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Abstract. We derive new upper bounds on the dimension of the determining set for weak solutions of the Navier-Stokes
equations. Our results extend the recent bounds due to Jones and Titi in three ways. First, the bounds are derived under the
minimal H

1-regularity required to define a weak solution of the Navier-Stokes equations. Second, the new bounds are valid
for arbitrary polyhedral domains, whereas previous results were derived for the unit square. Third, our results hold also in
the three-dimensional case, whereas previous bounds were restricted to two dimensions. The generalizations are made possible
through the use of some new results in polynomial approximation theory of non-smooth functions in Sobolev spaces.
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1. Introduction. Consider a viscous incompressible fluid in Ω ⊂ R
d, where Ω is a bounded open

domain with Lipshitz continuous boundary, and where d = 2 or d = 3. Given the kinematic viscosity ν > 0,
and the scalar volume force function f(x, t) for each x ∈ Ω and t ∈ (0,∞), the governing Navier-Stokes
equations for the fluid velocity vector u = u(x, t) and the scalar pressure p = p(x, t) are:

∂u

∂t
− ν∆u + (u · ∇)u + ∇p = f in Ω × (0,∞),(1)

∇ · u = 0 in Ω × (0,∞).(2)

Also provided are initial conditions u(0) = u0, as well as appropriate boundary conditions on ∂Ω. The no-slip
boundary case is considered in this paper: u(x, t) = 0, ∀x ∈ ∂Ω, t ∈ (0,∞). The question of determining
sets (nodes, modes, or volumes) for strong (that is, H2-regular) solutions of the Navier-Stokes equations, for
both no-slip and periodic boundary conditions, has been considered recently in [5, 6, 8]. In particular, we
mention the extensive recent work of Jones and Titi on the subject [9, 10]. The relevance of the determining
set question in theoretical fluid mechanics is well-established; see [10] for an excellent discussion.

Recall that H2-regular functions have point-wise values in both two and three dimensions (since the
imbedding H2 ↪→ C0 holds in both cases), so that a set of determining nodes may be defined as follows.

Definition 1. Assume that u(t) solves (1)–(2) with source function f(t), and that v(t) solves (1)–(2)
with source function g(t), where limt→∞ ‖f(t) − g(t)‖L2(Ω) = 0. A finite set of points E = {x1, x2, · · · , xN}
in Ω ⊂ R

d forms a set of determining nodes if

lim
t→∞

(u(xj , t) − v(xj , t)) = 0, j = 1, . . . , N,(3)

implies that

lim
t→∞

‖u(t) − v(t)‖L2(Ω) = 0.

An alternate definition of determining nodes can be given for the H2-regular case by introducing a
standard piecewise linear interpolant Ihu of a function u. To construct the interpolant, a mesh of simplices
(triangles in two dimensions or tetrahedra in three) is first built having as vertices the given nodes E , for
example by using a Delaunay tessellation. Once the mesh is available, the interpolant can by defined by
employing the usual piecewise-linear finite element nodal basis. With such an interpolant, equation (3) in
Definition 1 may be replaced with

lim
t→∞

‖Ihu(t) − Ihv(t)‖L2(Ω) = 0.(4)

One approach to generalizing the notion of determining nodes to the H1-case is to generalize the inter-
polant Ih so that it remains valid for H1-functions; this approach is taken in the present paper, and lower
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bounds for the number N of determining nodes are derived for both two and three dimensions. The bounds
take the form

N > CGd,

where G is the Grashof number, C is a constant, and d is the spatial dimension. For d = 2, the resulting
H1-bound grows quadratically with the Grashof number, whereas the most recent H2-bound of Jones and
Titi [10] grows only linearly with Grashof number. Whether it is possible to show linear growth under only
H1-regularity remains an open question. The generalizations are made possible through the use of some new
results in polynomial approximation theory of non-smooth functions in Sobolev spaces.

Outline of the paper. Some background material on the appropriate Sobolev spaces is first presented
in §2, and the notation for the remainder of the paper is established. In §3, the weak evolution equation for
the determining set function is derived, setting the stage for the analysis in §4 and §6. In §4, some additional
required results are summarized, including some inequalities arising from the Sobolev imbedding theorems in
special cases, and some extensions to several inequalities originally due to Temam, essential for analyzing and
bounding the nonlinear term appearing in weak formulations of the Navier-Stokes equations. In §5, a finite
element interpolant due to Scott and Zhang is presented, which will be a key tool in the analysis in §6. This
interpolant makes it possible to extend of the notion of determining nodes to the case of H1-functions with
no point-wise values, and to generalize a key interpolation lemma in [10], valid for H2-functions on the unit
square, to the more general setting of H1-functions on arbitrary polyhedral domains in both two and three
dimensions. In §6, a natural generalization of the determining node set is formulated for the H1-case, and
bounds are derived for the number of determining nodes for weak solutions of the Navier-Stokes equations.

2. Spaces and norms. Some background material on the appropriate Sobolev spaces is presented in
this section. The notation for the remainder of the paper is established, following for the most part the
notation of [15].

Euclidean d-space is denoted as R
d, a point of which is denoted x = (x1, . . . , xd), where xi ∈ R. The

norm in R
d is denoted as |x| = (

∑d
i=1 x2

i )
1/2. The set Ω ⊂ R

d denotes a bounded open subset of R
d, the

boundary of which is denoted as Γ. Scalar, vector, and matrix functions over Ω are denoted as u(x); since
it will usually be clear when the scalar, vector, or matrix case is intended, a distinction will not be made
in the notation. By a multi-index α is meant the d-tuple α = (α1, . . . , αd), αi a nonnegative integer, where

|α| =
∑d

i=1 αi, which is used to denote mixed partial differentiation of order |α|:

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαd

d

.

Single partial differentiation is denoted as Diu = ∂u/∂xi. By defining the vector ∇ = (D1, . . . , Dd), and em-
ploying the summation convention, the gradient and divergence operations can be written as tensor products:
(grad u)i = (∇u)i = Diu, (grad u)ij = (∇u)ij = Diuj , and div u = ∇ · u = Diui.

The space of k-times continuously differentiable functions defined in Ω is denoted Ck(Ω), and the sub-
space of Ck(Ω) with compact support is denoted Ck

0 (Ω). The Lebesgue spaces are denoted as Lp(Ω), and
are Banach spaces when equipped with the norm ‖u‖Lp(Ω) = (

∫

Ω
|u|p dx)1/p. Recall that the space L2(Ω)

is also a Hilbert space when equipped with the inner-product (u, v) = (u, v)L2(Ω) =
∫

Ω uv dx. The Sobolev
spaces based on L2(Ω) may be defined as

Hk(Ω) = {u ∈ L2(Ω) | Dαu ∈ L2(Ω), 0 ≤ |α| ≤ k},

where Dα denotes the weak derivative defined in the usual way. The spaces Hk(Ω) are Hilbert spaces when
equipped with the inner-products and induced norms:

(u, v)Hk(Ω) =
∑

0≤|α|≤k

(Dαu, Dαv)L2(Ω), ‖u‖Hk(Ω) = (u, u)
1/2

Hk(Ω)
.

The norm in Hk(Ω) can be written in terms of the semi-norm | · |Hk(Ω), in the following way:

‖u‖2
Hk(Ω) =

k
∑

j=0

|u|2Hj(Ω), where |u|Hk(Ω) =





∑

|α|=k

‖Dαu‖2
L2(Ω)





1/2

.
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Note that H0(Ω) = L2(Ω), and also (·, ·)H0(Ω) = (·, ·)L2(Ω) and | · |H0(Ω) = ‖ · ‖H0(Ω) = ‖ · ‖L2(Ω). The
following subspace will be important

Hk
0 (Ω) = {u ∈ Hk(Ω) | Dαu = 0 ∀ x ∈ Γ, 0 ≤ |α| ≤ k − 1}.

The spaces above extend naturally to vector functions u = (u1, u2, . . . , ud), which are denoted in bold-
face (following [15]) as follows:

C∞
0 (Ω) = {C∞

0 (Ω)}d , L2(Ω) =
{

L2(Ω)
}d

, Hk(Ω) =
{

Hk(Ω)
}d

, Hk
0(Ω) =

{

Hk
0 (Ω)

}d
.

The inner-products and norms in L2(Ω) and (for example) H1(Ω) are extended in the natural way as follows:

(u, v) = (u, v)L2(Ω) =
d
∑

i=1

(ui, vi), ‖u‖L2(Ω) =

(

d
∑

i=1

‖ui‖2
L2(Ω)

)1/2

, |u|H1(Ω) =

(

d
∑

i=1

|ui|2H1(Ω)

)1/2

,

‖u‖H1(Ω) =
(

‖u‖2
L2(Ω) + |u|2H1(Ω)

)1/2

=

(

d
∑

i=1

‖ui‖2
L2(Ω) +

d
∑

i=1

|ui|2H1(Ω)

)1/2

.

The Sobolev Imbedding Theorems describe the relationships between the Sobolev spaces and classical
functions spaces. To say that a Banach space X is continuously imbedded in a Banach space Y , denoted as
X ↪→ Y , means that X is a subspace of Y , and that there exists a bounded and linear (hence continuous),
one-to-one mapping A from X into Y . If the mapping A is compact (i.e., A maps bounded sets into pre-
compact sets), then the imbedding is called compact. In §3, some specific imbeddings are considered in
more detail. Many of the imbedding results require that the domain Ω be bounded with a locally Lipshitz
boundary, denoted as Ω ∈ C0,1 (cf. page 67 in [2]). As an example, bounded open convex sets Ω ⊂ R

d satisfy
Ω ∈ C0,1 (Corollary 1.2.2.3 in [7]). Therefore, convex polyhedral domains, which we restrict our attention to
here, are in C0,1.

Define the space of divergence free C∞ vector functions V as

V = {φ ∈ C∞
0 (Ω) | ∇ · φ = 0} ,

and let

H = closure of V in L2(Ω), V = closure of V in H1
0(Ω).

The following facts are known about the spaces H and V [15].
Theorem 2.1. (Temam) If Ω ∈ C0,1, then V =

{

u ∈ H1
0(Ω) | ∇ · u = 0

}

and L2(Ω) = H + H⊥, where

H =
{

u ∈ L2(Ω) | ∇ · u = 0, trace u = 0
}

, H⊥ =
{

u ∈ L2(Ω) | u = ∇p, p ∈ H1(Ω)
}

Proof. See pages 15–18 in [15].

3. The evolution equation for the determining function. In this section, the strong and weak
formulations of the Navier-Stokes equations are considered, employing the Leray projector, which has the
effect of removing the divergence-free constraint from the equation set. The weak evolution equation for the
determining set function is then derived, setting the stage for the analysis in §4 and §6.

Define the Leray projector P from the spaces H1
0(Ω) and L2(Ω) onto the spaces V and H , respectively, of

divergence free functions, as in [15]. Using the Leray projector, the projected strong form of the Navier-stokes
equations (1)–(2) becomes:

du

dt
+ νAu + B(u, u) = f, u(0) = u0,

where u ∈ L2((0, T ); V ), and where the Stokes operator A and bilinear form B(·, ·) are defined as

Au = −P∆u, B(u, v) = P ((u · ∇)v).
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To derive the weak formulation, define the bilinear (“Dirichlet”) form a(·, ·) and trilinear form b(·, ·, ·) as:

a(u, v) = (∇u,∇v), b(u, v, w) = (B(u, v), w) = (P ((u · ∇)v), w).

Note that a(u, u) ≡ |u|2H1(Ω). Multiplication of the projected strong form equations by a test function η ∈ V ,

and use of a generalized Green’s formula in the usual way to produce the bilinear form a(·, ·) from the Stokes
term νAu, gives rise to the weak formulation.

Definition 2. Given f ∈ L2((0, T ); H), if u ∈ L2((0, T ); V ) satisfies

(

du

dt
, η

)

+ νa(u, η) + b(u, u, η) = (f, η), ∀η ∈ V,(5)

u(0) = u0,(6)

then u is called a weak solution of the Navier-Stokes equations.
If u satisfies equation (5), then it can be shown that the initial condition (6) makes sense point-wise

(see [15], page 281, for the analysis).
The following symmetries can be shown for the trilinear form.
Lemma 3.1. It holds that
1. b(u, v, v) = 0
2. b(u, v, w) = −b(u, w, v)
3. b(u − v, u, u− v) = b(u, u, u− v) − b(v, v, u − v)

Proof. For the proof of properties 1 and 2, see page 163 in [15]. For the proof of property 3, note that

b(u, u, u− v) − b(v, v, u − v) = b(u, u, u− v) − b(u− (u − v), u − (u − v), u − v)

= b(u, u, u− v) − b(u, u, u− v) + b(u − v, u, u− v) + b(u, u − v, u − v) − b(u − v, u − v, u − v)

= b(u− v, u, u − v) + b(u, u− v, u − v) − b(u − v, u − v, u − v).

The second and third terms above must be zero by property 1, so property 3 follows.
For distinct source functions f, g ∈ L2((0,∞); H) and corresponding weak solutions u and v to (5)–(6),

consider the difference function w = u − v, referred to here as the determining function. The weak form
equations for w, taking as the test function η ≡ w, have the form

(

dw

dt
, w

)

+ νa(w, w) + b(u, u, w) − b(v, v, w) = (f − g, w).

There are several alternate forms for the time derivative term,
(

dw

dt
, w

)

=
1

2

d

dt
‖w‖2

L2(Ω) = ‖w‖L2(Ω)
d

dt
‖w‖L2(Ω).

By Lemma 3.1, b(w, u, w) = b(u, u, w) − b(v, v, w), so the determining function w = u − v must satisfy

1

2

d

dt
‖w‖2

L2(Ω) + ν|w|2H1(Ω) + b(w, u, w) = (f − g, w), u, v ∈ V, Ω ⊂ R
d, d = 2, 3.(7)

This equation, which is an evolution equation for the L2-norm of the determining function w = u − v, will
the focus of the analysis in §6.

4. Imbeddings and inequalities. In this section, some additional required results are summarized,
including some inequalities arising from the Sobolev imbedding theorems in special cases, and some extensions
to several inequalities originally due to Temam, essential for analyzing and bounding the nonlinear term
appearing in weak formulations of the Navier-Stokes equations.

Recall first Young’s inequality and the Poincare inequality.
Theorem 4.1. (Young’s Inequality) For a, b ≥ 0, 1 < p, q < ∞, 1/p + 1/q = 1, it holds that

ab ≤ ap

p
+

bq

q
.
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Proof. See page 42 in [11].
Theorem 4.2. (Poincare Inequality) If Ω is bounded, then it holds that

‖u‖L2(Ω) ≤ ρ(Ω)|u|H1(Ω), ∀u ∈ H1
0 (Ω).(8)

Proof. See pages 16–18 in [12].
It follows easily that this result extends to the vector case of u ∈ H1

0(Ω), as do the other classical results
for the scalar Lp(Ω) and Sobolov spaces; see [15] for a detailed exposition. The convention here (as in [15])
will be to subscript the vector norms the same as the scalar case.

The following additional inequalities will be important, which follow from the Sobolev imbedding theo-
rems in special cases.

Theorem 4.3. (Sobolev Imbedding Inequalities) Let Ω ∈ C0,1. Then for any u ∈ H1
0(Ω), the following

imbedding inequalities hold:

d = 2 : ‖u‖Lq(Ω) ≤ C(q, Ω)‖u‖H1(Ω), 1 ≤ q < ∞, Ω ⊂ R
2.

d = 3 : ‖u‖Lq(Ω) ≤ C(q, Ω)‖u‖H1(Ω), 1 ≤ q ≤ 6, Ω ⊂ R
3.

Proof. See page 97 in [2] for a proof, or page 158 in [15] for a discussion.
The following two less familiar lemmas from [15] will be essential later.
Lemma 4.4. (Temam) Let Ω ∈ C0,1, and Ω ⊂ R

2. Then for any u ∈ H1
0(Ω), it holds that:

‖u‖L4(Ω) ≤ 21/4‖u‖1/2
L2(Ω)|u|

1/2
H1(Ω).

Proof. See page 291 in [15].
Lemma 4.5. (Temam) Let Ω ∈ C0,1, and Ω ⊂ R

3. Then for any u ∈ H1
0(Ω), it holds that:

‖u‖L4(Ω) ≤ 21/2‖u‖1/4
L2(Ω)|u|

3/4
H1(Ω).

Proof. See page 296 in [15].
A priori bounds can be derived for the nonlinear term b(·, ·, ·) appearing in (7). If d = 2, a classical

result is the following bound.
Lemma 4.6. (Ladyzhenskaya) Let Ω ⊂ R

2. Then the trilinear form b(u, v, w) is bounded on V × V × V
as follows:

b(u, v, w) ≤ 21/2‖u‖1/2
L2(Ω)|u|

1/2
H1(Ω)|v|H1(Ω)‖w‖1/2

L2(Ω)|w|1/2H1(Ω).

Proof. A proof appears on page 292 in [15], employing Lemma 4.4.
If d = 3, the following weaker bound is possible.
Lemma 4.7. Let Ω ⊂ R

3. Then the trilinear form b(u, v, w) is bounded on V × V × V as follows:

b(u, v, w) ≤ 2‖u‖1/4
L2(Ω)|u|

3/4
H1(Ω)|v|H1(Ω)‖w‖1/4

L2(Ω)|w|3/4H1(Ω).

Proof. By repeated use of Hölder and Schwarz inequalities, it is straight-forward to show that

|b(u, v, w)| ≤ ‖u‖L4(Ω)|v|H1(Ω)‖w‖L4(Ω).

Employing the imbedding inequality from Lemma 4.5 twice, we have that

|b(u, v, w)| ≤ 2‖u‖1/4
L2(Ω)|u|

3/4
H1(Ω)|v|H1(Ω)‖w‖1/4

L2(Ω)|w|3/4H1(Ω).
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In the case that the first and third arguments are the same, we can derive the following alternative
bound containing a correction term, which holds in both two and three dimensions.

Lemma 4.8. Let Ω ⊂ R
d, d = 2 or d = 3. Then the form b(w, v, w) is bounded on V × V × V as

b(w, v, w) ≤ Cd|v|H1(Ω)

(

‖w‖L2(Ω)|w|H1(Ω) + λd|w|2H1(Ω)

)

,

with λ2 = 0, C2 = 21/2, and λ3 = 1, C3 = C2
s max{ρ, 1}, where Cs is the constant from the Sobolev imbedding

inequality, and ρ is the constant from the Poincare inequality.
Proof. The d = 2 case is immediate since it is just Lemma 4.6 again, with the first and third argument

the same. For the case d = 3, we begin as in the proof of Lemma 4.7 with

|b(w, v, w)| ≤ ‖w‖L4(Ω)|v|H1(Ω)‖w‖L4(Ω).

We now employ instead the imbedding inequality in Theorem 4.3, which holds in three-dimensions:

|b(w, v, w)| ≤ C2
s |v|H1(Ω)‖w‖2

H1(Ω) = C2
s |v|H1(Ω)

(

‖w‖2
L2(Ω) + |w|2H1(Ω)

)

.

Employing the Poincare inequality to bound part of the L2-norm gives

|b(w, v, w)| ≤ C2
s |v|H1(Ω)

(

ρ‖w‖L2(Ω)|w|H1(Ω) + |w|2H1(Ω)

)

≤ C3|v|H1(Ω)

(

‖w‖L2(Ω)|w|H1(Ω) + |w|2H1(Ω)

)

,

where C3 = C2
s max{ρ, 1}.

5. Polynomial interpolation in H1
0. In this section, a finite element interpolant due to Scott and

Zhang is presented, which will be a key tool in the analysis in §6. The interpolant requires only the minimal
H1-regularity for existence and error estimation, and is similar to the usual nodal interpolant and based on
the same nodal mesh. This interpolant makes it possible to extend of the notion of determining nodes to
the case of H1-functions with no point-wise values, and to generalize a key interpolation lemma in [10], valid
for H2-functions on the unit square, to the more general setting of H1-functions on arbitrary polyhedral
domains in both two and three dimensions.

Let Ω ⊂ R
d be a d-dimensional polygon, exactly tessellated with quasi-uniform, shape-regular simplices,

the vertices of which form N interpolation nodes. Note that for quasi-uniform, shape-regular tessellations
in R

d (see [4] for detailed discussions), it holds that

N = CNh−d, or h = ChN
−1/d,

where h is the maximum of the diameters of the simplices, and where CN and Ch are constants, both of
which are independent of both N and h.

In order to discuss interpolation of functions in H1, recall the Sobolev Imbedding Theorems for the
Hilbert scale of spaces Hk, k real and k ≥ 0. For a more detailed discussion, see [2].

Theorem 5.1. (Sobolev Imbedding Theorems) If Ω ⊂ R
d satisfies Ω ∈ C0,1, then for nonnegative real

numbers k and s it holds that

Hk(Ω) ↪→ Cs(Ω̄), k > s +
d

2
.

For proper definition of a piecewise linear nodal interpolant based on the nodes of a tessellation of Ω,
u ∈ H1(Ω) must be bounded, so that u exists point-wise. This will be true if u is continuous on Ω, which
implies uniform continuity and hence boundedness on Ω̄. For d = 1, the Theorem 5.1 shows that H1(Ω) is
continuously imbedded in C0(Ω̄), so for one-dimensional problems, the interpolant can be correctly defined.
However, in higher dimensions

H1+α(Ω) ↪→ C0(Ω̄),

only if α > 0 when d = 2, or if α > 1/2 when d = 3. This imbedding theorem with α = 1 is important in
the analysis appearing in [10], and consequently their results require u ∈ H2(Ω).

While it may be possible to use the nodal interpolant and a regularity assumption such as u ∈ H1+α(Ω)
for α > 0 when d = 2 and α > 1/2 when d = 3, an alternative approach is taken here. The interpolant
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due to Scott and Zhang [14] will be employed, which can be defined correctly for H1-functions in both two
and three spatial dimensions. See [14] for a detailed construction of the interpolant, which is referred to
in this paper as the SZ-interpolant, and will be denoted as Ih. The SZ-interpolant Ih is constructed from
a combination linear interpolation and local averaging on faces and edges of simplices. It can be shown
that such a combination produces an interpolant which is a projection from H1

0 onto Vh, the finite element
subspace of H1

0 (Ω) consisting of continuous piecewise linear polynomials defined over the simplical mesh.
The following interpolation result holds [3, 14, 16] for the SZ-interpolant.
Lemma 5.2. (Scott and Zhang) For the SZ-interpolant of u ∈ Hs

0(Ω), it holds that

‖u − Ihu‖Hm(Ω) ≤ Cih
s−m|u|Hs(Ω), for m = 0, 1 and s ≥ 1.

Proof. See [14].
This result extends immediately to vector functions in Hs

0 for s ≥ 1, and thus to any u ∈ V ⊂ H1
0(Ω).

In particular,
Lemma 5.3. For the SZ-interpolant of u ∈ H1+α

0 (Ω), where α ≥ 0, it holds that

‖u − Ihu‖L2(Ω) ≤ Cih
1+α|u|H1+α(Ω).

Proof. The proof follows immediately from Lemma 5.2.
The following lemma is a generalization to H1+α, α ≥ 0, and to general two and three-dimensional

polyhedral domains, of the two-dimensional H2-result in [10], valid for unit square.
Lemma 5.4. For w ∈ H1+α

0 (Ω), α ≥ 0, where Ω ⊂ R
d, d = 2 or d = 3, it holds that

|w|2H1+α(Ω) ≥
N2(1+α)/d

C2
i C

2
h

‖w‖2
L2(Ω) −

[

2N (1+α)/d

CiCh
|w|H1+α(Ω)‖Ihw‖L2(Ω) +

N2(1+α)/d

C2
i C

2
h

‖Ihw‖2
L2(Ω)

]

.(9)

Proof. Consider

‖w‖2
L2(Ω) = ‖w − Ihw + Ihw‖2

L2(Ω) ≤ (‖w − Ihw‖L2(Ω) + ‖Ihw‖L2(Ω))
2 ≤ (Cih

1+α|w|H1+α(Ω) + ‖Ihw‖L2(Ω))
2

≤ C2
i h

2(1+α)|w|2H1+α(Ω) + 2Cih
1+α|w|H1+α(Ω)‖Ihw‖L2(Ω) + ‖Ihw‖2

L2(Ω),

where Lemma 5.3 has been used. With h = ChN
−1/d, it holds that

C2
i C

2
hN

−2(1+α)/d|w|2H1+α(Ω) ≥ ‖w‖2
L2(Ω) − 2CiChN

−(1+α)/d|w|H1+α(Ω)‖Ihw‖L2(Ω) − ‖Ihw‖2
L2(Ω),

which gives (9) after division by C2
i C

2
hN

−2(1+α)/d.

6. Bounds on the size of the determining set for weak solutions. In this section, a natural
generalization of the determining node set is formulated for the H1-case, and bounds are derived for the
number of determining nodes for weak solutions of the Navier-Stokes equations, in both two and three
spatial dimensions. The analysis rests essentially on the following tools: Gronwall-type inequalities (which
are reviewed); several inequalities for the nonlinear term which were established in §4; two a priori L2- and
H1- bounds on any weak solution (which are provided in two lemmas); suitable use of Young’s inequality
(following closely the analysis idea of [10]); and the generalized interpolation lemma stated and proved in §5.

One approach to generalizing Definition 1 to the H1
0 (Ω) case is to generalize the interpolant Ih so that

it remains well-defined; we employ the SZ-interpolant Ih of the previous section for this purpose.
Definition 3. Assume that u(t) is a weak solution of (5)–(6) with source function f(t), and that v(t)

is a weak solution of (5)–(6) with source function g(t), where limt→∞ ‖f(t)− g(t)‖L2(Ω) = 0. A finite set of

points E = {x1, x2, · · · , xN} in Ω ⊂ R
d forms a set of determining nodes if

lim
t→∞

‖Ihu(t) − Ihv(t)‖L2(Ω) = 0,

implies that

lim
t→∞

‖u(t) − v(t)‖L2(Ω) = 0,

7



where Ihu is the SZ-interpolant.
Before getting to the main results, a few more facts must be reviewed. The following inequality, com-

monly known as Gronwall’s inequality [1], is often used in the analysis of differential equations.
Lemma 6.1. (Gronwall’s Inequality) If α(t) and β(t) are real-valued and non-negative on (0,∞), and if

the function y(t) satisfies the following differential inequality:

y′(t) + α(t)y(t) ≤ β(t), a.e. on (0,∞),

then y(t) is bounded on (0,∞) by

y(t) ≤ y(0)e
−
∫

t

0
α(τ)dτ

+

∫ t

0

β(s)e
−
∫

t

0
α(τ)dτ

ds.(10)

Proof. The proof of this classical result seems difficult to locate, so one is given here. Note first that

d

dt

(

y(t)e

∫

t

0
α(τ)dτ

)

= y′(t)e

∫

t

0
α(τ)dτ

+ α(t)y(t)e

∫

t

0
α(τ)dτ ≤ β(t)e

∫

t

0
α(τ)dτ

.

Thus, it holds that

∫ t

0

d

ds

(

y(s)e

∫

s

0
α(τ)dτ

)

ds ≤
∫ t

0

β(s)e

∫

s

0
α(τ)dτ

ds,

and so

y(t)e

∫

t

0
α(τ)dτ − y(0) ≤

∫ t

0

β(s)e

∫

s

0
α(τ)dτ

ds,

from which (10) follows after a suitable division.
The following generalized version of the Gronwall inequality will be a key tool in the analysis to follow.

The proof may be found in [10]; a similar but weaker generalization is formulated in [6].
Lemma 6.2. (Jones and Titi) Let α(t) and β(t) be locally integrable and real-valued on (0,∞), satisfying

the following conditions:

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ = γ > 0

lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ = Γ < ∞

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0,

where α− = max{−α, 0} and β+ = max{β, 0}. If y(t) is an absolutely continuous non-negative function on
(0,∞), and y(t) satisfies the following differential inequality:

y′(t) + α(t)y(t) ≤ β(t), a.e. on (0,∞),

then y(t) → 0 as t → 0.
Proof. See [10] for a proof.
Before getting to the main results, the following two a priori bounds on any weak solution must be

established.
Lemma 6.3. For a weak solution u ∈ L2((0, T ); V ) of the Navier-Stokes equations, with Ω ⊂ R

d and
d = 2 or d = 3, it holds that

lim sup
t→∞

‖u(t)‖2
L2(Ω) ≤

ρ4

ν2
lim sup
t→∞

‖f(t)‖2
L2(Ω),(11)
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where ρ is the constant from the Poincare inequality.
Proof. Beginning with equation (5) for η = u, and noting that Lemma 3.1 guarantees that b(u, u, u) = 0,

it holds that
(

du

dt
, u

)

+ ν|u|2H1(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω).(12)

Since (dudt , u) = 1
2
d
dt‖u‖2

L2(Ω), it holds that

d

dt
‖u‖2

L2(Ω) + 2ν|u|2H1(Ω) ≤ 2‖f‖L2(Ω)‖u‖L2(Ω) =

(
√

2ρ2

ν
‖f‖L2(Ω)

)

(
√

2ν

ρ2
‖u‖L2(Ω)

)

.

Employing the Poincare inequality (8) for the H1-term, and Young’s inequality for the right-most term, it
holds that

d

dt
‖u‖2

L2(Ω) +
2ν

ρ2
‖u‖2

L2(Ω) ≤
ρ2

ν
‖f‖2

L2(Ω) +
ν

ρ2
‖u‖2

L2(Ω),

which gives then

d

dt
‖u‖2

L2(Ω) +
ν

ρ2
‖u‖2

L2(Ω) ≤
ρ2

ν
‖f‖2

L2(Ω).

This is a differential inequality for ‖u(t)‖2
L2(Ω), so that by Gronwall’s Inequality (Lemma 6.1) it holds that

‖u(t)‖2
L2(Ω) ≤ ‖u(s)‖2

L2(Ω)e
−
∫

t

s
ν/ρ2dτ

+

∫ t

s

ρ2

ν
‖f(τ)‖2e

−
∫

t

τ
ν/ρ2dψ

dτ

= ‖u(s)‖2
L2(Ω)e

−ν(t−s)/ρ2 +

∫ t

s

ρ2

ν
e−ν(t−τ)/ρ

2‖f(τ)‖2
L2(Ω)dτ

≤ ‖u(s)‖2
L2(Ω)e

−ν(t−s)/ρ2 +
ρ2

ν
sup
s≤δ≤t

‖f(δ)‖2
L2(Ω)

∫ t

s

e−ν(t−τ)/ρ
2

dτ

= ‖u(s)‖2
L2(Ω)e

−ν(t−s)/ρ2 +
ρ2

ν
sup
s≤δ≤t

‖f(δ)‖2
L2(Ω)

ρ2

ν

(

e0 − e−ν(t−s)/ρ
2
)

,

or more simply

‖u(t)‖2
L2(Ω) ≤ ‖u(s)‖2

L2(Ω)e
−ν(t−s)/ρ2 +

ρ4

ν2
sup
s≤δ≤t

‖f(δ)‖2
L2(Ω),

which must hold for every s ∈ (0, t]. Taking the lim supt→∞ of both sides of the inequality leaves (11).
A second estimate is as follows.
Lemma 6.4. Let u ∈ L2((0, T ); V ) be a weak solution of the Navier-Stokes equations with Ω ⊂ R

d and
d = 2 or d = 3. Then for every T with T ≥ 1/ν > 0 it holds that

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤ 1 + 2ρ4

2ν2
lim sup
t→∞

‖f(t)‖2
L2(Ω),

where ρ is the constant from the Poincare inequality.
Proof. Beginning with equation (12), by Young’s inequality it holds that

d

dt
‖u‖2

L2(Ω) + 2ν|u|2H1(Ω) ≤
(

√

2

ν
‖f‖L2(Ω)

)

(√
2ν‖u‖L2(Ω)

)

≤ 1

ν
‖f‖2

L2(Ω) + ν‖u‖2
L2(Ω).
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Integrating from t to t + T with T > 0 gives

‖u(t + T )‖2
L2(Ω) − ‖u(t)‖2

L2(Ω) + 2ν

∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤ 1

ν

∫ t+T

t

‖f(τ)‖L2(Ω)dτ + ν

∫ t+T

t

‖u(τ)‖L2(Ω)dτ,

or rather
∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤ 1

2ν
‖u(t)‖2

L2(Ω) +
T

2ν2
sup
t≤s≤T

‖f(s)‖2
L2(Ω) +

T

2
sup
t≤s≤T

‖u(s)‖2
L2(Ω).

Taking the lim supt→∞ of both sides, and dividing by T , gives

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤ 1

2νT
lim sup
t→∞

‖u(t)‖2
L2(Ω) +

1

2ν2
lim sup
t→∞

‖f(t)‖2
L2(Ω) +

1

2
lim sup
t→∞

‖u(t)‖2
L2(Ω).

Using the estimate from Lemma 6.3 twice gives then

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤
(

ρ4

2ν3T
+

1

2ν2
+

ρ4

2ν2

)

lim sup
t→∞

‖f(t)‖2
L2(Ω).

Since T ≥ 1/ν > 0, it holds that

lim sup
t→∞

1

T

∫ t+T

t

|u|2H1(Ω)dτ ≤
(

ρ4

2ν2
+

1

2ν2
+

ρ4

2ν2

)

lim sup
t→∞

‖f(t)‖2
L2(Ω) =

1 + 2ρ4

2ν2
lim sup
t→∞

‖f(t)‖2
L2(Ω).

The main results are now given. This first theorem establishes bounds on the number of determin-
ing nodes for weak H1-solutions of the Navier-Stokes equations in two and three dimensions. The three-
dimensional case requires sufficiently large viscosity; this restriction is removed for the three-dimensional
case in the second theorem, by doing a more specialized analysis.

Theorem 6.5. Let Ω ⊂ R
d, d = 2 or d = 3, be a polyhedral domain which has been exactly tes-

sellated with a quasi-uniform, shape-regular set of simplices, the vertices of which form a set of N nodes,
E = {x1, x2, · · · , xN}. The set E forms a determining node set for weak H1-solutions of the Navier-Stokes
equations if N is chosen so that

N > C

(

1

ν2
lim sup
t→∞

‖f(t)‖L2(Ω)

)d

,

where C is a constant independent of ν and f . For the case d = 3, ν must also be sufficiently large for the
result to hold.

Proof. Beginning with equation (7), the inequality from Lemma 4.8 is employed along with Cauchy-
Schwarz inequality in L2 to yield the inequality

1

2

d

dt
‖w‖2

L2(Ω) + ν|w|2H1(Ω) ≤ Cd|u|H1(Ω)

(

‖w‖L2(Ω)|w|H1(Ω) + λd|w|2H1(Ω)

)

+ ‖f − g‖L2(Ω)‖w‖L2(Ω),

or equivalently

d

dt
‖w‖2

L2(Ω) +

{

(2ν − 2λdCd|u|H1(Ω))

( |w|H1(Ω)

‖w‖L2(Ω)

)2

− 2Cd|u|H1(Ω)

( |w|H1(Ω)

‖w‖L2(Ω)

)

}

‖w‖2
L2(Ω)

≤ 2‖f − g‖L2(Ω)‖w‖L2(Ω).

For the second term in braces, by Young’s inequality with p = q = 2 it holds that

(

1√
2ν

2Cd|u|H1(Ω)

)(√
2ν

|w|H1(Ω)

‖w‖L2(Ω)

)

≤ 2C2
d

ν
|u|2H1(Ω) + ν

( |w|H1(Ω)

‖w‖L2(Ω)

)2

.

Thus,

d

dt
‖w‖2

L2(Ω) +

{

(ν − 2λdCd|u|H1(Ω))
|w|2H1(Ω)

‖w‖2
L2(Ω)

− 2C2
d

ν
|u|2H1(Ω)

}

‖w‖2
L2(Ω) ≤ 2‖f − g‖L2(Ω)‖w‖L2(Ω).
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Assume now that ν is sufficiently large so that the first term in the braces is positive. In particular, assume

ν − 2λdCd|u(t)|H1(Ω) >
ν

2
> 0, or ν > 4λdCd|u(t)|H1(Ω), t ∈ (0,∞).

Note that if d = 2, then λ2 = 0 so that any ν > 0 automatically satisfies the positivity assumption. Therefore,
this assumption is only necessary in the three-dimensional case; it will be examined more closely later.

Lemma 5.4 is now employed with the least regularity assumption of α = 0 to bound the first term in
braces from below (which is possible due to the positivity assumption)

d

dt
‖w‖2

L2(Ω) +

{

ν

2‖w‖2
L2(Ω)

[

N2/d‖w‖2
L2(Ω)

C2
i C

2
h

]

− 2C2
d

ν
|u|2H1(Ω)

}

‖w‖2
L2(Ω) ≤ 2‖f − g‖L2(Ω)‖w‖L2(Ω)

+
2(ν − 2λdCd|u|H1(Ω))N

1/d|w|H1(Ω)

CiCh‖w‖2
L2(Ω)

‖Ihw‖L2(Ω) +
(ν − 2λdCd|u|H1Ω))N

2/d

C2
i C

2
h‖w‖2

L2(Ω)

‖Ihw‖2
L2(Ω),

which is of the form

d

dt
‖w‖2

L2(Ω) + α‖w‖2
L2(Ω) ≤ β,

with obvious definition of α and β.
The generalized Gronwall Lemma 6.2 can now be applied. Recall that both ‖f − g‖L2(Ω) → 0 and

‖Ihw‖L2(Ω) → 0 as t → ∞ by assumption. Since it is assumed that u and v, and hence w, are in V , so that
all other terms appearing in β remain bounded, it must hold that

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0.

Since all terms appearing in the expression for α are bounded (by assumption u ∈ V ), it holds that

lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ < ∞.

It remains to verify that

lim sup
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0.(13)

But this is just

νN2/d

2C2
i C

2
h

> lim sup
t→∞

1

T

∫ t+T

t

2C2
d |u|2H1(Ω)

ν
dτ =

2C2
d

ν
lim sup
t→∞

1

T

∫ t+T

t

|u|2H1(Ω)dτ,

or finally

N >

(

4C2
dC

2
i C

2
hK

ν2

)d/2

,

where by the energy estimate in Proposition 6.4, the parameter K is bounded by

K = lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2H1(Ω)dτ ≤ 1 + 2ρ4

2ν2
lim sup
t→∞

‖f(t)‖2
L2(Ω) ≤

1 + 2ρ4

2

(

lim sup
t→∞

‖f(t)‖L2(Ω)

ν

)2

,

recalling (cf. [13], page 12) that if a(t), b(t) ≥ 0, lim supt→∞ a(t)b(t) ≤ (lim supt→∞ a(t)) (lim supt→∞ b(t)).
Therefore, if

N >
(

2C2
dC

2
i C

2
h(1 + 2ρ4)

)d/2
(

lim sup
t→∞

‖f(t)‖L2(Ω)

ν2

)d

,(14)
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implying that (13) holds, then by the Gronwall Lemma 6.2, it follows that

lim
t→∞

‖w(t)‖L2(Ω) = lim
t→∞

‖u(t) − v(t)‖L2(Ω) = 0.

The restriction of sufficiently large viscosity is now removed for the three-dimensional case, by employing
a different analysis approach; however, the penalty is a more rapid growth in N as a function of the inverse
of the viscosity ν. In order to prove the result, the following a priori bound is required, for which we have
not developed a proof at this time.

Proposition 6.6. Let u ∈ L2((0, T ); V ) be a weak solution of the Navier-Stokes equations with Ω ⊂ R
d

and d = 2 or d = 3. Then for every T with T ≥ 1/ν > 0 it holds that

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|4H1(Ω)dτ ≤ Ca
ν4

lim sup
t→∞

‖f(t)‖4
L2(Ω).

If this a priori bound holds, then we have the following result for d = 3.
Theorem 6.7. Let Ω ⊂ R

3 be a polyhedral domain which has been exactly tessellated with a quasi-
uniform, shape-regular set of simplices, the vertices of which form a set of N nodes, E = {x1, x2, · · · , xN}.
The set E forms a determining node set for weak H1-solutions of the Navier-Stokes equations if N is chosen
so that

N > C

(

1

ν2
lim sup
t→∞

‖f(t)‖L2(Ω)

)6

,

where C is constant independent of ν and f .
Proof. Beginning as in the proof of Theorem 6.5, but employing the inequality from Lemma 4.7 rather

than the inequality from Lemma 4.8, gives

d

dt
‖w‖2

L2(Ω) + 2ν|w|2H1(Ω) ≤ 4|u|H1(Ω)‖w‖1/2
L2(Ω)|w|3/2H1(Ω) + 2‖f − g‖L2(Ω)‖w‖L2(Ω),

or equivalently

d

dt
‖w‖2

L2(Ω) +

{

2ν

( |w|H1(Ω)

‖w‖L2(Ω)

)2

− 4|u|H1(Ω)

( |w|H1(Ω)

‖w‖L2(Ω)

)3/2
}

‖w‖2
L2(Ω) ≤ 2‖f − g‖L2(Ω)‖w‖L2(Ω).

For the second term in braces, again employing Young’s inequality, but with p = 4 and q = 4/3, gives

4|u|H1(Ω)

( |w|H1(Ω)

‖w‖L2(Ω)

)3/2

=

(

4

(

3

4ν

)3/4

|u|H1(Ω)

)(

(

4ν

3

)3/4( |w|H1(Ω)

‖w‖L2(Ω)

)3/2
)

≤

(

4
(

3
4ν

)3/4 |u|H1(Ω)

)4

4
+

(

(

4ν
3

)3/4
(

|w|
H1(Ω)

‖w‖
L2(Ω)

)3/2
)4/3

4/3
=

33

ν3
|u|4H1(Ω) + ν

( |w|H1(Ω)

‖w‖L2(Ω)

)2

.

Using this to bound the term in braces below so that

d

dt
‖w‖2

L2(Ω) +

{

ν

( |w|H1(Ω)

‖w‖L2(Ω)

)2

− 33

ν3
|u|4H1(Ω)

}

‖w‖2
L2(Ω) ≤ 2‖f − g‖L2(Ω)‖w‖L2(Ω).

The analysis now proceeds exactly as in Theorem 6.5, except for verification of the condition:

lim sup
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0.(15)

But this is now

νN2/d

2C2
i C

2
h

> lim sup
t→∞

1

T

∫ t+T

t

33|u|4H1(Ω)

ν3
dτ =

33

ν3
lim sup
t→∞

1

T

∫ t+T

t

|u|4H1(Ω)dτ,
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where d = 3, or finally

N >

(

332C2
i C

2
hK

ν4

)3/2

,

where by the energy estimate in Lemma 6.6, the parameter K is bounded by

K = lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|4H1(Ω)dτ ≤ Ca
ν4

lim sup
t→∞

‖f(t)‖4
L2(Ω) ≤ Ca

(

lim sup
t→∞

‖f(t)‖L2(Ω)

ν

)4

.

Therefore, if

N >
(

332C2
i C

2
hCa

)3/2
(

lim sup
t→∞

‖f(t)‖L2(Ω)

ν

)6

,(16)

implying that (15) holds, then by the Gronwall Lemma 6.2, it follows that

lim
t→∞

‖w(t)‖L2(Ω) = lim
t→∞

‖u(t) − v(t)‖L2(Ω) = 0.

Now, let F be defined as

F = lim sup
t→∞

(∫

Ω

|f(x, t)|2
)1/2

.

Note that if f(x, t) = f(x), then F = ‖f‖L2(Ω).
Definition 4. The generalized Grashof number G is defined as

G =
F

ν2
.

Note that this definition differs somewhat from that of [10]. The generalized Grashof number Gr defined
in [10], motivated by analysis of strong solutions, is related to G above as

Gr =
F

λ1ν2
=

1

λ1
G,

where λ1 is the smallest eigenvalue of the Stokes operator. Note that by working with the weak form, the
need for λ1 is avoided in the analysis (although ρ from the Poincare inequality now plays a similar role),
and hence G is defined to be independent of λ1. This definition of G has been used in some existence and
uniqueness theories for the Navier-Stokes equations (e.g., see page 331 in [4]).

Corollary 6.8. Let Ω ⊂ R
d, d = 2 or d = 3, be a polyhedral domain which has been exactly tes-

sellated with a quasi-uniform, shape-regular set of simplices, the vertices of which form a set of N nodes,
E = {x1, x2, · · · , xN}. The set E forms a determining node set for weak H1-solutions of the Navier-Stokes
equations if N is chosen so that

N > CGd,

where C is constant independent of ν and f , and where G is the generalized Grashof number above. For the
case d = 3, it must also hold that the viscosity is sufficiently large. An alternative bound for the case d = 3
with no restriction on the viscosity is

N > CG6.

Proof. This follows immediately from Theorems 6.5 and 6.7.

7. Concluding remarks. New upper bounds on the dimension of the determining set were derived
for weak solutions of the Navier-Stokes equations. These results extend the recent bounds due to Jones and
Titi in three ways. First, the bounds were derived under the minimal H1-regularity required to define a
weak solution of the Navier-Stokes equations. Second, the new bounds are valid for arbitrary polyhedral
domains, whereas previous results were derived for the unit square. Third, the results hold also in the
three-dimensional case, whereas previous bounds were restricted to two dimensions.
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