BOUNDARY VALUE PROBLEMS

BOUNDARY VALUE PROBLEMS Theory and Applications

Ivar Stakgold

Department of Mathematical Sciences University of Delaware Newark, DE –and– Department of Mathematics University of California, San Diego La Jolla, CA

Michael Holst

Departments of Mathematics and Physics University of California, San Diego La Jolla, CA

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright ©2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Boundary Value Problems: Theory and Applications / Ivar Stakgold and Michael Holst p. cm.—(Wiley series in XXX) "Wiley-Interscience." Includes bibliographical references and index. ISBN X-XXX-XXXXX-X Series. Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Lainie and Alissa. -I.S.

For Mai, Mason, and Makenna. -M.H.

CONTENTS

Pre	face		ix		
1	Background from Analysis, Modeling, and Differential Equation				
	1.1	Mathematical Models of Physical Systems	2		
	1.2	Alternative Mathematical Formulations	7		
	1.3	Differential and Integral Equations	12		
	1.4	Green's Functions	15		
	1.5	Tools from Real Analysis	18		
	1.6	Lebesgue Integration	25		
	1.7	Basic Theory of Distributions	31		
	1.8	Fourier Series and Fourier Transforms	39		
	1.9	Differential Equations in Distributions	44		
	1.10	Weak Derivatives and Sobolev Spaces	49		
2	Hilb	ert and Banach Spaces	51		
	2.1	Functions and Transformations	51		
	2.2	Linear Spaces	55		
	2.3	Metric Spaces, Normed Linear Spaces, and Banach Spaces	62		
	2.4	Contractions and the Banach Fixed-Point Theorem	73		
	2.5	Hilbert Spaces and the Projection Theorem	89		
	2.6	Separable Hilbert Spaces and Orthonormal Bases	103		
	2.7	Linear Functionals and the Riesz Representation Theorem	116		
	2.8	The Hahn-Banach Theorem and Reflexive Banach Spaces	119		
			vii		

vi	i	i	CONTENTS

3	Operator Theory				
	3.1	Basic Ideas and Examples	127		
	3.2	Closed Operators	135		
	3.3	Invertibility: The State of an Operator	139		
	3.4	Adjoint Operators	144		
	3.5	Solvability Conditions	149		
	3.6	The Spectrum of an Operator	154		
	3.7	Compact Operators	164		
	3.8	Extremal Properties of Operators	167		
	3.9	The Banach-Schauder and Banach-Steinhaus Theorems	174		
4	Partial Differential Equations				
	4.1	Classification of Partial Differential Equations	179		
	4.2	Well-Posed Problems for Hyperbolic and Parabolic Equations	192		
	4.3	Elliptic Equations	209		
	4.4	Variational Principles for Inhomogeneous Problems	234		
	4.5	The Lax-Milgram Theorem	271		
5	Nonlinear Problems				
	5.1	Introduction and Basic Fixed-Point Techniques	277		
	5.2	Branching Theory	297		
	5.3	Perturbation Theory for Linear Problems	304		
	5.4	Techniques for Nonlinear Problems	314		
	5.5	The Stability of the Steady State	343		
6	Approximation Theory				
	6.1	Nonlinear Analysis Tools for Banach Spaces	358		
	6.2	Best and Near-Best Approximation in Banach Spaces	387		
	6.3	Overview of Sobolev and Besov Spaces	408		
	6.4	Applications to Nonlinear Elliptic Equations	427		
	6.5	Finite Element and Related Discretization Methods	453		
	6.6	Wavelets and Applied Harmonic Analysis	487		

Index

495