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ABSTRACT. The conformal method has been effective for parametrizing solutions to
the Einstein constraint equations on closed 3-manifolds. However, it is still not well-
understood; for example, existence of solutions to the conformal equations for zero
or negative Yamabe metrics is still unknown without the so-called “CMC” or “near-
CMC” assumptions. The first existence results without such assumptions, termed the
“far-from-CMC” case, were obtained only as recently as 2008–2009 by Holst, Nagy,
and Tsogtgerel and by Maxwell. However, their results are valid only for positive Yam-
abe metrics, and are based on topological arguments; as a result, solution uniqueness is
not known. Indeed, Maxwell gave evidence in 2011 that far-from-CMC solutions are
not unique in certain cases. In this article, we provide further insight by establishing
a type of alternative theorem for general far-from-CMC solutions. For a given mani-
fold M that admits a metric of positive scalar curvature and scalar flat metric g0 with
no conformal Killing fields, we first prove existence of an analytic, one-parameter fam-
ily of metrics gλ through g0 such that R(gλ) = λ. Using this family of metrics and
given data (τ, σ, ρ, j), we form a one-parameter family of operators F ((φ,w), λ) whose
zeros satisfy the conformal equations. Applying Liapnuov-Schmidt reduction, we de-
termine an analytic solution curve for F ((φ,w), λ) = 0 through a critical point where
the linearization of F ((φ,w), λ) vanishes. The regularity of this curve, the definition of
F ((φ,w), λ), and the earlier far-from-CMC results of Holst et al. allow us to then prove
the following alternative theorem for far-from-CMC solutions: either (1) there exists a
λ1 > 0 such that (positive Yamabe) solutions to the conformal equations are non-unique
with data (gλ1 , λ

2
1τ, λ

2
1σ, λ

2
1ρ, λ

2
1j); or (2) there exists λ2 < 0 such that (negative Yam-

abe) solutions to the conformal equations exist with data (gλ2
, λ22τ, λ

2
2σ, λ

2
2ρ, λ

2
2j).
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1. INTRODUCTION

The Einstein field equation Gµν = κTµν can be formulated as a Cauchy problem
where the initial data consists of a Riemannian metric ĝab and a symmetric tensor k̂ab
on a specified 3-dimensional manifoldM [10, 24]. However, one is not able to freely
specify such initial data. Like Maxwell’s equations, the initial data ĝab and k̂ab must
satisfy constraint equations, where the constraints take the form

R̂ + k̂abk̂ab + k̂2 = 2κρ̂, (1.1)

D̂bk̂
ab − D̂ak̂ = κĵa. (1.2)

Here, R̂ and D̂ are respectively the scalar curvature and covariant derivative associated
with ĝab, k̂ is the trace of k̂ab, and ρ̂ and ĵa are matter terms obtained by contracting
Tµν with a vector field normal toM, where one assumes that Tµν satisfies the dominant
energy condition.

Equation (1.1) is known as the Hamiltonian constraint while (1.2) is known as the
momentum constraint, and collectively they are known as the Einstein constraint equa-
tions. These equations form an underdetermined system of four equations to be solved
for twelve unknowns represented by the symmetric two index tensors ĝab and k̂ab. In
order to transform the constraint equations into a determined system, one divides the
unknowns into freely specifiable data and determined data using what is known as the
conformal method. In this method, introduced by Lichnerowicz [19] and York [25], one
makes the decomposition

k̂ab = l̂ab +
1

3
ĝabτ̂ , (1.3)

where τ̂ = k̂abĝ
ab is the trace and l̂ab is the traceless part of k̂ab, and then one makes the

following conformal rescaling

ĝab = φ4gab, l̂ab = φ−10lab, τ̂ = τ. (1.4)

Then, forming the decomposition

lab = (σab + (Lw)ab), (1.5)

where Daσ
ab = 0, and defining

(Lw)ab = Dawb +Dbwa − 2

3
(Dcw

c)gab

as the conformal Killing operator, one obtains the conformal, transverse, traceless (CTT)
formulation of the constraint equations as

−∆φ+
1

8
Rφ+

λ4

12
τ 2φ5 − 1

8
(σ + Lw)ab(σ + Lw)abφ−7 − κ

4
ρφ−3 = 0, (1.6)

Lw +
2

3
Dτφ6 + λ2κj = 0,

where Lw = −Db(Lw)ab. The above system (1.6) forms a determined, coupled nonlin-
ear system of elliptic partial differential equations with specified data (g, τ, σ, ρ, j) and
with (φ,w) to be determined by the equations. For simplicity, we will refer to this system
as the conformal formulation (cf. [4] for further discussion).

In this paper, we address some of the open questions associated with existence and
uniqueness of solutions to the conformal formulation on a closed, 3-dimensional mani-
fold M in the event that the mean curvature τ does not satisfy the “near constant” (or
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near-CMC) assumptions developed by Isenberg and Moncrief in [16]. It is well-known
that solutions to the conformal equations exist and are unique on a closed manifold if the
mean curvature τ does not vanish and has a bounded derivative. However, very little is
known about the existence and uniqueness of solutions in the event that the mean cur-
vature function does not satisfy these so-called near-CMC assumptions. The first “far-
from-CMC” existence results were established only as recently as 2008–2009; Holst,
Nagy, and Tsogtgerel [13, 14] and Maxwell [20] showed that solutions to the confor-
mal formulation exist for metrics in the positive Yamabe class and mean curvatures τ
completely free of the near-CMC assumption, now termed the “far-from-CMC” case.
However, there are currently no general far-from-CMC existence results for metrics in
the zero or negative Yamabe classes (note that Maxwell [20] has some results in the
zero Yamabe case under symmetry assumptions). Furthermore, given that the existence
results in [13, 14, 20] use a general topological fixed point theorem as opposed to the
contraction mapping theorem type arguments used in [15, 16], it is not known whether
far-from-CMC solutions are unique. Indeed, in a remarkable recent paper [21], Maxwell
has actually shown that with symmetry assumptions, solutions to the conformal formu-
lation are non-unique for certain low-regularity, far-from-CMC mean curvatures in the
event that the prescribed metric lies in the zero Yamabe class. In this article, we partially
address these issues in the general case by showing that either the postive Yamabe, far-
from-CMC solutions obtained in [13, 14, 20] are non-unique, or that negative Yamabe,
far-from-CMC solutions to the conformal equations exist for a certain family of metrics
with constant, negative scalar curvature.

To obtain our results, we consider a closed, 3-dimensional manifoldM which admits
a metric of positive scalar curvature and also admits a metric g0 with zero scalar curvature
and no conformal Killing fields. We show that there exists a δ > 0 and a one-parameter
family of metrics (gλ)λ∈(−δ,δ) onM, analytic in the variable λ, such that R(gλ) = λ and
gλ|λ=0 = g0. Using this family of metrics, we then construct the following one-parameter
family of nonlinear elliptic systems on the closed manifoldM:

−∆λφ+
1

8
λφ+

λ4

12
τ 2φ5 − 1

8
(λ2σ + Lw)ab(λ

2σ + Lw)abφ−7 − λ2κ

4
ρφ−3 = 0, (1.7)

Lλw +
2λ2

3
Dλτφ

6 + λ2κj = 0,

where ∆λ, Lλ and Dλ are the Laplace-Beltrami operator, negative divergence of the
conformal Killing operator and covariant derivative with respect to the metric gλ. For a
fixed λ, we recognize the above family as the CTT formulation of the Einstein Constraint
Equations with specified data

gλ, τλ = λ2τ, σλ = λ2σ ρλ = λ2ρ, and jλ = λ2j. (1.8)

We assume that τ is an arbitrary differentiable function onM, so that τ does not satisfy
the near-CMC assumptions. By applying some basic techniques from bifurcation theory
and nonlinear functional analysis to (1.7), we are able to parametrize the solution curve
of (1.7) through ((1,0), 0). An analysis of this solution curve reveals that, under suitable
reasonable assumptions, at least one of the following two possibilities must occur:

(1) There exists a δ > 0 such that for λ0 ∈ (0, δ), there exist (φ1,λ0 ,w1,λ0) and
(φ2,λ0 ,w2,λ0) in C2,α ⊕ C2,α(TM) that together solve (1.7) when λ = λ0 with
(φ1,λ0 ,w1,λ0) 6= (φ2,λ0 ,w2,λ0) (i.e. solutions to the CTT formulation are non-
unique).
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(2) There exists a δ > 0 such that for any λ0 ∈ (−δ, 0), there exists (φλ0 ,wλ0) ∈
C2,α⊕C2,α(TM) that solves (1.7) when λ = λ0 (i.e. far-from CMC solutions to
the CTT formulation exist for certain metrics in the negative Yamabe class).

The remainder of the paper is organized as follows. Section 2 presents notation and
preliminaries that we will require to prove our results. In particular, we first summa-
rize some fundamental results from bifurcation theory. In particular, we discuss what
is known as Liapunov-Schmidt reduction, which is instrumental in parametrizing solu-
tions to (1.7) in a neighborhood of ((1,0), 0). We then show that a closed, 3-dimensional
manifoldM which admits a metric of positive scalar curvature also admits an analytic,
one-parameter family of metrics gλ such that R(gλ) = λ. In Section 3, we then use
this one-parameter family of metrics and given data (τ, σ, ρ, j) for the conformal equa-
tions to define a nonlinear operator F ((φ,w), λ) whose zeroes coincide with solutions
to the conformal equations. The main results of this paper are then presented in Theo-
rems 3.1 and 3.2 in Section 3. Theorem 3.1 characterizes the behavior of solutions to
the nonlinear problem F ((φ,w), λ) = 0 in a neighborhood of the point ((1,0), 0). This
characterization allows us to conclude that either there exists λ0 > 0 such that solutions
to F ((φ,w), λ0) = 0 are non-unique or that there exists λ0 < 0 for which solutions to
F ((φ,w), λ0) = 0 exist. Theorem 3.2 then interprets this result in terms of the con-
formal equations. It concludes that in any neighborhood of a metric g0 with zero scalar
curvature and no conformal Killing fields on M, that either there exists a metric gλ
with R(gλ) = λ > 0 for which solutions to the conformal equations are non-unique, or
R(gλ) = λ < 0 and negative Yamabe, far-from-CMC solutions exist. The remainder of
the paper is then devoted to proving these results. Section 4 is dedicated to showing that
the operator F ((φ,w), λ) is analytic, and then in Section 5 we prove Theorems 3.1 and
3.2. We draw some conclusions in Section 6, and also include Appendx A containing
some supporting results.

2. PRELIMINARY MATERIAL

2.1. Notation and Function Spaces. LetM denote a compact 3-dimensional manifold
and let T rsM denote the vector bundle of tensors of type (r, s). In this paper, we will
consider the space of k-differentiable sectionsCk(T rsM), the Hölder spacesCk,α(T rsM)
where k ∈ N, p ≥ 1, α ∈ (0, 1), and the Sobolev spaces W k,p(T rsM). Note that all of
these spaces (see Appendix A for a quick summary of the standard notation we use here
for norms) are Banach spaces, and the space W k,2(T rs ) is a Hilbert space for all k. As in
[9], we let

Ss,p2 = W s,p(T 0
2,symmetric(M)) the symmetric 2-covariant W s,p tensors,

As,p ⊂ Ss,p2 the open set of Riemannian metrics of type W s,p with s >
3

p
.

We will denote scalar valued functions by simply writing Ck, Ck,α and W s,p.
Using any of the above Banach spaces, one can form new Banach spaces and Hilbert

spaces by considering the direct sum (see also [12]).

Definition 2.1. Suppose thatX1 andX2 are Banach spaces with norms ‖·‖X1 and ‖·‖X2 .
Then the direct sum X1 ⊕X2 is the vector space of ordered pairs (x, y) where x ∈ X1,
y ∈ X2 and addition and scalar multiplication are carried out component-wise.

We have the following proposition:
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Proposition 2.2. The vector space X1 ⊕X2 is a Banach space when given the norm

‖(x, y)‖X1⊕X2 =
(
‖x‖2X1

+ ‖y‖2X2

) 1
2 . (2.1)

Proof. This follows from the fact that ‖ · ‖X1 and ‖ · ‖X2 are norms and the spaces X1

and X2 are complete with respect to these norms. �

We have a similar proposition for Hilbert spaces.

Proposition 2.3. Suppose thatH1 andH2 are Hilbert spaces with inner products 〈·, ·〉H1

and 〈·, ·〉H2 . Then the direct sum H1 ⊕H2 is a Hilbert space with inner product

〈(w, x), (y, z)〉H1⊕H2 = 〈w, y〉H1 + 〈x, z〉H2 . (2.2)

Proof. That 〈·, ·〉H1⊕H2 is an inner product follows from the fact that 〈·, ·〉H1 and 〈·, ·〉H2

are inner products. The expression

‖(u, v), (u, v)‖H1⊕H2 =
√
〈(u, v), (u, v)〉H1⊕H2 ,

is a norm on H1 ⊕ H2 that coincides with the norm in Proposition 2.2 in the event that
the norms on X1 and X2 are induced by inner products. �

See [26] for a more complete discussion about the direct sums of Banach spaces.

2.2. Analytic Operators and the Implicit Function Theorem. Here we briefly discuss
analytic operators and the Implicit Function Theorem. Our approach to proving that
either negative Yamabe far-from-CMC solutions exist or that positive Yamabe far-from-
CMC solutions are non-unique relies on showing that the operator in (1.6) is analytic.
We then apply the Implicit Function Theorem to determine an analytic solution curve
through a critical point where the linearization of (1.6) has a nontrivial kernel. To this
end, the following discussion will be essential going forward; the treatment is taken
mostly from [26].

Let X and Y be Banach spaces and assume that M : X × · · · ×X → Y is a k-linear
bounded operator which is symmetric in all variables. We define a norm on M by

‖M‖ = sup
‖x1‖=···=‖xn‖=1

‖M(x1, · · · , xn)‖, (2.3)

which implies that

‖M(x1, · · · , xn)‖ ≤ ‖M‖‖x1‖‖x2‖ · · · ‖xn‖ for all (x1, · · · , xn).

Definition 2.4. A power operator can be created from M by defining

Mxk = M(x, · · · , x), (2.4)

Mxmyn = M(x, · · · , x︸ ︷︷ ︸, y, · · · , y︸ ︷︷ ︸), m+ n = k,

m times n times

for any partition of k. For k = 0, Mx0 will denote a fixed element in X .

Using this definition of power operator, we can then form operators of the form

Tx =
∞∑
n=0

Tn(x− x0)n, (2.5)

where each Tn is a power operator. The operator T converges absolutely if the series
∞∑
n=0

‖Tn‖‖x− x0‖n, (2.6)

converges.
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Definition 2.5. LetX and Y be Banach spaces and let Tn : X → Y be power operators,
n ∈ N.

(a) The operator T : U ⊂ X → Y is analytic at a point x0 ∈ X if and only if it is
defined on some neighborhood of x0 and there is some number r > 0 such that
the series (2.6) converges for all x with ‖x− x0‖ < r.

(b) T is analytic on the open set U if and only if T is analytic at every point of U .

A central theorem which we state without proof, and also taken in this particular form
from [26], is the Implicit Function Theorem.

Theorem 2.6 (Implicit Function Theorem). Suppose thatX, Y and Z are Banach spaces
with U ⊂ X × Y a neighborhood of (x0, y0). Let F : U ⊂ X × Y → Z be an operator
satisfying F (x0, y0) = 0. Then if

(i) DyF exists on U and ker(DyF (x0, y0)) is trivial,
(ii) F and DyF are continuous at (x0, y0),

the following are true:

(a) There exist positive numbers r0 and r such that for every x ∈ X satisfying
‖x − x0‖ < r0, there is exactly one y(x) ∈ Y for which ‖y(x) − y0‖ ≤ r
and F (x, y(x)) = 0.

(b) If F is a Cm-map, 1 ≤ m ≤ ∞, on a neighborhood of (x0, y0), then y(x) is also
a Cm-map on a neighborhood x0.

(c) If F is analytic at (x0, y0), then y(x) is analytic at x0.

2.3. Basic Bifurcation Theory. We now present some basic concepts from bifurcation
theory that will be also essential in our analysis. The following treatment is taken from
[18] and [7]; see also [23].

Suppose that F : U × V → Z is a mapping with open sets U ⊂ X, V ⊂ Λ, where X
and Z are Banach spaces and Λ = R. We let x ∈ X and λ ∈ Λ. Additionally assume
that F (x, λ) is Fréchet differentiable with respect to x and λ on U×V . We are interested
in solutions to the nonlinear problem

F (x, λ) = 0. (2.7)

A solution of (2.7) is a point (x, λ) ∈ X × Λ such that (2.7) is satisfied.

Definition 2.7. Suppose that (x0, λ0) is a solution to (2.7). We say that λ0 is a bifurca-
tion point if for any neighborhood U of (x0, λ0) there exists a λ ∈ Λ and x1, x2 ∈ X ,
x1 6= x2 such that (x1, λ), (x2, λ) ∈ U and (x1, λ) and (x2, λ) are both solutions to (2.7).

Given a solution (x0, λ0) to (2.7), we are interested in analyzing solutions to (2.7) in
a neighborhood of (x0, λ0) to determine whether or not it is a bifurcation point. One of
the most useful tools for this is the Implicit Function Theorem 2.6. This theorem asserts
that if DxF (x0, λ0) is invertible, then there exists a neighborhood U1× V1 ⊂ U × V and
a continuous function f : V1 → U1 such that all solutions to (2.7) in U1 × V1 are of the
form (f(λ), λ). Therefore, in order for a bifurcation to occur at (x0, λ), it follows that
DxF (x0, λ0) must not be invertible.

2.3.1. Liapunov-Schmidt Reduction. The following discussion is taken from [18]. Let
X,Λ and Z be Banach spaces and assume that U ⊂ X , V ⊂ Λ. For λ = λ0, we require
that the mapping F : U × V → Z be a nonlinear Fredholm operator with respect to x;
i.e. the linearization DxF (·, λ0) of F (·, λ0) : U → Z is a Fredholm operator. Assume
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that F also satisfies the following assumptions:

F (x0, λ0) = 0 for some (x0, λ0) ∈ U × V , (2.8)

dim ker(DxF (x0, λ0)) = dim ker(DxF (x0, λ0)
∗) = 1.

Given that DxF (x0, λ0) has a one-dimensional kernel, there exists a projection oper-
ator P : X → X1 = ker(DxF (x0, λ0)). Similarly, one has the projection operator
Q : Y → Y2 = ker(DxF (x0, λ0)

∗). This allows us to decompose X = X1 ⊕ X2 and
Y = Y1⊕Y2 where Y1 = R(DXF (x0, λ0)). We will refer to the decomposition X1⊕X2

and Y1 ⊕ Y2 induced by DxF (x0, λ0) as the Liapunov decomposition, and we see that
F (x, λ) = 0 if and only if the following two equations are satisfied

QF (x, λ) = 0, (2.9)

(I −Q)F (x, λ) = 0.

For any x ∈ X , we can write x = v + w, where v = Px and w = (I − P )x. Define
G : U1 ×W1 × V1 → Y1 by

G(v, w, λ) = (I −Q)F (v + w, λ), where (2.10)
U1 ⊂ X1, W1 ⊂ X2, V1 ⊂ R and

v0 = Px0 ∈ U1, w0 = (I − P )x0 ∈ W1,

and U1,W1 are neighborhoods such that U1 +W1 ⊂ U ⊂ X .
Then the definition of G(v, w, λ) implies that G(v0, w0, λ0) = 0 and our choice of

function spaces ensures that

DwG(v0, w0, λ0) = (I −Q)DxF (x0, λ0) : X2 → Y1,

is bijective. The Implicit Function Theorem 2.6 then implies that there exist neighbor-
hoods U2 ⊂ U1,W2 ⊂ W1 and V2 ⊂ V1 and a continuous function

ψ : U2 × V2 → W2 such that all solutions to G(v, w, λ) = 0, (2.11)

in U2 ×W2 × V2 are of the form G(v, ψ(v, λ), λ) = 0.

Insertion of ψ(v, λ) into the second equation in (2.9) yields a finite-dimensional problem

Φ(v, λ) = QF (v + ψ(v, λ), λ) = 0. (2.12)

We observe that finding solutions (v, λ) to (2.12) is equivalent to finding solutions to
F (x, λ) = 0 in a neighborhood of (x0, λ0). We will refer to the finite-dimensional
problem (2.12) as the Liapunov-Schmidt reduction of (2.7).

With additional assumptions on the operator F (x, λ) and another application of the
Implicit Function Theorem, we may conclude that all solutions to (2.12) are of the form

(v, γ(v)), γ : U3 ⊂ U2 → I ⊂ R. (2.13)

Therefore, all solutions to (2.12) in a neighborhood of v0 must satisfy

g(v) = QF (v + ψ(v, γ(v)), γ(v)) = 0. (2.14)

Given that ker(DxF (x0, λ0)) is spanned by v̂0, then we can write v = sv̂0 + v0. Substi-
tuting this into (2.14) we obtain

g(s) = QF (sv̂0 + v0 + ψ(sv̂0 + v0, γ(v0 + sv̂0), γ(v0 + sv̂0) = 0. (2.15)

This reduction provides the basis of the following theorem taken from [18], which allows
us to determine a unique solution curve through the point (x0, λ0).
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Theorem 2.8. AssumeF : U×V → Z is continuously differentiable onU × V ⊂ X × R
and that assumptions (2.8) hold. Additionally, assume that

DλF (x0, λ0) /∈ R(DxF (x0, λ0)). (2.16)

Then there is a continuously differentiable curve through (x0, λ0). That is, there exists

{(x(s), λ(s)) | s ∈ (−δ, δ), (x(0), λ(0)) = (x0, λ0)}, (2.17)

such that

F (x(s), λ(s)) = 0 for s ∈ (−δ, δ), (2.18)

and all solutions of F (x, λ) = 0 in a neighborhood of (x0, λ0) belong to the curve (2.17).

Proof. See [12] or [18]. �

In order to demonstrate that a nonlinear operator F (x, λ) exhibits a bifurcation point
and has non-unique solutions to F (x, λ) = 0, one constructs the solution curve in The-
orem 2.8 through a point (x0, λ0) where DxF (x0, λ0) has a nontrivial, one-dimensional
kernel. One then analyzes the coefficients in the Taylor expansion of this solution curve
at the critical points (x0, λ0) using additional results from bifurcation theory to deter-
mine if it has a “fold”. We will not employ this approach in our paper, as the operator
F ((φ,w), λ) in (1.7) is not amenable such techniques. (However, see our related work
in [12].)

Instead, we rely on additional regularity of our solution curve in (2.17). In particular,
we demonstrate that our solution curve is analytic in a neighborhood of 0. The far-from-
CMC existence results (A.11) combined with the analyticity of our curve will allow us to
conclude that λ(s) cannot vanish identically in a neighborhood of zero. This is the crux
of our argument. To demonstrate the analyticity of our solution curve, we must show
that the one-parameter family gλ defined above (1.7) is analytic in λ in a neighborhood
of zero. This will allow us to conclude that the operator F ((φ,w), λ) in (1.7) is analytic
in a neighborhood of the critical point ((1,0), 0), and therefore that our solution curve is
analytic by the Implicit Function Theorem. We first prove the existence of the analytic,
one-parameter family gλ for closed, 3-dimensional manifoldsM that admit a metric with
positive scalar curvature.

2.4. Properties of the Scalar Curvature Operator. The scalar curvature operator

R : As,p → W s−2,p,

takes the form

R(g)|Uij =− 1

2
gijgab

∂2gij
∂xa∂xb

+
1

2
gijgab

∂2gai
∂xb∂xj

+
1

2
gijgab

∂2gaj
∂xb∂xi

(2.19)

− 1

2
gijgab

∂2gab
∂xi∂xj

− gijgabgklΓ a
ijΓ

b
kl + gijgabgklΓ

k
aiΓ

l
bj,

where Uj is a given coordinate chart and g ∈ As,p. The main objective of this section is
to show that for a given manifoldM which admits a metric of positive scalar curvature,
that there exists an analytic one-parameter family of metrics (gλ) on M that satisfies
R(gλ) = λ for λ ∈ (−δ, δ). This family of metrics is necessary for the construction of
the one-parameter family of non-linear problems in (1.7).

Using the definition of R(g), we have the first preliminary result.

Theorem 2.9. The scalar curvature operatorR : As,p → W s−2,p is an analytic operator.
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Proof. We first note that the scalar curvature operator is a smooth operator [9]. Fix a
metric g0 ∈ As,p. Then for any w ∈ As,p, let h = w − g0. Then by Theorem A.5, the
remainder term Rn for the n-th order Taylor series about g0 has the form

‖Rn(w)‖W s,p ≤ 1

(n)!
sup

0<τ<1
‖D(n)R(g0 + τh)(h)n‖W s,p(M), (2.20)

where Dn is the n-th Frechet derivative of R and hn = (h, · · · , h) is an element of
(As,p)n. See [26] for more details. If (ρi, Ui) is a coordinate chart of M, let (χj)

N
j=1

denote a smooth partition of unity subordinate to the Ui. Then we have that

‖D(n)R(g0+τh)(h)n‖W s,p(M) (2.21)

≤
N∑
j=1

‖χjD(n)R(g0 + τh)(h)n‖W s,p(Uij )
, (2.22)

where supp(χj) ⊂ Uij . In each chart Uij , we have that

R(g)|Uij =− 1

2
gijgab

∂2gij
∂xa∂xb

+
1

2
gijgab

∂2gai
∂xb∂xj

+
1

2
gijgab

∂2gaj
∂xb∂xi

(2.23)

− 1

2
gijgab

∂2gab
∂xi∂xj

− gijgabgklΓ a
ijΓ

b
kl + gijgabgklΓ

k
aiΓ

l
bj. (2.24)

In local coordinates,

R(gij)|Uij : W s,p(T 0
2 (Uij))→ W s−2,p(Uij),

and
Dk(R(gij)|Uij ) ≡ 0

for k ≥ 8. This together with (2.21) implies the result. �

We will also have need for the following theorem from [9], which allows us to de-
compose Ss,p2 using the linearization of R at a non-flat metric g0 ∈ As,p. Recall that on
a 3-dimensional manifoldM, non-flat (non-vanishing curvature tensor) is synonymous
with a non-vanishing Ricci tensor.

Theorem 2.10. Let g0 be a non-flat metric in As,p such that R(g0) = 0. Then the lin-
earization DgR(g0) is surjective and Ss,p2 = ker(DgR(g0)) ⊕ R((DgR(g0))

∗), where
(DgR(g0))

∗ is the adjoint of DgR(g0). Moreover, R : As,p → W s−2,p maps any neigh-
borhood of g0 onto a neighborhood of 0.

Proof. See Theorem 1 in [9]. �

We now recall that if a 3-dimensional compact manifoldM admits a metric with positive
scalar curvature, then any f ∈ C∞ is the scalar curvature of some Riemannian metric
g on M [17, 2]. Therefore, for a given λ ∈ R, the set of metrics g on M that satisfy
R(g) = λ will be non-empty. Using this fact, Theorems 2.9 and 2.10 and the Implicit
Function Theorem 2.6, we can now prove the following theorem, which allows us to
conclude the existence of an analytic, one-parameter family of metrics gλ that satisfies
R(gλ) = λ.

Theorem 2.11. Suppose thatM is a closed 3-dimensional manifold that admits a metric
with positive scalar curvature. Then for λ in a neighborhood of 0, there exists an analytic
one-parameter family of metrics (gλ) through g0 such that R(gλ) = λ.
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Proof. Because M admits a metric with positive scalar curvature, it admits a non-flat
metric g0 with zero scalar curvature. Indeed, for some fixed t0 ∈ (0, 1), one obtains
the metric g0 = t0h0 + (1 − t0)h1 by taking a convex combination of a metric h0 with
negative scalar curvature and a metric h1 with positive scalar curvature. In general, the
Ricci tensor of g0 will be nonzero. If it is zero, by fixing h0 and perturbing h1 to obtain
h2 = h1 +λh3, where h3 is non-flat metric that does not lie in the kernel of the linearized
Ricci operator, one obtains the metric g1 = t1h0 + (1 − t1)h2 which has zero scalar
curvature for some t1 ∈ (0, 1) and will have a nontrivial Ricci tensor for λ sufficiently
small. See [2, 17] for more details.

Because g0 is non-flat, Theorem 2.10 implies Ss,p2 = ker(DgR(g0))⊕R((DgR(g0))
∗).

Let X = R((DgR(g0))
∗) and define the operator

G : X × R→ W s−2,p, (2.25)

G(h, λ) = R(g0 + h)− λ.
Theorem 2.10 and the splitting results in [9] imply that for h ∈ X , g0 + h determines

an open subset of Ss,p2 . Moreover, for h sufficiently small, g0 + h ∈ As,p given that
As,p is an open subset of Ss,p2 . Therefore, there exists an open subset U1 ⊂ Ss,p2 about
g0 for which the scalar curvature operator is well-defined. So for all h ∈ X such that
g0 + h ∈ U1, G(h, λ) is well-defined.

By construction, DhG(0, 0) is invertible and we may apply the Implicit Function The-
orem in a neighborhood of g0. We conclude that there exists a neighborhood U2 × V ⊂
U1 × V ⊂ X ×R of (0, 0) and a function ψ : V → U2, ψ(0) = 0, such that G(h, λ) = 0
in this neighborhood if and only if h = ψ(λ). Letting gλ = g0 + ψ(λ) ∈ As,p, we ob-
serve that R(gλ) − λ = G(ψ(λ), λ) = 0, which implies that R(gλ) = λ and R(g0) = 0.
By Theorem 2.9 and the Implicit Function Theorem 2.6 the curve gλ is analytic in the
variable λ. �

Remark 2.12. The fact that ψ(λ) is analytic in a neighborhood of 0 means that for λ
sufficiently small,

lim
N→∞

‖ψ(λ)−
N∑
i=0

1

i!
Di
λψ(0)λi‖W s,p(T 0

2M) = 0. (2.26)

Moreover, the sum
∞∑
i=0

1

i!
‖Di

λψ(0)‖|λ|i (2.27)

converges for λ sufficiently small by Definition 2.5, where ‖Di
λψ(0)‖ is the operator norm

(2.3) induced by the norm on R and the norm ‖ ·‖W s,p(T 0
2M). Therefore, if 1 ≤ k < s− 3

p
,

lim
N→∞

‖ψ(λ)−
N∑
i=0

1

i!
Di
λψ(0)λi‖Ck(T 0

2M) = 0. (2.28)

This implies that if g(x, λ) = g0 + ψ(λ), then in local coordinates

∂

∂xm
(gij(x, λ)) =

∞∑
i=0

1

i!

∂i+1

∂iλ∂xm
(gij(x, 0))λi, (2.29)

for all 1 ≤ i, j,m ≤ 3. Furthermore, by (2.27) the series (2.29) converges absolutely.
The same holds for higher order partials with respect to xm if 2 ≤ k ≤ s − 3

p
. See

Proposition A.8 for further details.
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3. MAIN RESULTS

LetM be a closed, 3-dimensional manifold which admits a metric with positive scalar
curvature that also admits a non-flat metric g0 ∈ As,p such that R(g0) = 0. Let (gλ) be
the analytic curve of metrics determined in Theorem 2.11. Define the operator

F ((φ,w), λ) =

[
−∆λφ+ 1

8
λφ+ λ4

12
τ 2φ5 − aw,λφ−7 − λ2κ

4
ρφ−3

Lλw + 2λ2

3
Dλτφ

6 + λ2κj

]
, (3.1)

where aw,λ = 1
8
(λ2σ + Lw)ab(λ

2σ + Lw)ab, and where ∆λ, Dλ and Lλ are induced by
(gλ). We view F ((φ,w), λ) as a nonlinear operator, where

F ((φ,w), λ) : C2,α ⊕ C2,α(TM)⊕ R→ C0,α ⊕ C0,α(TM), (3.2)

and if F ((φ0,w0), λ0) = (0,0), then (φ0,w0) solves (1.7) when λ = λ0.
Clearly we have that F ((1,0), 0) = 0. Moreover, we will show that kerDXF ((1,0), 0)

is one-dimensional. We can then use Theorem 2.8 to parametrize a solution curve
((φ(s),w(s)), λ(s)) through ((1,0), 0). The first of our two main results in this paper
characterizes the behavior of solutions on this curve in a neighborhood of ((1,0), 0).

Theorem 3.1. LetM be a closed 3-dimensional manifold that admits an analytic, one-
parameter family of metrics gλ ⊂ As,p, s > 3 + 3

p
, such that for each λ ∈ (−δ, δ),

R(gλ) = λ and gλ has no conformal Killing fields. Suppose that (τ, σ, ρ, j) ∈ C1(M)×
C(M)×C(M)×C(TM) is freely specified, and using this data and the one-parameter
family gλ, define F ((φ,w), λ) as in (3.1). Then at least one of the following two possi-
bilities must occur:

(1) There exists a δ0 ∈ (0, δ) such that for all λ ∈ (0, δ0) there exists (φ1,λ,w1,λ) and
(φ2,λ,w2,λ) in C2,α ⊕ C2,α(TM) that together solve (1.7) with (φ1,λ0 ,w1,λ0) 6=
(φ2,λ0 ,w2,λ0),

(2) There exists a δ0 ∈ (0, δ) such that for any λ ∈ (−δ0, 0), there exists (φλ,wλ) ∈
C2,α ⊕ C2,α(TM) that solves (3.1).

Combining Theorem 2.10 and Theorem 3.1, we obtain our second main result.

Theorem 3.2. Let M be a closed 3-dimensional manifold which admits both a met-
ric with positive scalar curvature and a metric g0 with zero scalar curvature and no
conformal Killing fields, where both metrics are contained in As,p, s > 3 + 3

p
. Let

(τ, σ, ρ, j) ∈ C1(M)× C(M)× C(M)× C(TM) be freely specified data for the CTT
formulation of the constraints (1.7). Then in any neighborhood U of g0 there exists a
metric g ∈ As,p and a λ > 0 such that at least one the following must hold:

• R(g) = λ and solutions to the CTT formulation of the Einstein Constraints with
specified data (g, λ2τ, λ2σ, λ2ρ, λ2j) are non-unique
• R(g) = −λ and there exists a solution to CTT formulation of the Einstein Con-

straints with specified data (g, λ2τ, λ2σ, λ2ρ, λ2j).
Thus, in any neighborhood of a metric with zero scalar curvature and no conformal
Killing fields, either there exists a Yamabe positive metric for which solutions to the CTT
formulation are non-unique or there exists a Yamabe negative metric for which far-from-
CMC solutions to the CTT formulation exist.

Remark 3.3. An important point of Theorem 3.2 is that the function τ is an arbitrary,
continuously differentiable function. Therefore this function is allowed to have zeroes
and is free of any near-CMC conditions.
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Remark 3.4. Here we do not prove the existence of manifoldsM that admit both a metric
of positive scalar curvature and a metric with zero scalar curvature and no conformal
Killing fields. Similar assumptions are made in [1], and using the results in [5, 6, 8],
we can conclude that using a suitable topology, the set of metrics on a given manifold
M which have no homothetic Killing fields is generic in the set of metrics with zero
scalar curvature. More generally, the set of metrics with no conformal Killing fields is a
generic set in the space of metrics onM [5]. We suspect that these results can be used
to show, under possibly additional regularity assumptions, that manifolds which admit
both a metric of positive scalar curvature and a metric with zero scalar curvature and
no conformal Killing vectors exist.

4. PROPERTIES OF F ((φ,w), λ)

In this section we discuss some key properties of the operator F ((φ,w), λ) introduced
in (3.1). Our general strategy to prove the main results in Section 3 will be to apply a
Liapunov-Schmidt reduction to this operator. In order to apply this reduction, we seek
a point ((φ0,w0), λ0) for which the linearization DXF ((φ0,w0), λ0) has a nontrivial
kernel, where X = (φ,w).

In the following discussion, we assume that M is a closed, 3-dimensional mani-
fold that admits an analytic, one-parameter family of metrics satisfying R(gλ) = λ for
λ ∈ (−δ, δ). Additionally assume that each gλ has no conformal Killing fields and
(gλ) ⊂ As,p, where s > 3 + 3

p
. Assuming that (τ, σ, ρ, j) is given data for the confor-

mal formulation, we may define the operator F ((φ,w), λ) as in (3.1) and we have the
following result:

Proposition 4.1. Let F ((φ,w), λ) be the nonlinear operator defined in (5.1). Then the
following holds:

DXF ((1,0), 0) =

[
−∆ 0

0 L

]
and ker(DXF ((1,0), 0)) = span

{[
1
0

]}
, (4.1)

where ∆ and L are the Laplace-Beltrami operator and the negative divergence of the
conformal Killing operator induced by g0.

Proof. This follows from the fact that the Gauteaux derivative and Frechet derivative
coincide in a neighborhood of ((1,0), 0). Therefore, for (φ,w) satisfying

‖(φ,w)‖C2,α(M)⊕C2,α(TM) = 1,

we compute

lim
t→0

F ((1,0) + t(φ,w)), 0)− F ((1,0), 0)

t

to obtain (4.1). Given that g0 has no conformal Killing fields, it is clear that the kernel of

(4.1) is spanned by
[

1
0

]
. �

Remark 4.2. Clearly the operator DXF ((1, 0),0) is a self-adjoint operator. Therefore,

Proposition 4.1 also implies that ker((DXF (1,0), 0)∗) =

[
1
0

]
.

We will also require that the operator F ((φ,w), λ) have certain regularity properties
in a neighborhood of the point ((1,0), 0). For this we have the following proposition:
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Proposition 4.3. In a neighborhood of ((1,0), 0), the nonlinear operator F ((φ,w), λ)
is an analytic operator between the spaces

C2,α ⊕ C2,α(TM)⊕ R→ C0,α ⊕ C0,α(TM).

Proof. Writing out F ((φ,w), λ) on a given chart element Uj , the Hamiltonian constraint,
which we will denote by F1((φ,w), λ), takes the form

F1((φ,w), λ) = (4.2)

fab1 (λ)∂a∂bφ+ fa2 (λ)∂aφ+
1

8
λφ+

λ4

12
τ 2φ5 − φ−7

8

(
fabcd3 (λ)∂awb∂cwd +

fabc4 (λ)∂awbwc + fab5 (λ)wawb + λ2fab6 ∂awb + λ2fa7 (λ)wa + λ4σ2
)
− κλ2

4
ρφ−3,

where fab1 , ..., f
a
7 are functions in C1,α(Uj × (−δ, δ)), α = 1 + [3

p
] − 3

p
, that are formed

from sums and products of the first and second derivatives of the components of gλ with
respect to the spatial coordinate functions xi. See Proposition A.9 for details. Given
that the gλ are analytic in λ ∈ (−δ, δ), Remark 2.12 and Proposition A.8 imply that
these functions are also analytic for λ ∈ (−δ, δ). Similarly, the momentum constraint
F2((φ,w), λ) takes the form

F2((φ,w),λ) = (4.3)

habcd1 (λ)∂a∂bwc + habd2 (λ)∂awb + had3 (λ)wa +
2

3
λ2had4 (λ)∂aτφ

6 + λ2κjd,

where habcd1 , ..., had4 ∈ C1,α(Uj × (−δ, δ)) and are analytic with respect to λ ∈ (−δ, δ).
See Proposition A.10 for further discussion.

Expanding fab1 , ..., f
a
7 about λ = 0 and (φ + 1)5, (φ + 1)−7, (φ + 1)−3 about φ = 0,

we obtain the following power series representation for the Hamiltonian constraint for
((φ,w), λ) in a neighborhood of ((1,0), 0):

F1((φ+ 1,w), λ) = (4.4)
∞∑
i=0

1

i!

∂ifab1 (0)

∂λi
λi∂a∂bφ+

∞∑
i=0

1

i!

∂ifa2 (0)

∂λi
λi∂aφ+

1

8
λ(φ+ 1) +

5∑
i=0

τ 2

12

(
5

i

)
φiλ4

+
∞∑
i=0

(−1)i+1(i+ 2)!

8(i!)
κρφiλ2 +

∞∑
i,j=0

(−1)i+1(i+ 6)!

8(6!)(i!)(j!)

∂jfabcd3 (0)

∂λj
φiλj(∂awb)(∂cwd)

+
∞∑

i,j=0

(−1)i+1(i+ 6)!

8(6!)(i!)(j!)

∂jfabc4 (0)

∂λj
φiλj(∂awb)wc

+
∞∑

i,j=0

(−1)i+1(i+ 6)!

8(6!)(i!)(j!)

∂jfab5 (0)

∂λj
φiλj(wa)(wb)

+
∞∑

i,j=0

(−1)i+1(i+ 6)!

8(6!)(i!)(j!)

∂jfab6 (0)

∂λj
φiλj+2(∂awb)

+
∞∑

i,j=0

(−1)i+1(i+ 6)!

8(6!)(i!)(j!)

∂jfa7 (0)

∂λj
φiλj+2(wa)

+
∞∑
i=0

(−1)i+1(i+ 6)!

8(6!)(i!)
φiλ4σ2.
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Similarly, by expanding out habcd1 , habd2 , had3 , h
ad
4 with respect to λ about λ = 0 and

(φ+ 1)6 about φ = 0, we obtain a power series representation of the momentum con-
straint for ((φ,w), λ) in a neighborhood of ((1,0), 0):

F2((φ+ 1,w), λ) = (4.5)
∞∑
i=0

1

(i!)

∂ihabcd1 (0)

∂λi
λi∂a(∂bwc) +

∞∑
i=0

1

(i!)

∂ihabd2 (0)

∂λi
λi(∂awb)

+
∞∑
i=0

1

(i!)

∂ihad3 (0)

∂λi
λi(wa) +

∞∑
i=0

6∑
j=0

2

3(i!)

(
6

j

)
∂ihad4 (0)

∂λi
∂aτφ

jλi+2 + λ2κjd.

The regularity of the coefficients f1, · · · , f7, Proposition A.8, Remark 2.12 and the fact
that φ ∈ C2,α imply that the series in (4.4) converges to F1((φ,w), λ) in C0,α(M)
for |φ| < 1 and |λ| < δ. Similarly, the series in (4.5) converges to F2((φ,w), λ) in
C0,α(TM) for |φ| < 1 and |λ| < δ.

Let h = ((φ,w), λ), x0 = ((1,0), 0). We can rewrite the power series representations
of F1 and F2 in Eqs. (4.4) and (4.5) to express F ((φ+ 1,w), λ) = F (x0 +h) as a power
series of multilinear operators. For a given multi-index α = (α1, α2, α3), |α| = k, define
DαFi(x0 + h)|h=0 to be the resulting operator obtained by partially differentiating the
power series representations of F1(x0+h) and F2(x0+h) with respect to the multi-index
α = (α1, α2, α3), where we differentiate α1 times with respect to φ, α2 times with respect
to w, and α3 times with respect to λ. HereDαFi(x0+h)|h=0 is an α1-multilinear operator
on C2,α, an α2-multilinear operator on C2,α(TM), and an α3-multilinear operator on R.
Then by a slight abuse of notation, we may succinctly write

Mi,α(x0)h
α = (4.6)

DαFi(x0 + h)|h=0(φ, · · · , φ︸ ︷︷ ︸,w, · · · ,w︸ ︷︷ ︸, λ, · · · , λ︸ ︷︷ ︸), for i = 1, 2.

α1 times α2 times α3 times

We then define a k-linear operator for h ∈ C2,α × C2,α(TM)× R by letting

Mk(x0)h
k =

[ ∑
α: |α|=k

k!
(α1!)(α2!)(α3!)

M1,αh
α∑

α: |α|=k
k!

(α1!)(α2!)(α3!)
M2,αh

α

]
∈ C0,α × C0,α(TM), (4.7)

where the sums are over all three-tuples (α1, α2, α3) such that αi ≥ 0.
Then by Eqs. (4.4)-(4.5) we have that on each chart element Uj ,

F (x0 + h, λ) =

[
F1(x0 + h, λ)
F2(x0 + h, λ)

]
=
∞∑
k=1

Mk(x0)h
k. (4.8)

This follows since the expression Mk(x0)h
k is obtained by grouping all terms of com-

bined order k in φ,w and λ in Eqs. (4.4)-(4.5). We may rearrange the series represen-
tations of F1(x0 + h) and F2(x0 + h) given that the series in Eqs. (4.4)-(4.5) converge
absolutely in the sense of (2.6) for |λ| < δ and the power series expansions involving
(φ+ 1)−7, (φ+ 1)−3 converge uniformly for |φ| < 1. See Proposition A.8 for details. By
the same reasoning, we also have that on each Uj the series representation (4.8) will con-
verge absolutely in the sense of (2.6). By a partition of unity argument, we can conclude
that the operator F ((φ,w), λ) is an analytic operator if |φ| < 1 and |λ| < δ. �
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5. PROOF OF MAIN RESULTS

In this section we will parametrize solutions to F ((φ,w), λ) = 0 in a neighborhood
of ((1,0), 0), where we recall that

F ((φ,w), λ) =

[
−∆λφ+ 1

8
λφ+ λ4

12
τ 2φ5 − aw,λφ−7 − λ2κ

4
ρφ−3

Lλw + 2λ2

3
Dλτφ

6 + λ2κj

]
, (5.1)

where aw,λ = 1
8
(λ2σ+Lw)ab(λ

2σ+Lw)ab, and where (τ, σ, ρ, j) ∈ C1(M)×C(M)×
C(M)× C(TM) is specified data and gλ is a one-parameter family of metrics defining
the operators ∆λ,Lλ and Dλ. Our approach is to apply the Liapunov-Schmidt reduc-
tion in Section 2.3.1 to (5.1) to determine an explicit solution curve through the point
((1,0), 0). The analyticity of F ((φ,w), λ) and gλ will imply that this solution curve is
analytic in its parametrizing variable. This result along with the preexisting far-from-
CMC solution theory established in [13, 14, 20] will imply the results in Section 3.

Proof of Theorem 3.1. Let gλ be the one-parameter family of metrics defined in Theo-
rem 3.1. Given data (τ, σ, ρ, j) ∈ C1(M)× C(M)× C(M)× C(TM) for the confor-
mal equations, we then define an associated one-parameter family of nonlinear operators
F ((φ,w), λ) as in (5.1). By Proposition 4.1 we know that kerDXF ((1,0), 0) takes the
form

DXF (1,0, 0) =

[
−∆ 0

0 L

]
,

and that ker(DXF ((1,0), 0)) and ker(DXF ((1,0), 0)∗) are spanned by v̂0 =
[

1

0

]
.

We decompose
X = C2,α(M)⊕ C2,α(TM) = X1 ⊕X2,

and
Y = C0,α(M)⊕ C0,α(TM) = Y1 ⊕ Y2,

where

X1 = ker(DXF ((1,0), 0)), (5.2)

X2 = R(DXF ((1,0), 0)∗) ∩ (C2,α(M)⊕ C2,α(TM)), (5.3)

Y1 = R(DXF ((1,0), 0)) ∩ (C0,α(M)⊕ C0,α(TM)), (5.4)

Y2 = ker(DXF ((1,0), 0)∗). (5.5)

For justification that we can decompose X and Y in the manner described above, see the
appendix of [12].

Let P : X → X1 and Q : Y → Y2 be projection operators defined using v̂0. Then by
writing [

φ
w

]
= P

[
φ
w

]
+ (I − P )

[
φ
w

]
= v + y,

where v ∈ X1 and y ∈ X2, the Implicit Function Theorem 2.6 applied to

(I −Q)F (v + y, λ) = 0, (5.6)

implies that solutions to F ((φ,w), λ) = 0 satisfy

Φ(v, λ) = QF (v + ψ(v, λ), λ) = 0, (5.7)

in a neighborhood of ((1,0), 0), where y = ψ(v, λ) in this neighborhood and where
(0,0) = ψ((1,0), 0).



16 M. HOLST AND C. MEIER

By Proposition 4.3 and Theorem 2.6 the curve ψ(v, λ) is analytic in v and λ. Further-
more,

DλF ((1,0), 0) =

[
1/8
0

]
∈ X1.

Therefore, DλF ((1,0), 0) /∈ R(DXF ((1, 0), 0)), and we can apply Theorem 2.8 to con-
clude there exists a δ > 0 such that all solutions to F ((φ,w), λ) = 0 in a neighborhood
of ((1,0), 0) are parametrized by s ∈ (−δ, δ) in the following way:

(φ(s),w(s)) = v̂0 + sv̂0 + ψ(v̂0 + sv̂0, γ(v̂0 + sv̂0)), (5.8)

λ(s) = γ(sv̂0 + v̂0).

In (5.8), γ : U ⊂ X1 → (−ε, ε) ⊂ R is analytic in a neighborhood of (1,0), and is ob-
tained by applying the Implicit Function Theorem 2.6 to the operatorQF (v+ψ(v, λ), λ),
which is analytic in a neighborhood of ((1,0), 0). We write v = (s+ 1)v̂0 given that X1

is 1-dimensional.
Now we observe that if we choose λ sufficiently small so that the size conditions in

the positive Yamabe far-from-CMC results in Theorem A.11 are satisfied, then for any
λ > 0 sufficiently small, solutions to F ((φ,w), λ) = 0 will exist. Therefore, after
possibly shrinking the intervals (−δ, δ) and (−ε, ε), there must exist an s ∈ (−δ, δ) such
that λ(s) = γ(sv̂0 + v̂0) = λ for each λ ∈ (0, ε). Now we summarize the properties of
the function λ(s).

• λ(s) is analytic on the interval (−δ, δ).
• For any λ ∈ (0, ε), there exists an s ∈ (−δ, δ) so that λ(s) = λ.
• λ(0) = 0.

The first two properties tell us that the interval s ∈ (−δ, δ) cannot contain a set of
zeros of λ(s) with a limit point in (−δ, δ). In particular, we conclude that λ(s) cannot
vanish on any subinterval I ⊂ (−δ, δ). Therefore, one of following two possibilities
must occur:

(1) There exists λ ∈ (0, ε) and s1, s2 ∈ (−δ, δ), s1 6= s2, such that
λ(s1) = λ(s2) = λ.

(2) There exists λ ∈ (−ε, 0) and s0 ∈ (−δ, δ) such that λ(s0) = λ.

If (2) occurs, then

(φ0,w0) = (φ(s0),w(s0)) = v̂0 + s0v̂0 + ψ(v̂0 + s0v̂0, γ(v̂0 + s0v̂0)), (5.9)

λ0 = λ(s0) = γ(s0v̂0 + v̂0) < 0, (5.10)

satisfies F ((φ0,w0), λ0) = 0. This implies that the data set (gλ0 , λ
2
0τ, λ

2
0σ, λ

2
0ρ, λ

2
0j)

yields the solution (φ0,w0) to the conformal equations.
If (1) holds, then both

(φi,wi) = (φ(si),w(si)) = v̂0 + siv̂0 + ψ(v̂0 + siv̂0, γ(v̂0 + siv̂0)), (5.11)

λi = λ(si) = γ(siv̂0 + v̂0) = λ, (5.12)

satisfy F ((φi,wi), λ) = 0 for i ∈ {1, 2}. We showed in [12] that the operator

f(s) = ψ(v̂0 + sv̂0, γ(v̂0 + sv̂0)) = O(s2) as s→ 0.

The argument there followed by differentiating f(s) with respect to s and showing that
ḟ(0) = 0, which we can conclude from Proposition A.6. This fact ensures that for s
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in a small neighborhood of 0, the solutions (φ1,w1) and (φ2,w2) will be distinct. This
completes the proof of Theorem 3.1.

�

Proof of Theorem 3.2. IfM admits a metric with positive scalar curvature and a scalar
flat metric g0 with no conformal Killing fields, we can apply Theorem 2.11 to conclude
that there exists a one-parameter family of metrics gλ through g0 such that R(gλ) = λ.
Moreover, since the set of metrics with no conformal Killing fields is an open dense set,
for λ sufficiently small the metrics gλ will have no conformal Killing fields. See [5] for
details. We can therefore apply Theorem 3.1 to conclude our result. �

6. CONCLUSION

For a given closed, 3-dimensional manifold M that admits a metric with positive
scalar curvature we showed in Section 2.4 that there exists an analytic, one-parameter
family of metrics gλ that satisfies R(gλ) = λ. By adding the extra assumption thatM
also admitted a metric g0 with zero scalar curvature and no conformal Killing fields, we
were able to obtain an analytic family gλ through g0 with no conformal Killing fields that
satisfied R(gλ) = λ. Using this one-parameter family and given data (τ, σ, ρ, j) for the
conformal equations, in Section 3 we constructed a nonlinear operator

F ((φ,w), λ) =

[
−∆λφ+ 1

8
λφ+ λ4

12
τ 2φ5 − aw,λφ−7 − λ2κ

4
ρφ−3

Lλw + 2λ2

3
Dλτφ

6 + λ2κj

]
, (6.1)

with aw,λ = 1
8
(λ2σ + Lw)ab(λ

2σ + Lw)ab, where solutions to F ((φ,w), λ) = 0 satisfy
the conformal equations with given data (gλ, λ

2τ, λ2σ, λ2ρ, λ2j). In Section 4, we then
showed that the nonlinear operator (6.1) was analytic, and in section 5 we parametrized
solutions to the nonlinear problem F ((φ,w), λ) = 0 in a neighborhood of ((1,0), 0).

The analyticity of F ((φ,w), λ) implied that our parametrized solution curve

(φ(s),w(s)) = v̂0 + sv̂0 + ψ(v̂0 + sv̂0, γ(v̂0 + sv̂0)), (6.2)

λ(s) = γ(sv̂0 + v̂0), (6.3)

was analytic for s ∈ (−δ, δ). Using the analyticity of the solution curve (6.2) and the pre-
existing far-from-CMC solution theory from [13, 14, 20], we were then able to conclude
that one of the following two must possibilities must hold:

(1) There exists λ0 ∈ (0, ε) and s1, s2 ∈ (−δ, δ), s1 6= s2, such that
(φ(s1),w(s1)) 6= (φ(s2),w(s2)), λ(s1) = λ(s2) = λ0.

(2) There exists λ0 ∈ (−ε, 0) and s0 ∈ (−δ, δ) such that λ(s0) = λ0.
These two possibilities and Theorem 2.11 implied the conclusions of Theorem 3.1 and
Theorem 3.2, the two main results of our paper. Namely, we concluded that either
the positive Yamabe, far-from-CMC solutions to the constraint equations must be non-
unique, or that negative Yamabe, far-from-CMC solutions exist for this class of mani-
folds.

While this article does not provide specific criteria for when positive Yamabe, far-from
CMC solutions are non-unique and when negative Yamabe, far-from-CMC solutions ex-
ist, it does show that one of these two possibilities must hold for this manifold class.
Given that both of these aspects of the far-from-CMC solution theory are completely
unresolved, these results further extend our understanding of the conformal method, and
also provide some new analytical tools for obtaining additional results in this direction.
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In an effort to push this line of research further, we are currently working on a con-
crete way to distinguish between the cases above. Our analysis lies in whether the first
non-zero term in the Taylor expansion of λ(s) even or odd. That is, if λ(s) is of the form

λ(s) =
d(2i+1)λ

dλ2i+1
(0)s2i+1 +O(s2i+2) for i ≥ 2,

then negative Yamabe, far-from-CMC solutions exist for this class of metrics. On the
other hand, if

λ(s) =
d(2i)λ

dλ2i
(0)s2i +O(s2i+1) for i ≥ 2,

then the positive Yamabe, far-from-CMC solutions determined in [13, 14, 20] are non-
unique. In order to determine which form λ(s) has, one needs to express di

dλi
λ(0) in

terms of higher order derivatives of F ((φ,w), λ) as in Proposition A.7. This research is
currently under way.

Another interesting oberservation that can be made from our results is that in Theo-
rems 3.1-3.2, no distinction is made between the near-CMC and far-from-CMC cases.
We simply don’t assume that the near-CMC conditions hold. Given that solutions to the
conformal equations are unique in the near-CMC case, we must have that solutions to
the nonlinear problem F ((φ,w), λ) = 0 are unique in the event that the specified data
τ satisfies the near-CMC assumption. Therefore, in the near-CMC case, the near-CMC
solution theory forces us into the case that negative Yamabe solutions exist. As we have
mentioned, the uniqueness and properties of the solution curve ((φ(s),w(s)), λ(s)) de-
pend in large part on the first non-zero coefficient in the Taylor expansion of λ(s), which
depends on the value of the operator F ((φ,w), λ) and its derivatives with respect to φ,w
and λ at ((1,0), 0). As τ does not depend on these parameters, in this case we would not
expect that there should be a connection between the uniqueness properties of solutions to
F ((φ,w), λ) = 0 and the prescribed data τ . This strongly suggests that the solution prop-
erties of the nonlinear problem F ((φ,w), λ) = 0 in a neighborhood of ((1,0), 0) should
be the same in the near-CMC and far-from-CMC cases. This line of reasoning suggests
that negative Yamabe, far-from-CMC solutions exist for τ ∈ C1(M). However, this is
merely speculation and a rigorous analysis of the solution curves of F ((φ,w), λ) = 0
needs to be done as τ varies from from a function satisfying the near-CMC condition to
one not satisfying the near-CMC assumption.

APPENDIX A. SOME SUPPORTING RESULTS

A.1. Sobolev and Hölder norms onM. Fix a smooth background metric gab and let
va1,··· ,arb1,··· ,bs be a tensor of type r+ s. Then at a given point x ∈M, we define its magnitude
to be

|v| = (va1,··· ,bsva1,··· ,bs)
1
2 , (A.1)

where the indices of v are raised and lowered with respect to gab. We then define the
Banach space of k-differentiable functions Ck(M × R) with norm ‖ · ‖k to be those
functions u satisfying

‖u‖k =
k∑
j=0

sup
x∈M
|Dju| <∞,

where D is the covariant derivative associated with gab. Similarly, we define the space
Ck(T rsM) of k-times differentiable (r, s) tensor fields to be those tensors v satisfying
‖v‖k <∞.
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Given two points x, y ∈ M, we define d(x, y) to be the geodesic distance between
them. Let α ∈ (0, 1). Then we may define the C0,α Hölder seminorm for a scalar-valued
function u to be

[u]0,α = sup
x 6=y

|u(x)− u(y)|
(d(x, y))α

.

Using parallel transport, this definition can be extended to (r, s)-tensors v to obtain the
Ck,α seminorm [u]k,α [2]. This leads us to the following definition of the Ck,α(M× R)
Hölder norm

‖u‖k,α = ‖u‖k + [u]k,α

for scalar-valued functions, and we may define the Ck,α(T rsM) Hölder norm for (r, s)
tensors in a similar fashion.

Finally, we also make use in the article of the Sobolev spaces W k,p(M × R) and
W k,p(T rsM) where we assume k ∈ N and p ≥ 1. If dVg denotes the volume form
associated with gab, then the Lp norm of an (r, s) tensor is defined to be

‖v‖p =

(∫
M
|v|pdVg

) 1
p

. (A.2)

We can then define the Banach space W k,p(M× R) (resp. W k,p(T rsM)) to be those
functions (resp. (r, s) tensors) v satisfying

‖v‖k,p =

(
k∑
j=0

‖Djv‖pp

) 1
p

<∞.

The above norms are independent of the background metric chosen. Indeed, given
any two metrics gab and ĝab, one can show that the norms induced by the two metrics
are equivalent. For example, if D and D̂ are the derivatives induced by gab and ĝab
respectively, then there exist constants C1 and C2 such that

C1‖u‖k,ĝ ≤ ‖u‖k,g ≤ C2‖u‖k,ĝ,

where ‖ · ‖k,g denotes the Ck(M) norm with respect to g. This holds for the W k,p and
Ck,α norms as well. We also note that the above norms are related through the Sobolev
embedding theorem. In particular, the spaces Ck,α and W l,p are related in the sense that
if n is the dimension ofM and u ∈ W l,p and

k + α < l − n

p
,

then u ∈ Ck,α. See [2, 3, 11, 22] for a complete discussion of the Sobolev embed-
ding Theorem, Banach spaces on manifolds, and the above norms, and also [14] for a
numbmer of related results specifically for the constraint equations.

A.2. Banach Calculus and Taylor’s Theorem. Here we give a brief overview of some
basic tools from functional analysis. The following results are presented without proof
and are taken from [26]; see also [23]. We begin with some notation.

Suppose that X and Y are Banach spaces and U ⊂ X is a neighborhood of 0. For a
given map f : U ⊂ X → Y , we say that

f(x) = o(‖x‖), x→ 0 iff r(x)/‖x‖ → 0 as x→ 0.

We write L(X, Y ) for the class of continuous linear maps between the Banach spaces X
and Y .



20 M. HOLST AND C. MEIER

Definition A.1. Let U ⊂ X be a neighborhood of x and suppose that X and Y are
Banach spaces.

(1) We say that a map f : U → Y is F-differentiable or Fréchet differentiable at
x iff there exists a map T ∈ L(X, Y ) such that

f(x+ h)− f(x) = Th+ o(‖h‖), as h→ 0,

for all h in some neighborhood of zero. If it exists, T is called the F-derivative or
Fréchet derivative of f and we define f ′(x) = T . If f is Fréchet differentiable
for all x ∈ U we say that f is Fréchet differentiable in U . Finally, we define the
F-differential at x to be df(x;h) = f ′(x)h.

(2) The map f is G-differentiable or Gâteaux differentiable at x iff there exists a
map T ∈ L(X, Y ) such that

f(x+ tk)− f(x) = tTk + o(t), as t→ 0,

for all k with ‖k‖ = 1 and all real numbers t in some neighborhood of zero.
If it exists, T is called the G-derivative or Gâteaux derivative of f and we
define f ′(x) = T . If f is G-differential for all x ∈ U we say that f is Gâteaux
differentiable in U . The G-differential at x is defined to be dGf(x;h) = f ′(x)h.

Remark A.2. Clearly if an operator is F-differentiable, then it must also be
G-differentiable. Moreover, if the G-derivative f ′ exists in some neighborhood of x and
f ′ is continuous at x, then f ′(x) is also the F-derivative. This fact is quite useful for
computing F-derivatives given that G-derivatives are easier to compute. See [26, 23] for
a complete discussion.

We view F-derivatives and G-derivatives as linear maps f ′(x) : U → L(X, Y ). More
generally, we may consider higher order derivatives maps of f . For example, the map
f ′′(x) : U → L(X,L(X, Y )) is a bilinear form. We now state some basic properties of
F-derivatives. All of the following properties also hold for G-derivatives.

The Fréchet derivative satisfies many of the usual properties that we are accustomed
to by doing calculus in Rn. For example, we have the chain rule.

Proposition A.3 (Chain Rule). Suppose thatX, Y and Z are Banach spaces and assume
that f : U ⊂ X → Y and g : V ⊂ Y → Z are differentiable on U and V resp. and
that f(U) ⊂ V . Then the function H(x) = g ◦ f , i.e. H(x) = g(f(x)), is differentiable
where

H ′(x) = g′(f(x))f ′(x)

where we write g′(f(x))f ′(x) for g′(f(x)) ◦ f ′(x).

Given an operator f : X × Y → Z, we can also consider the partial derivative of f
with respect to either x or y. If we fix the variable y and define g(x) = f(x, y) : X → Z
and g(x) is Fréchet differentiable at x, then the partial derivative of f with respect to x
at (x, y) is fx(x, y) = g′(x). We can a make a similar definition for fy(x, y). Finally, we
observe that we can express the F-differential of f ′(x, y) in terms of the partials by using
the following formula:

f ′(x, y)(h, k) = fx(x, y)h+ fy(x, y)k. (A.3)

We have the following relationship between the partial derivatives and the Fréchet
derivative.
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Proposition A.4. Suppose that f : X × Y → Z is F-differentiable at (x, y). Then the
partial F-derivatives fx and fy exist at (x, y) and they satisfy (A.3). Moreover, if fx and
fy both exist and are continuous in a neighborhood of (x, y) then f ′(x, y) exists as an
F-derivative and (A.3) holds.

A.2.1. Taylor’s Theorem. As we have mentioned, the n-th order Fréchet derivative of a
given operator f : X → Y between Banach spaces in a n-multilinear operator. For a
given x0 ∈ X , define

f (n)(x0)h
n = f (n)(x0)(h, · · · , h︸ ︷︷ ︸) (A.4)

n times

Using this notation, we can state the following generalization of Taylor’s Theorem for
operators between Banach spaces. See [26, 23] for a proof and more details.

Theorem A.5. Let X and Y be Banach spaces. Suppose that f : U ⊂ X → Y is
defined on an open, convex neighborhood U of x0 ∈ X . Then if f ′(x), · · · f (n)(x) exist
for x ∈ U , then

f(x0 + h) =
N∑
n=1

1

n!
f (n)(x0)h

n +RN+1(x0), (A.5)

where

‖RN+1(x0)‖Y ≤
1

(N + 1)!
sup

0<τ<1
‖f (N+1)(x0 + τh)hN+1‖Y . (A.6)

A.3. Additional Bifurcation Theory. In this section we present without proof, some
additional results from [18] which are relevant to our discussion. Proposition A.6 presents
some useful properties of the maps Φ(v, λ), ψ(v, λ) and γ(v) defined in the (2.12), (2.11)
and (2.13) in Section 2.3.1.

Proposition A.6. Let the assumptions of Theorem 2.8 hold and let the operators Φ(v, λ),
ψ(v, λ) and γ(v) be defined as in (2.12), (2.11) and (2.13) and let λ0 and x0 = v0 + w0

be as in the previous discussion. Then

DvΦ(v0, λ0) = 0, Dvψ(v0, λ0) = 0, and Dvγ(v0) = 0, (A.7)

and each of these operators has the same order of differentiability as F (x, λ).

Once we’ve obtained a unique solution curve (x(s), λ(s)) through (x0, λ0), we analyze
λ̈(0) (where ˙ = d

ds
) to determine additional information about the solution curve. In

particular, we can determine whether or not a saddle node bifurcation or fold occurs
at (x0, λ0). This type of bifurcation occurs when the solution curve {x(s), λ(s)} has a
turning point at (x0, λ0). The next proposition, also taken from [18], provides us with a
method to determine information about λ̈(0).
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Proposition A.7. Let the assumptions of Theorem 2.8 be in effect. Additionally assume
that ker(DXF (x0, λ0)) is spanned by v̂0. Then

d

ds
F (x(s), λ(s))

∣∣∣∣
s=0

= (A.8)

DxF (x0, λ0)ẋ(0) +DλF (x0, λ0)λ̇(0) = DxF (x0, λ0)v̂0 = 0

d2

ds2
F (x(s), λ(s))

∣∣∣∣
s=0

= (A.9)

D2
xxF (x0, λ0)[v̂0, v̂0] +DxF (x0, λ0)ẍ(0) +DλF (x0, λ0)λ̈(0) = 0.

In particular, an application of the projection operator Q defined in (2.9) to (A.9) yields

QD2
xxF (x0, λ0)[v̂0, v̂0] +QDλF (x0, λ0)λ̈(0) = 0. (A.10)

This implies that if DλF (x0, λ0) /∈ R(DxF (x0, λ0)) and

D2
xxF (x0, λ0)[v̂0, v̂0] /∈ R(DxF (x0, λ0)),

then λ̈(0) 6= 0.

The significance of Proposition A.7 is that it gives explicit conditions that allow us to
determine whether or not λ̈(0) is nonzero. Heuristically, the fact that λ̈(0) 6= 0 means
that λ(s) has a turning point at s = 0. This means that the graph of {x(s), λ(s)} looks
like a parabola and that a “fold” or saddle node bifurcation occurs at s = 0 (cf. [18]).

A.4. Local Representation of Conformal Equations. Here we determine the local
representation of the Hamiltionian and momentum constraints in the one-parameter fam-
ily (1.7) analyzed in this paper. Throughout this discussion, suppose that gλ ⊂ As,p
(s > 2 + 3/p) is the one-parameter family of metrics, analytic in λ, that is defined in
Theorem 3.1. Let ∆λ, Lλ andDλ be the associated Laplace-Beltrami, conformal Killing,
and covariant derivative operators. We begin with the following proposition, which de-
scribes the local representation of the one-parameter family of metrics gλ = g(x, λ).

Proposition A.8. The components gab(x, λ) of the one-parameter family g(x, λ) are an-
alytic functions in the variable λ. Moreover, the Christoffel symbols and the coordinate
derivatives of the Christoffel symbols defined by this metric are analytic functions in the
variable λ.

Proof. Because the one-parameter family g(x, λ) is analytic in λ, we have that

g(x, λ) =
∞∑
k=1

1

k!
Dk
λg(x, 0) (λ, · · · , λ)︸ ︷︷ ︸ . (A.11)

k times

The above expression is an infinite sum of power operators as in Definition 2.4, where
for each k,

Dk
λg(x, 0) :R× · · · × R︸ ︷︷ ︸→ W s,p(T 0

2M) (A.12)

k times
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is a k-multilinear operator from R to W s,p(T 0
2M). Given that λ ∈ R and each Dk

λg(x, 0)
is a multilinear operator, the series (A.11) can be rewritten as

g(x, λ) =
∞∑
k=1

1

k!
Dk
λg(x, 0)(λ, · · · , λ) (A.13)

=
∞∑
k=1

1

k!
Dk
λg(x, 0)(1, · · · , 1)λk.

The above series converges in the sense of Definition 2.4, and therefore converges to
g(x, λ) inW s,p(T 0

2M). Furthermore, the local coordinates for g(x, λ) are analytic, where

gab(x, λ) = g(x, λ)

(
∂

∂xa
,
∂

∂xb

)
=
∞∑
k=1

1

k!
Dk
λg(x, 0)(1, · · · , 1)

(
∂

∂xa
,
∂

∂xb

)
λk,

(A.14)

converges in W s,p. Finally, because s > 2 + 3/p, the series
∞∑
k=0

1

k!
‖Dk

λg(x, 0)‖C2|λ|k

converges, where ‖Dk
λg(x, 0)‖C2 is the operator norm (2.3) induced by the norm on R

and the norm on C2(T 0
2M). This implies that all first and second derivatives of gab(x, λ)

will be analytic with respect to λ and will have power series representations that are
obtained by differentiating the series (A.14) inside the sum. �

We can now present the following Proposition concerning the local formulation of the
family Hamiltonian constraint equations given in (3.1).

Proposition A.9. On a given coordinate chart element (Uj, ρj), the family of Hamilton-
ian constraint equations

−∆λφ+
1

8
λφ+

λ4

12
τ 2φ5 − 1

8
(λ2σ + Lw)ab(λ

2σ + Lw)abφ−7 − λ2κ

4
ρφ−3 = 0 (A.15)

is of the form

fab1 (λ)∂a∂bφ+ fa2 (λ)∂aφ+
1

8
λφ+

λ4

12
τ 2φ5 − φ−7

8

(
fabcd3 (λ)∂awb∂cwd (A.16)

+fabc4 (λ)∂awbwc + fab5 (λ)wawb + λ2fab6 ∂awb + λ2fa7 (λ)wa + λ4σ2
)
− κλ2

4
ρφ−3 = 0,

where fab1 , ..., f
a
7 are functions in C2,α(Uj × (−δ, δ)) that are analytic with respect to

λ ∈ (−δ, δ).

Proof. To obtain the form (A.16), write

(Lw)ab(Lw)ab =

(
∂awb + ∂bwa − 2Γcabwc −

2

3
gabg

cd∂cwd +
2

3
gabg

dcΓecdwe

)
(A.17)

×
(
gacgbd

(
∂cwd + ∂dwc − 2Γecdwe −

2

3
gcdg

ef∂ewf +
2

3
gcdg

feΓhefwh

))
in local coordinates, expand and group terms. Similarly, we write σab(Lw)ab in local
coordinates and then expand. Combining these expansions we have that
(λ2σ + Lw)ab(λ

2σ + Lw)ab has the form of the expression in the parenthesis in (A.16).
Writing out the local representation of the Laplace-Beltrami operator then implies that
Hamiltonian constraint has the form of Eq. (A.16). That the functions fab1 , ..., f

a
7 are
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analytic then follows from Proposition A.8 and and the fact that fab1 , · · · , fa7 are formed
from sums, products, and coordinate derivatives of the metric. �

We have a similar result concerning the local representation of the family of momen-
tum constraint equations given in (3.1).

Proposition A.10. On a given coordinate chart element (Uj, ρj), the family of momentum
constraint equations

Lλw +
2λ2

3
Dλτφ

6 + λ2κj = 0 (A.18)

is of the form

habcd1 (λ)∂a∂bwc + habd2 (λ)∂awb + had3 (λ)wa +
2

3
λ2had4 (λ)∂aτφ

6 + λ2κjd = 0, (A.19)

where habcd1 , ..., had4 ∈ C2,α(Uj × (−δ, δ)) and are analytic with respect to λ ∈ (−δ, δ).

Proof. To obtain Eq. (A.19), write

(Lλw)a = Db(Lw)ab = gbcDc(Lw)ab = gbc
(
∂c(Lw)ab − Γdca(Lw)db − Γdcb(Lw)ad

)
(A.20)

=gbc
[
∂c

(
∂awb + ∂bwa − 2Γcabwc −

2

3
gabg

cd∂cwd +
2

3
gabg

dcΓecdwe

)
− Γdca

(
∂dwb + ∂bwd − 2Γedbwe −

2

3
gdbg

ce∂cwe +
2

3
gbdg

cdΓecdwe

)
− Γdcb

(
∂awd + ∂dwa − 2Γeadwe −

2

3
gadg

ce∂cwe +
2

3
gadg

cdΓecdwe

)]
in local coordinates, expand and group terms. This gives the first three terms in Eq.
(A.19), where habcd1 , habd2 and had3 are formed by sums and products of the components of
g and its first and second derivatives. Therefore by Proposition A.8 these functions will
be analytic in λ. Finally, by writing the covariant derivative Dλ in local coordinates we
obtain the result. �

A.5. Far-from-CMC Existence Results. Here we present a Theorem from [14] (see
also [13] for the smooth case), which gives conditions for which solutions to the CTT
formulation exist without the near-CMC assumption.

Theorem A.11. Let (M, hab) be a 3-dimensional closed Riemannian manifold suppose
that p ∈ (1,∞) and s ∈ (1 + 3

p
,∞) are given. Let hab ∈ W s,p admit no conformal

Killing field and be in Y+(M), the positive Yamabe class. Select q and e to satisfy:
• 1

q
∈ (0, 1) ∩ (0, s−1

3
) ∩ [3−p

3p
, 3+p

3p
],

• e ∈ (1 + 3
q
,∞) ∩ [s− 1, s] ∩ [3

q
+ s− 3

p
− 1, 3

q
+ s− 3

p
].

Assume that the conformal data (τ, σ, ρ, j) satisfies:

• τ ∈ W e−1,q if e ≥ 2, and τ ∈ W 1,z otherwise, with z = 3q

3 + max{0, 2− e}q
,

• σ ∈ W e−1,q, with ‖σ‖∞ sufficiently small,

• ρ ∈ W s−2,p
+ ∩ L∞\{0}, with ‖ρ‖∞ sufficiently small

• j ∈We−2,q, with ‖j‖e−2,q sufficiently small.

Then there exist φ ∈ W s,p with φ > 0 and w ∈ We,q solving the Einstein constrain
equations.
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