
Electrodiffusion: A continuum modeling framework for biomolec-
ular systems with realistic spatiotemporal resolution

Benzhuo Lu∗

Howard Hughes Medical Institute, Center for Theoretical Biological Physics, University

of California at San Diego, La Jolla, CA, 92093-0365

Yongcheng Zhou

Howard Hughes Medical Institute, Center for Theoretical Biological Physics, Department

of Mathematics, University of California at San Diego, La Jolla, CA, 92093-0365

Gary A. Huber

Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA,

92093-0365

Stephen D. Bond

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,

IL, 61801

Michael J. Holst

Department of Mathematics, Center for Theoretical Biological Physics, University of Cal-

ifornia at San Diego, La Jolla, CA, 92093

J. Andrew McCammon

Howard Hughes Medical Institute, Center for Theoretical Biological Physics, Department

of Chemistry and Biochemistry, Department of Pharmacology, University of California at

San Diego, La Jolla, CA, 92093-0365
∗Author to whom correspondence should be addressed. Fax: 1 858 534-4974. Electronic mail:

blu@mccammon.ucsd.edu



Abstract

A computational framework is presented for the continuum modeling of cellular

biomolecular diffusion influenced by electrostatic driving forces. This framework is

developed from a combination of state-of-the-art numerical methods, geometric mesh-

ing and computer visualization tools. In particular, a hybrid of (adaptive) finite element

and boundary element methods is adopted to solve the Smoluchowski equation (SE),

the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order

to describe electrodiffusion processes. The finite element method is used because of

its flexibility in modeling irregular geometries and complex boundary conditions. The

boundary element method is used due to the convenience of treating the singularities

in the source charge distribution and its accurate solution to electrostatic problems on

molecular boundaries. Nonsteady-state diffusion can be studied using this framework,

with the electric field computed using the densities of charged small molecules and

mobile ions in the solvent. A solution for mesh generation for biomolecular systems

is supplied, which is an essential component for the finite element and boundary ele-

ment computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann

equation (PBE) are considered as special cases of the PNPE in numerical algorithm,

and therefore can be solved in this framework as well. Two types of computations

are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck

equations (PN) solutions. A biological application of the first type is the ionic den-

sity distribution around a fragment of DNA determined by the equilibrium PNPE. The

stationary PNPE with non-zero flux is also discussed for a simple model system. The

second is a time-dependent diffusion process: the consumption of the neurotransmit-

ter acetylcholine (ACh) by acetylcholinesterase (AChE), determined by the SE and a

single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic ef-

fects, counterion compensation, spatiotemporal distribution, and diffusion-controlled

reaction kinetics are analyzed and different methods are compared.
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I. INTRODUCTION

The density distribution of molecular species is fundamental in understanding and describ-

ing biophysical and biochemical processes. The concentrations of ligands (for example,

substrates), receptors (enzymes), and ions regulate nearly all biomolecular and cellular ac-

tivities.

Modern microscopic imaging technology (see ref. 1) enables the monitoring of phys-

iological activity in cells with increasingly higher spatial and temporal resolution. The

translocation and concentration variation of biomolecules or reagents can now be observed

in real time. It has become possible to measure molecular locations and monitor sub-

cellular signaling processes in vivo. Direct observations are possible for the spatially

nonuniform distribution of species and the time-dependence of chemical processes. In

addition, recent progress in determining the 3D structures of biomolecules (such as ion

channels) or even organelles (such as synaptic vesicles) has supplied a wealth of infor-

mation which greatly facilitates theoretical modeling and numerical simulation of these

systems. With such information from experiments, the demand is emerging for dynamical

modeling with subcellular spatiotemporal resolution. However, molecular dynamics sim-

ulations at atomic level resolution are still not tractable for such time and length scales.

Therefore, we resort to continuum models due to their ability to efficiently resolve features

on different space and time scales.

Variations in concentration are due to molecular transportation or reaction (produc-

tion/depletion). A main mode of transportation is the random motion of molecules arising

from thermal fluctuations; this is seen as diffusion in the continuum description. Diffusion

causes the spread of localized signals and can be utilized for intra- or intercellular com-

munication. In addition, reaction and enzymatic regulation are normally involved in the

production, depletion, and diffusion of species. Molecular diffusion and enzyme reactions

form a coupled system which is often associated with signal transduction, gene expression,

and metabolism networks.

Another observation is that the diffusion in some biomolecular processes is driven by an

electrostatic field induced by the environment. In these cases, the electrostatic interaction
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can strongly affect the diffusion, and as a result, the rate of association between a ligand

and receptor (e.g., see refs. 2 & 3). On the other hand, the electrostatic field is not only

determined by the target macromolecule, but also by the density distributions of all the

charged species, including diffusing ions and small charged molecules, which vary in time

in nonsteady-state processes.

In the mean-field approximation, in which the particle-particle correlations of the dif-

fusing molecules or ions are neglected, the Poisson-Nernst-Planck equation (PNPE) is a

proper physical model to describe the coupling of electrostatics, density distribution, and

diffusion processes. The PNPE is a combination of Nernst-Planck equations (NP) and

Poisson equation (PE). The PE is used to describe the electrostatics in a medium induced

by the charge distribution including both fixed and mobile charges. The NP is a current

density equation widely used in studies of electrolyte transport and ion channels, as well

as semiconductors. It is noted that another very similar and closely related equation is the

Smoluchowski equation (SE), which is often used in studies of stochastic processes and

kinetics of diffusion-reaction processes.4–7 The SE gives the conditional probability that

the particle starting from the point r(t0) reaches the point r at the time t under influence

of a potential. It describes the diffusion of probability, because the process of diffusion

is the superposition of Brownian motions of the particles. In biological measurement, the

current of ions (particles) contains a huge number of single ion passage events, which en-

able us to pass from one-ion description via probability density, i.e., from the SE, to the

continuous description in terms of the electric current density, i.e., to the Smoluchowski-

Nernst-Planck equation (continuity equation with the NP current, also simply called NP).

Due to the similar mathematical formulas, the NP and the SE have same numerical struc-

tures. Differing from PNPE, the potential in the SE is normally considered as an external

field that is not coupled with the (charged) diffusing particles. For instance, the electrostatic

field is determined by the mean mobile ion density distribution, which obeys the Boltzmann

distribution, then the SE in this case is referred to the Smoluchowski Poisson-Boltzmann

equation (SPBE) in which the Poisson-Boltzmann equation (PBE) is solved only once, at

the beginning, to supply the electrostatic field for the diffusion solution. Due to the uncou-

pling feature, the SPBE can be considered as a numerically simplified case of PNPE. Early
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applications of SPBE solutions include theoretical studies of ion diffusion.8, 9 Besides the

aforementioned approximations, the application of the PBE assumes the ionic solution is

in an equilibrium state. For nonsteady-state processes, or even steady-state processes with

stationary values of diffusive fluxes (including ionic fluxes), the PE instead of the PBE must

be used to determine the electrostatic field, because the non-equilibrium charge density dis-

tributions deviate from the Boltzmann distribution. This leads to the PNPE treatment. The

usual application of the PNPE in biology is the steady-state version, which has been used

extensively to investigate ion permeation and related transport processes with considerable

success; for instance, in calculating the I−V characteristics of ion channels. The numerical

PNPE solvers are developed from 1D phenomenological model10–12 to 3D PNPE solver for

the protein ion channel permeation,13–16 and the comparison with 3D Brownian dynamics

simulations are also performed.17–20 Typically, a finite difference method (with exception

of ref. 15 that used a spectral element method) has been used to approximate the solution in

the membrane channel with either atomic-level resolution or using simplified descriptions.

The finite element (FE) version of the SPBE approach has been developed in previ-

ous work of our group and collaborators for the diffusion-controlled reaction of acetyl-

choline (ACh) in the neuromuscular junction (NMJ).21–25 Solvers were developed for the

time-dependent SE, with no interaction fields, for studies of the NMJ.21, 22 Also, software

was developed to solve the PBE using a multigrid method,26 and this was used with the

steady-state SE to study the consumption of ACh by acetylcholinesterase (AChE).24, 25 The

solution of the nonsteady-state SE for the above system is described in another work27 and

in this work. With the exception of ref. 21, each of these previous works, as well as the

present work, makes use of the general finite element modeling library FETK,28 developed

over a number of years at UC San Diego.

The finite element method (FEM) has advantages in modeling irregular geometries

with complex boundary conditions. In our finite element approach, the molecular surface

(boundary) is identified and discretized; this discretization is used as the boundary of the

volume mesh. Such meshes are said to be boundary or surface “conforming” because they

are aligned with the “real” molecular surface, whereas in the finite difference method, the

mesh is nonconforming because it is allowed to “cut through” the molecular surface. A 2D
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comparison of the two types of meshes can be seen in Fig. 1. One consequence of adopting

a nonconforming mesh is that sizable numerical errors in the solution are generated at the

dielectric and permeability interfaces. Another advantage of adopting conforming mesh in

our study is that it is convenient to use proper specification of boundary conditions on the

surface for the modeling of reaction-diffusion processes.

In our scheme, the boundary-conforming mesh is also used in the boundary element

method (BEM) to allow better predictions of the electrostatic field, especially at the molec-

ular surface. It is standard practice to treat the charge distribution inside a large biomolecule

as a collection of point charges. Using a finite-element method inside the molecule requires

very fine meshing because of the singularities in the charge distribution, whereas the BEM

handles such charge distributions very naturally using only surface elements. Although the

interior of the large molecule still needs to be meshed in our hybrid FEM/BEM scheme,

the volume mesh is not nearly as fine as would be required without the BEM.

( ∼ FIGURE 1)

The current work aims to integrate the former works and outlines a numerical framework

to solve the complete PNPE, including both time-dependence and the coupling between the

density of diffusing particles and electrostatics. In this framework, the time evolution of

diffusion of each species is given, and the electrostatics is determined on-the-fly for each

spontaneous configuration of charge distributions. The focus is on biological system with

realistic geometry, especially at atomic resolution. In principle, the approach can be ap-

plied to systems with arbitrary numbers of diffusive species. Moreover, it also applies for

both monovalent and multivalent ions (if the correlation effects are ignored), and it has the

feature that no net charge neutrality is required for the system.

II. THE POISSON-NERNST-PLANCK EQUATION

A typical biophysical model is depicted in Fig. 2. The domain Ωs denotes the solvent region

where there is a mixed solution with one or more diffusive species, such as mobile ions
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and small diffusing molecules. The domain Ωm denotes the fixed macro-biomolecule(s),

such as a protein, DNA, or membrane. In the following text, the whole computational

domain is represented by Ω = Ωs + Ωm. The diffusion region normally is limited to the

domain Ωs; i.e., the moving particles are not allowed to penetrate into the region Ωm.

The continuum description of the diffusion of each species obeys the NP in terms of the

current density. If one only considers the electrostatic interaction, the potential field can be

generally described by the PE. Supposing qi is the charge of each particle of the ith species,

the coupled NP and Poisson equation system (PNPE), is

∂pi(r, t)
∂t = ∇ · {Di(r)e−βqiφ(r,t)∇(eβqiφ(r)pi(r, t))}

= ∇ · {Di(r)(∇pi(r, t)+β∇(qiφ(r, t))pi(r, t))}, r ∈ Ωs, i = 1...K, (1)

∇ · ε(r)∇φ(r, t) = −ρ f (r)−∑
i

qi pi(r, t), r ∈ Ω, i = 1...K, (2)

where pi(r, t) is the density distribution function of the diffusing particles of the ith species

with diffusion coefficient Di(r), ρ f is the fixed source charge distribution (usually, the

atomic charges of the biomolecule(s) in the system), K is the number of species consid-

ered, β = 1/kBT is the inverse Boltzmann energy, kB is the Boltzmann constant, T is the

temperature, ε is the dielectric coefficient, and φ is the electrostatic potential that imposes

driving forces on the diffusing particles. When pi(r, t) is interpreted as the probability dis-

tribution function, Eq. (1) is the SE. Therefore, at some places in following sections in

connection to our previous work, we also refer Eq. (1) to the SE.

It is worth noting that in Eqs. (1)-(2) all the charged species are treated as diffusing

particles including the mobile ions that form the ionic solution. In some cases, if one is

interested in the diffusion of larger particles such as substrates, and supposing that the

density relaxation of the mobile ions is faster than the diffusion of the larger molecules, the

distributions of the mobile ions can be considered to be in thermal equilibrium. That is, the

ion densities can be approximated by the Boltzmann distribution pi = pi
0e−βqiφ, where pi

0

is the bulk concentration of the ith ionic species. The advantage of this treatment is that

the number of diffusion equations is then reduced by the number of these fast diffusing

species. Eq. (2) is accordingly modified in this case. For example, for neutral 1:1 ionic
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solution (monovalent ions), the electrostatic portion, Eq. (2), can be replaced with

∇ · ε(r)∇φ(r)−λ(r)ε(r)κ2(r)
β

sinh(βφ(r))+ρ f (r)+∑
i

qi pi(r, t) = 0, (3)

where κ is the inverse Debye length, λ(r) is a function that is equal to 1 in regions where

the counterions can penetrate, and 0 elsewhere, and the summation is only performed on

the other species. The concentrations of the two counterions are implicitly included in the

equation and do not appear in the diffusion equations. However, this treatment has the

additional cost of solving a nonlinear PBE instead of a linear one in each coupling step.

If no other diffusing species except mobile monovalent ions are in the solution, Eq. (3) is

then the nonlinear Poisson-Boltzmann equation (NPBE):

∇ · ε(r)∇φ(r)−λ(r)ε(r)κ2(r)
β

sinh(βφ(r))+ρ f (r) = 0. (4)

A further simplified form, valid for small values of electric potential, is the linearized PBE

(LPBE):

∇ · ε(r)∇φ(r)− ε(r)κ2(r)φ(r)+ρ f (r) = 0. (5)

This can be very convenient in situations where the charges are not too strong. Because it is

a linear partial differential equation, it can be solved using boundary element methods and

treated just like the Poisson equation in the hybrid solution of Eqs. (1) and (2) described

in the following sections.

( ∼ FIGURE 2)
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III. NUMERICAL TREATMENTS

A. For the diffusion process

This work uses the Finite Element Toolkit (FETK), developed by two of the authors and

collaborators28 (http://www.fetk.org/), for the solution of the diffusion part, Eq. (1), around

the macromolecule. For the case of no time-dependence (steady-state or equilibrium), the

diffusion and electrostatic portions (Eq. (2) and Eq. (1)) are solved separately. Given an ini-

tial guess of the electric field φ, the diffusion portion of each species is solved using FETK.

The resulting concentrations pi are plugged into the electrostatic part, Eq. (2), which is

solved, using the hybrid BE/FE method, described below, to obtain the electric field φ. The

electric field is then plugged back into the diffusion equations Eq. (1) for the new concen-

tration solutions. For the steady-state case, this process is repeated until the concentrations

and electric field converge . For the time-dependent case, the diffusion portions, Eq. (1),

are stepped forward in time, with the electric field solved at each time step for the input of

next step solution of the diffusion equation using the hybrid method.

B. Electrostatic calculation

We have recently developed an efficient and accurate BEM solver for the linearized PBE

by introducing a “node patch” BEM29 and implementing the new version of the fast mul-

tipole method;30, 31 this solver can be used for the PE as a special case. In principle, one

could use the solver to solve the Poisson part, Eq. (2), using the charge distributions in

both the solvent and macromolecule. However, including the solvent charge density would

require volume integrals of the charge distribution over the entire domain. According to

Boschitsch and Fenley,32 once volume integrals appear in the BEM the computation times

incurred by a conventional, or even some multipole-accelerated integral equation meth-

ods, increase significantly and tend to be higher than even a finite-difference scheme of

comparable accuracy. A hybrid finite difference/BEM approach and a decomposition strat-

egy were adopted and tested to solve the nonlinear PBE in their work.32 So, rather than

use boundary elements alone to solve the Poisson Equation, we use the hybrid BE/FEM
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method described below to avoid the volume integrals.

In the hybrid FE/BE method, the strategy for solving Eqs. (2) and (1) is to decompose

the solution of the Poisson equation into a singular component and a regular component,

i.e., φ(r) = φs(r)+φr(r), The singular component is solved from the Poisson equation with

singular charge distributions

∇ · ε(r)∇φs(r) = −ρ f (r), r ∈ Ωm, (6)

and the regular component is obtained by solving

∇ · ε(r)∇φr(r) =















0, r ∈ Ωm,

−∑i qi pi(r), r ∈ Ωs, i = 1...K.

(7)

The BEM is used in solving for the singular component, Eq. (6), and the FEM is used

in solving for the regular component, Eq. (7). The splitting of the solution into singu-

lar and regular components was recently examined in detail theoretically for the Poisson-

Boltzmann equation in ref. 33.

For a given macromolecule, the interior charge distribution is fixed; therefore, Eq. (6) is

solved only once, at the beginning, to obtain the singular component φs, using the boundary

element method. Afterwards, during each iteration between the diffusion and electrostatic

equations for the non-time-dependent case, or for each time step for the time-dependent

case, Eq. (7) is solved for the regular component φr. Because the charge density used

for solving Eq. (7) is continuous in Ωs and zero in Ωm, the interior of the molecule does

not need to be resolved with as fine a mesh as would be required for a FE solution to the

singular component φs. In principle, the diffusion and regular electrostatic portions of the

PNPE could be solved simultaneously using FETK, but the domains are different, with the

diffusion part defined only on Ωs; this situation cannot be handled directly by the current

version of FETK, but can be done as a block Gauss-Seidel iteration with FETK used to

solve each block in a fixed-point iteration. We use the same mesh in Ωs for solutions of

both the diffusion and electrostatic equations, and apply a data transfer/mapping procedure
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for the communication of charge densities and potentials between the coupled equations.

It is worth noting that when solving the PE in the whole domain Ω, the dielectric coef-

ficient ε has different values in Ωm and in Ωs. This fact leads to the numerical difference

between FD and BEM or FEM. In FD, the dielectric coefficient and the final solution at the

interface are calculated through interpolation from the values at the neighboring grids, and

the interface conditions are not enforced to be satisfied. While the boundary conforming

mesh used here explicitly (in BEM) or implicitly (in FEM) satisfies the interfacing con-

ditions, thus leads to better solutions at the interface. Comparison of the accuracy of the

BEM solution can also be found in previous works.29, 34

For the case where the Poisson-Boltzmann approximation, Eq. (4), is used for the fixed

electrostatic field (as in SPBE), the procedure is still the same, since FETK can be used

to solve nonlinear equations. One just needs to include the nonlinear term of Eq. (4) in

Eq. (7). In this case, the numerical method becomes essentially the one analyzed in ref. 33,

with the singular component computed numerically rather than represented analytically.

C. Finite element treatment

A tetrahedral mesh is used to discretize the whole domain Ω, and the molecular surface

is defined by a surface mesh of triangles that form faces of tetrahedra in both Ωs and Ωm.

The same mesh in Ωs is used to compute the solutions to the diffusion part, Eq. (1), and the

regular electrostatic part, Eq. (7).

The numerical solution of NPBE, PE, or the steady-state SE involve the use of a fairly

sophisticated adaptive method within FETK which is based on the use of error indicators to

drive a SOLVE-ESTIMATE-MARK-REFINE iteration.28, 33, 35, 36 Three core components

of this adaptive solution algorithm in FETK, namely assembly of the linear and nonlinear

algebraic equations, application of the discrete operators to vectors within iterative solution

algorithms, and iterative inversion of the discrete operators inside a Newton iteration, also

form the core computational kernels for the solution of time-dependent problems such as

the time-dependent SE with updating of the electrostatic potential. Below we will first

briefly review the methods for the steady-state problem, and then derive the algorithm for
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the time-dependent PNPE system.

We now describe the mathematical framework employed in FETK for static and dy-

namics problems. Consider a general class of elliptic equations of the form:

−∇ · (D∇u)+b(u)+ f = 0, in Ωs, (8)

u = ū|∂Ωs, on ∂Ωs, (9)

where D is a symmetric positive definite tensor, b is a real-valued function, f is a source

term, its solution u also solves the following Galerkin weak problem

Find u ∈ ū+H1
0 (Ωs), such that 〈F(u),v〉 = 0, ∀v ∈ H1

0 (Ωs), (10)

where ū is a trace function satisfying the Dirichlet boundary conditions, H1
0 (Ωs) is a

Sobolev space of weakly differentiable functions which vanish on the boundary of the

domain, and the ‘weak’ form 〈F(u),v〉, which generally is nonlinear in u and linear in v, is

given by

〈F(u),v〉 =

Z

Ωs
(D∇u ·∇v+b(u)v+ f v)dx. (11)

In order to solve this nonlinear problem with a Newton-type iteration we need the direc-

tional derivative with respect to u in the direction of w of 〈F(u),v〉, which turns out to be a

bilinear form

〈DF(u)w,v〉 =
d
dl 〈F(u+ lw),v〉|l=0

=

Z

Ωs
(D∇w ·∇v+b′(u)wv)dx, (12)

where w is a test function. Note that if b is linear so that b(u) = bu, and b′(u) = b. Note that

the boundary integrals vanish in the derivations of the above nonlinear weak and bilinear

forms due to the fact that the test function, v, vanishes on the boundary. Denoting the

approximate solution u by its expansion in the test function space, i.e., u(x) = ∑ j a jv j(x),

the weak form Eq. (11) essentially produces two matrices: a stiffness matrix A associated
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with the product D∇w ·∇v and the mass matrix M associated with the product b′(u)wv. The

solution u(x) of the weak form Eq. (11) is therefore equivalent to the solution of a linear

algebraic system

(A+M)~a = −~f , (13)

where unknown vector ~a = {a j} is the expansion coefficients of u, and vector ~f is known

from the integration of
Z

Ωs
f vdx for all given test functions v. Given the system of equations

implied by Eq. (11) and the linearization Eq. (12), the FETK software solves them using a

posteriori error estimation along with adaptive tetrahedron subdivision and unstructured al-

gebraic multilevel methods for Eqs. (13) along with inexact Newton methods for Eq. (11).

These methods within FETK have been shown to have linear space and time complexity

for systems of the form Eqs. (13) and (11).

We now consider the time-dependent NP (or SE). For the NP of the ith species, defining

u = eβqiφ pi and D′ = Di(r)e−βqiφ gives rise to the symmetrized form of Eq. (1)

∂
∂t (ue−βqiφ) = ∇ · (D′∇u), (14)

whose weak form is given by

〈F(u),v〉 =

Z

Ωs
D′∇u ·∇v−βqie−βqiφ ∂φ

∂t uv+ e−βqiφ ∂u
∂t v)dx. (15)

We use a time-dependent expansion, so called the method of lines

u(t,x) = ∑
j

a j(t)v j(x)

and derive a governing equation to evolve the expansion vector ~a(t) from its given initial

value. Indeed, by inserting the expansion u(t,x) = ∑
j

a j(t)v j(x) into Eq. (15) and using

the matrix notation we could derive an equation similar to Eq. (13), as

A~a+ cM~a +dM ∂~a
∂t = 0, (16)
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where the three terms are the matrix representations of their corresponding terms in Eq.

(15), c = −βqie−βqiφ ∂φ
∂t and d = e−βqiφ. Here we assume that the derivative of electrostatic

potential with respect to time ∂φ
∂t at current time step is known when solving the NP. Eq.

(16) provides the formulation to evolve the expansion coefficients ~a from time step tn to

tn+1:

~an+1 = ~an +

Z tn+1

tn

∂~a
∂t dt

= ~an −
Z tn+1

tn

M−1

d (A~a+ cM~a)dt, (17)

where M−1 denotes the inverse of M. Different approximation methods can be used to nu-

merically calculate the integral in Eq. (17), such as forward Euler method, backward Euler,

or the Trapezoid rule. In this study, we use the backward Euler method because it is un-

conditionally stable and thus allows large time steps for the integration in Eq. (17). It does

require inverting large sparse unstructured matrices, but we employ the low space and time

complexity linear solvers in FETK to make these types of implicit methods competitive,

or in the case of parabolic evolutions equations, substantially superior to explicit methods.

With this backward Euler method and using a constant time increment ∆t = tn+1 − tn, we

have

~an+1 = ~an +
Z tn+1

tn

∂~a
∂t dt

= ~an −
M−1

d (A~an+1 + cM~an+1)∆t. (18)

Moreover, we define ∆~an = ~an+1 −~an so that we can compute ~an+1 by solving this ∆~an

and adding it to ~an. After some algebraic manipulations on Eq. (18) we get the following

equation for ∆~a:

(

M
∆t +

1
d (A+ cM)

)

∆~an = −
1
d (A+ cM)~an. (19)

This suggests that once we compute the first ~a0 from the initial condition on the concen-

tration, we can iteratively solve Eq. (19) to calculate all the expansions ~an, and hence the
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concentration at any time tn+1. The assembling of matrices A,M, and the solution of linear

algebraic system Eq. (19) is accomplished by using the flexible numerical framework of

FETK. The equations for computing ∆~an using the forward Euler method or the trapezoid

rule can be derived similarly. In the case of implicit methods, the low complexity solver

framework in FETK is used to solve Eq. (19).

For the steady-state NP, the time derivative parts vanish in the weak forms. The weak

forms for the PE have the same form as the above NP’s, and one only needs to substitute

the time-dependent term with the charge distribution term.

D. Iteration procedure between the coupled NP and PE

For the steady-state case, in order for the iteration between the diffusion and electrostatic

equations to converge, it was found necessary to employ underrelaxation, especially when

macromolecule exists. In other words, variables were updated with a linear combination

of old values and calculated new values, rather than just new values. The necessity of

underrelaxation procedure was also experienced in the work of Corry et al.17 Even though,

many iterations may be required in the non-time-dependent solutions. In the cases studied

in this work, several tens or a few hundreds of iterations were required for convergence.

The over-relaxation scheme has been used in the finite difference solver,13 but seems not

applicable in this frame.

E. Boundary conditions

Proper boundary and/or initial conditions should be chosen according to different situations

in applying the above equations. For the PE, because we normally choose a big enough

domain Ω whose exterior boundary is far away from the molecule, the easily calculated

Debye-Hückel screening potential on the boundary (induced by the total source charges) is

taken as the (Dirichlet) boundary condition.

For the NP (or SE), if there is no absorption or source generation on the boundary for

the diffusive particle, then either a reflecting boundary condition is used on the outside
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boundary to simulate a closed box,

n(r) · j = 0, for r ∈ Γs,

or a Dirichlet boundary condition to simulate the bulk condition,

p(r) = pbulk, for r ∈ Γs.

The condition jn = 0 is actually a Neumann condition for the pure diffusion equation, or,

more generally, a type of Robin condition. On the molecular surface, it is also reasonable

to use the reflecting boundary condition.

A special application is the solution of the diffusion-reaction system, which can be mod-

eled by designating a “reactive” boundary patch Γa (see Fig. 2), and setting the boundary

conditions as 24 & 37,

n(r) · j = −k(r)p(r, t), for r ∈ Γai,

n(r) · j = 0, for r ∈ Γm −Γa.

Such applications have been successfully performed on ACh consumption by the enzyme

AChE, which is a diffusion-controlled reaction process.24 In ref. 24, a simpler sink bound-

ary condition is taken for the reaction site p(r, t) = 0, for r ∈ Γa.

The diffusion-influenced biomolecular reaction rate constant is calculated from the flux

by integration over the active site boundary, as

k =
−

R

Γa n · jds
pbulk

IV. MESH GENERATION AND SYSTEM SET UP

Mesh generation is a long standing problem, hindering the wide application of the finite

element and boundary element methods to biomolecular systems due to the very irregu-

lar shape of biomolecules. To enable our finite element modeling work using FETK, we
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have built a high-quality biomolecular mesh generation toolchain using a number of ex-

isting mesh generation tools. The toolchain has essentially three main components. First,

a triangulation of the solvent-excluded surface is generated using the program MSMS.38

The molecular surface is the envelope of the atoms on the surface, represented as spheres

with the atom’s van der Waals radius. The surface atoms are determined by rolling a probe

sphere with radius 1.4 Å over the surface; the atoms that are contacted by the probe sphere

are considered part of the surface. The unaltered MSMS surface mesh could be used in the

BEM calculation, but cannot serve as a boundary for the FE calculation because the tri-

angulation contains many triangles with very small or large vertex angles, leading to large

interpolation errors. This impacts both finite element and boundary element approximation

quality. Therefore, in the second step, the program ADVENTURE TetMesh39 is used to

smooth the surface triangular mesh. Finally, in the third step the tetrahedral volume mesh

is generated using the program TetGen,40 which starts with a closed triangulated boundary.

In addition, if the domain is regular, as in a model system, the mesh can be generated using

NETGEN.41 All of these tools are available freely online in source form, with the exception

of MSMS which is only available as a binary executable.

Fig. 3 shows an example of the unstructured tetrahedral volume mesh and triangulated

surface mesh of a fragment of A-form DNA used in our later FEM and BEM calculations.

The molecular surface mesh is the smoothed version generated from the original surface

mesh created by MSMS.

( ∼ FIGURE 3)

For the cases studied in this paper, AMBER force-field values were used for the partial

atomic charges and van der Waals radii.42 The dielectric coefficient ε is set to 2 in Ωm

(molecular interior) and 78 in Ωs (solution).
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V. RESULTS

We mainly perform two types of calculations. First, the coupled system (PNPE) using

Eqs. (1) and (2) in steady-state are solved for a spherical cavity model for illustrations,

and for a DNA system to investigate the surrounding ionic density distribution. Second,

using Eqs. (1) and (4), both the steady-state and time-dependent SE are solved using a

pre-calculated PB potential (rather than then the coupled PE potential) in order to study the

diffusion-reaction process.

A. Numerical accuracy test

A unit spherical cavity with a positive charge +e located at the center was chosen to test

the numerical accuracy of the FEM solution. A sphere with radius of 40 Å was set as

the outer boundary of the whole calculation domain. The whole volume mesh was gener-

ated with 22728 vertices and 111723 simplices (tetrahedra), of which 22704 vertices and

111311 simplices are located in the outside domain of the cavity. The FEM was used to

solve Eq. (7) for the regular component of the electrostatic potential. Fig. 4 shows the rel-

ative errors of the calculated potentials (regular component) relative to the analytical one.

The relative errors in the whole domain were kept at very small values. The increase in

relative errors in the middle range of the radial distance was due to the mesh being coarser

than in the other parts.

( ∼ FIGURE 4 )

B. Counterion compensation

Biological macromolecules are polyions whose function depends strongly on the surround-

ing ion atmosphere in solution. The accumulation of ions around oppositely-charged re-

gions of the macromolecule is often called charge compensation, because the ions can
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offset the charge on the macromolecule, sometimes even causing the charge around the

molecule to reverse. Manning gave a suggested distance from the molecule to count for

the counterion distribution and charge compensation.43 In fact, from Gauss’s law, the

molecular charge must be compensated by ions to some distance far enough away from

the molecule, because the electric field approaches zero, otherwise, the mobile counterions

will move closer to compensate again. Therefore, the charge compensation could be used

as a criterion for the accuracy of the continuum model for ion density prediction. We’ll

first revisit the theoretical predictions based on the solutions of the linearized Poisson-

Boltzmann equation, Eq. (5). It is important to understand the approximation and its effect

on computed charge compensation. The case of a charged sphere is a convenient system to

study, because of the availability of analytical solutions.

For a unit sphere cavity of radius a with a point charge −e located at the center, the

LPBE potential is

φ =
−eexp[−κ(r−a)]

4πεs(1+κa)r , (20)

where κ =
√

2n0e2/(εokBT ), εs is the solvent dielectric coefficient, and n0 is the bulk

ionic concentration. Then, the net charge q(r) inside a volume of radius r, defined as the

compensation charge, is the accumulation of the counterions and coions:

q(r) = ρ+ +ρ− =

Z r

a
n0[exp(−βeφ)− exp(βeφ)]dr3. (21)

The quantity q(r) is numerically integrated using Matlab. It is worth noting here that Moy et

al.44 used again the linear approximation of the above Boltzmann distribution in Eq. (21)

(this is the approximation used to get the LPBE from the NPBE) to derive an analytical

solution:

q(r) = e[1− 1+κr
1+κa exp(−κ(r−a))]. (22)

We point out that these two formulas lead to essentially different pictures of charge com-

pensation. Formula (22) predicts that the compensation charge within any radius monoton-

ically increases but is bounded by +1e, corresponding to 100% compensation. This feature

can be seen in Fig. 5a. However, formula (21) gives different compensation profiles for
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different ionic strengths as shown by the blue curves in Fig. 5a. In particular, the curve

at high ionic strengths may go beyond unity, indicating overscreening (charge reversal) of

the cavity charge. At low ionic concentrations, the two formulas give similar predictions

and do not show charge reversal within the distances shown in the figure. Fig. 5b gives

a picture of the charge compensation within a fixed radius of 40 Å with respect to the

ionic strengths (through κ). The compensation has a peak at certain values of κ, but falls

back to 100% again with an increase of κ. The figure shows the properties of counterion

compensation from theoretical predictions, even though the large κ has no biological cor-

respondence. Therefore, even using the linear PBE, the overscreening of counterions can

be predicted by using Eq. (21).

In fact, if one extends the region of integration to be large enough in Fig. 5b, i.e.,

> 40Å, it is found that the numerical integral results seem to always give over-screening

even at very low ionic concentrations. This means that the direct solution of LPBE in-

herently overestimates the counterion densities. In the following section, we’ll show that

for the same spherical model the NPBE tends to give a smaller potential relative to that of

LPBE, thereby leads to the prediction of a smaller counterion density. This indicates the

improvement of the NPBE on charge compensation prediction, but it is still not proved that

the NPBE solution leads to a monotonically increasing charge compensation and bounded

by 100%.

( ∼ FIGURE 5)

C. Solutions of the coupled system PNPE

C..1 Potential and ion density in equilibrium state

When there is no flux existing, the PNPE trivially reduces to the NPBE, Eqs. (4), with

the charge density given by the Boltzmann factor. This property can be used to check

the correctness of the PNPE program. We used a spherical cavity of radius 1 Å to test
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computations of the potential and charge compensation. One unit charge +e was placed at

the center, the interior of the sphere was set to a dielectric coefficient of 2, and the material

outside the sphere (the solvent) was set to a dielectric coefficient of 78. A sphere with

radius of 200 Å is set as the outer boundary of the computation domain. The volume mesh

had 3745 vertices and 22614 simplices, in which 3721 vertices and 22206 simplices lie in

the domain outside the cavity. The solvent contained a neutral 1:1 salt; 50 mM was set as

the outer boundary condition for both positive and negative ions; and a reflecting boundary

condition was imposed on the inner sphere. Comparisons among the potentials obtained

with different numerical algorithms based on the LPBE, NPBE and PNPE are listed in Fig.

6.

It was found that the LPBE result nearly coincides with the exact, analytical solution.

The results from the PNPE are very close to those from the direct solution of the NPBE,

which is consistent with the model (the PNPE reduces to the NPBE at equilibrium). Thus,

solving the PNPE at equilibrium provides another way to solve the NPBE. Deviation of

the potential computed using the LPBE from that using the NPBE is found even at this

low ionic concentration. Both the potentials from the NPBE and the PNPE are lower than

the LPBE results, which is also reasonable from physical and mathematical analyses. The

LPBE is more likely to overestimate the counterion screening effect as discussed in the

above section. The resulting weaker potential leads to smaller computed compensation

charges. The charge compensation, by integrating the total ion charge densities over the

solvent domain, was computed to be 1.3, 1.1, and 0.98 e, using the numerical solutions of

the LPBE, NPBE and PNPE, respectively. The differences in potentials and compensation

charges between the results from the LPBE and the NPBE are expected to be larger with

increased molecular charge or ionic concentration.

(∼ FIGURE 6)
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C..2 Effect of charge flux of a third diffusing species

Now we consider the same system, but with another diffusing species in addition to the 1:1

salt, with the third species being absorbed by the inner sphere (sink) at steady-state. The

third species was given a plus or minus unit charge, and the spherical cavity boundary was

set as a sink boundary (p = 0) to generate a charge flux. The outer boundary condition at

r = 200 Å for the third species was set to a 50 mM constant concentration. We explored

the effect of the steady-state charge flux on the potential and concentration profile of the

two ions, and vice versa, the effect of the coupling among the three charged species to the

flux expressed by rate constant. Both positively and negatively charged reacting species

were considered. The results are shown in Fig. 7.

(∼ FIGURE 7)

It was found in Fig. 7a that the potential and the density distributions of both counteri-

ons and coions of salt were significantly affected even at a modest 50 mM ionic strength.

The positively (negatively) charged flux raised (lowered) the potential throughout the whole

domain. This effect was seen because the reacting species added its own charge to the sys-

tem. In this case, the potential shift was on the scale around 0.2 kcal/mol·e. It was even

seen that the negatively charged flux could lead to reversal of the the total potential sign at

certain distances; this would not happen in the 1:1 salt using the NPBE model for the ions.

Fig. 7b-c show the significant changes in the counterion and coion density distributions

caused by the charged flux. The magnitude of changes was about one third of the original,

unperturbed profile.

The calculations with different models also showed obvious effects of the coupling of

the three charged species to the reaction rate constant. For example, in the SPBE model,

the negative flux had a rate constant of 3.17× 1011M−1min−1, while in the PNPE model

it decreased to 2.39× 1011M−1min−1, and 2.82× 1011M−1min−1 if the the bulk concen-

tration of the third species was 10 mM. This indicates that the higher concentration of the

reactive species, the stronger effect of the coupling will be imposed on the rate constant.
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To further check how the interaction between the reactive particles affects the rate con-

stant, we set the ionic strength to zero, and it was found that the calculated rate constant

was 3.84× 1011M−1min−1 in SPBE, 2.50× 1011M−1min−1 in PNPE for a bulk concen-

tration of 50 mM of the diffusing particle, and 9.87× 1010M−1min−1 in PNPE for a bulk

concentration of 300 mM of the diffusing particle. This implies that the strongly electric

repulsion between the reactive particles leads to great reduction in rate constant. A simple

explanation underlies here for this phenomena. According to Gauss’s law for the simple

symmetric sphere case, the diffusing particles surrounding the sphere associated with the

flux induce a repulsive drifting field for the diffusion, which lowers the rate coefficient

compared with the case with the repulsion interaction ignored. Therefore, the inter-particle

repulsion and the sink-particle attraction are competitive factors to the rate constant, and

both are regulated (reduced) by ionic strength. For this reason, the reaction rate coefficient

can be expected to be increased by the ionic screening due to the weakened inter-particle

repulsion in certain ranges of ionic and diffusing particle concentrations. For instance, with

a bulk concentration of 300 mM for the diffusing particle, the rate constant in PNPE calcu-

lation at 50 mM ionic strength is 1.35× 1011M−1min−1, which is higher than that in case

of zero ionic strength as shown above. This observation actually discloses a violation of

the widely accepted rate theory based on the famous Debye-Hückel law (e.g., see ref. 3).

These results demonstrate the significance of the effects of mutual interactions among

salt ions and other charged diffusing particles. Furthermore, they highlight the importance

of solving the coupled PNPE, rather than the SPBE, especially in cases of large flux. How-

ever, the SPBE is still an acceptable approximation of the PNPE when the concentration of

the reacting species is small and then the coupling is not strong (at zero ionic strength, ∼

10% difference in the rate constants obtained with the two methods at 10 mM, and ∼ 1.4%

at 1 mM). This approximation is desirable when possible because of the large savings in

computational cost.
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C..3 Ion density around the DNA

We calculated the ion distributions around a fragment of A-form DNA with 12 base pairs

and a net charge of -22e. The system has a strong negative potential field, which attracts

cations. The system was bounded on the outside by a spherical boundary with a radius

of 200 Å. The mesh over the whole domain had a total of 99093 vertices and 620117

simplices, with 24503 vertices and 49002 triangles on the molecular surface, and 74163

vertices and 388419 tetrahedra in the solvent domain. For comparison, we calculated con-

centrations of both monovalent (i.e., Na+) and divalent (i.e., Ca2+) cations. The bulk den-

sities in solution for, i.e., NaCl and CaCl2, were set to 50 mM and 25 mM, respectively.

Fig. 8 shows the surface potential and the counterion concentrations around DNA. Fig.

8a shows a common feature of A-form DNA - a strongly negative electrostatic potential

in the major groove. This led to the dense concentration of cations in the major groove

(see Fig. 8b-c). When the solution was changed to CaCl2, the bivalent Ca2+ ions were

much more strongly attracted to the major groove (Fig. 8b) than the monovalent cation,

and the highly concentrated regions were larger. This observation agrees with the known

fact that the bivalent cation binds much more strongly (far greater than a factor of two) than

the monovalent cation to the site with negative potential. In addition, the calculations pre-

dicted very accurately charge compensations in the whole exterior domain of DNA: 21.3e

(1013.7 Na+, 992.4 Cl−) for 1:1 salt and 21.1e (508.0 Ca2+, 994.9 Cl−) for 2:1 salt.

(∼ FIGURE 8)

D. Solutions of the uncoupled system SPBE

D..1 Steady state diffusion-reaction system—ACh consumption

Debye-Hückel theory predicts the screening effect of mobile ions in solution on the elec-

trostatic potential of immersed biomolecules. This theory implemented within transition

state theory gives a similar screening effect (exponentially decreasing with ion concen-
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tration) on the rate of protein-protein or protein-ligand association, which is called the

Debye-Hückel limiting law. Because of consistency in principle, the SPBE model can be

expected to reproduce the behavior following the Debye-Hückel limiting law. The basic

ionic-strength dependence of the binding rate can also be found by combining Zhou’s av-

erage Boltzmann factor theory and the screened electrostatic potential approximation.45, 46

The Debye-Hückel limiting law was used to fit the experimental data of ligand binding

to acetylcholinesterase.3 Former papers24, 25 studied the steady-state reaction rate of the

AChE monomer with acetylcholine in SPBE model, using the software package APBS26

to compute the potential with non-adaptive and adaptive meshes. To compare, we re-

peated the calculation using the Poisson-Boltzmann potential computed from the boundary-

element method. All of the simulations in the AChE studies, both steady-state and the

time-dependent cases, were done by solving the linearized PBE for the mobile ions only

once at the start, plugging the electric field into Eq. (1), and then solving the SE for the

ACh concentration.

ACh is a positively charged ligand, and a diffusivity of D(r) = 78000Å2/µs is assumed

for ACh and a neutral ligand (TFK0) for later comparison. Rather than using the procedure

described above for generating meshes, we chose to use the same meshes for the AChE

monomer and tetramer as were used in the previous works24, 47 in order to facilitate com-

parison of results. The meshes were generated only for the solvent domain Ωs, and not

for the interior of AChE, which allows solution of the SPBE problem but not the PNPE

in current frame as described in the previous sections. The tetrahedral mesh sizes for the

AChE monomer were 312, 276, and 366 nm for the lengths of the three principal axes re-

spectively, and that for the AChE tetramer (1c2b) were 763, 671, and 679 nm. These sizes

were about 40 times the radius of the monomer. More details about the meshes and the

boundary conditions can be found in refs. 24 and 47.

It is worth noting that AChE densities at vertebrate neuromuscular junction range from

2000∼ 3000/µm2, both in the primary cleft and in the secondary cleft folds,48, 49 depending

on the species. This is approximately equivalent to 20 nm of separation for a square array

distribution. AChE appears in the NMJ mainly in a cluster of 3 tetramers. Thus, the mesh

sizes were several times larger than the separation between AChE molecules; we did not
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attempt to address the issue of competition among neighboring AChE molecules in vivo.

If the steady-state reaction rate is computed, as in the former works,24, 25, 47 the radius of

the outer boundary does not significantly affect the results, because the boundary condition

on the outer boundary is set to the bulk density. This is a good approximation when the

outer mesh boundary is sufficiently far from the molecule. As in the previous studies, we

used a Dirichlet condition on the outer boundary with values of the bulk concentrations, re-

flecting boundary conditions on most of the molecular surface, and an absorbing boundary

condition at the active site.

Fig. 9 shows that both approaches correctly captured the screening effect of ionic so-

lution on the binding rate of the charged substrate, and agreed well with the fit of the

Debye-Hückel limiting law to the experimental data. Because the computed reaction rate

is directly affected by the electric potential at the active site, the more accurate value of

the potential computed from the BEM gives improved rates over even the refined FE mesh

from the previous studies.

(∼ FIGURE 9)

D..2 Time dependent diffusion reaction process

The time-dependent case gives more kinetic information on the diffusion-reaction process

than does the steady-state case. However, it strongly relies on the initial condition, locations

and types of boundary conditions, and the mesh geometry. For instance, in the steady-state

situation, the calculated reaction rate constant is not sensitive to the boundary value and

the size of the outer boundary (if far enough away from the molecule), whereas in time-

dependent case, all of these factors do affect the observations. Therefore, results such as

the ACh depletion time, cannot yet be compared directly to experimental data, but can

supply important qualitative information on properties and factors affecting the process, if

the conditions closely approximate conditions in vivo or in vitro.
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In each calculation, there was one AChE monomer or tetramer located at the center of

the mesh. A reflecting boundary condition on the outside boundary of the mesh was used

to avoid the spreading of ACh to a much larger volume. Two types of initial conditions

were used. One was a uniform distribution of ACh in the whole diffusion domain around

AChE; this is based on the assumption that ACh quickly fills the synaptic cleft after release

from the vesicle, compared to the time scale of whole synaptic activity and depletion. The

other is a pulse of ACh corresponding to about 10,000 molecules of ACh at about 0.3 M

concentration, uniformly distributed in a sphere 24 nm in radius, and centered 48 nm from

the enzyme center on the positive y-axis. The latter pulse condition roughly corresponds to

what happens in the neuromuscular junction (NMJ)21, 22, 50–52 upon release of ACh from a

synaptic vesicle (represented by the sphere) in the frog NMJ.53 The reactive boundary on

molecular surface is also equipped with Dirichlet condition, and with zero value to reflect

the fast catalytic process which clears the ACh from the NMJ. We note that the AChE den-

sity in this circumstance is lower than in real NMJ as mentioned in the mesh generation

section, and interactions among the ACh molecules were neglected. However, the model

still gives useful information about the time scales and trends of ACh depletion.

(∼ FIGURE 10)

Fig. 10 is a set of visualizations of the diffusion-reaction processes for the cases with

monomer or tetramer of AChE, positively charged or neutral diffusing substrate, and dif-

ferent initial conditions. The salient feature is the ability of the electrostatic field of the

enzyme AChE to steer ACh diffusion by absorbing it to the peripheral sites of the reactive

gorge of AChE even at very early times (see Fig. 10d at 0.1 µs and Fig. 10h at 0.5 µs) to

accelerate the reaction. However, the initial ACh pulse quickly spreads in the whole space

even when perturbed by the electrostatic attraction (see Fig. 10e and h). Under normal

physiological conditions, it appears that the initial pulse of ACh reaches a fairly even dis-

tribution in a short time, and then the electrostatic forces persistently steer the substrate

molecules to the active site. In other words, a quasi-steady-state condition is established

with the rapid initial spread of substrate, followed by the slower channeling to the active

27



site. This effect is seen in the graphs of Fig. 11, showing a slow decay in numbers of

remaining ACh after a rapid transient. This holds even for the case of small ionic concen-

tration, where the steering effect is greatest.

(∼ FIGURE 11)

Fig. 11a shows the consumption kinetics of an initial ACh and TFK0 pulse by the AChE

monomer under different ion strengths. It can be observed that higher ionic strengths cause

higher build-ups of ACh due to electrostatic screening, but the electric field still acceler-

ates the reaction rate several-fold, compared to the case of the neutral substrate. The time

required to consume one half of the total ACh in solution of 0 mM ionic strength is just

about one eighth (350 µs/2620 µs) of the time required at 300 mM ionic strength.

Fig. 11b plots the consumption rate of AChE in the early stage of the process. In

the following longer depletion period, each line smoothly declines in a slower exponential

decay. The time for the reaction rate to reach the maximum value reflects the effect of the

substrate-enzyme interaction on the diffusion. Using a reference time scale estimated from

the Einstein-Smoluchowski equation, < r2 >= 6Dt, the average time for a particle to freely

diffuse across 45 nm, a distance between the vesicle center and the AChE reactive site, is

0.43 µs. This is close to the neutral case (Fig. 11b, purple line). In the charged cases, the

times to reach the maximum are a bit greater than in the neutral case, and the magnitudes

increase significantly. A direct explanation is that the electrostatic attraction helps to gather

more ACh molecules (increased magnitude), and from a longer range (delayed peak), into

the AChE reactive site than does the free diffusion.

We also set the initial pulse position at different directions from the enzyme but at the

same distance. We found that this affected the overall ACh depletion process very little

(data not shown here).

(∼ FIGURE 12)

Fig. 12 shows the results of the simulations with initial condition of an ACh bulk ρ(r,0) =
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1. Because Eq. (1) is linear with respect to density p, the initial bulk density will not affect

the dynamic features, so all numbers of residual ACh molecules are normalized. In this

case it is found that ACh consumption processes show the same tendency as seen in Fig.

11.

VI. CONCLUSIONS AND DISCUSSION

A numerical framework has been developed to enable the simulation of the electrodiffu-

sion process in biomolecular systems. The framework consists of a biomolecular modeling

toolchain and a boundary element solver combined with the FETK finite element modeling

library for both statics and dynamics. The quality of the generated meshes is sufficient for

the present finite element calculation, and the hybrid scheme is validated by the results.

The program gives accurate calculations for the potential profile, density distribution, and

compensation charges for different models (linearized PBE, nonlinear PBE, PNPE). The

calculation results for the unit spherical model also indicate that even at 50 mM concen-

tration of the diffusing particle the coupling among all the charged species in the diffusing

system significantly affects the reaction rate, so application of the PNPE is recommended

for reaction rate calculations if sufficient computational resources are available. The time-

dependent model (currently still an uncoupled system) can capture the main features of

the consumption of the substrate ACh, as well as TFK0. The detailed geometry of AChE,

electrostatics, and ionic strength are included in this model, and the time scale represented

by the computation can reach microseconds to milliseconds. This is on the same time scale

as phenomena in the synapse, allowing the possibility of predicting and comparing with

experimental measurements.

The current program incorporates the solvers of the linear and nonlinear PBEs, NP/SE,

and their coupled/uncoupled forms (PNPE/SPBE), allowing for the treatments of a variety

of continuum models. This methodology can be applied to the other fields as well, like

colloid science, with dimensions scaled accordingly. Although representing an improved

algorithm, the program is comparable with the previous work using FETK24 but using other

mesh generation tools, and the electric potential fields used as input can be generated from
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the APBS package. In addition, in order to reduce the complexity of the program package,

both the SE and the PE can be solved using the FETK package alone, but a procedure

is required to generate a fine enough interior mesh for the macromolecule to guarantee

numerical accuracy.

As with all models based on continuum descriptions of ions, such as the Poisson-

Boltzmann equation, the biggest room for improvement is in the model itself. The cur-

rent PNPE is based on the mean field approximation, in which finite ion size or ion-to-ion

correlation is not considered. Such effects cause ion saturation in highly charged systems

like DNA and single filing of ions in channels; these phenomena cannot be captured by the

present continuum model. For example, ion concentrations are overestimated near charged

surfaces in comparison with models in which the ions are explicitly included in, e.g., Brow-

nian dynamics54 or grand canonical Monte Carlo simulations.55 Some recent models have

been proposed and tested in ion channel permeation to effectively take into account the

ion size,56, 57 thus partially remove the limitation that mobile species are treated as point

charges. Another effect neglected by these models is the specific interactions of some ions,

such as Mg2+, with water and their influence on the water’s microstructure. For example,

the Mg2+ ion is typically accompanied by several water molecules, even when bound to

DNA or proteins. Moreover, current work completely ignores molecular flexibility and

the presence of thermal noise, a macromolecule flexibility could play important role in the

process of ion density relaxation. It may be useful to take into account the macromolecular

flexibility into the PNPE theory to calculate fluxes and mobile ion density distribution. A

recent work incorporates information about the channel dynamics in terms of potential of

mean force into PNPE calculation.58 Another possible way is to extract a set of snapshots

(ensemble) from the trajectory of molecular dynamics simulation, then perform PNPE cal-

culation for each conformation and analyze the results. This type of work is underway to

study the catalysis efficiency for the dynamical AChE tetramers.

Several improvements could be made in the numerical solution itself. As mentioned

above, the underrelaxation iterative procedure for the PNPE in our FE frame seems neces-

sary, especially when macromolecule exists. However, such iteration procedure might be

difficult to converge in cases of highly charged macromolecular systems, and need to be
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improved. Where possible, one should use the Poisson-Boltzmann approximations to avoid

the iterative solution. Work is underway to carry out a FEM computation on the regular

component of the electrostatic solution, Eq. (7), in which the interior of the biomolecule

does not need to be meshed; this will allow simultaneous solution of both diffusive and

electrostatic components using FETK because the meshes will coincide. Finally, the cur-

rent boundary condition settings for the PE solution may not be completely correct for the

cases where three or more types of diffusing particle exist or if the whole system is far from

neutrality.

For the solution of time-dependent PNPE, it is expected that the CPU cost would be

increased by several times compared with that of the solution of pure diffusion equation

or SPBE, depending on the total number (K + 1, K is the number of diffusing species) of

equations to be solved at each time step. This is still acceptable for normal computational

power.

Despite the above limitations, the Poisson-Nernst-Planck model and the software frame-

work can give accurate values for charged particle density and reaction rates, provided that

the particles are dilute and the strength of the electric field is not too high.
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VII. FIGURE CAPTIONS

FIGURE 1 An example of conforming and nonconforming 2D meshes. The molecular in-

terior is represented by shading, and the mesh covers the whole domain in each case.

FIGURE 2 Schematic of problem domain, denoting the boundaries and volumes. Γm de-

notes the fixed molecular boundary, and Γs is the boundary of the whole volume mesh. If

reaction on the molecular surface is considered, according to Song et al.’s treatment24 (sim-

ilar figure can also be found therein), a small patch Γa (Γa ⊂ Γm) around the active site is

set to a zero Dirichlet boundary condition (sink boundary) to model the chemical reaction.

FIGURE 3 An example of mesh generation for a fragment of A-form DNA. (a) Cross-

section of the whole tetrahedral volume mesh. (b) A close-up view of the fine mesh around

the molecule, whose body is colored by green. The edge between green and blue regions

lies on the molecular surface. (c) The triangular boundary mesh conforming to the molec-

ular surface.

FIGURE 4 The numerical error in the solution of the regular part of the PBE using FEM.

FIGURE 5 The charge compensation predicted based on the analytical solution of the

LPBE for a unit sphere cavity with charge -e at the center. (a) The compensation charge

as a function of radial distance at different ionic strengths represented by κ. Blue lines

correspond the results from Eq. (21), red marks from Eq. (22). (b) The net charge within

r = 40Å as a function of κ using Eq. (22) (red) and Eq. (21) (blue).

FIGURE 6 Comparisons of the calculated electrostatic potentials in 50 mM 1:1 salt around

a unit spherical cavity with +e at the center from different approaches: the analytical LPBE

solution (blue square), LPBE (black star), NPBE (red triangle), and PNPE (green circle).

FIGURE 7 Effects of the addition of a charge flux in the 50 mM 1:1 salt to (a) the po-
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tential, (b) the counterion and (c) the coion density distributions. In three figures, the red

square marks denote the 1:1 salt case without charge flux, the blue triangle marks denote

the case with a negative charge flux (-e particle) added in the salt, the black star the case

with a positive charge flux added in the salt.

FIGURE 8 Electrostatic potential and cation density (mM) around a fragment of A-form

DNA. (a) Surface electrostatic potential from the BEM LPBE solution in a 50 mM 1:1 salt.

The color scale is from -11 (red) to 10 (blue) kcal/mol.e. (b) Cross-section of the density

distribution in 50 mM 1:1 salt. (c) Density distribution in 25 mM 2:1 salt (e.g, CaCl2). The

color scale is doubled for ease of comparison with (b). (d) Density isosurface with a value

of 3000 mM in the case (b) from a different orientation. These and all the following density

figures are generated using the software OpenDX.59

FIGURE 9 Comparison of calculations of the steady-state reaction rate of AChE monomer

with BEM potential, APBS potential, and experimental fitting data. The dotted lines are the

results from ref. 25 with APBS electrostatic potential using unrefined or refined meshes,

respectively. The thin solid line is from experimental data3 fit to the Debye-Hückel limiting

law.

FIGURE 10 Visualization of the evolution of substrate concentrations in the diffusion-

reaction processes. +e denotes the one unit positively charged ligand ACh, 0e denotes the

neutral ligand TFK0. Figures (a)-(g) show the cases of diffusion from an initial pulse in the

presence of AChE monomer at ionic strength 0.3 M. Figure (h) shows the tetramer (1c2b)

case with diffusion with an initial condition of ACh pulse and in zero ionic strength. Figure

(i) is the same as (h), but with a uniform distribution (0.3 M) of ACh as the initial condi-

tion. For the sake of visualization, different color scales are used in different subfigures.

The largest color scales (red) are 0.00018 in figures (a)-(c), and 0.0001 in (d), 0.00005 in

(e)-(h), and 1.0 in (i).

FIGURE 11 Substrate consumption processes by AChE monomer at different ionic strength.

37



+e denotes the positively charged ACh, 0e the neutral TFK0. The diffusion starts from a

vesicle-sized area containing 10000 ACh molecules and ∼ 20 nm away from AChE (see

Fig. 10a). The bottom figure shows a close-up view of the transient behavior at the begin-

ning.

FIGURE 12 Consumption of bulk ACh by the AChE monomer at different ionic strengths.
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Figure 6. B. Lu, et al.
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(a) +e, monomer, 0 µs (b) +e, monomer, 0.4 µs (c) +e, monomer, 0.8 µs

(d) +e, monomer, 0.1 µs (e) +e, monomer, 0.4 µs (f) 0e, monomer, 0.4 µs

(g) 0e, monomer, 1.5 µs (h) +e, tetramer, 0.5 µs (i) +e, tetramer,0.01 µs

Figure 10. B. Lu, et al.
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