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Abstract Computational methods are considered for finding a point that satisfies
the second-order necessary conditions for a general (possibly nonconvex) quadratic
program (QP). The first part of the paper considers the formulation and analysis of
an active-set method for a generic QP with both equality and inequality constraints.
The method uses a search direction that is the solution of an equality-constrained
subproblem involving a “working set” of linearly independent constraints. The method
is a reformulation of a method for general QP first proposed by Fletcher, and modified
subsequently by Gould. The reformulation facilitates a simpler analysis and has the
benefit that the algorithm reduces to a variant of the simplex method when the QP

is a linear program. The search direction is computed from a KKT system formed
from the QP Hessian and the gradients of the working-set constraints. It is shown that,
under certain circumstances, the solution of this KKT system may be updated using
a simple recurrence relation, thereby giving a significant reduction in the number of
KKT systems that need to be solved. The second part of the paper focuses on the
solution of QP problems with constraints in so-called standard form. We describe how
the constituent KKT systems are solved, and discuss how an initial basis is defined.
Numerical results are presented for all QPs in the CUTEst test collection.
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1 Introduction

A quadratic program (QP) involves the minimization or maximization of a quadratic
objective function subject to linear equality and inequality constraints on the vari-
ables. QPs arise in many areas, including economics, applied science and engineering.
Important applications include portfolio analysis, support vector machines, structural
analysis and optimal control. Quadratic programming also forms a principal compu-
tational component of many sequential quadratic programming methods for nonlinear
programming (for a recent survey, see Gill and Wong [34]). Interior methods and
active-set methods are two alternative approaches to handling the inequality con-
straints of a QP. In this paper we focus on active-set methods, which have the property
that they are able to capitalize on a good estimate of the solution. In particular, if a
sequence of related QPs must be solved, then the solution of one problem may be
used to “warm start” the next, which can significantly reduce the amount of computa-
tion time. This feature makes active-set quadratic programming methods particularly
effective in the final stages of sequential quadratic programming method.

In the first part of the paper (comprising Sects. 2 and 3), we consider the formulation
and analysis of an active-set method for a generic QP of the form

minimize
x∈Rn

ϕ(x) = cTx + 1
2 xTH x

subject to Ax = b, Dx ≥ f,
(1.1)

where A, b, c, D, f and H are constant, H is symmetric, A is m×n, and D is m D×n.
(In order to simplify the notation, it is assumed that the inequalities involve only lower
bounds. However, the method to be described can be generalized to treat all forms of
linear constraints.) No assumptions are made about H (other than symmetry), which
implies that the objective function ϕ(x) need not be convex. In the nonconvex case,
however, convergence will be to a point satisfying the second-order necessary condi-
tions for optimality, which may or may not be a local minimizer (for more details, see
Sect. 2.1). The method under consideration defines a primal–dual search pair associ-
ated with the solution of an equality-constrained subproblem involving a “working set”
of linearly independent constraints. Unlike existing quadratic programming methods,
the working set may include constraints that need not be active at the current iterate.
In this context, we reformulate a method for a general QP that was first proposed
by Fletcher [20], and modified subsequently by Gould [37]. In this reformulation,
the primal–dual search directions satisfy a KKT system of equations formed from the
Hessian H and the gradients of the constraints in the working set. The working set is
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specified by an active-set strategy that controls the inertia (i.e., the number of posi-
tive, negative and zero eigenvalues) of the KKT matrix. It is shown in Sect. 3 that this
inertia-controlling strategy guarantees that each set of KKT equations is well-defined
and nonsingular. In addition, it is shown that, under certain circumstances, the solution
of this KKT system may be updated using a simple recurrence relation, thereby giving
a significant reduction in the number of KKT systems that need to be solved. (For
conventional inertia-controlling methods that use a working set of active constraints,
see, e.g., Gill and Murray [25] and Gill et al. [31,32].)

Not all active-set methods for a general QP are inertia controlling—see, for example,
the methods of Bunch and Kaufman [7], Friedlander and Leyffer [22], and the quadratic
programming methods in the GALAHAD software package of Gould et al. [38,40,41].
A number of alternative methods have been proposed for strictly convex quadratic
programming with a modest number of constraints and variables, see, e.g., Goldfarb
and Idnani [35], Gill et al. [24], and Powell [52]. A variable-reduction method for a
large-scale convex QP is proposed by Gill et al. [27]. Bartlett and Biegler [3] propose
a fixed-factorization method for large-scale strictly convex problems (see Sect. 5.2).

Sections 4–7 form the second part of the paper, which focuses on a method for
QPs with constraints written in standard form. In this case, the inequality constraints
of the generic form (1.1) are nonnegativity constraints x ≥ 0. It is shown that if
H = 0 (so that the problem has a linear objective), then the method is equivalent
to a variant of the primal simplex method in which the π -values and reduced costs
are updated at each iteration. Section 5 describes two approaches for solving the KKT

systems. The first approach is the well-known variable-reduction method, which is
suitable for problems for which the number of active constraints is comparable to the
number of variables (i.e., for problems with a small number of degrees of freedom).
The variable-reduction method uses a Cholesky factorization of the reduced Hessian
and a sparse LU factorization of a basis matrix. The second approach, which we call
the block-LU method, uses a sparse factorization of a fixed indefinite KKT matrix in
conjunction with the factorization of a smaller dense matrix that is updated at each
iteration (see also, Gill et al. [28] and Huynh [45]). The use of a fixed factorization
allows a “black-box” sparse equation solver to be used repeatedly. This feature makes
the block-LU method ideally suited to problems with structure that can be exploited by
using specialized factorization. Moreover, improvements in efficiency derived from
exploiting new parallel and vector computer architectures are immediately applicable
via state-of-the-art linear equation solvers. Section 6 describes how an appropriate
initial basis is found when the problem is not strictly convex. Finally, in Sect. 7 we
describe the main features of the Fortran 2008 package SQIC (Sparse Quadratic pro-
gramming using Inertia Control), which is a particular implementation of the method
for standard form QPs described in Sect. 4. Numerical results are given for all the
linear and quadratic programs in the CUTEst test collection (see [39]).

Notation The gradient of the objective ϕ evaluated at x , c + H x , is denoted by the
vector g(x), or g if it is clear where the evaluation occurs. The vector dT

i refers to the
i-th row of the constraint matrix D, so that the i-th inequality constraint is dT

i x ≥ fi .
The i-th component of a vector labeled with a subscript will be denoted by [ · ]i , e.g.,

123



74 P. E. Gill, E. Wong

[vN ]i is the i-th component of the vector vN . Similarly, a subvector of components with
indices in the index set S is denoted by ( · )S , e.g., (vN )S is the vector with components
[vN ]i for i ∈ S. The symbol I is used to denote an identity matrix with dimension
determined by the context. The j-th column of I is denoted by e j . Unless explicitly
indicated otherwise, ‖ ·‖ denotes the vector two-norm or its induced matrix norm. The
inertia of a real symmetric matrix A, denoted by In(A), is the integer triple (a+, a−, a0)

giving the number of positive, negative and zero eigenvalues of A. Given vectors a
and b with the same dimension, the vector with i-th component ai bi is denoted by

a · b. Given a symmetric matrix K of the form
(

M N T

N G

)
, with M nonsingular, the

matrix G − N M−1 N T , the Schur complement of M in K , will be denoted by K/M .
When the definitions of the relevant matrices are clear we will refer to “the” Schur
complement.

2 Background

In this section, we review the optimality conditions for the generic QP (1.1), and
describe a framework for the formulation of feasible-point active-set QP methods.
Throughout, it is assumed that the matrix A has full row-rank m. This condition is
easily satisfied for the class of active-set methods considered in this paper. Given
an arbitrary matrix G, equality constraints Gu = b are equivalent to the full rank
constraints Gu + v = b, if we impose v = 0. In this formulation, the v-variables are
artificial variables that are fixed at zero.

2.1 Optimality conditions

The necessary and sufficient conditions for a local solution of the QP (1.1) involve the
existence of vectors z and π of Lagrange multipliers associated with the constraints
Dx ≥ f and Ax = b, respectively. The conditions are summarized by the following
result, which is stated without proof (see, e.g., Borwein [6], Contesse [8] and Majthay
[47]).

Result 2.1 (QP optimality conditions) The point x is a local minimizer of the quadratic
program (1.1) if and only if

(a) Ax = b, Dx ≥ f , and there exists at least one pair of vectors π and z such that
g(x) = ATπ + DTz, with z ≥ 0, and z · (Dx − f ) = 0;

(b) pTH p ≥ 0 for all nonzero p satisfying g(x)T p = 0, Ap = 0, and dT
i p ≥ 0 for

every i such that dT
i x = fi . ��

We follow the convention of referring to any x that satisfies condition (a) as a first-order
KKT point.

If H has at least one negative eigenvalue and (x, π, z) satisfies condition (a) with
an index i such that zi = 0 and dT

i x = fi , then x is known as a dead point. Verifying
condition (b) at a dead point requires finding the global minimizer of an indefinite
quadratic form over a cone, which is an NP-hard problem (see, e.g., Cottle et al. [9],
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Murty and Kabadi [48], Pardalos and Schnitger [50], and Pardalos and Vavasis [51]).
This implies that the optimality of a candidate solution of a general quadratic program
can be verified only if more restrictive (but computationally tractable) sufficient con-
ditions are satisfied. A dead point is a point at which the sufficient conditions are not
satisfied, but certain necessary conditions for optimality hold. Replacing part (b) of
Result 2.1 with the condition that pTH p ≥ 0 for all nonzero p satisfying Ap = 0, and
dT

i p = 0 for each i such that dT
i x = fi , leads to computationally tractable necessary

conditions for optimality.
Additionally, suitable sufficient conditions for optimality are given by replacing

the necessary condition by the condition that pTH p ≥ 0 for all p such that Ap = 0,
and dT

i p = 0 for every i ∈ A+(x), where A+(x) is the index set A+(x) = {i : dT
i x =

fi and zi > 0}.
These conditions may be expressed in terms of the constraints that are satisfied

with equality at x . Let x be any point satisfying the equality constraints Ax = b.
(The assumption that A has rank m implies that there must exist at least one such
x .) An inequality constraint is active at x if it is satisfied with equality. The indices
associated with the active constraints comprise the active set, denoted by A(x). An
active-constraint matrix Aa(x) is a matrix with rows consisting of the rows of A and
the gradients of the active constraints. By convention, the rows of A are listed first,
giving the active-constraint matrix

Aa(x) =
(

A
Da(x)

)
,

where Da(x) comprises the rows of D with indices in A(x). Note that the active-
constraint matrix includes A in addition to the gradients of the active constraints. The
argument x is generally omitted if it is clear where Da is defined.

With this definition of the active set, we give necessary conditions for the QP.

Result 2.2 (Necessary conditions in active-set form) Let the columns of the matrix
Za form a basis for the null space of Aa. The point x is a local minimizer of the QP

(1.1) only if

(a) x is a first-order KKT point, i.e., (i) Ax = b, Dx ≥ f ; (ii) g(x) lies in range(AT
a ),

or equivalently, there exist vectors π and za such that g(x) = ATπ + DT
a za; and

(iii) za≥ 0,
(b) the reduced Hessian Z T

a H Za is positive semidefinite. ��
Typically, software for general quadratic programming will terminate the iterations

at a dead point. Nevertheless, it is possible to define procedures that check for opti-
mality at a dead point, even though the chance of success in a reasonable amount of
computation time will depend on the size of the problem (see Forsgren et al. [21]).

2.2 Active-set methods

The method to be considered is a two-phase active-set method. In the first phase
(the feasibility phase or phase 1), the objective is ignored while a feasible point is
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found for the constraints Ax = b and Dx ≥ f . In the second phase (the optimality
phase or phase 2), the objective is minimized while feasibility is maintained. Given a
feasible x0, active-set methods compute a sequence of feasible iterates {xk} such that
xk+1 = xk + αk pk and ϕ(xk+1) ≤ ϕ(xk), where pk is a nonzero search direction and
αk is a nonnegative step length. Active-set methods are motivated by the main result
of Farkas’ Lemma, which states that a feasible x must either satisfy the first-order
optimality conditions or be the starting point of a feasible descent direction, i.e., a
direction p such that

Aa p ≥ 0 and g(x)T p < 0. (2.1)

The method considered in this paper approximates the active set by a working set W
of row indices of D. The working set has the form W = {ν1, ν2, . . . , νmw }, where
mw is the number of indices in W . Analogous to the active-constraint matrix Aa, the
(m+mw)×n working-set matrix Aw contains the gradients of the equality constraints
and inequality constraints in W . The structure of the working-set matrix is similar to
that of the active-set matrix, i.e.,

Aw =
(

A
Dw

)
,

where Dw is a matrix formed from the mw rows of D with indices in W . The vector
fw denotes the components of f with indices in W .

There are two important distinctions between the definitions of A and W .

(i) The indices of W define a subset of the rows of D that are linearly independent
of the rows of A, i.e., the working-set matrix Aw has full row rank. It follows that
mw must satisfy 0 ≤ mw ≤ min{n − m, m D}.

(ii) The active set A is uniquely defined at any feasible x , whereas there may be many
choices for W . The set W is determined by the properties of a particular active-set
method.

Conventional active-set methods define the working set as a subset of the active set
(see, e.g., Gill et al. [33], and Nocedal and Wright [49]). In this paper we relax this
requirement—in particular, a working-set constraint need not be strictly satisfied at
x . (More generally, a working-set constraint need not be feasible at x , although this
property is not used here).

Given a working set W and an associated working-set matrix Aw at x , we introduce
the notions of stationarity and optimality with respect to a working set. We emphasize
that the definitions below do not require that the working-set constraints are active (or
even feasible) at x .

Definition 2.1 (Subspace stationary point) Let W be a working set defined at an x
such that Ax = b. Then x is a subspace stationary point with respect to W (or,
equivalently, with respect to Aw) if g ∈ range(AT

w), i.e., there exists a vector y such
that g = AT

w y. Equivalently, x is a subspace stationary point with respect to the
working set W if the reduced gradient Z T

wg is zero, where the columns of Zw form a
basis for the null space of Aw. ��
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At a subspace stationary point, the components of y are the Lagrange multipliers
associated with a QP with equality constraints Ax = b and Dwx = fw. To be consistent
with the optimality conditions of Result 2.2, we denote the first m components of y
as π (the multipliers associated with Ax = b) and the last mw components of y as zw

(the multipliers associated with the constraints in W). With this notation, the identity
g(x) = AT

w y = ATπ + DT
wzw holds at a subspace stationary point.

To classify subspace stationary points based on curvature information, we define
the terms second-order-consistent working set and subspace minimizer.

Definition 2.2 (Second-order-consistent working set) Let W be a working set asso-
ciated with an x such that Ax = b, and let the columns of Zw form a basis for the null
space of Aw. The working set W is second-order-consistent if the reduced Hessian
Z T

w H Zw is positive definite. ��

The inertia of the reduced Hessian is related to the inertia of the (n+m+mw)× (n+
m + mw) KKT matrix K =

(
H AT

w

Aw

)
through the identity In(K ) = In(Z T

w H Zw)+
(m +mw, m +mw, 0) (see Gould [36]). It follows that an equivalent characterization
of a second-order-consistent working set is that K has inertia (n, m +mw, 0). A KKT

matrix K associated with a second-order-consistent working set is said to have “correct
inertia”. It is always possible to impose sufficiently many temporary constraints that
will covert a given working set into a second-order consistent working set. For example,
a temporary vertex formed by fixing variables at their current values will always
provide a KKT matrix with correct inertia (see Sect. 6 for more details).

Definition 2.3 (Subspace minimizer) If x is a subspace stationary point with respect
to a second-order-consistent basis W , then x is known as a subspace minimizer with
respect to W . If every constraint in the working set is active, then x is called a standard
subspace minimizer; otherwise x is called a nonstandard subspace minimizer. ��

3 A method for the generic quadratic program

In this section we formulate and analyze an active-set method based on controlling the
inertia of the KKT matrix. Inertia-controlling methods were first proposed by Fletcher
[20] and are based on the simple rule that a constraint is removed from the working set
only at a subspace minimizer. We show that with an appropriate choice of initial point,
this rule ensures that every iterate is a subspace minimizer for the associated working
set. This allows for the reliable and efficient calculation of the search directions.

The method starts at a subspace minimizer x with g(x) = AT
w y = ATπ + DT

wzw

and a KKT matrix with correct inertia. If x is standard and zw ≥ 0, then x is optimal for
the QP. Otherwise, there exists an index νs ∈W such that [zw ]s < 0. To proceed, we
define a descent direction that is feasible for the equality constraints and the constraints
in the working set. Analogous to (2.1), p is defined so that

Aw p = em+s and g(x)T p < 0.
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We call any vector satisfying this condition a nonbinding direction because any nonzero
step along it will increase the residual of the νs-th inequality constraint (and hence
make it inactive or nonbinding). Here we define p as the solution of the equality-
constrained subproblem

minimize
p

ϕ(x + p) subject to Aw p = em+s . (3.1)

The optimality conditions for this subproblem imply the existence of a vector q such
that g(x + p) = AT

w(y + q); i.e., q is the step to the multipliers associated with the
optimal solution x + p. This condition, along with the feasibility condition, implies
that p and q satisfy the equations

(
H AT

w

Aw

) (
p
−q

)
=

(−(g(x)− AT
w y)

em+s

)
. (3.2)

The primal and dual directions have a number of important properties that are sum-
marized in the next result.

Result 3.1 (Properties of the search direction) Let x be a subspace minimizer such
that g = AT

w y = ATπ + DT
wzw, with [zw]s < 0. Then the vectors p and q satisfying

the equations

(
H AT

w

Aw

) (
p
−q

)
=

(−(g(x)− AT
w y)

em+s

)
=

(
0

em+s

)
(3.3)

constitute the unique primal and dual solutions of the equality constrained problem
defined by minimizing ϕ(x + p) subject to Aw p = em+s . Moreover, p and q satisfy
the identities

gT p = ym+s = [zw ]s and pTH p = qm+s = [qw ]s, (3.4)

where qw denotes the vector consisting of the last mw components of q.

Proof The assumption that x is a subspace minimizer implies that the subproblem has
a unique bounded minimizer. The optimality of p and q follows from the equations in
(3.2), which represent the feasibility and optimality conditions for the minimization
of ϕ(x + p) on the set {p : Aw p = em+s}. The equation g = AT

w y and the definition
of p from (3.3) give

gT p = pT(AT
w y) = yTAw p = yTem+s = ym+s = [zw ]s

Similarly, pTH p = pT(AT
wq) = eT

m+sq = qm+s = [qw ]s . ��
Once p and q are known, a nonnegative step α is computed so that x+αp is feasible

and ϕ(x+αp) ≤ ϕ(x). If pTH p > 0, the step that minimizes ϕ(x+αp) as a function
of α is given by α∗ = −gT p/pTH p. The identities (3.4) give

α∗ = −gT p/pTH p = −[zw ]s/[qw ]s .
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As [zw ]s < 0, if [qw ]s = pTH p > 0, the optimal step α∗ is positive. Otherwise
[qw ]s = pTH p ≤ 0 and ϕ has no bounded minimizer along p and α∗ = +∞.

If x +α∗ p is unbounded or infeasible, then α must be limited by αF , the maximum
feasible step from x along p. The feasible step is defined as αF = γr , where

γr = min γi , with γi =

⎧
⎪⎨
⎪⎩

dT
i x − fi

− dT
i p

if dT
i p < 0;

+∞ otherwise.

The step α is then min{α∗, αF}. If α = +∞, the QP has no bounded solution and the
algorithm terminates. In the discussion below, we assume that α is a bounded step.

The primal and dual directions p and q defined by (3.3) have the property that
x +αp remains a subspace minimizer with respect to Aw for any step α. This follows
from the definitions (3.3), which imply that

g(x + αp) = g(x)+ αH p = AT
w y + αAT

wq = AT
w(y + αq), (3.5)

so that the gradient at x + αp is a linear combination of the columns of AT
w. The step

x + αp does not change the KKT matrix K associated with the subspace minimizer
x , which implies that x + αp is also a subspace minimizer with respect to Aw. This
means that x + αp may be interpreted as the solution of a problem in which the
working-set constraint dT

νs
x ≥ fνs is shifted to pass through x + αp. The component

[y + αq ]m+s = [zw + αqw ]s is the Lagrange multiplier associated with the shifted
version of dT

νs
x ≥ fνs . This property is known as the parallel subspace property of

quadratic programming. It shows that if x is stationary with respect to a nonbinding
constraint, then it remains so for all subsequent iterates for which that constraint
remains in the working set. (The parallel subspace property forms the principal basis
of a number of other active-set methods, including the parametric QP methods of Best
[4] and qpOASES [18,19].)

Once α has been defined, the new iterate is x̄ = x + αp. The composition of the
new working set and multipliers depends on the definition of α.

Case 1 α = α∗ In this case, the step α = α∗ = −[zw ]s/[qw ]s minimizes ϕ(x + αp)

with respect to α, giving the s-th element of zw + αqw as

[zw + αqw ]s = [zw ]s + α∗[qw ]s = 0,

which implies that the Lagrange multiplier associated with the shifted constraint is
zero at x̄ . The nature of the stationarity may be determined using the next result.

Result 3.2 (Constraint deletion) Let x be a subspace minimizer with respect to W .
Assume that [zw ]s < 0. Let x̄ denote the point x+αp, where p is defined by (3.3) and
α = α∗ is bounded. Then x̄ is a subspace minimizer with respect to W̄ =W − {νs}.
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Proof Let K and K̄ denote the matrices

K =
(

H AT
w

Aw

)
and K̄ =

(
H ĀT

w

Āw

)
,

where Aw and Āw are the working-set matrices associated with W and W̄ . It suffices
to show that K̄ has the correct inertia, i.e., In(K̄ ) = (n, m + mw − 1, 0).

Consider the matrix M such that

M 
=
(

K em+n+s

eT
m+n+s

)
.

By assumption, x is a subspace minimizer with In(K ) = (n, m+mw, 0). In particular,
K is nonsingular and the Schur complement of K in M exists with

M/K = −eT
n+m+s K−1en+m+s = −eT

n+m+s

(
p
−q

)
= [qw ]s .

It follows that

In(M) = In(M/K )+ In(K ) = In([qw ]s)+ (n, m + mw, 0). (3.6)

Now consider a symmetrically permuted version of M :

M̃ =

⎛
⎜⎜⎝

0 1
1 0 dT

νs

dνs H ĀT
w

Āw

⎞
⎟⎟⎠ .

Inertia is unchanged by symmetric permutations, so In(M) = In(M̃). The 2×2 block
in the upper-left corner of M̃ , denoted by E , has eigenvalues ±1, so that

In(E) = (1, 1, 0) with E−1 = E .

The Schur complement of E in M̃ is

M̃/E = K̄ −
(

0 dνs

0 0

) (
0 1
1 0

) (
0 0

dT
νs

0

)
= K̄ ,

which implies that In(M̃) = In(M̃/E)+ In(E) = In(K̄ )+ (1, 1, 0). Combining this
with (3.6) yields

In(K̄ ) = In([qw ]s)+ (n, m + mw, 0)− (1, 1, 0)

= In([qw ]s)+ (n − 1, m + mw − 1, 0).
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As α = α∗, the scalar [qw ]s must be positive. It follows that

In(K̄ ) = (1, 0, 0)+ (n − 1, m + mw − 1, 0) = (n, m + mw − 1, 0)

and the subspace stationary point x̄ is a (standard) subspace minimizer with respect
to the new working set W̄ =W − {νs}. ��

Case 2 α = αF In this case, α is the step to the blocking constraint dT
r x ≥ fr , which

is eligible to be added to the working set at x + αp. However, the definition of the
new working set depends on whether or not the blocking constraint is dependent on
the constraints already in W . If dr is linearly independent of the columns of AT

w, then
the index r is added to the working set. Otherwise, we show in Result 3.5 below that
a suitable working set is defined by exchanging rows dνs and dr in Aw. The following
result provides a computable test for the independence of dr and the columns of AT

w.

Result 3.3 (Test for constraint dependency) Let x be a subspace minimizer with
respect to Aw. Assume that dT

r x ≥ fr is a blocking constraint at x̄ = x + αp,
where p satisfies (3.3). Define vectors u and v such that

(
H AT

w

Aw

) (
u
v

)
=

(
dr

0

)
, (3.7)

then

(a) dr and the columns of AT
w are linearly independent if and only if u �= 0;

(b) vm+s = dT
r p < 0, and uTdr ≥ 0 with uTdr > 0 if u �= 0.

Proof For part (a), Eqs. (3.7) give Hu + AT
wv = dr and Awu = 0. If u = 0 then

AT
wv = dr , and dr must be dependent on the columns of AT

w. Conversely, if AT
wv = dr ,

then the definition of u gives uTAT
wv = uTdr = 0, which implies that uTHu =

uT(Hu + AT
wv) = uTdr = 0. By assumption, x is a subspace minimizer with respect

to Aw, which is equivalent to the assumption that H is positive definite for all u such
that Awu = 0. Hence uTHu = 0 can hold only if u is zero.

For part (b), we use Eqs. (3.3) and (3.7) to show that

vm+s = eT
m+sv = pTAT

wv = pT (dr − Hu) = pTdr − qTAwu = dT
r p < 0,

where the final inequality follows from the fact that dT
r p must be negative if dT

r x ≥ fr
is a blocking constraint. If u �= 0, Eqs. (3.7) imply Hu + AT

wv = dr and Awu = 0.
Multiplying the first equation by uT and applying the second equation gives uTHu =
uTdr . As u ∈ null(Aw) and x is a subspace minimizer, it must hold that uTHu =
uTdr > 0, as required. ��

The next result provides expressions for the updated multipliers.

Result 3.4 (Multiplier updates) Assume that x is a subspace minimizer with respect
to Aw. Assume that dT

r x ≥ fr is a blocking constraint at the next iterate x̄ = x + αp,
where the direction p satisfies (3.3). Let u and v satisfy (3.7).
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(a) If dr and the columns of AT
w are linearly independent, then the vector ȳ formed by

appending a zero component to the vector y + αq satisfies g(x̄) = ĀT
w ȳ, where

Āw denotes the matrix Aw with row dT
r added in the last position.

(b) If dr and the columns of AT
w are linearly dependent, then the vector ȳ such that

ȳ = y + αq − σv, with σ = [y + αq ]m+s/vm+s, (3.8)

satisfies g(x̄) = AT
w ȳ + σdr with ȳm+s = 0 and σ > 0.

Proof For part (a), the parallel subspace property (3.5) implies that g(x + αp) =
g(x̄) = AT

w(y + αq). As dr and the columns of AT
w are linearly independent, we

may add the index r to W and define the new working-set matrix ĀT
w =

(
AT

w dr

)
.

This allows us to write g(x̄) = ĀT
w ȳ, with ȳ given by y + αq with an appended zero

component.
Now assume that AT

w and dr are linearly dependent. From Result 3.3 it must hold
that u = 0 and there exists a unique v such that dr = AT

wv. For any value of σ , the
parallel subspace property (3.5) gives

g(x̄) = AT
w(y + αq) = AT

w(y + αq − σv)+ σdr .

If we choose σ = [y + αq ]m+s/vm+s and define the vector ȳ = y + αq − σv, then

g(x̄) = AT
w ȳ + σdr , with ȳm+s = [y + αq − σv]m+s = 0.

It follows that g(x̄) is a linear combination of dr and every column of AT
w except ds .

In order to show that σ = [y + αq ]m+s/vm+s is positive, we consider the linear
function ym+s(α) = [y + αq ]m+s , which satisfies ym+s(0) = ym+s < 0. If qm+s =
pTH p > 0, then α∗ < ∞ and ym+s(α) is an increasing linear function of positive α

with ym+s(α∗) = 0. This implies that ym+s(α) < 0 for any α < α∗ and ym+s(αk) < 0.
If qm+s ≤ 0, then ym+s(α) is a nonincreasing linear function of α so that ym+s(α) <

0 for any positive α. Thus, [y + αq ]m+s < 0 for any α < α∗, and σ = [y +
αq ]m+s/vm+s > 0 from part (b) of Result 3.3. ��
Result 3.5 Let x be a subspace minimizer with respect to the working set W . Assume
that dT

r x ≥ fr is a blocking constraint at x̄ = x + αp, where p is defined by (3.3).

(a) If dr is linearly independent of the columns of AT
w, then x̄ is a subspace minimizer

with respect to the working set W̄ =W + {r}.
(b) If dr is linearly dependent on the columns of AT

w, then x̄ is a subspace minimizer
with respect to the working set W̄ =W + {r} − {νs}.

Proof Parts (a) and (b) of Result 3.4 imply that x̄ is a subspace stationary point with
respect to W̄ . It remains to show that in each case, the new working sets are second-
order-consistent.

For part (a), the new KKT matrix for the new working set W̄ = W + {r} must
have inertia (n, m + mw + 1, 0). Assume that dr and the columns of AT

w are linearly
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independent, so that the vector u of (3.7) is nonzero. Let K and K̄ denote the KKT

matrices associated with the working sets W and W̄ , i.e.,

K =
(

H AT
w

Aw

)
and K̄ =

(
H ĀT

w

Āw

)
,

where Āw is the matrix Aw with the row dT
r added in the last position.

By assumption, x is a subspace minimizer and In(K ) = (n, m+mw, 0). It follows
that K is nonsingular and the Schur complement of K in K̄ exists with

K̄/K = −
(

dr

0

)T

K−1
(

dr

0

)
= − (

dT
r 0

) (
u
v

)
= −dT

r u < 0,

where the last inequality follows from part (b) of Result 3.3. Then,

In(K̄ ) = In(K̄/K )+ In(K ) = In(−uTdr )+ (n, m + mw, 0)

= (0, 1, 0)+ (n, m + mw, 0) = (n, m + mw + 1, 0).

For part (b), assume that dr and the columns of AT
w are linearly dependent and

that W̄ = W + {r} − {νs}. By Result 3.4 and Eq. (3.7), it must hold that u = 0 and
AT

wv = dr . Let Aw and Āw be the working-set matrices associated with W and W̄ .
The change in the working set replaces row s of Dw by dT

r , so that

Āw = Aw + em+s(d
T
r − dT

s ) = Aw + em+s(v
TAw − eT

m+s Aw)

= (Iw + em+s(v − em+s)
T )Aw

= M Aw,

where M = Iw + em+s(v− em+s)
T . The matrix M has m +mw − 1 unit eigenvalues

and one eigenvalue equal to vm+s . From part (b) of Result 3.3, it holds that vm+s < 0
and hence M is nonsingular. The new KKT matrix for W̄ can be written as

(
H ĀT

w

Āw

)
=

(
In

M

) (
H AT

w

Aw

) (
In

MT

)
.

By Sylvester’s Law of Inertia, the old and new KKT matrices have the same inertia,
which implies that x̄ is a subspace minimizer with respect to W̄ . ��

The first part of this result shows that x̄ is a subspace minimizer both before and
after an independent constraint is added to the working set. This is crucial because it
means that the directions p and q for the next iteration satisfy the KKT equations (3.3)
with Āw in place of Aw. The second part shows that the working-set constraints can be
linearly dependent only at a standard subspace minimizer associated with a working
set that does not include constraint νs . This implies that it is appropriate to remove
νs from the working set. The constraint dT

νs
x ≥ fνs plays a significant (and explicit)

role in the definition of the search direction and is called the nonbinding working-set
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constraint. The method generates sets of consecutive iterates that begin and end with
a standard subspace minimizer. The nonbinding working-set constraint dT

νs
x ≥ fνs

identified at the first point of the sequence is deleted from the working set at the last
point (either by deletion or replacement).

Each iteration requires the solution of two KKT systems:

Full System 1:

(
H AT

w

Aw 0

) (
p
−q

)
=

(
0

em+s

)
(3.9a)

Full System 2:

(
H AT

w

Aw 0

) (
u
v

)
=

(
dr

0

)
. (3.9b)

However, for those iterations for which the number of constraints in the working set
increases, it is possible to update the vectors p and q, making it unnecessary to solve
(3.9a).

Result 3.6 Let x be a subspace minimizer with respect to Aw. Assume the vectors
p, q, u and v are defined by (3.9). Let dr be the gradient of a blocking constraint at
x̄ = x + αp such that dr is independent of the columns of AT

w. If ρ = −dT
r p/dT

r u,
then the vectors

p̄ = p + ρu and q̄ =
(

q − ρv

ρ

)

are well-defined and satisfy

(
H ĀT

w

Āw

)(
p̄
−q̄

)
=

(
0

em+s

)
, where Āw =

(
Aw

dT
r

)
. (3.10)

Proof Result 3.3 implies that u is nonzero and that uTdr > 0 so that ρ is well defined
(and strictly positive).

For any scalar ρ, (3.9a) and (3.9b) imply that

⎛
⎝

H AT
w dr

Aw

dT
r

⎞
⎠

⎛
⎝

p + ρu
−(q − ρv)

−ρ

⎞
⎠ =

⎛
⎝

0
em+s

dT
r p + ρdT

r u

⎞
⎠ .

If ρ is chosen so that dT
r p + ρdT

r u = 0, the last component of the right-hand side is
zero, and p̄ and q̄ satisfy (3.10) as required. ��

With a suitable nondegeneracy assumption, the algorithm terminates in a finite
number of iterations. As the number of constraints is finite, the sequence {xk} must
contain a subsequence {xik} of standard subspace minimizers with respect to their
working sets {Wik}. If the Lagrange multipliers are nonnegative at any of these points,
the algorithm terminates with the desired solution. Otherwise, at least one multiplier
must be strictly negative, and hence the nondegeneracy assumption implies that αF > 0
at xik . Thus, ϕ(xik) > ϕ(xik +αik pik), since at each iteration, the direction is defined
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as a descent direction with gT p < 0. The subsequence {xik} must be finite because
the number of subspace minimizers is finite and the strict decrease in ϕ(x) guarantees
that no element of {xik} is repeated. The finiteness of the subsequence implies that the
number of intermediate iterates must also be finite. This follows because a constraint
is added to the working set (possibly with a zero step) for every intermediate iteration.
Eventually, either a nonzero step will be taken, giving a strict decrease in ϕ, or enough
constraints will be added to define a vertex (a trivial subspace minimizer).

4 Quadratic programs in standard form

The inequality constraints of a QP in standard form consist of only simple upper and
lower bounds on the variables. Without loss of generality, we consider methods for
the standard-form QP

minimize
x∈Rn

ϕ(x) = cTx + 1
2 xTH x subject to Ax = b, x ≥ 0. (4.1)

This is an example of a mixed-constraint problem (1.1) with D = In and f = 0. In
this case, the working-set matrix Dw consists of rows of the identity matrix, and each
working-set index i is associated with a variable xi that is implicitly fixed at its current
value. In this situation, as is customary for constraints in standard form, we refer to
the working set as the nonbasic set N , and denote its elements as {ν1, ν2, …, νnN }
with nN = mw. The complementary set B of nB = n − nN indices that are not in the
working set is known as the basic set. The elements of the basic set are denoted by
{β1, β2, …, βnB }.

If PN denotes the matrix of unit columns { ei } with i ∈ N , then the working-set
matrix Aw may be written as:

Aw =
(

A
PT

N

)
.

Similarly, if PB is the matrix with unit columns { ei } with i ∈ B, then P = (
PB PN

)
is a permutation matrix that permutes the columns of Aw as

Aw

(
PB PN

) = Aw P =
(

A
PT

N

)
P =

(
AP

PT
N P

)
=

(
AB AN

InN

)
,

where AB and AN are matrices with columns { aβ j } and { aν j } respectively. If y is any
n-vector, yB (the basic components of y) denotes the nB-vector whose j-th component
is component β j of y, and yN (the nonbasic components of y) denotes the nN -vector
whose j-th component is component ν j of y. We use the same convention for matrices,
with the exception of IB and IN , which are reserved for the identity matrices of order nB

and nN , respectively. With this notation, the effect of P on the Hessian and working-set
matrix may be written as
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PTH P =
(

HB HD

H T
D HN

)
, and Aw P =

(
AB AN

IN

)
. (4.2)

As in the generic mixed-constraint formulation, Aw must have full row-rank. This is
equivalent to requiring that AB has full row-rank since rank(Aw) = nN + rank(AB).

For constraints in standard form, we say that x is a subspace minimizer with respect
to the basic set B (or, equivalently, with respect to AB). Similarly, a second-order-
consistent working set is redefined as a second-order-consistent basis.

Result 4.1 (Subspace minimizer for standard form) Let x be a feasible point with
basic set B. Let the columns of Z B form a basis for the null space of AB.

(a) If x is a subspace stationary point with respect to Aw, then there exists a vector
π such that gB = AT

B π , or equivalently, Z T
B gB = 0.

(b) If B is a second-order-consistent basis, then Z T
B HB Z B is positive definite. Equiv-

alently, the KKT matrix K B =
(

HB AT
B

AB

)
has inertia (nB, m, 0). ��

As in linear programming, the components of the vector z = g(x) − ATπ are called
the reduced costs. For constraints in standard form, the multipliers zw associated
inequality constraints in the working set are denoted by zN . The components of zN are
the nonbasic components of the reduced-cost vector, i.e.,

zN = (g(x)− ATπ)N = gN − AT
N π.

At a subspace stationary point, it holds that gB − AT
B π = 0, which implies that the

basic components of the reduced costs zB are zero.
The fundamental property of constraints in standard form is that the mixed-

constraint method may be formulated so that the number of variables associated with
the equality-constrained QP subproblem is reduced from n to nB . By applying the
permutation matrix P to the KKT equations (3.9a), we have

⎛
⎜⎜⎝

HB HD AT
B

H T
D HN AT

N IN

AB AN

IN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

pB

pN

−qπ

−qN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
es

⎞
⎟⎟⎠ , where p = P

(
pB

pN

)
and q =

(
qπ

qN

)
.

These equations imply that pN = es and pB and qπ satisfy the reduced KKT system

(
HB AT

B

AB 0

) (
pB

−qπ

)
=

(−HD pN

−AN pN

)
= −

(
(hνs )B

aνs

)
. (4.3)

In practice, pN is defined implicitly and only the components of pB and qπ are com-
puted explicitly. Once pB and qπ are known, the increment qN for multipliers zN

associated with the constraints pN = es is given by qN = (H p − ATqπ )N .
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Similarly, the solution of the second KKT system (3.9b) can be computed from the
KKT equation

(
HB AT

B

AB

) (
uB

vπ

)
=

(
er

0

)
, (4.4)

with uN = 0 and vN = −(Hu + ATvπ)N , where u = P

(
uB

uN

)
and v =

(
vπ

vN

)
.

The KKT equations (4.3) and (4.4) allow the mixed constraint algorithm to be
formulated in terms of the basic variables only, which implies that the algorithm is
driven by variables entering or leaving the basic set rather than constraints entering or
leaving the working set. With this interpretation, changes to the KKT matrix are based
on column-changes to AB instead of row-changes to Dw.

For completeness we summarize Results 3.2–3.5 in terms of the quantities asso-
ciated with constraints in standard form (an explicit proof of each result is given by
Wong [57]).

Result 4.2 Let x be a subspace minimizer with respect to the basic set B, with [zN ]s <

0. Let x̄ be the point such that x̄ N = xN +αes and x̄ B = xB+αpB, where pB is defined
as in (4.3).

(1) The step to the minimizer of ϕ(x +αp) is α∗ = −zνs /[qN ]s . If α∗ is bounded and
α = α∗, then x̄ is a subspace minimizer with respect to the basic set B̄ = B+{νs}.

(2) The largest feasible step is defined using the minimum ratio test:

αF = min γi , where γi =
⎧⎨
⎩
[xB ]i
−[pB ]i if [pB ]i < 0,

+∞ otherwise.

Suppose α = αF and [xB + αpB ]βr = 0 and let uB and vπ be defined by (4.4).
(a) er and the columns of AT

B are linearly independent if and only if uB �= 0.
(b) [vN ]s = [pB ]r < 0 and [uB ]r ≥ 0, with [uB ]r > 0 if uB �= 0.
(c) If er and the columns of AT

B are linearly independent, then x̄ is a subspace
minimizer with respect to B̄ = B − {βr }. Moreover, gB̄(x̄) = AT

B̄
π̄ and

gN̄ (x̄) = AT
N̄
π̄ + z̄N , where π̄ = π + αqπ and z̄N is formed by appending a

zero component to the vector zN + αqN .
(d) If er and the columns of AT

B are linearly dependent, define σ = [zN +
αqN ]s/[vN ]s . Then x̄ is a subspace minimizer with respect to B̄ = B−{βr }+
{νs} with gB̄(x̄) = AT

B̄
π̄ and gN̄ (x̄) = AT

N̄
π̄ + z̄N , where π̄ = π +αqπ −σvπ

with σ > 0, and z̄N is formed by appending σ to zN + αqN − σvN . ��
As in the generic mixed-constraint method, the direction pB and multiplier qπ may

be updated in the linearly independent case.

Result 4.3 Let x be a subspace minimizer with respect to B. Assume the vectors
pB, qπ , uB and vπ are defined by (4.3) and (4.4). Let βr be the index of a linearly
independent blocking variable at x̄ , where x̄ N = xN + αes and x̄ B = xB + αpB.
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Let ρ = −[pB ]r/[uB ]r , and consider the vectors p̄B and q̄π , where p̄B is the vector
pB + ρuB with the r-th component omitted, and q̄π = qπ − ρvπ . Then p̄B and q̄π are
well-defined and satisfy the KKT equations for the basic set B − {βr }. ��

Linear programming If the problem is a linear program (i.e., H = 0), then the basic
set B must be chosen so that AB is nonsingular (i.e., it is square with rank m). In this
case, we show that Algorithm 1 simplifies to a variant of the primal simplex method
in which the π -values and reduced costs are updated by a simple recurrence relation.

Algorithm 1 Method for a general QP in standard form
Find x0 such that Ax0 = b and x0 ≥ 0;
[x, π, B,N ] = subspaceMin(x0); [find a subspace minimizer]
g = c + H x ; z = g − ATπ ;
νs = argmini {zi }; [identify the least-optimal multiplier]
while zνs < 0 do [drive zνs to zero]

Solve

(
HB AT

B
AB

)(
pB

−qπ

)
= −

(
(hνs )B

aνs

)
; pN = es ;

repeat

p = P

(
pB

pN

)
; qN = (H p − ATqπ )N ;

αF = minRatioTest(xB , pB); [compute the largest step to a blocking variable]
if [qN ]s > 0 then

α∗ = −zνs /[qN ]s ;
else

α∗ = +∞; [compute the optimal step]
end if
α = min{α∗, αF };
if α = +∞ then

stop; [unbounded solution]
end if
x ← x + αp; g← g + αH p;
π ← π + αqπ ; z = g − ATπ ;
if αF < α∗ then

Find the index r of a blocking variable;

Solve

(
HB AT

B
AB

) (
u B

vπ

)
=

(
er
0

)
;

if u B = 0 then
σ = zνs /[pB ]r ; π ← π − σvπ ;
z = g − ATπ ; [implies zνs = 0]

else
ρ = −[pB ]r /[u B ]r ;
pB ← pB + ρu B ; qπ ← qπ − ρvπ ;

end if
B← B − {βr }; N ← N + {βr }; [make the blocking variable βr nonbasic]

end if
until zνs = 0;
B← B + {νs }; N ← N − {νs }; [make variable νs basic]
νs = argmini {zi };
k ← k + 1;

end while

When H = 0, the Eqs. (4.3) reduce to AB pB = −aνs and AT
B qπ = 0, with pN = es

and qN = −AT
N qπ . As AB is nonsingular, both qπ and qN are zero, and the directions
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pB and pN are equivalent to those defined by the simplex method. For the singularity
test (4.4), the basic and nonbasic components of u satisfy ABuB = 0 and uN = 0.
Similarly, vN = −AT

N vπ , where AT
B vπ = er , As AB is nonsingular, uB = 0 and the

linearly dependent case always applies. This implies that the r -th basic and the s-th
nonbasic variables are always swapped, as in the primal simplex method.

As q is zero, the updates to the multiplier vectors π and zN defined by part 2(d)
of Result 4.2 depend only on the vectors vπ and vN , and the scalar σ = [zN ]s/[pB ]r .
The resulting updates to the multipliers are:

π ← π − σvπ , and zN ←
(

zN − σvN

σ

)
,

which are the established multiplier updates associated with the simplex method (see
Gill [23] and Tomlin [56]). It follows that the simplex method is a method for which
every subspace minimizer is standard.

Summary and discussion Algorithm 1 summarizes the method for general QPs in stan-
dard form. (The relation in part 2(b) of Result 4.2 is used to simplify the computation
of [vN ]s .) Given an arbitrary feasible point x0, and a second-order-consistent basis B0,
Algorithm 1 generates a sequence of primal–dual iterates {(xk, yk)} and associated
basic sets Bk such that (

xk+1
yk+1

)
=

(
xk

yk

)
+ αk

(
pk

qk

)
,

where pk and qk are either computed directly by solving (4.3), or are updated from
previous values using the solution of (4.4).

The algorithm starts by attempting to minimize the objective with respect to the
basic variables in B0. If the minimizer is infeasible, the quadratic objective is mini-
mized over a sequence of nested basic sets until enough blocking variables are fixed
on their bounds to define a subspace minimizer (e.g., at a vertex, which is trivially a
subspace minimizer). Once the first subspace minimizer is found, the iterates occur in
groups of iterates that start and finish at a standard subspace minimizer. Each group
starts with the identification of a nonbasic variable xνs with a negative reduced cost zνs .
In the group of subsequent iterations, the reduced cost zνs is driven to zero. During
each of these intermediate iterations, the nonbasic variable xνs is allowed to move
away from its bound, and a blocking basic variable may be made nonbasic to main-
tain feasibility. Once zνs reaches zero, the associated nonbasic variable xνs is moved
into the basic set. Figure 1 depicts a sequence of intermediate iterations starting at a
subspace minimizer with respect to B0. The figure illustrates the two ways in which
the algorithm arrives at a point with a zero value of zνs (i.e., at a subspace minimizer).
In case (A), x j+1 is the result of an unconstrained step along p j . In case (B), the
removal of the blocking variable from the basic set would give a rank-deficient basis
and the blocking index must be swapped with the nonbasic index νs (see part (d) of
Result 4.2).

For each intermediate iteration, the definition of the optimal step α∗ involves the
curvature [qN ]s = pTH p, which represents the rate of change of the reduced cost
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Fig. 1 The structure of a typical sequence of iterations that follow the identification of a nonoptimal reduced
cost. Each sequence consists of j + 2 iterates that begin and end at the standard subspace minimizers x0
and x j+1. The j ( j ≥ 0) intermediate iterates are nonstandard subspace minimizers. (A) x j+1 is reached
by taking an unconstrained step along p j . (B) the removal of the blocking variable from the basic set
would give a rank-deficient basis and the index of the blocking variable is swapped with the index of the
nonbinding nonbasic variable. The point x j+1 is the first standard minimizer for the next sequence

θ0

θ1

θ2

θ3

σ
zνs(σ)

σ1 σ2 σ3

θ1

θ2

θ3

σ
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θ0 = 0
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θ3
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θ0
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Fig. 2 Three examples of the behavior of the nonbinding multiplier zνs (σ ) as x varies along the piecewise
linear path x(σ ) joining the sequence of intermediate iterates. The function zνs (σ ) is piecewise linear
with zνs (0) < 0, and slopes θ j = pT

j H p j that increase monotonically as blocking variables are made
nonbasic. As the iterations proceed, the nonbinding multiplier is driven to zero, and the intermediate
iterations terminate at the point where zνs (σ ) = 0. The left-most figure depicts a convex problem for
which the curvature starts at a positive value. The right-most figure depicts a convex problem for which the
curvature starts at zero. The lower figure depicts a nonconvex problem for which the curvature starts at a
negative value

zνs in the direction p. This curvature increases monotonically over the sequence of
intermediate iterates, which implies that the curvature becomes “less negative” as
blocking basic variables are made nonbasic. For a convex QP, it holds that pTH p ≥ 0,
which implies that only the first direction associated with a group of consecutive
iterates can be a direction of zero curvature. Figure 2 depicts three examples of the
behavior of the nonbinding multiplier zνs (σ ) as x varies along the piecewise linear
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path x(σ ) joining the sequence of intermediate iterates. The nonbinding multiplier
zνs (σ ) is a continuous, piecewise linear function, with a discontinuous derivative at
any point where a blocking variable is made nonbasic. The value of zνs (0) is zνs , the
(negative) reduced cost at the first standard subspace minimizer. The slope of each
segment is given by the value of the curvature θ j = pT

j H p j along the direction of
each segment of the path x(σ ). As the iterations proceed, the nonbinding multiplier is
driven to zero, and the intermediate iterations terminate at the point where zνs (σ ) = 0.
As a variable moves from basic to nonbasic along the piecewise linear path, the slope
of the z-segment becomes more positive. In the left-most figure, the curvature starts at
a positive value, which always holds for a strictly convex problem, and is typical for a
convex problem with a nonzero H . In the right-most figure, the curvature starts at zero,
which is possible for a convex problem with a singular H , and is always the case for a
linear program. If the problem is unbounded, then zνs (σ ) remains at the fixed negative
value zνs (0) for all σ ≥ 0. In the lower figure, the initial curvature is negative, and p is
a direction of negative curvature. This situation may occur for a nonconvex problem.
In this case zνs (σ ) may remain negative for a number of intermediate iterations. If the
problem is unbounded, then zνs (σ ) is unbounded below for increasing σ .

5 Solving the KKT systems

At each iteration of the primal methods discussed in Sect. 4, it is necessary to solve
one or two systems of the form

(
HB AT

B

AB

) (
y
w

)
=

(
h
f

)
, (5.1)

where h and f are given by right-hand sides of the Eqs. (4.3) or (4.4). Two alter-
native approaches for solving (5.1) are described. The first involves the symmetric
transformation of the KKT system into three smaller systems, one of which involves
the explicit reduced Hessian matrix. The second approach uses a symmetric indefinite
factorization of a fixed KKT matrix in conjunction with the factorization of a smaller
matrix that is updated at each iteration.

5.1 Variable reduction

The variable-reduction method involves transforming the Eqs. (5.1) to block-triangular
form using the nonsingular block-diagonal matrix diag(Q, Im). Consider a column
permutation P such that

AP = (
B S N

)
, (5.2)

with B an m ×m nonsingular matrix and S an m × nS matrix with nS = nB −m. The
matrix P is a version of the permutation P = (

PB PN

)
of (4.2) that also arranges the

columns of AB in the form AB = (B S). The nS variables associated with S are called
the superbasic variables. Given P , consider the nonsingular n×n matrix Q such that
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Q = P

⎛
⎜⎝
−B−1S Im 0

InS 0 0

0 0 IN

⎞
⎟⎠ .

The columns of Q may be partitioned so that Q = (
Z Y W

)
, where

Z = P

⎛
⎜⎝
−B−1S

InS

0

⎞
⎟⎠ , Y = P

⎛
⎜⎝

Im

0

0

⎞
⎟⎠ and W = P

⎛
⎜⎝

0

0

IN

⎞
⎟⎠ .

The columns of the n × nS matrix Z form a basis for the null space of Aw, with

Aw Q =
(

A
PT

N

)
Q =

(
0 B N
0 0 IN

)
.

Suppose that we wish to solve a generic KKT system

⎛
⎝

H AT PN

A
PT

N

⎞
⎠

⎛
⎝

y
w1
w2

⎞
⎠ =

⎛
⎝

h
f1
f2

⎞
⎠ .

Then the vector y may be computed as y = Y yY + Z yZ +W yW , where yY , yZ , yW and
w are defined using the equations

⎛
⎜⎜⎜⎜⎜⎜⎝

Z TH Z Z THY Z TH W

Y TH Z Y THY Y TH W BT

W TH Z W THY W TH W N T IN

B N

IN

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

yZ

yY

yW

w1

w2

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

hZ

hY

hW

f1

f2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.3)

with hZ = Z Th, hY = Y Th, and hW = W Th. This leads to

yW = f2,

ByY = f1 − N f2, yR = Y yY +W yW ,

Z TH Z yZ = Z T(h − H yR), yT = Z yZ , y = yR + yT ,

BTw1 = Y T(h − H y), w2 = W T(h − H y)− N Tw1.

The equations simplify considerably for the KKT systems (3.9a) and (3.9b). In the case
of (3.9a), the equations are:
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BpY = −aνs , pR = P

⎛
⎝

pY

0
es

⎞
⎠ ,

Z TH Z pZ = −Z TH pR, pT = Z pZ , p = pR + pT ,

BTqπ = (H p)B, qz = (H p − ATqπ )N .

(5.4)

Similarly for (3.9b), it holds that uY = 0, u R = 0, and

Z TH ZuZ = Z Teβr , u = ZuZ ,

BTvπ = (eβr − Hu)B, vz = −(Hu + ATvπ)N .
(5.5)

These equations allow us to specialize Part 2(a) of Result 4.2, which gives the condi-
tions for the linear independence of the rows of the new AB .

Result 5.1 Let x be a subspace minimizer with respect to the basic set B. Assume that
p and q are defined by (4.3), and that xβr is the variable selected to be nonbasic at
the next iterate. Let the vectors uB and vπ be defined by (4.4).

(a) If xβr is superbasic, then er and the rows of AB are linearly independent (i.e., the
matrix obtained by removing the rth column of AB has rank m).

(b) If xβr is not superbasic, then er is linearly independent of the rows of AB if and
only if ST z �= 0, where z is the solution of BT z = er .

Proof From (5.5), u = ZuZ , which implies that uB is nonzero if and only if uZ is
nonzero. Similarly, the nonsingularity of Z TH Z implies that uZ is nonzero if and only
if Z Teβr is nonzero. Now

Z Teβr =
(−ST B−T InS 0

)
er .

If xβr is superbasic, then r > m and Z Teβr = er−m �= 0 and uZ is nonzero. If xβr is
not superbasic, then r ≤ m, and

Z Teβr = −ST B−T er = −ST z,

where z is the solution of BT z = er . ��
The Eqs. (5.4) and (5.5) may be solved using a Cholesky factorization of Z TH Z and

an LU factorization of B. The factors of B allow efficient calculation of matrix-vector
products Z Tv or Zv without the need to form the inverse of B.

5.2 Fixed-factorization updates

When AB and HB are large and sparse, there are many reliable and efficient sparse-
matrix factorization packages for solving a symmetric indefinite system of the form
(5.1). Some prominent software packages include MA27 (Duff and Reid [16]),
HSL_MA57 (Duff [15]), HSL_MA97 (Hogg and Scott [43]), MUMPS (Amestoy et
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al. [1]), PARDISO (Schenk and Gärtner [55]), and SPOOLES (Ashcraft and Grimes
[2]). However, in a QP algorithm, a sequence of related systems must be solved in
which the KKT matrix changes by a single row and column. In this situation, instead
of factoring the matrix in (5.1) directly, the first K0 may be “bordered” in a way that
reflects the changes to the basic and nonbasic sets during a set of k subsequent itera-
tions. The solution of (5.1) is then found by using a fixed factorization of K0, and a
factorization of a smaller matrix of (at most) order k (see Bisschop and Meeraus [5],
and Gill et al. [31]). Although K0 is symmetric, the matrix may be factored by any
symmetric or unsymmetric linear solver, allowing a variety of black-box linear solvers
to be incorporated into the algorithm.

Let B0 and N0 denote the initial basic and nonbasic sets that define the KKT system
(5.1). There are four cases to consider:

(1) a nonbasic variable moves to the basic set and is not in B0,
(2) a basic variable in B0 becomes nonbasic,
(3) a basic variable not in B0 becomes nonbasic, and
(4) a nonbasic variable moves to the basic set and is in B0.

For case (1), let νs be the nonbasic variable that has become basic. The next KKT

matrix can be written as
⎛
⎜⎝

HB AT
B (hνs )B0

AB 0 aνs

(hνs )
T
B0

aT
νs

hνs ,νs

⎞
⎟⎠ .

Suppose that at the next stage, another nonbasic variable νr becomes basic. The KKT

matrix is augmented in a similar fashion, i.e.,

⎛
⎜⎜⎜⎝

HB AT
B (hνs )B0 (hνr )B0

AB 0 aνs aνr

(hνs )
T
B0

aT
νs

hνs ,νs hνs ,νr

(hνr )
T
B0

aT
νr

hνr ,νs hνr ,νr

⎞
⎟⎟⎟⎠ .

Now consider case 2 and let βr ∈ B0 become nonbasic. The change to the basic set is
reflected in the new KKT matrix

⎛
⎜⎜⎜⎜⎜⎝

HB AT
B (hνs )B0 (hνr )B0 er

AB 0 aνs aνr 0
(hνs )

T
B0

aT
νs

hνs ,νs hνs ,νr 0
(hνr )

T
B0

aT
νr

hνr ,νs hνr ,νr 0

eT
r 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The unit row and column augmenting the matrix has the effect of zeroing out the
components corresponding to the removed basic variable.

In case (3), the basic variable must have been added to the basic set at a previous
stage as in case (1). Thus, removing it from the basic set can be done by removing the
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row and column in the augmented part of the KKT matrix corresponding to its addition
to the basic set. For example, if νs is the basic to be removed, then the new KKT matrix
is given by

⎛
⎜⎜⎝

HB AT
B (hνr )B0 er

AB 0 aνr 0
(hνr )

T
B0

aT
νr

hνr ,νr 0
eT

r 0 0 0

⎞
⎟⎟⎠ .

For case (4), a nonbasic variable in B0 implies that at some previous stage, the
variable was removed from B0 as in case (2). The new KKT matrix can be formed by
removing the unit row and column in the augmented part of the KKT matrix corre-
sponding to the removal the variable from the basic set. In this example, the new KKT

matrix becomes

⎛
⎝

HB AT
B (hνr )B0

AB 0 aνr

(hνr )
T
B0

aT
νr

hνr ,νr

⎞
⎠ .

After k iterations, the KKT system is maintained as a symmetric augmented system
of the form

(
K V

V T D

)(
r
η

)
=

(
b
f

)
with K =

(
HB AT

B

AB

)
, (5.6)

where D is of dimension at most 2k.

5.2.1 Schur complement and block LU methods

Although the augmented system (in general) increases in dimension by one at every
iteration, the first diagonal block K of (5.6) is fixed and defined by the initial set of
basic variables. The Schur complement method assumes that factorizations for K and
the Schur complement C = D − V TK−1V exist. Then the solution of (5.6) can be
determined by solving the equations

K t = b, Cη = f − V Tt, Kr = b − V η.

The work required is dominated by two solves with the fixed matrix K and one solve
with the Schur complement C . If the number of changes to the basic set is small
enough, dense factors of C may be maintained.

The Schur complement method can be extended to a block LU method by storing
the augmented matrix in block factors

(
K V

V T D

)
=

(
L

Z T I

) (
U Y

C

)
, (5.7)
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where K = LU , LY = V , U TZ = V , and C = D − Z TY is the Schur-complement
matrix.

The solution of (5.6) can be computed by forming the block factors and by solving
the equations

Lt = b, Cη = f − Z Tt, Ur = t − Yη.

This method requires a solve with L and U each, one multiply with Y and Z T , and one
solve with the Schur complement C . For more details, see Gill et al. [28], Eldersveld
and Saunders [17], and Huynh [45].

As the iterations of the QP algorithm proceed, the size of C increases and the
work required to solve with C increases. It may be necessary to restart the process
by discarding the existing factors and re-forming K based on the current set of basic
variables.

5.2.2 Updating the block LU factors

Suppose the current KKT matrix is bordered by the vectors v and w, and the scalar σ

⎛
⎝

K V v

V T D w

vT wT σ

⎞
⎠ .

The block LU factors Y and Z , and the Schur complement C are updated every time
the system is bordered. The number of columns in matrices Y and Z and the dimension
of the Schur complement increase by one. The updates y, z, c and d are defined by
the equations

Ly = v, U Tz = v,

c = w − Z Ty = w − Y Tz, d = σ − zTy,

so that the new block LU factors satisfy

⎛
⎝

K V v

V T D w

vT wT σ

⎞
⎠ =

⎛
⎝

L

Z T I
zT 1

⎞
⎠

⎛
⎝

U Y y

C c
cT d

⎞
⎠ .

6 Finding a subspace minimizer

The method described in Sect. 4 has the property that if the initial iterate x0 is a sub-
space minimizer, then all subsequent iterates are subspace minimizers (see Result 4.2).
Methods for finding an initial subspace minimizer utilize an initial estimate xI of the
solution together with matrices AB and AN associated with an estimate of the optimal
basic and nonbasic partitions of A. These estimates are often available from the known
solution of a related QP—e.g., from the solution of the previous QP subproblem in the
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SQP context. The initial point xI may or may not be feasible, and the associated matrix
AB may or may not have rank m.

The definition of a second-order-consistent basis requires that the matrix AB has
rank m, and it is necessary to identify a set of linearly independent basic columns of
A. One algorithm for doing this has been proposed by Gill et al. [26], who use a sparse
LU factorization of AT

B to identify a square nonsingular subset of the columns of AB .
If necessary, a “basis repair” scheme is used to define additional unit columns that
make AB have full rank. The nonsingular matrix B obtained as a by-product of this
process may be expressed in terms of A using a column permutation P such that

AP = (
AB AN

) = (
B S AN

)
. (6.1)

Given xI , a point x0 satisfying Ax = b may be computed as

x0 = xI + P

⎛
⎝

pY

0
0

⎞
⎠ , where BpY = −(AxI − b).

If the matrix

K B =
(

HB AT
B

AB

)
(6.2)

has nB positive eigenvalues and m negative eigenvalues, then the inertia of K B is
correct and x0 is used as the initial point for a sequence of Newton-type iterations
in which ϕ(x) is minimized with the nonbasic components of x fixed at their current
values. Consider the equations

(
HB AT

B

AB

) (
pB

−π

)
= −

(
gB

0

)
.

If pB is zero, x is a subspace stationary point (with respect to AB) at which K B has
correct inertia and we are done. If pB is nonzero, two situations are possible.

If xB + pB is infeasible, then feasibility is retained by determining the maximum
nonnegative step α < 1 such that xB + αpB is feasible. A variable on its bound at
xB+αpB is then removed from the basic set and the iteration is repeated. The removal
of a basic variable cannot increase the number of negative eigenvalues of K B and a
subspace minimizer must be determined in a finite number of steps.

If xB + pB is feasible, then pB is the step to the minimizer of ϕ(x) with respect to
the basic variables and it must hold that xB + pB is a subspace minimizer.

A KKT matrix with incorrect inertia has too many negative or zero eigenvalues. In
this case, an appropriate K B may be obtained by imposing temporary constraints that
are deleted during the course of subsequent iterations. For example, if n−m variables
are temporarily fixed at their current values, then AB is a square nonsingular matrix
and K B necessarily has exactly m negative eigenvalues. The form of the temporary
constraints depends on the method used to solve the reduced KKT equations (5.1).
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6.1 Variable-reduction method

In the variable-reduction method a dense Cholesky factor of the reduced Hessian
Z TH Z is updated to reflect changes in the basic set (see Sect. 5.1). At the initial point
x0, a partial Cholesky factorization with interchanges is used to find an upper-triangular
matrix R that is the factor of the largest positive-definite leading submatrix of Z TH Z .
The use of interchanges tends to maximize the dimension of R. Let Z R denote the
columns of Z corresponding to R, and let Z be partitioned as Z = (Z R Z A). A
nonbasic set for which Z R defines an appropriate null space can be obtained by fixing
the variables corresponding to the columns of Z A at their current values. As described
above, minimization of ϕ(x) then proceeds within the subspace defined by Z R . If a
variable is removed from the basic set, a row and column is removed from the reduced
Hessian and an appropriate update is made to the Cholesky factor.

6.2 Fixed-factorization updates

If fixed-factorization updates to the KKT matrix are being used, the procedure for
finding a second-order-consistent basis is given as follows.

1. The reduced KKT matrix (6.2) is factored as K B = L DLT , where L is unit lower-
triangular and D is block diagonal with 1 × 1 and 2 × 2 blocks. If the inertia of
K B is correct, then we are done.

2. If the inertia of K B is incorrect, the symmetric indefinite factorization

HA = HB + ρ AT
B AB = L A DA LT

A

is computed for some modest positive penalty parameter ρ. As the inertia of K B

is not correct, DA will have some negative eigenvalues for all positive ρ.
The factorization of HA may be written in the form

HA = L AUΛU T LT
A = V ΛV T ,

where UΛU T is the spectral decomposition of DA. The block diagonal structure
of DA implies that U is a block-diagonal orthonormal matrix. The inertia of Λ

is the same as the inertia of HA, and there exists a positive semidefinite diagonal
matrix E such that Λ+ E is positive definite. If H̄ A is the positive-definite matrix
V (Λ+ E)V T , then

H̄ A = HA + V EV T = HA +
∑

e j j >0

e j jv jv
T
j .

If HA has r nonpositive eigenvalues, let VB denote the r × nB matrix consisting of
the columns of V associated with the positive components of E . The augmented
KKT matrix
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⎛
⎝

HB AT
B VB

AB 0 0
V T

B 0 0

⎞
⎠

has exactly m + r negative eigenvalues and hence has correct inertia.

The minimization of ϕ(x) proceeds subject to the original constraints and the (gen-
eral) temporary constraints V T

B xB = 0.
The efficiency of this scheme will depend on the number of surplus negative and

zero eigenvalues in HA. In practice, if the number of negative eigenvalues exceeds
a preassigned threshold, then a temporary vertex is defined by fixing the variables
associated with the columns of S in (6.1) (see the discussion of Sect. 7.1).

7 Numerical results

7.1 Implementation

The package SQIC is a Fortran 2008 implementation of the general quadratic pro-
gramming method discussed in Sect. 4.SQIC is designed to solve large-scale problems
of the form

minimize
x

ϕ(x) = cTx + 1
2 xTH x subject to l ≤

(
x

Ax

)
≤ u,

where l and u are constant lower and upper bounds, c is the constant linear term of the
objective, and A and H are sparse matrices of dimension m×n and n×n respectively.
Internally, SQIC transforms this problem into standard form by introducing a vector
of slack variables s. The equivalent problem is

minimize
x,s

ϕ(x) = cTx + 1
2 xTH x subject to Ax − s = 0, l ≤

(
x
s

)
≤ u. (7.1)

By default, a scaling of H and A is defined based on the scaling algorithm in [53]
applied to the symmetric KKT matrix defined with H and A. The built-in scaling
routines used by the linear solvers are turned off.

At any given iteration, SQIC operates in either variable-reduction mode or block-
matrix mode. The mode determines which method is used to solve the KKT system.
The starting mode depends on the available solvers and on the number of superbasics
at the initial QP point. If the initial number of superbasics is greater than 2,000, then
SQIC starts in block-matrix mode; otherwise, it starts in variable-reduction mode. In
subsequent iterations, SQIC will switch between variable-reduction mode and block-
matrix mode as the number of superbasic variables changes. The user may override
the default settings and specify that SQIC starts in a specific mode or uses one of the
modes exclusively.

An initial feasible point and basis are found by using the phase 1 algorithm of
SQOPT [27], which uses the simplex method to minimize the sum of the infeasibilities
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Table 1 SQIC tolerances and
their default settings

εM is the machine precision

Tolerance Default setting

Linear independence test εdep 5× 10−9

Feasibility εfea 10−6

Optimality εopt 10−6

Iterative refinement εres ε0.8
M

Upper bound on Schur-complement
condition number

1016

of the bound constraints subject to Ax = b. The resulting basis defines a vertex with
nS variables temporarily fixed between their bounds. As SQIC does not require a
vertex to start, these variables are freed simultaneously to create a basic set of size
m + nS . If the KKT matrix associated with this basic set has incorrect inertia, then
the number of negative eigenvalues is greater than m and the estimated number of
temporary constraints ea is defined as the difference of these numbers. If ea is greater
than max(10, 1

2 (nB−m)), then the nS variables are removed from the basic set and the
initial m-basis provided by SQOPT is used to define a vertex. Otherwise, the method
described in Sect. 6.2 is used to define temporary constraints that define a second-
order-consistent basis.

Three linear solvers have been incorporated into SQIC to store the block-LU
(or block-LDLT) factors of the KKT matrix. These are the symmetric LDLT solver
HSL_MA57 [44], and the unsymmetric LU solvers LUSOL[29] and UMFPACK [10–
13]. In the discussion below of the numerical results,SQIC-LUSOL,SQIC-UMFPACK
and SQIC-MA57 refer to the versions of SQIC with block-matrix solver options
LUSOL, UMFPACK and HSL_MA57, respectively. In variable-reduction mode, all of
these versions use the LUSOL package to maintain the LU factors of the square basis
matrix B (see Eq. (5.2)).

In block-matrix mode, the Schur complement matrix is maintained by the dense
matrix factorization packageLUMOD [54].LUMODwas updated to Fortran 90 by Huynh
[45] for the convex quadratic programming code QPBLU, which also utilizes a block-
LU scheme. Modifications were made to the Fortran 90 version of LUMOD to incor-
porate it into SQIC.

The algorithm described in Sect. 6.2 for computing temporary constraints for a
second-order-consistent basis requires a linear solver that computes an LDLT factor-
ization and provides access to the matrix L . Of the three solvers that were tested, only
HSL_MA57 is a symmetric indefinite solver and allows access to the L matrix. For
all other solvers, a temporary vertex is defined at the initial feasible point if the initial
basis is not second-order consistent.

Table 1 lists the values of various tolerances used to obtain the numerical results.
For example, the test for linear dependence in (4.4) is [uB ]r ≤ εdep [pB ]r , where εdep
is a tolerance with default value εdep = 5× 10−9.

There are two situations in which the Schur complement is discarded and the KKT

matrix is refactorized. The first is for structural reasons when the dimension of the
Schur complement exceeds min(1,000, 1

2 (nB + m)). The second is for numerical
reasons when the estimated condition number condC of the Schur complement is
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greater than 1016, in which case the new factors are used to define a step of iterative
refinement for x and π . If no refactorization is needed, but condC or condK (the
estimated condition number of the matrix K of (5.7)) is greater than 109, then the
residuals of the equations that define x and π are computed. If the norm of the residual
is greater than εres max(condK,condC), then one step of iterative refinement is
applied to x and π . The default value of the refinement tolerance εres is ε0.8

M , where
εM is the machine precision. The estimate condK is provided by the block solver. If
no such estimate is available, then the test for refinement is based solely on condC.

Both SQIC and SQOPT use the EXPAND procedure of Gill et al. [30] to allow the
variables (x, s) to stray outside their bounds by as much as a user-specified feasibility
tolerance εfea with default value 10−6. The EXPAND procedure allows some choice
of constraint to be added to the working set and reduces the chance of cycling at a
point where the working-set constraints are nearly linearly dependent. EXPAND first
computes a maximum feasible step αP for an expanded feasible defined by perturbing
each constraint bound by the working feasibility tolerance. All constraints at a distance
α (α ≤ αP) along p from the current point are then viewed as acceptable candidates
for inclusion in the working set. The constraint whose normal makes the biggest angle
with the search direction is added to the working set. This strategy helps keep the basis
matrix AB well conditioned. Over a period of K = 103 iterations, a “working” feasi-
bility tolerance increases from 1

2εfea to εfea in steps of 1
2εfea/K . At certain stages,

the following “resetting procedure” is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the
number of non-trivial adjustments made. If the count is nonzero, the basic variables
are recomputed. Finally, the working feasibility tolerance is reinitialized to 1

2εfea. If
a problem requires more than K iterations, the resetting procedure is invoked and a
new cycle of iterations is started. (The decision to resume phase 1 or phase 2 is based
on comparing any infeasibilities with εfea.) The resetting procedure is also invoked
when the solver reaches an apparently optimal, infeasible, or unbounded solution,
unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued. Although the EXPAND procedure provides no guaran-
tee that cycling will not occur, the probability is very small (see Hall and McKinnon
[42]).

By default,SQIC is terminated at a point (x, π, z) that approximately satisfies three
conditions: (1) the reduced KKT matrix has correct inertia; (2) the reduced gradient
is zero, and (3) the reduced costs are nonnegative. The definition of a “zero” reduced
gradient and “nonnegative” reduced cost is determined by the positive tolerance εopt,
which has default value 10−6. For a given εopt, SQIC will terminate when

max
i∈B
|zi | ≤ εopt‖π‖∞, and

{
zi ≥ −εopt‖π‖∞ if xi ≥ −�i , i ∈ N ;
zi ≤ εopt‖π‖∞ if xi ≤ ui , i ∈ N .

(7.2)

If the QP is convex, then (x, π, z) approximates a point at which the objective has a
global minimum. In addition, if all the nonbasic reduced costs are sufficiently large,
then (x, π, z) approximates the unique global minimizer. Otherwise (x, π, z) is a weak

123



102 P. E. Gill, E. Wong

(i.e., non-unique) global minimizer. For a convex QP, a point (x, π, z) satisfying (7.2)
is judged to be a weak global minimizer if there is at least one nonbasic reduced cost
that satisfies | z j |< εopt‖π‖∞.

If the QP is not convex, then the situation is more complicated. If all the nonbasic
reduced costs are sufficiently large then (x, π, z) is an approximate local minimizer. If
some nonbasic reduced costs are approximately zero, then (x, π, z) is an approximate
“dead-point”, i.e., a point at which the first and second-order necessary conditions for
optimality hold, but the second-order sufficient conditions do not hold. A dead-point
may or may not be optimal. Moreover, the verification of optimality requires finding
the global minimizer of an indefinite quadratic form over a cone, which is an NP-hard
problem (see the discussion following Result 2.1 of Sect. 2.1).

In order to declare the QP optimal or compute a feasible descent direction at a
dead-point, it may be necessary to remove a variable from the nonbasic set when the
reduced KKT matrix is singular (in which case K B does not have correct inertia). For
example, consider a problem written in the form (7.1) with

ϕ(x) = −x1x2, A = (
1 1

)
, 0 ≤ x1, x2 ≤ +∞, and −∞ ≤ s1 ≤ +∞.

In this case, if x1 and x2 are nonbasic with x1 = x2 = s1 = 0, then it is necessary
to make both x1 and x2 basic in order to determine a feasible descent direction. An
analogous situation applies in the general case, where it can be shown that a feasible
descent direction may be computed at a non-optimal dead-point by simultaneously
removing only two variables from the nonbasic set (see Contesse [8]). A procedure
for computing such a direction as part of an inertia-controlling method is given by
Forsgren et al. [21]. However, the underlying computational intractability of verifying
the sufficient conditions implies that there is no reasonable bound on the number
of iterations that might be needed to identify a feasible descent direction (if such a
direction exists). For this reason, the default strategy for SQIC is to terminate at a
point satisfying the conditions (7.2). If there is at least one nonbasic reduced cost such
that z j such that |z j | ≤ εopt‖π‖∞, then (x, π, z) is declared to be either a likely
weak minimizer or a dead point, depending on whether or not negative curvature
was encountered during any previous iteration. (It is not possible to guarantee that a
problem is convex without the additional cost of a symmetric indefinite factorization
of the full Hessian.)

TheSQIC package includes an option to request that nonbasic variables with “zero”
reduced costs be moved sequentially to the basic set if the iterations terminate at a
point where the second-order sufficient conditions are not satisfied (i.e., at a weak
global minimizer or a dead-point). This “phase 3” procedure continues at the point of
termination until one of the following situations applies: (i) no small reduced costs
remain and K B has correct inertia; (ii) K B becomes singular; or (iii) a feasible direction
of negative curvature is identified. In the first situation, all the constraints with zero
reduced costs are weakly active. In the case of (ii) the inertia-controlling strategy
prohibits the removal of additional zero reduced costs, and phase 3 is terminated. In
the case of (iii), SQIC was terminated at a nonoptimal dead-point, which implies that
phase 3 can be terminated and phase 2 restarted.
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At each step of phase 3, a zero reduced cost zνs is identified, and a direction p
is computed using System 1. If pTH p > |zνs | then the curvature is considered to
be sufficiently positive. In this case, xνs is added to the basic set, and another zero
reduced cost is selected without moving from the current point. If pTH p ≤ |zνs |,
then the curvature is judged to be zero and the algorithm is terminated, as dictated by
the circumstances of case (ii). This point is declared as either a weak minimizer or
dead-point based on whether or not negative curvature was encountered at a previous
iteration. If pTH p < −|zνs |, then the curvature is considered to be negative and the
objective is unbounded below along p. In this case, either a constraint must be blocking
or the problem is unbounded. (As zνs is considered to be zero, any “sign” attributed
to zνs for the identification of the blocking variable is based on which of the upper or
lower bounds on xνs is nonbasic.) If the step to a blocking constraint is zero (i.e., the
maximum feasible step αF is zero), then phase 3 has confirmed that the final point is
a dead-point and the algorithm is terminated. If αF > 0, then the step is taken and
SQIC returns to phase 2.

7.2 Results

A total of 253 QPs were identified from the CUTEst [39] test set. No linear programs
were tested because all of the codes under consideration revert to the simplex method
when the objective is linear. The QP problems are grouped into two sets based on the
final number of superbasic variables obtained by the default solver SQIC-LUSOL.
The final number of superbasics can be slightly different when SQIC is used with
other linear solvers. A test problem is included in the “large” set if the final number of
superbasics is greater than 1,000 or 1

2 (m + n). The remaining test problems form the
“small” set. The CUTEst set contains 173 small and 80 large problems. A time limit of
5,000 s was imposed in each case. (In practice, the 5,000 s limit is not exact since the
time limit is checked every 20 iterations.)

Results are presented for SQICwith its default settings using the three linear solvers
HSL_MA57, UMFPACK and the included solver LUSOL, on an iMac with a 3.4 GHz
Intel Core i7 processor and 16 GB of memory. The GNU Fortran compiler gfortran
version 4.8.2 was used to compile the code with optimization flag “-O”. The results are
summarized using performance profiles (in log2 scale) proposed by Dolan and Moré
[14]. In addition to the runs with default settings, all problems were run using so-called
“forced” block-matrix mode in which the block-matrix method was used to solve every
KKT system. These results are denoted by the prefix “blk-” in the performance profiles.

Only two problems failed to solve with the default settings. Problem CVXQP3 timed
out with UMFPACK, and problem UBH1 encountered numerical difficulties in block-
matrix mode with HSL_MA57. UBH1 was solved successfully with a setting of 109 for
the bound on the Schur-complement matrix.

Performance profiles for problems with a “small” number of superbasics are shown
in Fig. 3. The performance of SQIC-LUSOL, SQIC-UMFPACK and SQIC-MA57 on
this subset is similar because SQIC stayed in variable-reduction mode for almost all
the iterations and did not use the block-matrix solver. It is clear from the profile that
variable-reduction mode with any of the three solvers is significantly more effective
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Fig. 3 Performance profile of solve times for SQIC on the CUTEst QP test set with a small number of
superbasics. The profiles SQIC-LUSOL, SQIC-MA57 and SQIC-UMFPACK refer to versions of SQIC
with block-matrix solver options LUSOL, HSL_MA57 and UMFPACK. The profiles with prefix “blk-”
correspond to runs for which SQIC was forced to use block-matrix mode regardless of the number of
superbasics

than using only block-matrix mode on this set of problems. The weaker performance
of SQIC in “forced” block-matrix mode can be attributed to the overhead of factor-
ing the larger block matrix. In addition, because the final number of superbasics is
small, solvers that used a non-vertex starting point or started with a larger number of
superbasics (e.g., HSL_MA57) require more iterations to remove the extra superbasics
from the basis than solvers that start at a vertex (where the number of superbasics is
zero).

On problems with a “large” final number of superbasics, the performance profiles
of Fig. 4 indicate that SQIC is the most efficient when using HSL_MA57 as the
block solver. HSL_MA57 allows SQIC to start at points with an arbitrary number of
superbasic variables, giving it an advantage over the other solvers, which must start
at a vertex. These solvers require many more iterations than HSL_MA57 to build up
to the final number of superbasics. Figure 4 also highlights the benefit of allowing
the user to start phase 2 in block-matrix mode when it is known in advance that the
number of superbasics is large. The performance gap between the two modes involving
HSL_MA57 is likely due to the large number of superbasics: in this test set, the number
of superbasics is large enough to make variable-reduction less efficient, but not large
enough to cause SQIC to switch to block-matrix mode.

Table 2 provides some statistics associated with the procedure used to define a
second-order consistent basis for SQIC-MA57. For each problem that required the
procedure, information is provided on the number of temporary constraints that were
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Fig. 4 Performance profile of solve times for SQIC on the CUTEst QP test set with a large number of
superbasics. The profiles SQIC-LUSOL, SQIC-MA57 and SQIC-UMFPACK refer to versions of SQIC
with block-matrix solver options LUSOL, HSL_MA57 and UMFPACK. The profiles with prefix “blk-”
correspond to runs for which SQIC was forced to use block-matrix mode regardless of the number of
superbasics

Table 2 Statistics associated with the procedure used to define a second-order consistent basis for
SQIC-MA57 are presented

Name nTmp Time % Time Dens DensL Name nTmp Time % Time Dens DensL

Default mode

BLOCKQP2 1 31.01 63.74 49.97 49.97 STNQP1 348 1.11 8.43 0.07 0.30

BLOCKQP4 1 30.84 60.56 49.97 49.97 STNQP2 769 2.37 4.05 0.12 0.91

Block-matrix mode

A0NNDNIL 23 102.09 75.84 9.27 16.27 HATFLDH 1 0.00 0.00 31.25 43.75

A0NSDSIL 15 101.43 73.45 9.27 16.28 HS3MOD 1 0.00 0.00 66.67 66.67

A2NSDSIL 20 101.83 71.30 9.27 16.28 MARATOSB 2 0.00 0.00 66.67 66.67

A5NSDSIL 10 101.50 70.34 9.29 16.30 MPC15 1 0.11 8.58 0.52 2.16

BLOCKQP2 1 30.94 63.62 49.97 49.97 MPC4 1 0.11 7.76 0.54 2.23

BLOCKQP4 1 30.86 58.60 49.97 49.97 MPC8 1 0.10 7.19 0.53 2.18

BQPGAUSS 20 0.60 79.57 50.03 50.03 STATIC3 58 0.00 0.00 0.96 2.28

GMNCASE1 1 0.03 32.08 22.05 25.09 STNQP1 348 1.07 8.29 0.07 0.30

GOULDQP1 5 0.00 0.00 9.57 24.02 STNQP2 769 2.37 4.06 0.12 0.91

The column “nTmp” gives the number of temporary constraints computed. “Time” is the number of seconds
to compute the constraints, and “% Time” is the percentage of the total solve time required to identify the
temporary constraints. The column “Dens” is the density of the matrix HB + ρ AT

B AB as a percentage and
“DensL” is the density of the factor L
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Table 3 A list of problems that had directions of negative curvature

Name #smin Total Name #smin Total Name #smin Total

A0NNDNDL 22 1,963 BLOCKQP4 1/0 7,512/505 MPC8 15 510

A0NNDNIL 105 248 BLOCKQP5 4,999 5,013 MPC9 15 525

A0NNDNSL 129 1,524 GOULDQP1 6 12 NCVXBQP1 9,591 10,009

A0NNSNSL 76 1,835 LEUVEN2 2 178 NCVXBQP2 8,184 11,137

A0NSDSIL 21 86 LEUVEN3 338 988 NCVXBQP3 4,243 10,808

A0NSSSSL 5 182 LEUVEN4 345 1,291 NCVXQP1 630 631

A2NNDNDL 76 2,551 LEUVEN5 338 988 NCVXQP2 729 852

A2NNDNSL 153 2,600 LEUVEN6 205 478 NCVXQP3 252 693

A2NNSNSL 10 313 MARATOSB 1 1 NCVXQP4 748 749

A2NSDSIL 156 2,003 MPC10 13 507 NCVXQP5 639 691

A2NSDSSL 3 2,007 MPC11 18 338 NCVXQP6 331 540

A2NSSSSL 2 515 MPC12 12 589 NCVXQP7 351 352

A5NNDNDL 375 4,803 MPC13 19 496 NCVXQP8 457 463

A5NNDNSL 7 2,672 MPC14 15 442 NCVXQP9 158 463

A5NNSNSL 230 2,849 MPC15 15 410 PORTSNQP 1 260

A5NSDSIL 256 2,338 MPC16 20 386 QPNBAND 25,000 50,001

A5NSDSSL 60 5,691 MPC2 6 449 QPNBOEI1 14 313

A5NSSSSL 1,369 1,987 MPC3 13 445 QPNBOEI2 3 90

BIGGSC4 2 7 MPC4 8 497 QPNSTAIR 1 96

BLOCKQP1 4,999 5,011 MPC5 16 417 STATIC3 2 39

BLOCKQP2 1/0 7,512/4 MPC6 17 479 STNQP1 513/126 6,423/127

BLOCKQP3 4,999 5,011 MPC7 11 434 STNQP2 822/250 4,099/292

“#smin” is the number of subspace minimizers where a direction of negative curvature was computed.
“Total” is the total number of subspace minimizers. A column with two entries separated by a “/” indicates
a problem for which the information differed depending on the linear solver. The first entry is information
for the LU solver (LUSOL or UMFPACK); the second is for the LDLT solver HSL_MA57

imposed, the density of the matrix HB + ρ AT
B AB , and the amount of time needed to

assemble the matrix for factorization. In general, the computation time is related to
the size of the problem and the density of the matrix HB + ρ AT

B AB . For many of the
larger problems, in particular A0NNDNIL, A0NSDSIL, A2NSDSIL, and A5NSDSIL, the
time needed to identify the temporary constraints is a significant percentage of the
total solution time.

Table 3 lists problems that computed at least one direction of negative curvature.
The table also provides statistics on the total number of subspace minimizers and
the number of subspace minimizers at which a direction of negative curvature was
computed.

Results are also presented that allow a comparison between SQIC and the convex
QP solver SQOPT [27], which is an implementation of a reduced-Hessian, reduced-
gradient active-set method. The method of SQOPT removes a variable from the non-
basic set at the start of a sequence of intermediate iterates and maintains the matrix
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Fig. 5 Performance profile of solve times for SQIC and SQOPT on convex CUTEst problems with a small
number of superbasics. The profiles SQIC-LUSOL, SQIC-MA57 and SQIC-UMFPACK refer to versions
of SQIC with block-matrix solver options LUSOL, HSL_MA57 and UMFPACK
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Fig. 6 Performance profile of solve times for SQIC and SQOPT on convex CUTEst problems with a large
number of superbasics. The profiles SQIC-LUSOL, SQIC-MA57 and SQIC-UMFPACK refer to versions
of SQIC with block-matrix solver options LUSOL, HSL_MA57 and UMFPACK
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Table 4 Problems that originally ended on a weak minimizer or dead point using SQIC with HSL_MA57
are re-run with Phase 3. Results for the problems that ended optimally with Phase 3 are listed

Name Weak minimizer without Phase 3 Optimal point with Phase 3

Objective # Itn nS Time Objective # Itn nS Time

A2ENDNDL 0.0000E+00 6,805 47 15.04 0.0000E+00 7,743 985 18.03

A2ENINDL 0.0000E+00 6,703 57 15.62 0.0000E+00 7,613 967 18.43

A2ESDNDL 9.4684E−25 6,329 74 15.98 9.4684E−25 7,240 985 18.84

A2ESINDL 0.0000E+00 6,690 44 14.93 0.0000E+00 7,613 967 17.69

A2NSDSDL 4.8243E−11 40,497 5 149.13 2.5794E−11 40,911 419 150.56

A5ENDNDL 0.0000E+00 5,903 230 14.13 0.0000E+00 8,134 2,461 24.80

A5ENINDL 0.0000E+00 5,914 222 13.82 0.0000E+00 8,221 2,529 24.83

A5ESDNDL 0.0000E+00 5,674 238 14.07 0.0000E+00 7,897 2,461 24.67

A5ESINDL 0.0000E+00 5,755 197 13.33 0.0000E+00 8,087 2,529 24.54

A5NSDSDL 1.2278E−11 38,515 29 156.69 −6.7193E−11 39,636 1,150 161.10

ALLINQP −5.4813E+03 16,957 9,820 91.37 −5.4813E+03 36,597 29,460 274.29

AUG3DCQP 6.1560E+04 22,216 17,665 120.56 6.1560E+04 22,264 17,713 121.00

CHENHARK −2.0000E+00 2,017 2,984 10.46 −2.0000E+00 2,033 3,000 10.49

GOULDQP3 2.3796E−05 5,814 4,988 20.83 2.3796E−05 5,856 5,030 21.13

GRIDNETC 1.6187E+02 1,391 2,578 4.89 1.6187E+02 1,392 2,579 4.99

HATFLDH −2.4500E+01 4 0 0.00 −2.4500E+01 5 1 0.00

LEUVEN1 −1.5243E+07 1,515 14 0.35 −1.5243E+07 1,614 113 0.36

LISWET10 9.8965E+00 34 18 0.02 9.8965E+00 75 59 0.02

LISWET11 9.9054E+00 49 29 0.02 9.9054E+00 60 40 0.02

LISWET12 3.4752E+02 24 5 0.01 3.4752E+02 28 9 0.01

LISWET8 1.4313E+02 28 16 0.02 1.4313E+02 149 137 0.04

LISWET9 3.9292E+02 18 7 0.01 3.9292E+02 35 24 0.02

ODNAMUR 9.2366E+03 3,729 5,512 192.82 9.2366E+03 4,504 6,287 211.11

PENTDI −7.5000E−01 3 2 0.02 −7.5000E−01 2,499 2,498 4.33

POWELL20 6.5120E+09 2,500 1 5.89 6.5120E+09 2,502 3 5.92

PRIMAL3 −1.3576E−01 102 648 0.36 −1.3576E−01 103 649 0.36

QPCBOEI1 1.1504E+07 700 113 0.03 1.1504E+07 703 116 0.03

QPCSTAIR 6.2044E+06 311 21 0.02 6.2044E+06 359 69 0.02

RDW2D52F 8.6159E−03 71 37 0.00 8.6159E−03 72 38 0.00

SOSQP2 −1.2487E+03 4,777 1,251 9.99 −1.2487E+03 4,778 1,252 9.93

Name Dead point without Phase 3 Optimal point with Phase 3

Objective # Itn nS Time Objective # Itn nS Time

A0NNDNIL 6.0072E+01 12,049 55 32.64 5.8632E+01 12,056 54 32.67

A5NNDNDL 1.0364E−08 55,587 198 231.96 1.0101E−08 55,646 251 233.31

BIGGSC4 −2.4375E+01 11 1 0.00 −2.4500E+01 12 1 0.00

MPC16 −1.5034E+07 1,081 16 0.21 −1.5034E+07 1,202 137 0.23
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Table 4 continued

Name Dead point without Phase 3 Optimal point with Phase 3

Objective # Itn nS Time Objective # Itn nS Time

MPC4 −1.5033E+07 1,357 21 0.28 −1.5033E+07 1,468 132 0.30

MPC6 −1.5034E+07 1,245 18 0.26 −1.5034E+07 1,355 128 0.28

NCVXQP2 −5.7759E+07 991 0 0.06 −5.7759E+07 992 0 0.06

QPNBOEI1 6.7367E+06 683 92 0.03 6.7367E+06 685 94 0.03

QPNBOEI2 1.3683E+06 229 27 0.01 1.3683E+06 236 34 0.01

QPNSTAIR 5.1460E+06 349 20 0.02 5.1460E+06 390 59 0.02

factors associated with the variable-reduction method described in Sect. 5.1. With this
method, the reduced Hessian Z TH Z is positive semidefinite with at most one zero
eigenvalue. If the reduced Hessian is positive definite, a suitable direction is computed
from the equations

Z TH Z pS = −Z Tg, (7.3)

which are solved using a dense Cholesky factor of Z TH Z . If the reduced Hessian is
singular, the Cholesky factor is used to define pS such that Z TH Z pS = 0 and pT

S Z Tg <

0. If the number of superbasics is large, then solving (7.3) becomes expensive. By
default, SQOPT switches to a conjugate-gradient method to solve for a direction, when
nS is greater than 2,000. Therefore, it is to be expected that SQIC, which utilizes
the block-matrix method, will provide superior performance when there are many
superbasics.

Figures 5 and 6 are the performance profiles of SQIC and SQOPT on a set of 145
convex CUTEst problems with a small and large number of superbasics. The test set
consists of problems that were identified as being convex in [46] and by checking
the definiteness of the Hessian matrix of all the CUTEst problems in Matlab. Of
the 145 convex problems, 70 are in the “small” set and 75 in the “large” set. As
expected, Figure 5 shows that SQOPT is the best solver for convex problems with a
small number of superbasics. For the “large” convex problem set, SQIC is superior to
SQOPT for all solvers. In particular, SQIC-MA57 shows marked improvement over
SQOPT, demonstrating the superiority of the block-matrix approach in this context.

Overall, of the 253 problems that were solved by SQIC-MA57, 41 terminated at
a dead point and 55 terminated at a weak minimizer. Table 4 illustrates the result of
running SQIC-MA57 both with and without the “phase 3” option enabled. With the
additional phase, 10 of the 41 dead points and 30 of the 55 weak minimizers terminated
at an optimal point, i.e., at a point satisfying the second-order sufficient conditions
for optimality. In all but two cases, phase 3 verified that the weak minimizer or dead
point was optimal, i.e., the additional phase-3 iterations added superbasic variables “in
place” until the phase was terminated. Nonconvex problems A0NNDNIL and BIGGSC4

moved from a dead point to the locally optimal solution in phase 3.
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