u;) — V' (up)) w. (5.16)
Using (5.16) in the definition of the dual indicatr (3.8) aaquplying a generalized tri-
angle inequality

. , 1/2
Grglw, T) = (B3R (w) + (¥ () = ¥ (i)l + bl I (@)l o )

. 1/2
< (MR )y + bl T yory) o+ B 6tg) = ¥ (il gy

< (rr(w, T) + OKzhr||uj — ugl| Ly 1) (5.17)
Applying (5.9) the result of Lemma 5.6 to the estimate (b, bbtain the resul{(5.13).
O

Corollary 5.8 (Dual perturbation over setspssume the hypotheses of Corollaryl 5.7.
Then for any subset®$1,, My C 77 and arbitrarydy, d2, 04,05 > 0

G, My) > (1461 (14 64) "¢y (w, My)

— (14 0) 7 O K32 u — w3, — o7 A2(d + 2)n |l — wln
(5.18)
and

CPa(w, Ma) > (1+62) (1 +6p) "' ¢F (v, My)

— (1 +02)7'05' O K7hg|lu — wi ||z, — 05 AT(d + 2)glv — wll(?g 19)

Proof. Square equation_(5.114) (respectivély (5.15)) applyingngsi inequality twice,
then sum over elemefit € M C 7;. The H! norm is summed over all elemerfsc T;
counting each element + 2 times, the maximum number of elements in each patch
wT. O

5.3. Contraction of GOAFEM. The main contraction argument Theorem 5.11 follows
after two more lemmas. The first combines a sequence of dssrt@convert the non-
computable limiting estimator for the dual problem to a comaple quantity, apply the
Dorfler property and then convert back. The second relaeslifference between the
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Galerkin solutions of the limiting dual and the approximdteal problems to the pri-
mal error. Motivated by estimator reduction for the limgidual problem as in equa-

tion (4.35)
(3(22,T2) <(1+6) {¢F (21, T1) = MG (2L, M)} + (140" A llZ2 — 4] (5.20)

the following lemma addresses the conversion betwg¢s,, M) and and the com-
putable sequential estimatgt, (z{, M) necessary for marking the mesh for refinement.

Lemma 5.9 (Applying the Dorfler property to the limiting estimator)et the problem
data satisfy Assumptidn 2.1 and Assumplion 2.3 and the nagisfysAssumptioh 2.2.
Let © and K as given by Proposition 2.4;, as given by Lemma 4.1 andd as given

in Lemmd.4.7. Let

u the solution taI.2),  u; the solution to[2.19)
Zthe solution toZ.8), %, the solutionta2.21) 2 the solution tof2.20)
Let(y (21, M) satisfy the Brfler property forM C 7, namely
Cl (51, M) > 92C121(Z17T1)
Then for arbitraryd,, 2,04, 05 > 0 there isé, as given bys.26)such that
po? (1-5)p

_Clz(éhM) < _( )Cl( ) - (1 + 54) ‘”5 - 21‘”2
92 1\ ©2K2C2R20 ) )
+ + = lw — il
(1+5A)(1+52)5B 5A (1—|—51)

s £ 5, MO TA - 4R G2
Proof. From Corollary 5.B/,-lifting B.1l and coercivity[(Z2.12)
P2, M) < —(1461) 7 (14 04)7¢F 1 (21, M)
+ (14 6) 70, O Kohg|lu — w7, + 67 AT(d + 2)mgl|2 — 21 |17
< —(146) (1 +64)" Cl,l(zlaM)
( )~

+(146) 10 02 K220 lu — wa||? + 07 A2 ) 2 — AP
(5.22)

with A, := A2(d + 2)m;>. The Dorfler property may be applied to the first term on the
RHS of (5.22)

— L3, M) < =071 (2). (5.23)
Converting back to he limiting estimator Hy (5119) of Coanji[5.8
—(E1(21) < —(1+82) 7 (1 4 65) 7' (F (21, M)
+ (14 02) 105" O K520 Ju — wa [ + 05 ' A2 — 2111, (5.24)

Defined, by

Then by [5.2PR),[(5.23) and (5.24)

(P2, M) < —02(1+04) (P (%)
(0214 04) 7 A+ 85) M50 4+ 03Y) (14 0) 'O K2C2hy M lu — wy)?
+ (P14 6) 7 (14 0a) "0+ 671 Mg |2 — A1 (5.26)
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Finally, for 5 € (0, 1) split the first term in[(5.26) into two pieces, applying thepap
bound estimate from Lemnha 4.5 to the second piece yielding
(2, M) < =B0*(1+04) 7' GH(2) — (1= B)FP (1 + )" CT12 = &
F (21 4+ 64) " (1 +82) 105" + 051 (1+6) 'O K2C%he " Ju — wy ||
+(07(L+61) (A +6a) 710+ 67 Mgl 2 — A (5.27)
0]

Lemma 5.10 (Bounding the error in the discrete problenhpt the problem data satisfy
Assumptiof 2]1 and Assumption|2.3 and the mesh satisfy pseniB.2. Let© and K,
the constants given in Propositibn 2.4 afidand C, the constants given by Lemnias 4.1
and[5.2, respectively. Let

u the solution tq1.2), u; the solution tq(2.19)
%, the solution tof2.21), 41 the solution taf2.20)
Then A
150 — 2| < OKZC.CLhZ|lu — w ). (5.28)
Proof. Recall that
1 solvesa(2y,v) + (V' (u)1,v) = g(v), forallv e V, (5.29)
21 solvesa (21, v) + (b (uy)21,v) = g(v), forallv € V. (5.30)

Subtracting[(5.30) from (5.29) and rearranging terms
a(21 — 2, 0) + (V' (u) = V(1)) 21,0) = (V(w) (31 — Z),0), vE V. (5.31)
In particular, forv = 2, — 21 € V, equation[(5.31) yields
20 = 2117 = (¥ (w) = V'(w)) 2, 20 = 1) = (V'(wi) (21— 1), 20 = 1)
< —((b'(u) — ' (u1))21, 20 — 21) (5.32)
where the last line i (5.32) follows from the assumptiort thia an increasing function
hence(V' (u1)(2, — 21), % — 21) > 0. Then applying the Lipschitz property &f, the
a priori bound on the dual solutiof; and both primal and dual, lifting we have
from (5.32)
120 = 2101 < OKzllu — wi |12 — 21|,
< OKC.Ch lu — w12 — ]| (5.33)
from which the result follows. 0J
The contraction of the combined quasi-error is driven bydbal-sequence estimator
reduction and quasi-orthogonality estimates. As the foisx@upled to the primal error,
the end result is a reduction in a linear combination of thergyerrors in primal and
limiting dual problems and error estimators of the primallgem and approximate dual
sequence. As seen by the bound on the error in the goal funttieoreni 5.12, the

contraction of the combined quasi-error determines theraotion in the error of the
quantity of interest.

Theorem 5.11 (Contraction of the combined quasi-erroblet the problem data satisfy
Assumption 2]1 and Assumptlonl2.3 and the mesh satisfy pgeni®.2. Let

u the solution to(1.2), u; the solution to(2.19)
2 the solution to[2.5), 2; the solution to2.21)



20 M. HOLST, S. POLLOCK, AND Y. ZHU

Letd € (0,1], and let{7;,V;},>, be the sequence of meshes and finite element spaces
produced by GOAFEM. Let, > 0 as given by Theorem 4.8. Then there exist constants
v > 0,7 > 0and0 < ap < 1, depending on the initial mesk and marking parameter

6 such that

12 = 2017 + 73 (%) + mllu — wzll* + w15 (us)
<ap (12 = 207 + ¢ (a) + mllu — wl® + myni (w)) - (5.34)
Proof. Let
no = 1no(D, To) andl(Zx) = Ck(Zk, T), k= 1,2.

Start with estimator reduction for the limiting dual profles in equationi (4.35). For
arbitraryé > 0

(5(22) <A +6) {G () = AGGL M)+ 1+ 6 A 22 — 21 (5.35)
Recall the quasi-orthogonality estimate in the limitingatbproblem from Lemma 54
12 = 2l* < Acllz = 21° = 122 — &% (5.36)

Adding (5.36) to a positive multiple’ (to be determined) of (5.85) and applying the
results of Lemmals 5.9 afnd 5]10 obtain

12 = 2l* + 7G5 (22) < Al = 47 +vBG (21) + Dllu — w?

+ (v + 07 YA = 1) 122 — &7 (5.37)
Set~ to eliminate the last term i (5.87)
vi= (1407 A g (5.38)
Then the coefficientsl and B of (5.36) are given by
A=Ag— (1= B)N26(1+6,) 7 CT2A g2 (5.39)
B=(14+68)(1-pX*1+8)") (5.40)

where as given i (5.25)
(14 04) = (1 +61)(1+62)(1+54)(1 +6p).
For the coefficients as defined lhy (5.39) and (5.40), reqmifinc 1 andB < 1 yields
the inequality
6 146, (Ac — DAc1+ 6,
55 e Pl IR

To demonstrate that parametérs, > 0 may be chosen to satisfy (5141) withe (0,1)
set

(5.41)

5, = 6 = bAW* for someb < 1. (5.42)
Require the mesh condition
(Ag — 1)Ac = ar@? for somea < 1 with Ag == C2Ay7? (5.43)
for a givend € (0, 1). Then using[(5.42) and(5.43) in (5]41) yields
1

which may be satisfied withi € (0, 1) for n sufficiently small. The conditior (5.43) with
a as required by (5.44) is feasible as the the dual quasi-gohality constant\; may
be driven arbitrarily close to unity by a sufficiently finetial mesh.
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Consider the coefficienb of (5.37). As we have conditions on the combined param-
eterd,, assume; = 9, = 64 = dg =: dc. Then

92 + (1 + 50)2 h2 A
27172 127 2s 0 21 2s
D = ) \O*K;CLhy ( (1 + 60)%0 ) ( 1773 + CLhy ) . (5.45)

To control the primal error term with the coefficiebtas given by[(5.45), add a posi-
tive multipler (to be determined) of the primal contraction redult (4.36)lweoreni 4.8

to (5.39) yieding
12 = 2201 + 7G5 (22) + wllu — wal|* + wy,m5 (us)

< Allz2 = 24l° + B¢ (1) + (D + &) lu = wi|l* + a*mypi (w). (5.46)
Chooser to ensureD + o1 < 7
D
> o (5.47)
and set )
D
ap = max {A, B, ﬂ,oﬁ} < 1. (5.48)
T
Then the combined quasi-error satisfies the contractiopguty
12 = 2017 + 73 (%) + wllu — uzll* + 715 (us)
<ap (12 = 207 + ¢ (a) + mllu — wl® + 7mymi (w)) - (5.49)
O

Corollary 5.12 (Bounding the error in the goal functianl.et the problem data satisfy
Assumptioh Z]1 and Assumption|2.3 and the mesh satisfy pBen@.2. LetB, © and K4
the constants given in Propositibn 2.4 afidand C, the constants given by Lemnias/ 4.1
and[5.2, respectively. Let, € (0,1) as given by Theorem 5J11. Let
u the solution tq1.2), u; the solution ta2.19)
2 the solution ta2.5), %; the solution to2.21)
Then the error in the goal function is controlled by a constawltiple of the square of
the combined quasi-error, and
l9(u) = g(uy)| < CQ3(uy, %) < aBCQG(uo, 20).- (5.50)
Proof. Choosing the test function = u — u; in (2.5), and by linearity and Galerkin
orthogonality for the primal problem
9(u) = g(uy) = a(2,u) + (V' (w)z, u) — a(2,u;) — (V'(w)2, uy)
(u = uz, 2) + (V' (u)(u — uy), 2)
(u = uz, 2) + (Bj(u — uy), 2) + (('(u) — Bj)(u— uy), 2)
(= uj, 2 = 25) + (b(u) = b(uy), 2 = 2;) + ((V'(u) = Bj)(u — uy), 2).
(5.51)

The third term in the last line of (5.51) represents the @mduced by switching from
the limiting to the linearized dual problem as required tdenase of property (212). This
term may be bounded in terms of the constants/andestimates in Proposition 2.4 and

1
[ = e e

0

)
16 (u) = Bl = < S llu =l
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yielding
(V' (u) = Bj)(u—uy), 2) < Kz|[b'(u) = Bj|L,llu — uj]| L,

1
< 5OKylu =z, (5.52)

Then by [5.511),[(5.52), the Cauchy-Schwarz inequality Agifting as in Lemmas 4]1
and5.2

19(u) = g(wy)| < llu = w;lll2 = 2l + Bllu = uyl|, 112 = 21,

1
+ §9KZ||U — uyll7,
A s 2 2 1 s
< (14 BC.Cuhg®)[lu — ;|2 = 2] + §@KZth(2) flue = wj?

1 ~
<5 (14 (OK,C.+ BE)CRE) u — )

1 R
+ 5(1 + BC.C.hE)|12 — 3| (5.53)

Comparing [(5.53) to théd (5.49), the error in the goal functti® bounded below a
constant multiple of the combined quasi-error

Quj, 2) = 12 = ZI* + ¢ (%) + wllu — uyll* + mm] ()

which is shown to contract at each iteration of the algoritfrom which [5.50) follows.
]

6. CONCLUSION

In this article we developed convergence theory for a clagpal-oriented adaptive
finite element algorithms for second order semilinear gtlipquations. We first intro-
duced several approximate dual problems, and briefly désclthe target problem class.
We then reviewed some standard facts concerning conforfimitg element discretiza-
tion and error-estimate-driven adaptive finite elementhoes (AFEM). We included a
brief summary ofa priori estimates for semilinear problems, and then described goal
oriented variations of the standard approach to AFEM (GOMI-B-ollowing the re-
cent work of Mommer-Stevenson and Holst-Pollock for lingarblems, we established
contraction of GOAFEM for the primal problem. We also deysld some additional
estimates that make it possible to establish contractiagheo€ombined quasi-error, and
showed convergence in the sense of the quantity of inte@astanalysis was based on
the recent contraction frameworks for the semilinear probileveloped by Holst, Tsogt-
gerel, and Zhu and Bank, Holst, Szypowski and Zhu and thadenfar problems as in
Cascon, Kreuzer, Nochetto and Siebert, and Nochetto, $jelnel Veeser. In addressing
the goal-oriented problem we based our approach on that ofifiier and Stevenson for
symmetric linear problems and Holst and Pollock for nonswtrio problems. How-
ever, unlike the linear case, we were faced with trackingdized and approximate dual
sequences in order to establish contraction with respebetquantity of interest.
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