
User’s Guide for DNOPT Version 4:
Software for Nonlinear Programming∗

Philip E. GILL and Elizabeth WONG
Department of Mathematics

University of California, San Diego, La Jolla, CA 92093-0112, USA

Michael A. SAUNDERS
Systems Optimization Laboratory

Department of Management Science and Engineering

Stanford University, Stanford, CA 94305-4121, USA

Aug 2020

Abstract

DNOPT is a general-purpose system for constrained optimization. It minimizes
a linear or nonlinear function subject to bounds on the variables and general linear
or nonlinear constraints. It is suitable for linear and quadratic programming and for
linearly constrained optimization, as well as for general nonlinear programs.

DNOPT finds solutions that are locally optimal, and ideally any nonlinear functions
should be smooth and users should provide gradients. It is often more widely useful.
For example, local optima are often global solutions, and discontinuities in the function
gradients can often be tolerated if they are not too close to an optimum. Unknown
gradients are estimated by finite differences.

DNOPT uses a sequential quadratic programming (SQP) algorithm. Search di-
rections are obtained from QP subproblems that minimize a quadratic model of the
Lagrangian function subject to linearized constraints. An augmented Lagrangian merit
function is reduced along each search direction to ensure convergence from any starting
point.

On large problems, DNOPT is most efficient if only some of the variables enter
nonlinearly, or there are relatively few degrees of freedom at a solution (i.e., many
constraints are active). DNOPT requires relatively few evaluations of the problem
functions. Hence it is especially effective if the objective or constraint functions (and
their gradients) are expensive to evaluate.

The source code is re-entrant and suitable for any machine with a Fortran compiler
(or the f̌2c translator and a C compiler). DNOPT may be called from a driver program
in Fortran, C, or Matlab.

Keywords: optimization, nonlinear programming, nonlinear constraints, SQP meth-
ods, quasi-Newton updates, Fortran software, C software.

pgill@ucsd.edu https://www.CCoM.ucsd.edu/~peg

saunders@stanford.edu https://web.stanford.edu/~saunders

elwong@ucsd.edu https://www.CCoM.ucsd.edu/~elwong

∗Research supported in part by funding from Northrop Grumman Aerospace Systems.

Contents

1. Introduction 4

1.1 Problem types . 4

1.2 Implementation . 4

1.3 Files . 5

1.4 Overview of the package . 5

1.5 Subroutines dnBEGIN, dnEND . 5

2. Description of the SQP method 6

2.1 Major iterations . 7

2.2 Minor iterations . 7

2.3 The merit function . 9

2.4 Treatment of constraint infeasibilities . 10

3. The dnOpt interface 10

3.1 Subroutines used by dnOpt . 11

3.2 Identifying structure in the objective and constraints 11

3.3 Problem dimensions . 13

3.4 Subroutine dnOpt . 14

3.5 User-supplied subroutines for dnOpt . 19

3.6 Subroutine funcon . 21

3.7 Subroutine funobj . 22

3.8 Constant Jacobian elements . 23

3.9 Example . 24

4. The dnOptH interface 25

4.1 Subroutines used by dnOptH . 26

4.2 Subroutine dnOptH . 27

4.3 User-supplied subroutines for dnOptH . 32

4.4 Subroutine funhes . 33

4.5 Example . 34

5. The dnNPSOL interface 36

5.1 Subroutines used by dnNPSOL . 36

5.2 Subroutine dnNPSOL . 37

5.3 User-supplied subroutines for dnNPSOL . 41

5.4 Subroutine funobj . 42

5.5 Subroutine funcon . 43

5.6 Constant Jacobian elements . 44

6. Optional parameters 44

6.1 The SPECS file . 44

6.2 Multiple sets of options in the Specs file . 45

6.3 SPECS file checklist and defaults . 45

6.4 Subroutine dnSpec . 47

6.5 Subroutines dnSet, dnSetInt, dnSetReal . 48

6.6 Subroutines dnGet, dnGetChar, dnGetInt, dnGetReal 49

6.7 Description of the optional parameters . 50

3

7. Output 61
7.1 The PRINT file . 61
7.2 The major iteration log . 62
7.3 The minor iteration log . 64
7.4 EXIT conditions . 65
7.5 Solution output . 70
7.6 The SOLUTION file . 78
7.7 The SUMMARY file . 78

References 80

Index 80

4 DNOPT User’s Guide

1. Introduction

DNOPT is a general-purpose system for constrained optimization. It minimizes a linear
or nonlinear function subject to bounds on the variables and sparse linear or nonlinear
constraints. It is suitable for linear and quadratic programming and for linearly constrained
optimization, as well as for general nonlinear programs of the form

(NP) minimize
x

f0(x)

subject to ` ≤

 x
f(x)
ALx

 ≤ u,
where x is an n-vector of variables, ` and u are constant lower and upper bounds, f0(x) is a
smooth scalar objective function, AL is a matrix, and f(x) is a vector of smooth nonlinear
constraint functions {fi(x)}. An optional parameter Maximize may specify that f0(x) should
be maximized instead of minimized.

Ideally, the first derivatives (gradients) of f0(x) and fi(x) should be known and coded
by the user. If only some of the gradients are known, DNOPT estimates the missing ones
by finite differences.

Upper and lower bounds are specified for all variables and constraints. The jth constraint
may be defined as an equality by setting `j = uj . If certain bounds are not present, the
associated elements of ` or u may be set to special values that are treated as −∞ or +∞.
Free variables and free constraints (“free rows”) have both bounds infinite.

1.1. Problem types

If f0(x) is linear and f(x) is absent, (NP) is a linear program (LP) and DNOPT applies
the primal simplex method [2]. In this case, the dense orthogonal factors of a nonsingular
working-set matrix are maintained.

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to
solve more easily than the general case with nonlinear constraints (NC). For both nonlinear
cases, DNOPT applies a sequential quadratic programming (SQP) method [6], using quasi-
Newton approximations to the Hessian of the Lagrangian. The merit function for steplength
control is an augmented Lagrangian, as in the sparse SQP solver SNOPT [7, 8].

The DNOPT package is suitable for nonlinear problems with up to several hundred
constraints and variables, and is most efficient if only some of the variables enter nonlinearly,
or there are relatively few degrees of freedom at a solution (i.e., many constraints are active).

1.2. Implementation

DNOPT is implemented as a library of Fortran 77 subroutines. The source code is compatible
with all known Fortran 77, 90, and 95 compilers, and can be converted to C code by the
f2c translator [3] included with the distribution.

All routines in DNOPT are intended to be re-entrant (as long as the compiler allocates
local variables dynamically). Hence they may be used in a parallel or multi-threaded envi-
ronment. They may also be called recursively.

1. Introduction 5

1.3. Files

Every DNOPT interface reads or creates some of the following files:

Print file (Section 7) is a detailed iteration log with error messages and perhaps listings
of the options and the final solution.

Summary file (Section 7.7) is a brief iteration log with error messages and the final
solution status. Intended for screen output in an interactive environment.

Specs file (Section 6) is a set of run-time options, input by dnSpec.

Solution file (Sections 7.5–7.6) keeps a separate copy of the final solution listing.

Unit numbers for the Specs, Print, and Summary files are defined by inputs to subroutines
dnBEGIN and dnSpec. The other DNOPT files are described in Sections 7.

1.4. Overview of the package

DNOPT is normally accessed via a sequence of subroutine calls. For example, the interface
dnOpt is invoked by the statements

call dnBEGIN(iPrint, iSumm, ...)

call dnSpec (iSpecs, ...)

call dnOpt (Start, n, mLCon, ...)

call dnEND (iPrint, iSumm, ...)

where dnSpec reads a file of run-time options (if any). Also, individual run-time options
may be “hard-wired” by calls to dnSet, dnSetInt and dnSetReal.

1.5. Subroutines dnBEGIN, dnEND

Calls to subroutines dnBEGIN and dnEND start and finish a run (or set of runs) for a given
problem. Subroutine dnBEGIN must be called before any other DNOPT routine. It defines
the Print and Summary files, prints a title on both files, and sets all user options to be
undefined. (Each DNOPT interface will later check the options and set undefined ones to
default values.)

subroutine dnBEGIN

& (iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw)

integer

& iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

character

& cw(lencw)*8

double precision

& rw(lenrw)

On entry:

iPrint defines a unit number for the Print file. Typically iPrint = 9.

On some systems, the file may need to be opened before dnBEGIN is called.
If iPrint ≤ 0, there will be no Print file output.

6 DNOPT User’s Guide

iSumm defines a unit number for the Summary file. Typically iSumm = 6.
(In an interactive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before dnBEGIN is called.
If iSumm ≤ 0, there will be no Summary file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to other
DNOPT routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined.

The calling sequence for dnEND is identical to that of dnBEGIN.

subroutine dnEND

& (iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw)

integer

& iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

character

& cw(lencw)*8

double precision

& rw(lenrw)

2. Description of the SQP method

Here we summarize the main features of the SQP algorithm used in DNOPT and introduce
some terminology used in the description of the library routines and their arguments. The
SQP algorithm is fully described by Gill, Saunders and Wong [14].

Problem (NP) contains n variables in x. Let m be the number of components of f(x) and
ALx combined. The upper and lower bounds on those terms define the general constraints
of the problem.

The method of DNOPT starts by attempting to find a feasible point for the linear con-
straints and bounds. This is done by solving the linear program

(FP) minimize
x,v,w

eT (v + w)

subject to ` ≤
(

x
ALx− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded
from ` and u. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the bounds on x. (The sum is the `1-norm of the linear constraint
violations. In the linear programming literature, the approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of (FP) has v 6= 0 or w 6=
0. DNOPT then terminates without computing the nonlinear functions. Otherwise, all
subsequent iterates satisfy the linear constraints. This strategy allows linear constraints to
be used to define a region in which the functions can be safely evaluated.

2. Description of the SQP method 7

2.1. Major iterations

The basic structure of the SQP algorithm involves major and minor iterations. The
major iterations generate a sequence of iterates {xk} that satisfy the linear constraints and
converge to a point that satisfies the nonlinear constraints and the first-order conditions for
optimality.

At each xk a QP subproblem is used to generate a search direction toward what will
be the next iterate xk+1. The constraints of the subproblem are formed from the linear
constraints `L ≤ ALx ≤ uL and the linearized constraints

`N ≤ f(xk) + f ′(xk)(x− xk) ≤ uN ,

where f ′(xk) denotes the Jacobian matrix, whose elements are the first derivatives of f(x)
evaluated at xk. The QP constraints then the n+m linear constraints ` ≤ r(x) ≤ u, where

r(x) =

(
x

A(x− xk) + b

)
,

with A an m× n matrix and b an m-vector defined as

A =

(
f ′(xk)
AL

)
and b =

(
f(xk)− f ′(xk)xk

0

)
.

With these definitions, the QP subproblem can be written as

QPk minimize
x,s

qk(x) = gTk(x− xk) + 1
2 (x− xk)THk(x− xk)

subject to ` ≤
(

x
A(x− xk) + b

)
≤ u,

where qk(x) is a quadratic approximation to the Lagrangian function (see, e.g., [15]). The
matrix Hk is a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS
update is applied after each major iteration. If some of the variables enter the Lagrangian
linearly the Hessian will have some zero rows and columns. If the nonlinear variables appear
first, then only the leading n1 rows and columns of the Hessian need be approximated, where
n1 is the number of nonlinear variables.

2.2. Minor iterations

Solving the QP subproblem is itself an iterative procedure. Here, the iterations of the QP
solver DQOPT form the minor iterations of the SQP method. DNOPT has two phases, a
feasibility phase or phase 1, and an optimality phase or phase 2. In the feasibility phase,
DNOPT finds a feasible point by minimizing the sum of the infeasibilities of the violated
constraints. Once a feasible point has been found, the optimality phase involves minimizing
the quadratic objective function within the feasible region. The same method is applied
in both phases, but the objective function changes from the sum of infeasibilities to the
objective function of QPk.

DQOPT uses a reduced-Hessian active-set method implemented as a reduced-gradient
method. Each iterate is associated with a subset of the constraints known as the working
set. The term active-set method arises because the constraints with indices in the working
set are active at each iterate, i.e., the constraints in the working set are satisfied with
equality. An important property of the working set is that it consists of the indices of a
linearly independent subset of the active-constraint gradients. Figure 1 illustrates the
feasible region for the jth pair of constraints `j ≤ rj(x) ≤ uj . The quantity δ is the

8 DNOPT User’s Guide

optional parameter Feasibility tolerance. The constraints `j ≤ rj ≤ uj are considered
“satisfied” if rj lies in Regions 2, 3 or 4, and “inactive” if rj lies in Region 3. The constraint
rj ≥ `j is considered “active” in Region 2, and “violated” (or “infeasible”) in Region 1.
Similarly, rj ≤ uj is active in Region 4, and violated in Region 5. For equality constraints
(`j = uj), Regions 2 and 4 are the same and Region 3 is empty. It must be emphasized that
even though a constraint can be active in the sense just described, it may not be included
in the working set

At any given iterate x, the rows of the working-set matrix AW consists of nFX rows of
the identity matrix and mA rows of A. The components of x are partitioned into subvectors
xFX and xFR, where the xFX correspond to the components of x that are in the working set
(i.e., temporarily fixed at their upper or lower bounds). If P is a permutation matrix that
arranges the columns of AW into the order

(
AFR AFX

)
corresponding the elements of xFX

and xFR, then the working-set matrix may be partitioned such that

AWP =

(
IFX

AFR AFX

)
, (2.1)

where AFR has linearly independent rows. The vectors xFX and xFR are known as the as-
sociated fixed, and free components of x. (In practice, xFX may include variables that
are temporarily frozen at values strictly between their bounds.) At a nonoptimal feasible
point x we seek a search direction p such that x + p remains on the set of working-set
constraints yet improves the objective function. If the new point is to be feasible, we must
have AFRpFR + AFXpFX = 0 and pFX = 0. These conditions may be expressed compactly as
p = ZpZ , where Z is a matrix with columns that span the null space of the working-set
matrix AW , i.e.,

Z = P

(
ZFR

0

)
(2.2)

where P is the permutation matrix of (2.1) that permutes the columns of AW into the order(
AFR AFX

)
. Minimizing qk(x) with respect to pZ now involves a quadratic function of pZ :

gTZpZ + 1
2p

T
ZZ

THZpZ ,

where g = ∇qk(x) and H = Hk. This is a quadratic with Hessian ZTHZ (the reduced Hes-
sian) and constant vector ZTg (the reduced gradient). If the reduced Hessian is nonsingular,
pZ is computed from the system

ZTHZpZ = −ZTg. (2.3)

-
@
@
@
@
@
@
@
@ �

�
�
�
�
�
�
�

m1 m2 m3 m4 m5

`j uj rj(x)

δ δ δ δ

Figure 1: Illustration of the constraints `j ≤ rj(x) ≤ uj . The bounds `j and uj are
considered “satisfied” if rj(x) lies in Regions 2, 3 or 4, where δ is the feasibility tolerance.
The constraints rj(x) ≥ `j and rj(x) ≤ uj are both considered “inactive” if rj(x) lies in
Region 3.

2. Description of the SQP method 9

Once pZ is specified, p is uniquely determined from the definition p = ZpZ . The number of
components of pZ (nZ say) therefore indicates the number of degrees of freedom remaining
after the constraints have been satisfied. In broad terms, nZ is a measure of how nonlinear
the problem is. In particular, nZ need not be more than one for linear problems.

An orthogonal factorization package is used to maintain TQ factors of AFR as the working
set changes. A TQ factorization of AFR is given by:

AFRQFR =
(
0 TFR

)
, (2.4)

where TFR is a nonsingular mW × mW upper-triangular matrix, and QFR is an nFR × nFR

nonsingular matrix constructed from a product of orthogonal transformations (see [9]). If
the columns of QFR are partitioned so that

QFR =
(
ZFR YFR

)
,

where YFR is nFR ×mw and ZFR is nFR × nZ (where nZ = nFR −mw).
If ZTg = 0, then no further improvement can be made with the current working set. In

this case, vectors π and z are computed from the equations(
AT

FR

IFX AT
FX

)(
z

π

)
=

(
gFR

gFX

)
,

where gFR and gFX are the components of∇qk(x) corresponding to the free and fixed variables.
The components of π and z are associated with the general and bound constraints in the
working set respectively. These vectors form part of the n + m vector y with components
associated with the rows of the QP constraint matrix(

I
A

)
.

In this case, yj = 0 for a constraint that is not in the working set. The components of y are
known as the dual variables or Lagrange multipliers.

The vector d of dual infeasibilities is given by dj = max{−yj , 0} if constraint j is in the
working set at its lower bound, dj = max{yj , 0} if constraint j is in the working set at its
lower bound, and dj = 0 otherwise. If d = 0, then x is optimal for QPk. Otherwise, a
constraint with non-optimal dual variable is selected to be removed from the working set.
The iteration is then repeated with nZ increased by one. At all stages, if the step x + p
is not feasible, the largest step α is computed such that x + αp satisfies the constraints
not in the working set. At x + αp at least one constraint not in the working set must be
active, the number of working-set constraints is increased by one and nZ is decreased by
one. In practice, DNOPT requests an approximate QP solution (x̂k, ŷk) with slightly relaxed
conditions on yj .

The reduced Hessian system (2.3) is solved an upper-triangular matrix R is maintained
satisfying RTR = ZTHZ. Normally, R is computed from ZTHZ at the start of phase 2 and
is then updated as the working set changes.

2.3. The merit function

After a QP subproblem has been solved, new estimates of the NP solution are computed
using a line search on the augmented Lagrangian merit function

M(x, s, y) = f0(x)− yT
(
f(x)− s

)
+ 1

2

(
f(x)− s

)T
D
(
f(x)− s

)
, (2.5)

10 DNOPT User’s Guide

where D is a diagonal matrix of penalty parameters (Dii ≥ 0), and y now refers to dual
variables for the nonlinear constraints in (NP). The vector s is the vector of nonlinear slacks.
At a solution of (NP), the nonlinear slacks satisfy f(x) − s = 0 and `N ≤ s ≤ uN . At a
solution x̂k of QPk a new estimate of the optimal nonlinear slacks is computed such that

f(xk)− f ′(xk)(x̂k − xk)− ŝk = 0.

If (xk, sk, yk) denotes the current solution estimate and (x̂k, ŝk, ŷk) denotes the QP solution,
the linesearch determines a step αk (0 < αk ≤ 1) such that the new pointxk+1

sk+1

yk+1

 =

xksk
yk

+ αk

x̂k − xkŝk − sk
ŷk − yk

 (2.6)

gives a sufficient decrease in the merit function (2.5). When necessary, the penalties in D
are increased by the minimum-norm perturbation that ensures descent for M [12]. Prior
to the line search, sk is adjusted to minimize the merit function as a function of s.

2.4. Treatment of constraint infeasibilities

DNOPT makes explicit allowance for infeasible constraints. After finding a feasible point
for the linear constraints and bounds, DNOPT proceeds to solve (NP) as given, using search
directions obtained from the sequence of subproblems QPk. If a QP subproblem proves to
be infeasible or unbounded (or if the dual variables y for the nonlinear constraints become
large), DNOPT enters “elastic” mode and thereafter solves the problem

NP(γ) minimize
x,v,w

f0(x) + γeT (v + w)

subject to l ≤

 x
f(x)− v + w

ALx

 ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter (the elastic weight), and f0(x) + γeT (v+w) is called a
composite objective (the `1 penalty function for the nonlinear constraints).

The value of γ may increase automatically by multiples of 10 if the optimal v and w
continue to be nonzero. If γ is sufficiently large, this is equivalent to minimizing the sum of
the nonlinear constraint violations subject to the linear constraints and bounds. A similar
`1 formulation of (NP) is fundamental to the S`1QP algorithm of Fletcher [4]. See also
Conn [1].

The initial value of γ is controlled by the optional parameter Elastic weight (p. 52).

3. The dnOpt interface

dnOpt is the principal user interface in the DNOPT package. The optimization problem is
assumed to be in the form (NP) (p. 4) with the data ordered so that nonlinear constraints
and variables come first.

A typical invocation of dnOpt is

call dnBEGIN(iPrint, iSumm, ...)

call dnSpec (iSpecs, ...)

call dnOpt (start, n, mLCon, ...)

call dnEND (iPrint, iSumm, ...)

where dnSpec reads a set of optional parameter definitions from the file with unit number
iSpecs.

3. The dnOpt interface 11

3.1. Subroutines used by dnOpt

dnOpt is accessed via the following routines:

dnBEGIN (Section 1.5) must be called before any other dnOpt routines.

dnSpec (Section 6.4) may be called to input a Specs file (a list of run-time options).

dnSet, dnSetInt, dnSetReal (Section 6.5) may be called to specify a single option.

dnGet, dnGetChar, dnGetInt, dnGetReal (Section 6.6) may be called to obtain an op-
tion’s current value.

dnOpt (Section 3.4) is the main solver.

funcon, funobj (Section 3.5) are supplied by the user and called by dnOpt. funcon and
funobj define the constraint functions f(x) and objective function f0(x) and ideally
their gradients. (They have a fixed parameter list but may have any convenient
name. They are passed to dnOpt as parameters.)

dnMem computes the size of the workspace arrays iw and rw required for given problem
dimensions. Intended for Fortran 90 drivers that reallocate workspace if necessary.

3.2. Identifying structure in the objective and constraints

Consider the following nonlinear optimization problem with four variables x = (u, v, w, z):

minimize
u,v,w,z

(u+ v + w)2 + 3w + 5z

subject to u2 + v2 + w = 2
v4 + z = 4

2u+ 4v ≥ 0

with bounds w ≥ 0, z ≥ 0. This problem has several characteristics that can be exploited:

• The objective function is the sum of a nonlinear function of the three variables x′ =
(u, v, w) and a linear function of (potentially) all variables x.

• The first two constraints are nonlinear, and the third constraint is linear.

• Each nonlinear constraint involves the sum of a nonlinear function of the two variables
x′′ = (u, v) and a linear function of the remaining variables y′′ = (w, z).

The nonlinear terms are defined by user-written subroutines funobj and funcon, which
involve only x′ and x′′, the appropriate subsets of variables.

For the objective, we define the function f0(u, v, w) = (u + v + w)2 to include only the
nonlinear terms. The variables x′ = (u, v, w) are known as nonlinear objective variables,
and their dimension n′1 is specified by the dnOpt input parameter nnObj (= 3 here). The
linear part 3w + 5z of the objective is treated as an additional linear constraint whose
row index is specified by the input parameter iObjA. Thus, the full objective has the form
f0(x′) + dTx, where x′ is the first nnObj variables, f0(x′) is defined by subroutine funobj,
and d is a constant vector that forms row iObjA of the linear constraint matrix. Choosing
iObjA = 2, we think of the problem as

minimize
u,v,w,z,s4

(u+ v + w)2 + s4

subject to u2 + v2 + w = 2
v4 + z = 4

2u+ 4v ≥ 0
3w + 5z = s4

12 DNOPT User’s Guide

with bounds w ≥ 0, z ≥ 0, −∞ ≤ s4 ≤ ∞, where s4 is treated implicitly as the value of the
4th constraint.

Similarly for the constraints, we define a vector function f(u, v) to include just the
nonlinear terms. In this example, f1(u, v) = u2 + v2 and f2(u, v) = v4. The number of
nonlinear constraints (the dimension of f) is specified by the input parameter mNCon = 2.
The variables x′′ = (u, v) are known as nonlinear Jacobian variables, with dimension n′′1
specified by nnJac = 2. Thus, the combined vector of nonlinear and linear constraint
functions has the form

(
f(x′′) + J2y

′′

A1x
′′ +A2y

′′

)
, (3.1)

where x′′ is the first nnJac variables, f(x′′) is defined by subroutine funcon, and y′′ contains
the remaining variables, i.e., y′′ = (w, z) in the example. The nonlinear and linear Jacobian
matrices are then

(
f ′(x′′) J2

)
and

(
A1 A2

)
, and the matrix seen by the QP subproblem

has the form

(
f ′(x′′) J2

A1 A2

)
, (3.2)

with the Jacobian of f always appearing in the top left corner. The matrices f ′(x′′) and J2
are held in the array parameter JCon. The elements of JCon corresponding to f ′(x′′) may
be given any value (the correct values are computed internally). The arrays A1 and A2 are
input via the array parameter A. (Elements that are identically zero must be included.)

The inequalities l1 ≤ f(x′′) + J2y
′′ ≤ u1 and l2 ≤ A1x + A2y

′′ ≤ u2 implied by the
constraint functions (3.1) are known as the nonlinear and linear constraints respectively.
Together, these two sets of inequalities constitute the general constraints.

In general, the vectors x′ and x′′ have different dimensions, but they always overlap,
in the sense that the shorter vector is always the beginning of the other. In the example,
the nonlinear Jacobian variables (u, v) are an ordered subset of the nonlinear objective
variables (u, v, w). In other cases it could be the other way round—whichever is the most
convenient—but the first way keeps f ′(x′′) smaller.

Together the nonlinear objective and nonlinear Jacobian variables comprise the nonlinear
variables. The number of nonlinear variables n1 is therefore the larger of the dimensions of
x′ and x′′, i.e., n1 = max{n′1, n′′1} (= max(nnObj, nnJac)).

3. The dnOpt interface 13

3.3. Problem dimensions

The following picture illustrates the problem structure just described:

m

n

mNCon

nnJac

6

?

� -

nnObj

nnObj

nnObj

The dimensions are all input parameters to subroutine dnOpt (see the next section). For
linear programs, mNCon, nnJac, nnObj are all zero. If a linear objective term exists, iObjA
points to one of the rows of A.

The dashed boxes indicate that a nonlinear objective function f0(x′) may involve either
a subset or a superset of the variables in the nonlinear constraint functions f(x′′), counting
from the left. Thus, nnObj ≤ nnJac or vice versa.

Sometimes the objective and constraints really involve disjoint sets of nonlinear variables.
We then recommend ordering the variables so that nnObj > nnJac and x′ = (x′′, x′′′),
where the objective is nonlinear in just the last vector x′′′. Subroutine funobj should
set gObj(j) = 0.0 for j = 1 : nnJac. It should then set as many remaining gradients as
possible—preferably all!

14 DNOPT User’s Guide

3.4. Subroutine dnOpt

In the following specification of dnOpt, we define r(x) as the vector of combined constraint
functions r(x) =

(
x f(x) ALx

)
, and use nb to denote a variable that holds its dimension:

nb = n + mLCon + mNCon. Note that most machines use double precision declarations as
shown, but some machines use real. The same applies to the user routines funcon and
funobj.

subroutine dnopt

& (start, n, mLCon, mNCon, nnJac, nnObj,

& problemName, Names, nNames, iObjA, objAdd,

& funcon, funobj,

& state, A, ldA, bl, bu,

& fObj, gObj, fCon, JCon, ldJ, H, ldH,

& objNP, nInf, sInf, x, y,

& INFO, mincw, miniw, minrw,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw)

external

& funcon, funobj

integer

& iObjA, INFO, ldA, ldJ, ldH, lencw, leniw, lenrw, lencu,

& leniu, lenru, n, mLCon, mNCon, nnJac, nnObj, nNames, nInf,

& mincw, miniw, minrw, start, state(n+mNCon+mLCon), iu(leniu),

& iw(leniw)

double precision

& objAdd, objNP, fObj, sInf, A(ldA,*), bl(n+mNCon+mLCon),

& bu(n+mNCon+mLCon), gObj(n), fCon(ldJ), JCon(ldJ,*), H(ldH,*),

& x(n+mNCon+mLCon), y(n+mNCon+mLCon), ru(lenru), rw(lenrw)

character

& problemName*8, Names(nNames)*8, cu(lencu)*8, cw(lencw)*8

On entry:

Start is an integer that specifies how a starting point is to be obtained.

Start = 0 (Cold start) requests that a the crash procedure be used to define an
initial working set.

Start = 1 (Warm start) means that state defines a valid starting point (perhaps
from an earlier call, though not necessarily).

Start = 2 (Hot start) means that state defines a valid starting point and the
argument H(ldH,*) defines a positive-definite approximate Hessian of
the Lagrangian.

n is n, the number of variables in the problem (n > 0).

mLCon is mL, the number of general linear constraints (mLCon ≥ 0).

mNCon is mN , the number of nonlinear constraints (mNCon ≥ 0).

ldA is the row dimension of the array A (ldA ≥ 1, ldA ≥ mLCon).

ldJ is the row dimension of the array JCon (ldJ ≥ 1, ldJ ≥ mNCon).

3. The dnOpt interface 15

ldH is the row dimension of the array H (ldH ≥ n).

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n+m and all names must be provided.

nnObj is n′1, the number of nonlinear objective variables. (nnObj ≥ 0)

nnJac is n′′1 , the number of nonlinear Jacobian variables. If mNCon = 0, then nnJac = 0.
If mNCon > 0, then nnJac > 0.

iObjA says which row of A is a free row containing a linear objective vector c. If there is
no such row, iObjA = 0.

ObjAdd is a constant that will be added to the objective for printing purposes. Typically
ObjAdd = 0.0d+0.

ProblemName is an 8-character name for the problem. ProblemName is used in the printed
solution. A blank name may be used.

Names(nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, Names is not used. The printed solution will use generic names for the
columns and row. If nName = n+m, Names(j) should contain the 8-character name
of the jth variable (j = 1 :n+m). If j = n+ i, the jth variable is the ith row.

A is an array of dimension (ldA,k) for some k ≥ n. It contains the matrix AL for
the linear constraints. If mLCon = 0, A is not referenced. (In that case, A may be
dimensioned (ldA,1) with ldA = 1, or it could be any convenient array.)

bl(nb), bu(nb) contain the lower and upper bounds for r(x) in problem (NP).

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where
infBnd is the Infinite Bound size (default value 1020).
To specify an equality constraint (say rj(x) = β), set bl(j) = bu(j) = β, where
|β| < infBnd.

For the data to be meaningful, it is required that bl(j) ≤ bu(j) for all j.

funcon is the name of a subroutine that calculates the vector of nonlinear constraint func-
tions f(x) and (optionally) its Jacobian for a specified vector x (the first nnJac

elements of x(*)). funcon must be declared external in the routine that calls
dnOpt. For a detailed description of funcon, see Section 3.6.

funobj is the name of a subroutine that calculates the objective function f0(x) and (op-
tionally) its gradient for a specified vector x (the first nnObj elements of x(*)).
funobj must be declared external in the routine that calls dnOpt. For a detailed
description of funobj, see Section 3.7.

state(nb) is an integer array that need not be initialized if dnOpt is called with start = 0
(a cold start) or the Cold start option (the default).

For start = 1 (a warm start) every element of state must be set. If dnOpt has
just been called on a problem with the same dimensions, state already contains
valid values. Otherwise, state(j) should indicate whether either of the constraints
rj(x) ≥ lj or rj(x) ≤ uj is expected to be active at a solution of (NP).

The ordering of state is the same as for bl, bu and r(x), i.e., the first n components
of state refer to the upper and lower bounds on the variables, the next mNCon refer
to the bounds on f(x) and the last mLCon refer to the bounds on ALx. Possible
values for state(j) follow.

16 DNOPT User’s Guide

0 Neither rj(x) ≥ lj nor rj(x) ≤ uj is expected to be active.

1 rj(x) ≥ lj is expected to be active.

2 rj(x) ≤ uj is expected to be active.

3 This may be used if lj = uj . Normally an equality constraint rj(x) = lj = uj
is active at a solution.

The values 1, 2 or 3 all have the same effect when bl(j) = bu(j). If necessary,
dnOpt will override the user’s specification of state, so that a poor choice will not
cause the algorithm to fail.

JCon(ldJ,*) is an array of dimension (ldJ,k) for some k ≥ n. If mNCon = 0, JCon is not
referenced. (In that case, JCon may be dimensioned (ldJ,1) with ldJ = 1.)

In general, JCon need not be initialized before the call to dnOpt. However, if
Derivative level = 3, any constant elements of JCon may be initialized. Such
elements need not be reassigned on subsequent calls to funcon (see Section 3.8).

H(ldH,*) is an array of dimension (ldH,k) for some k ≥ n. H need not be initialized if
dnOpt is called with a Cold Start (the default) or a Warm Start, and will be taken
as the identity. For a hot start, H provides the initial approximation of the Hessian
of the Lagrangian, i.e., H(i, j) ≈ ∂2L(x, y)/∂xi∂xj , where L(x, y) = f0(x)− yTf(x)
and y is an estimate of the optimal Lagrange multipliers. The matrix H must be
positive-definite.

x(nb) usually contains a set of initial values for x.

1. For Cold starts (Start = 0), the first n elements of state and x must be
defined.

If there is no wish to provide special information, you may set state(j) = 0,
x(j) = 0.0 for all j = 1 :n. All variables will be eligible for the initial working
set.

Less trivially, to say that the optimal value of variable j will probably be equal
to one of its bounds, set state(j) = 1 and x(j) = bl(j) or state(j) = 2 and
x(j) = bu(j) as appropriate.

A CRASH procedure is used to select a working set.

2. For Warm or Hot starts (Start = 1, 2), all of state(1 : nb) must be 0, 1 or 2
and x(1 : n) must have values (perhaps from some previous call).

y(nb) is an array that need not be initialized if dnOpt is called with a Cold start (the
default).

Otherwise, the ordering of y is the same as for bl, bu and state. For a Warm

start, the components of y corresponding to nonlinear constraints must contain a
multiplier estimate. The sign of each multiplier should match state as follows. If
the ith nonlinear constraint is defined as “inactive” via the initial value state(j) =
0, j = n + i, then y(j) should be zero. If the nonlinear constraint rj(x) ≥ lj is
active (state(j) = 1), y(j) should be non-negative, and if rj(x) ≤ uj is active
(state(j) = 2), y(j) should be non-positive.

If necessary, dnOpt will change y to match these rules.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routines
funcon and funobj (which have the same parameters). They are not touched by
dnOpt.

3. The dnOpt interface 17

If the function routines don’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Conversely, you
should use the latter arrays if funcon and funobj need to access dnOpt’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for dnOpt. Their lengths lencw, leniw, lenrw must all be at least 500.

In general, lencw = 500 is appropriate. Appropriate values of leniw and lenrw

may be obtained from a preliminary run with lencw = leniw = lenrw = 500. See
mincw, miniw, minrw below (on exit).

On exit:

INFO reports the result of the call to dnOpt. Here is a summary of possible values. Further
details are in Section 7.4.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
5 elastic objective minimized
6 elastic infeasibilities minimized

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equality constraints
13 nonlinear infeasibilities minimized
14 linear infeasibilities minimized
15 infeasible linear constraints in QP subproblem
16 infeasible nonelastic constraints

The problem appears to be unbounded
21 unbounded objective at a feasible point
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 ill-conditioned working set
43 cannot satisfy the working-set constraints
44 Reduced gradient too large

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives
53 the QP Hessian is indefinite
57 irregular or badly scaled problem functions

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

18 DNOPT User’s Guide

User requested termination
71 terminated during function evaluation
72 terminated during constraint evaluation
73 terminated during objective evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument

iter is the number of major iterations performed.

state describes the status of the constraints l ≤ r(x) ≤ u in problem (NP). For the jth
lower or upper bound, j = 1 to nb, the possible values of state(j) are as follows,
where δ is the specified Feasibility tolerance:

−2 (Region 1) The lower bound is violated by more than δ.
−1 (Region 5) The upper bound is violated by more than δ.

0 (Region 3) Both bounds are satisfied by more than δ.
1 (Region 2) The lower bound is active (to within δ).
2 (Region 4) The upper bound is active (to within δ).
3 (Region 2 = Region 4) The bounds are equal and the

equality constraint is satisfied (to within δ).

These values of state are labeled in the printed solution as follows:

Region 1 2 3 4 5 2 ≡ 4

state(j) −2 1 0 2 −1 3
Printed solution -- LL FR UL ++ EQ

fCon is an array of dimension at least mNCon. If mNCon = 0, fCon is not accessed, and
may then be declared to be of dimension (1), or the actual parameter may be any
convenient array. If mNCon > 0, fCon contains the values of the nonlinear constraint
functions fi(x), i = 1: mNCon, at the final iterate.

JCon contains the Jacobian matrix of the nonlinear constraints at the final iterate, i.e.,
JCon(i, j) contains the partial derivative of the ith constraint function with respect
to the jth variable, i = 1: mNCon, j = 1: n. (See the discussion of JCon under
funcon in Section 3.6.)

y contains the QP multipliers from the last QP subproblem. y(j) should be non-
negative if state(j) = 1 and non-positive if state(j) = 2.

fObj is the value of the objective f0(x) at the final iterate.

gObj(n) contains the objective gradient (or its finite-difference approximation) at the final
iterate.

H(ldH,*) contains an estimate of H, the Hessian of the Lagrangian at x.

x contains the final estimate of the solution.

3. The dnOpt interface 19

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside
their bounds by more than the Minor feasibility tolerance before the solution
is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of
the linear constraints subject to the upper and lower bounds being satisfied. In this
case nInf gives the number of components of ALx lying outside their bounds. The
nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of f(x) lying outside their bounds
by more than the Minor feasibility tolerance. Again this is before the solution
is unscaled.

Obj is the final value of the nonlinear part of the objective function. If nInf = 0, Obj is
the nonlinear objective, if any. If nInf > 0 but the linear constraints are feasible,
then Obj is the nonlinear objective. If nInf > 0 and the linear constraints are
infeasible, Obj is zero.

Note that Obj does not include contributions from the constant term ObjAdd or the
objective row, if there is one. The final value of the objective being optimized is
ObjAdd + x(n+iObj) + Obj, where iObj is the index of the objective row in A.

mincw, miniw, minrw say how much character, integer, and real storage is needed to solve
the problem. If Print level > 0, these values are printed. If dnOpt terminates
because of insufficient storage (INFO = 82, 83 or 84), mincw, miniw and minrw give
the required values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. dnOpt may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. dnOpt
may be called again with leniw = miniw and lenrw = minrw.

3.5. User-supplied subroutines for dnOpt

The user must provide subroutines to define the nonlinear parts of the objective function
and nonlinear constraints. They are passed to dnOpt as external parameters funobj and
funcon. (A dummy subroutine must be provided if the objective or constraints are purely
linear.)

Be careful when coding the call to dnOpt: the parameters are ordered alphabetically as
funcon, funobj. The first call to each function routine is also in that order.

In general, these subroutines should return all function and gradient values on every
entry except perhaps the last. This provides maximum reliability and corresponds to the
default setting, Derivative level = 3.

In practice it is often convenient not to code gradients. dnOpt is able to estimate gra-
dients by finite differences, by making a call to funcon or funobj for each variable xj
whose partial derivatives need to be estimated. However, this reduces the reliability of the
optimization algorithms, and it can be very expensive if there are many such variables xj .

As a compromise, dnOpt allows you to code as many gradients as you like. This option is
implemented as follows. Just before a function routine is called, each element of the gradient
array is initialized to a specific value. On exit, any element retaining that value must be
estimated by finite differences.

Some rules of thumb follow.

20 DNOPT User’s Guide

1. For maximum reliability, compute all function and gradient values.

2. If the gradients are expensive to compute, specify Nonderivative linesearch and
use the input parameter mode to avoid computing them on certain entries. (Don’t
compute gradients if mode = 0.)

3. If not all gradients are known, you must specify Derivative level ≤ 2. You should
still compute as many gradients as you can. (It often happens that some of them are
constant or even zero.)

4. Again, if the known gradients are expensive, don’t compute them if mode = 0.

5. Use the input parameter status to test for special actions on the first or last entries.

6. While the function routines are being developed, use the Verify option to check the
computation of gradient elements that are supposedly known. The Start and Stop

options may also be helpful.

7. The function routines are not called until the linear constraints and bounds on x are
satisfied. This helps confine x to regions where the nonlinear functions are likely to
be defined. However, be aware of the Minor feasibility tolerance if the functions
have singularities near bounds.

8. Set mode = −1 if some of the functions are undefined. The linesearch will shorten the
step and try again.

9. Set mode ≤ −2 if you want dnOpt to stop.

3. The dnOpt interface 21

3.6. Subroutine funcon

This subroutine must compute the nonlinear constraint functions {fi(x)} and (optionally)
their derivatives. (A dummy subroutine funcon must be provided if there are no nonlin-
ear constraints.) The ith row of the Jacobian JCon is the vector (∂fi/∂x1, ∂fi/∂x2, . . . ,
∂fi/∂xn).

subroutine funcon

& (mode, mNCon, nnJac, x, fCon, JCon, ldJ, status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& ldJ, mode, mNCon, nnJac, status, lencu, leniu, lenru,

& iu(leniu)

double precision

& x(nnJac), fCon(mNCon), JCon(ldJ,*), ru(lenru)

character*8

& cu(lencu)

On entry:

mode indicates whether fCon or JCon or both must be assigned during the present call of
funcon (0 ≤ mode ≤ 2).

This parameter can be ignored if Derivative linesearch is selected (the default)
and if Derivative level = 2 or 3. In this case, mode will always have the value
2, and all elements of fCon and JCon must be assigned (except perhaps constant
elements of JCon).

Otherwise, dnOpt will call funcon with mode = 0, 1 or 2. You may test mode to
decide what to do:

• If mode = 2, assign fCon and the known components of JCon.

• If mode = 1, assign the known components of JCon. fCon is ignored.

• If mode = 0, only fCon need be assigned; JCon is ignored.

mNCon is the number of nonlinear constraints (mNCon > 0). These must be the first mNCon
constraints in the problem.

nnJac is the number of variables involved in f(x) (0 < nnJac ≤ n). These must be the
first nnJac variables in the problem.

x(nnJac) contains the nonlinear Jacobian variables x. The array x must not be altered.

status indicates the first and last calls to funcon.

If status = 0, there is nothing special about the current call to funcon.

If status = 1, dnOpt is calling your subroutine for the first time. Some data may
need to be input or computed and saved. Note that if there is a nonlinear objective,
the first call to funcon will occur before the first call to funobj.

If status ≥ 2, dnOpt is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. Note again that the
last call to funcon will occur before the last call to funobj.

In general, the last call is made with status = 2 + INFO/10, where INFO is the
integer returned by dnOpt (see p. 17). In particular,

22 DNOPT User’s Guide

if status = 2, the current x is optimal ;
if status = 3, the problem appears to be infeasible;
if status = 4, the problem appears to be unbounded;
if status = 5, an iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the
last call. The first executable statement could be if (status .ge. 2) return.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to dnOpt. They may be used to pass information into the function
routines and to preserve data between calls.

In special applications the functions may depend on some of the internal variables
stored in dnOpt’s workspace arrays cw, iw, rw. For example, the 8-character problem
name ProblemName is stored in cw(51), and the dual variables for the general
constraints are stored in rw(lyCon) onward, where lyCon = iw(268). These will
be accessible to both funcon and funobj if dnOpt is called with parameters cu, iu,
ru the same as cw, iw, rw.

If you still require user workspace, elements rw(501:maxru) and rw(maxrw+1:lenru)

are set aside for this purpose, where maxru = iw(2). Similarly for workspace in cw

and rw. (See the Total and User workspace options.)

On exit:

fCon(mNCon) contains the computed constraint vector f(x) (except perhaps if mode = 1).

JCon(mNCon,nnJac) contains the computed Jacobian f ′(x) (except perhaps if mode = 0).
These gradient elements must not include the elements of J2. There is no internal
check for consistency (except indirectly via the Verify option), so great care is
essential.

mode may be used to indicate that you are unable to evaluate f or its gradients at the
current x. (For example, the problem functions may not be defined there).

During the linesearch, f(x) is evaluated at points x = xk+αpk for various steplengths
α, where f(xk) has already been evaluated satisfactorily. For any such x, if you
set mode = −1, dnOpt will reduce α and evaluate f again (closer to xk, where it is
more likely to be defined).

If for some reason you wish to terminate the current problem, set mode ≤ −2.

3.7. Subroutine funobj

This subroutine must calculate the objective function f0(x) and (optionally) the gradient
g(x).

subroutine funobj

& (mode, nnObj, x, fObj, gObj, status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& mode, nnObj, status, lencu, leniu, lenru, iu(leniu)

double precision

& fObj, x(nnObj), gObj(nnObj), ru(lenru)

character*8

& cu(lencu)

3. The dnOpt interface 23

On entry:

mode indicates whether fObj or gObj or both must be assigned during the present call of
funobj (0 ≤ mode ≤ 2).

This parameter can be ignored if Derivative linesearch is selected (the default)
and if Derivative level = 2 or 3. In this case, mode will always have the value
2, and all elements of fObj and gObj must be assigned (except perhaps constant
elements of gObj).

Otherwise, dnOpt will call funobj with mode = 0, 1 or 2. You may test mode to
decide what to do:

• If mode = 2, assign fObj and the known components of gObj.

• If mode = 1, assign the known components of gOb. fObj is ignored.

• If mode = 0, only fObj need be assigned; gObj is ignored.

nnObj is the number of variables involved in f0(x) (0 < nnObj ≤ n). These must be the
first nnObj variables in the problem.

x(nnObj) contains the nonlinear objective variables x. The array x must not be altered.

status is used as in funcon.

cu(lencu), iu(leniu), ru(lenru) are the same as in funcon.

On exit:

mode may be set as in funcon to indicate that you are unable to evaluate f0 at x.

If you wish to terminate the solution of the current problem, set mode ≤ −2.

fObj must contain the computed value of f0(x) (except perhaps if mode = 1).

gObj(nnObj) must contain the known components of the gradient vector g(x), i.e., gObj(j)
contains the partial derivative ∂f0/∂xj (except perhaps if mode = 0).

3.8. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3),
any constant elements may be assigned to JCon one time only at the start of the optimization.
An element of JCon that is not subsequently assigned in funcon will retain its initial value
throughout. Constant elements may be loaded into JCon either before the call to dnOpt

or during the the first call to funcon (signalled by the value status = 1). The ability to
preload constants is useful when many Jacobian elements are identically zero, in which case
JCon may be initialized to zero and nonzero elements may be reset by funcon.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
JCon(i, j) is set to a constant value, it need not be reset in subsequent calls to funcon, but
the value JCon(i, j)*x(j) must nonetheless be added to fCon(i).

It must be emphasized that, if Derivative level < 2, unassigned elements of JCon

are not treated as constant; they are estimated by finite differences, at non-trivial expense.
indextfuncon!assigning constant constraint derivatives indexttDerivative level

24 DNOPT User’s Guide

3.9. Example

Here we give the subroutines funobj and funcon for the example of Section 3.2, repeated
here for convenience with generic variables xj :

minimize (x1 + x2 + x3)2 + 3x3 + 5x4

subject to x21 + x22 + x3 = 2
x42 + x4 = 4

2x1 + 4x2 ≥ 0

and x3 ≥ 0, x4 ≥ 0. This problem has 4 variables, 3 nonlinear objective variables, 2
nonlinear Jacobian variables, 2 nonlinear constraints, 1 linear constraint, and two bounded
variables. The objective has some linear terms that we include as an extra “free row” (with
infinite bounds). The calling program must assign the following values:

n = 4 mLCon = 2 mNCon = 2 nnObj = 3 nnJac = 2 iObjA = 2

Subroutine funobj works with the nonlinear objective variables (x1, x2, x3). As x3 occurs
only linearly in the constraints, we have placed it after the Jacobian variables (x1, x2).

For interest, we test mode to economize on gradient evaluations (even though they are
cheap here). Note that Nonderivative linesearch would have to be specified, otherwise
all entries would have mode = 2.

subroutine funobj

& (mode, nnObj, x, fObj, gObj, Status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& mode, nnObj, Status, lencu, leniu, lenru, iu(leniu)

double precision

& fObj, x(nnObj), gObj(nnObj), ru(lenru)

character*8

& cu(lencu)

! ==

! Simple toy Problem.

! ==

double precision

& sum

* --

sum = x(1) + x(2) + x(3)

if (mode .eq. 0 .or. mode .eq. 2) then

fObj = sum*sum

end if

if (mode .eq. 1 .or. mode .eq. 2) then

sum = 2.0d+0*sum

gObj(1) = sum

gObj(2) = sum

gObj(3) = sum

end if

end ! subroutine funobj

Subroutine funcon involves only (x1, x2). As funcon is called before funobj, we test status
for the first and last entries.

4. The dnOptH interface 25

subroutine funcon

& (mode, mNCon, nnJac, x, fCon, JCon, ldJ, status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& ldJ, mode, mNCon, nnJac, status, lencu, leniu, lenru,

& iu(leniu)

double precision

& x(nnJac), fCon(mNCon), JCon(ldJ,*), ru(lenru)

character*8

& cu(lencu)

! ==

! Simple toy Problem.

! ==

integer Out

parameter (Out = 6)

! --

! Print something on the first and last entry.

if (status .eq. 1) then ! First

if (Out .gt. 0) write(Out, ’(/a)’) ’ Starting dntoy’

else if (status .ge. 2) then ! Last

if (Out .gt. 0) write(Out, ’(/a)’) ’ Finishing dntoy’

return

end if

if (mode .eq. 0 .or. mode .eq. 2) then

fCon(1) = x(1)**2 + x(2)**2

fCon(2) = x(2)**4

end if

if (mode .ge. 1) then

! ---

! Nonlinear elements for row 1

! ---

JCon(1,1) = 2.0d+0*x(1)

JCon(1,2) = 2.0d+0*x(2)

! ---

! Nonlinear elements for row 2

! ---

JCon(2,2) = 4.0d+0*x(2)**3

end if

end ! subroutine funcon

4. The dnOptH interface

dnOptH implements a second-derivative SQP method. The optimization problem is assumed
to be in the form (NP) (p. 4) with the data ordered so that nonlinear constraints and
variables come first.

A typical invocation of dnOptH is

call dnBEGIN(iPrint, iSumm, ...)

26 DNOPT User’s Guide

call dnSpec (iSpecs, ...)

call dnOptH (start, n, mLCon, ...)

call dnEND (iPrint, iSumm, ...)

where dnSpec reads a set of optional parameter definitions from the file with unit number
iSpecs.

4.1. Subroutines used by dnOptH

dnOptH is accessed via the following routines:

dnBEGIN (Section 1.5) must be called before any other dnOpt routines.

dnSpec (Section 6.4) may be called to input a Specs file (a list of run-time options).

dnSet, dnSetInt, dnSetReal (Section 6.5) may be called to specify a single option.

dnGet, dnGetChar, dnGetInt, dnGetReal (Section 6.6) may be called to obtain an op-
tion’s current value.

dnOptH (Section 4.2) is the main solver.

funcon, funobj, funhes are supplied by the user and called by dnOptH. Subroutines
funcon and funobj are identical to the routines called by dnOpt (Section 3.5).
funcon and funobj define the constraint functions f(x) and objective function f0(x)
and ideally their gradients. funhes computes the Hessian of the Lagrangian function
with respect to x. The routines funcon, funobj and funhes are passed to dnOptH

as parameters. They have a fixed parameter list but may have any convenient name.

dnMem computes the size of the workspace arrays iw and rw required for given problem
dimensions. Intended for Fortran 90 drivers that reallocate workspace if necessary.

4. The dnOptH interface 27

4.2. Subroutine dnOptH

The specification of dnOptH is identical to that of dnOpt with the exception of one external
parameter funhes.

subroutine dnOptH

& (start, n, mLCon, mNCon, nnJac, nnObj,

& problemName, Names, nNames, iObjA, objAdd,

& funcon, funobj, funhes,

& state, A, ldA, bl, bu,

& fObj, gObj, fCon, JCon, ldJ, H, ldH,

& objNP, nInf, sInf, x, y,

& INFO, mincw, miniw, minrw,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw)

external

& funcon, funobj, funhes

integer

& iObjA, INFO, ldA, ldJ, ldH, lencw, leniw, lenrw, lencu,

& leniu, lenru, n, mLCon, mNCon, nnJac, nnObj, nNames, nInf,

& mincw, miniw, minrw, start, state(n+mNCon+mLCon), iu(leniu),

& iw(leniw)

double precision

& objAdd, objNP, fObj, sInf, A(ldA,*), bl(n+mNCon+mLCon),

& bu(n+mNCon+mLCon), gObj(n), fCon(ldJ), JCon(ldJ,*), H(ldH,*),

& x(n+mNCon+mLCon), y(n+mNCon+mLCon), ru(lenru), rw(lenrw)

character

& problemName*8, Names(nNames)*8, cu(lencu)*8, cw(lencw)*8

On entry:

Start is an integer that specifies how a starting point is to be obtained.

Start = 0 (Cold start) requests that a the crash procedure be used to define an
initial working set.

Start = 1 (Warm start) means that state defines a valid starting point (perhaps
from an earlier call, though not necessarily).

Start = 2 (Hot start) means that state defines a valid starting point and the
argument H(ldH,*) defines a positive-definite approximate Hessian of
the Lagrangian.

n is n, the number of variables in the problem (n > 0).

mLCon is the number of general linear constraints (mLCon ≥ 0).

mNCon is the number of nonlinear constraints (mNCon ≥ 0).

ldA is the row dimension of the array A (ldA ≥ 1, ldA ≥ mLCon).

ldJ is the row dimension of the array JCon (ldJ ≥ 1, ldJ ≥ mNCon).

ldH is the row dimension of the array H (ldH ≥ n).

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n+m and all names must be provided.

28 DNOPT User’s Guide

mNCon is m1, the number of nonlinear constraints. (mNCon ≥ 0)

nnObj is n′1, the number of nonlinear objective variables. (nnObj ≥ 0)

nnJac is n′′1 , the number of nonlinear Jacobian variables. If mNCon = 0, then nnJac = 0.
If mNCon > 0, then nnJac > 0.

iObjA says which row of A is a free row containing a linear objective vector c. If there is
no such row, iObjA = 0.

ObjAdd is a constant that will be added to the objective for printing purposes. Typically
ObjAdd = 0.0d+0.

ProblemName is an 8-character name for the problem. ProblemName is used in the printed
solution. A blank name may be used.

Names(nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, Names is not used. The printed solution will use generic names for the
columns and row. If nName = n+m, Names(j) should contain the 8-character name
of the jth variable (j = 1 :n+m). If j = n+ i, the jth variable is the ith row.

A is an array of dimension (ldA,k) for some k ≥ n. It contains the matrix AL for
the linear constraints. If mLCon = 0, A is not referenced. (In that case, A may be
dimensioned (ldA,1) with ldA = 1, or it could be any convenient array.)

bl(nb), bu(nb) contain the lower and upper bounds for r(x) in problem (NP).

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where
infBnd is the Infinite Bound size (default value 1020).
To specify an equality constraint (say rj(x) = β), set bl(j) = bu(j) = β, where
|β| < infBnd.

For the data to be meaningful, it is required that bl(j) ≤ bu(j) for all j.

funcon is the name of a subroutine that calculates the vector of nonlinear constraint func-
tions f(x) and (optionally) its Jacobian for a specified vector x (the first nnJac

elements of x(*)). funcon must be declared external in the routine that calls
dnOptH. For a detailed description of funcon, see Section 3.6.

funobj is the name of a subroutine that calculates the objective function f0(x) and (op-
tionally) its gradient for a specified vector x (the first nnObj elements of x(*)).
funobj must be declared external in the routine that calls dnOptH. For a detailed
description of funobj, see Section 3.7.

funhes is the name of a subroutine that calculates the Hessian matrix of the function
f0(x) − yTf(x) for a given vector y. funhes must be declared external in the
routine that calls dnOptH. For a detailed description of funhes, see Section 4.4.

state(nb) is an integer array that need not be initialized if dnOptH is called with start = 0
(a cold start) or the Cold start option (the default).

For start = 1 (a warm start) every element of state must be set. If dnOptH has
just been called on a problem with the same dimensions, state already contains
valid values. Otherwise, state(j) should indicate whether either of the constraints
rj(x) ≥ lj or rj(x) ≤ uj is expected to be active at a solution of (NP).

The ordering of state is the same as for bl, bu and r(x), i.e., the first n components
of state refer to the upper and lower bounds on the variables, the next mNCon refer
to the bounds on f(x) and the last mLCon refer to the bounds on ALx. Possible
values for state(j) follow.

4. The dnOptH interface 29

0 Neither rj(x) ≥ lj nor rj(x) ≤ uj is expected to be active.

1 rj(x) ≥ lj is expected to be active.

2 rj(x) ≤ uj is expected to be active.

3 This may be used if lj = uj . Normally an equality constraint rj(x) = lj = uj
is active at a solution.

The values 1, 2 or 3 all have the same effect when bl(j) = bu(j). If necessary,
dnOptH will override the user’s specification of state, so that a poor choice will not
cause the algorithm to fail.

JCon(ldJ,*) is an array of dimension (ldJ,k) for some k ≥ n. If mNCon = 0, JCon is not
referenced. (In that case, JCon may be dimensioned (ldJ,1) with ldJ = 1.)

In general, JCon need not be initialized before the call to dnOptH. However, if
Derivative level = 3, any constant elements of JCon may be initialized. Such
elements need not be reassigned on subsequent calls to funcon (see Section 3.8).

H(ldH,*) is an array of dimension (ldH,k) for some k ≥ n. H need not be initialized if
dnOptH is called with a Cold Start (the default) or a Warm Start, and will be taken
as the identity. For a hot start, H provides the initial approximation of the Hessian
of the Lagrangian, i.e., H(i, j) ≈ ∂2L(x, y)/∂xi∂xj , where L(x, y) = f0(x)− yTf(x)
and y is an estimate of the optimal Lagrange multipliers. The matrix H must be
positive-definite.

x(nb) usually contains a set of initial values for x.

1. For Cold starts (Start = 0), the first n elements of state and x must be
defined.

If there is no wish to provide special information, you may set state(j) = 0,
x(j) = 0.0 for all j = 1 :n. All variables will be eligible for the initial working
set.

Less trivially, to say that the optimal value of variable j will probably be equal
to one of its bounds, set state(j) = 1 and x(j) = bl(j) or state(j) = 2 and
x(j) = bu(j) as appropriate.

A CRASH procedure is used to select a working set.

2. For Warm or Hot starts (Start = 1, 2), all of state(1 : nb) must be 0, 1 or 2
and x(1 : n) must have values (perhaps from some previous call).

y(nb) is an array that need not be initialized if dnOptH is called with a Cold start (the
default).

Otherwise, the ordering of y is the same as for bl, bu and state. For a Warm

start, the components of y corresponding to nonlinear constraints must contain a
multiplier estimate. The sign of each multiplier should match state as follows. If
the ith nonlinear constraint is defined as “inactive” via the initial value state(j) =
0, j = n + i, then y(j) should be zero. If the nonlinear constraint rj(x) ≥ lj is
active (state(j) = 1), y(j) should be non-negative, and if rj(x) ≤ uj is active
(state(j) = 2), y(j) should be non-positive.

If necessary, dnOptH will change y to match these rules.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routines
funcon and funobj (which have the same parameters). They are not touched by
dnOptH.

30 DNOPT User’s Guide

If the function routines don’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Conversely,
you should use the latter arrays if funcon and funobj need to access dnOptH’s
workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for dnOptH. Their lengths lencw, leniw, lenrw must all be at least 500.

In general, lencw = 500 is appropriate. Appropriate values of leniw and lenrw

may be obtained from a preliminary run with lencw = leniw = lenrw = 500. See
mincw, miniw, minrw below (on exit).

On exit:

INFO reports the result of the call to dnOptH. Here is a summary of possible values.
Further details are in Section 7.4.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
5 elastic objective minimized
6 elastic infeasibilities minimized

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equality constraints
13 nonlinear infeasibilities minimized
14 linear infeasibilities minimized
15 infeasible linear constraints in QP subproblem
16 infeasible nonelastic constraints

The problem appears to be unbounded
21 unbounded objective at a feasible point
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 ill-conditioned working set
43 cannot satisfy the working-set constraints
44 Reduced gradient too large

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives
53 the QP Hessian is indefinite
57 irregular or badly scaled problem functions

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

4. The dnOptH interface 31

User requested termination
71 terminated during function evaluation
72 terminated during constraint evaluation
73 terminated during objective evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument

iter is the number of major iterations performed.

state describes the status of the constraints l ≤ r(x) ≤ u in problem (NP). For the jth
lower or upper bound, j = 1 to nb, the possible values of state(j) are as follows,
where δ is the specified Feasibility tolerance:

−2 (Region 1) The lower bound is violated by more than δ.
−1 (Region 5) The upper bound is violated by more than δ.

0 (Region 3) Both bounds are satisfied by more than δ.
1 (Region 2) The lower bound is active (to within δ).
2 (Region 4) The upper bound is active (to within δ).
3 (Region 2 = Region 4) The bounds are equal and the

equality constraint is satisfied (to within δ).

These values of state are labeled in the printed solution as follows:

Region 1 2 3 4 5 2 ≡ 4

state(j) −2 1 0 2 −1 3
Printed solution -- LL FR UL ++ EQ

fCon is an array of dimension at least mNCon. If mNCon = 0, fCon is not accessed, and
may then be declared to be of dimension (1), or the actual parameter may be any
convenient array. If mNCon > 0, fCon contains the values of the nonlinear constraint
functions fi(x), i = 1: mNCon, at the final iterate.

JCon contains the Jacobian matrix of the nonlinear constraints at the final iterate, i.e.,
JCon(i, j) contains the partial derivative of the ith constraint function with respect
to the jth variable, i = 1: mNCon, j = 1: n. (See the discussion of JCon under
funcon in Section 3.6.)

y contains the QP multipliers from the last QP subproblem. y(j) should be non-
negative if state(j) = 1 and non-positive if state(j) = 2.

fObj is the value of the objective f0(x) at the final iterate.

gObj(n) contains the objective gradient (or its finite-difference approximation) at the final
iterate.

H(ldH,*) contains an estimate of H, the Hessian of the Lagrangian at x.

x contains the final estimate of the solution.

32 DNOPT User’s Guide

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside
their bounds by more than the Minor feasibility tolerance before the solution
is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of
the linear constraints subject to the upper and lower bounds being satisfied. In this
case nInf gives the number of components of ALx lying outside their bounds. The
nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of f(x) lying outside their bounds
by more than the Minor feasibility tolerance. Again this is before the solution
is unscaled.

Obj is the final value of the nonlinear part of the objective function. If nInf = 0, Obj is
the nonlinear objective, if any. If nInf > 0 but the linear constraints are feasible,
then Obj is the nonlinear objective. If nInf > 0 and the linear constraints are
infeasible, Obj is zero.

Note that Obj does not include contributions from the constant term ObjAdd or the
objective row, if there is one. The final value of the objective being optimized is
ObjAdd + x(n+iObj) + Obj, where iObj is the index of the objective row in A.

mincw, miniw, minrw say how much character, integer, and real storage is needed to solve
the problem. If Print level > 0, these values are printed. If dnOptH terminates
because of insufficient storage (INFO = 82, 83 or 84), mincw, miniw and minrw give
the required values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. dnOptH may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. dnOptH
may be called again with leniw = miniw and lenrw = minrw.

4.3. User-supplied subroutines for dnOptH

The user must provide subroutines to define the nonlinear parts of the objective function
and nonlinear constraints. They are passed to dnOptH as external parameters funobj and
funcon. (A dummy subroutine must be provided if the objective or constraints are purely
linear.)

Be careful when coding the call to dnOptH: the parameters are ordered alphabetically as
funcon, funobj. The first call to each function routine is also in that order.

In general, these subroutines should return all function and gradient values on every
entry except perhaps the last. This provides maximum reliability and corresponds to the
default setting, Derivative level = 3.

In practice it is often convenient not to code gradients. dnOptH is able to estimate
gradients by finite differences, by making a call to funcon or funobj for each variable xj
whose partial derivatives need to be estimated. However, this reduces the reliability of the
optimization algorithms, and it can be very expensive if there are many such variables xj .

As a compromise, dnOptH allows you to code as many gradients as you like. This option
is implemented as follows. Just before a function routine is called, each element of the
gradient array is initialized to a specific value. On exit, any element retaining that value
must be estimated by finite differences.

Some rules of thumb follow.

4. The dnOptH interface 33

1. For maximum reliability, compute all function and gradient values.

2. If the gradients are expensive to compute, specify Nonderivative linesearch and
use the input parameter mode to avoid computing them on certain entries. (Don’t
compute gradients if mode = 0.)

3. If not all gradients are known, you must specify Derivative level ≤ 2. You should
still compute as many gradients as you can. (It often happens that some of them are
constant or even zero.)

4. Again, if the known gradients are expensive, don’t compute them if mode = 0.

5. Use the input parameter status to test for special actions on the first or last entries.

6. While the function routines are being developed, use the Verify option to check the
computation of gradient elements that are supposedly known. The Start and Stop

options may also be helpful.

7. The function routines are not called until the linear constraints and bounds on x are
satisfied. This helps confine x to regions where the nonlinear functions are likely to
be defined. However, be aware of the Minor feasibility tolerance if the functions
have singularities near bounds.

8. Set mode = −1 if some of the functions are undefined. The linesearch will shorten the
step and try again.

9. Set mode ≤ −2 if you want dnOptH to stop.

4.4. Subroutine funhes

This subroutine must calculate the Hessian with respect to x of the function f0(x)−yTf(x).

subroutine funhes

& (mode, nnH, mNCon, x, y, H, ldH, status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& mode, nnH, mNCon, status, lencu, leniu, lenru, iu(leniu)

double precision

& y(mNCon), H(ldH,*), x(nnH), ru(lenru)

character*8

& cu(lencu)

On entry:

mode will call funhes with mode = 0. You may test mode to decide what to do:

• If mode = 0, H should be assigned the Hessian of the Lagrangian function
f0(x)− yTf(x).

nnH is the number of variables involved in the Lagrangian function (nnH = max(nnObj, nnJac)).

mNCon is mN , the number of nonlinear constraints (mNCon > 0).

x(nnH) contains the nonlinear variables x. The array x must not be altered.

y(mNCon) contains the multipliers for the nonlinear constraints.

34 DNOPT User’s Guide

ldH is the row dimension of the array H (ldH ≥ n).

status is used as in funcon.

cu(lencu), iu(leniu), ru(lenru) are the same as in funcon.

On exit:

mode may be set as in funhes to indicate that you are unable to evaluate H at x.

If you wish to terminate the solution of the current problem, set mode ≤ −2.

H(ldH,*) must contain the requested Hessian matrix.

4.5. Example

Here we give the subroutines funobj and funcon for the example of Section 3.2, repeated
here for convenience with generic variables xj :

minimize (x1 + x2 + x3)2 + 3x3 + 5x4

subject to x21 + x22 + x3 = 2
x42 + x4 = 4

2x1 + 4x2 ≥ 0

and x3 ≥ 0, x4 ≥ 0. This problem has 4 variables, 3 nonlinear objective variables, 2
nonlinear Jacobian variables, 2 nonlinear constraints, 1 linear constraint, and two bounded
variables. The objective has some linear terms that we include as an extra “free row” (with
infinite bounds). The calling program must assign the following values:

n = 4 mLCon = 2 mNCon = 2 nnObj = 3 nnJac = 2 iObjA = 2

Subroutine funobj works with the nonlinear objective variables (x1, x2, x3). As x3 occurs
only linearly in the constraints, we have placed it after the Jacobian variables (x1, x2).

For interest, we test mode to economize on gradient evaluations (even though they are
cheap here). Note that Nonderivative linesearch would have to be specified, otherwise
all entries would have mode = 2.

subroutine funobj

& (mode, nnObj, x, fObj, gObj, Status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& mode, nnObj, Status, lencu, leniu, lenru, iu(leniu)

double precision

& fObj, x(nnObj), gObj(nnObj), ru(lenru)

character*8

& cu(lencu)

! ==

! Simple toy Problem.

! ==

double precision

& sum

* --

sum = x(1) + x(2) + x(3)

if (mode .eq. 0 .or. mode .eq. 2) then

4. The dnOptH interface 35

fObj = sum*sum

end if

if (mode .eq. 1 .or. mode .eq. 2) then

sum = 2.0d+0*sum

gObj(1) = sum

gObj(2) = sum

gObj(3) = sum

end if

end ! subroutine funobj

Subroutine funcon involves only (x1, x2). As funcon is called before funobj, we test status
for the first and last entries.

subroutine funcon

& (mode, mNCon, nnJac, x, fCon, JCon, ldJ, status,

& cu, lencu, iu, leniu, ru, lenru)

integer

& ldJ, mode, mNCon, nnJac, status, lencu, leniu, lenru,

& iu(leniu)

double precision

& x(nnJac), fCon(mNCon), JCon(ldJ,*), ru(lenru)

character*8

& cu(lencu)

! ==

! Simple toy Problem.

! ==

integer Out

parameter (Out = 6)

! --

! Print something on the first and last entry.

if (status .eq. 1) then ! First

if (Out .gt. 0) write(Out, ’(/a)’) ’ Starting dntoy’

else if (status .ge. 2) then ! Last

if (Out .gt. 0) write(Out, ’(/a)’) ’ Finishing dntoy’

return

end if

if (mode .eq. 0 .or. mode .eq. 2) then

fCon(1) = x(1)**2 + x(2)**2

fCon(2) = x(2)**4

end if

if (mode .ge. 1) then

! ---

! Nonlinear elements for row 1

! ---

JCon(1,1) = 2.0d+0*x(1)

JCon(1,2) = 2.0d+0*x(2)

! ---

! Nonlinear elements for row 2

! ---

36 DNOPT User’s Guide

JCon(2,2) = 4.0d+0*x(2)**3

end if

end ! subroutine funcon

5. The dnNPSOL interface

The dnNPSOL interface is designed for the solution of small dense problems. The calling
sequences of dnNPSOL and its associated user-defined functions are designed to be similar
to those of the dense SQP code NPSOL (Gill et al. [10]). For the case of dnNPSOL it is
convenient to restate problem NP with the constraints reordered as follows:

NP’ minimize
x

f0(x)

subject to l ≤

 x
ALx
f(x)

 ≤ u,
where l and u are constant lower and upper bounds, f0 is a smooth scalar objective function,
AL is a matrix, and f(x) is a vector of smooth nonlinear constraint functions {fi(x)}. The
interface dnNPSOL is designed to handle problems for which the objective and constraint gra-
dients are dense, i.e., they do not have a significant number of elements that are identically
zero.

A typical invocation of dnNPSOL is

call dnBEGIN(iPrint, iSumm, ...)

call dnSpec (iSpecs, ...)

call dnNPSOL(n, nclin, ncnln, ...)

call dnEND (iPrint, iSumm, ...)

where dnSpec reads a set of optional parameter definitions from the file with unit number
iSpecs.

5.1. Subroutines used by dnNPSOL

dnNPSOL is accessed via the following routines:

dnBEGIN (Section 1.5) must be called before any other dnNPSOL routines.

dnSpec (Section 6.4) may be called to input a Specs file (a list of run-time options).

dnSet, dnSetInt, dnSetReal (Section 6.5) may be called to specify a single option.

dnGet, dnGetChar, dnGetInt, dnGetReal (Section 6.6) may be called to obtain an op-
tion’s current value.

dnNPSOL (Section 3) is the main solver.

funcon, funobj (Section 5.3) are supplied by the user and called by dnNPSOL. They define
the constraint functions f(x) and objective function f0(x) and ideally their gradients.
(They have a fixed parameter list but may have any convenient name. They are
passed to dnNPSOL as parameters.)

dnnpsolmem computes the size of the workspace arrays iw and rw required for given prob-
lem dimensions. Intended for Fortran 90 drivers that reallocate workspace if neces-
sary.

5. The dnNPSOL interface 37

5.2. Subroutine dnNPSOL

In the following specification of dnNPSOL, we define r(x) as the vector of combined constraint
functions r(x) =

(
x ALx f(x)

)
, and use nctotl to denote a variable that holds its

dimension: nctotl = n+ nclin+ ncnln. Note that most machines use double precision

declarations as shown, but some machines use real. The same applies to the user routines
funcon and funobj.

subroutine dnNPSOL

& (n, nclin, ncnln, ldA, ldJ, ldH,

& A, bl, bu, funcon, funobj,

& INFO, majIts, iState,

& fCon, JCon, cMul, fObj, gObj, Hess, x,

& iw, leniw, rw, lenrw)

external

& funcon, funobj

integer

& INFO, ldA, ldJ, ldH, leniw, lenrw, majIts, n, nclin,

& ncnln, iState(n+nclin+ncnln), iw(leniw)

double precision

& fObj, A(ldA,*), bl(n+nclin+ncnln), bu(n+nclin+ncnln),

& cMul(n+nclin+ncnln), fCon(*), JCon(ldJ,*), gObj(n),

& Hess(ldH,*), rw(lenrw), x(n)

On entry:

n is n, the number of variables in the problem (n > 0).

nclin is mL, the number of general linear constraints (nclin > 0).

ncnln is mN , the number of nonlinear constraints (ncnln > 0).

ldA is the row dimension of the array A (ldA ≥ 1, ldA ≥ nclin).

ldJ is the row dimension of the array JCon (ldJ ≥ 1, ldJ ≥ ncnln).

ldH is the row dimension of the array Hess (ldH ≥ n).

A is an array of dimension (ldA,k) for some k ≥ n. It contains the matrix AL for
the linear constraints. If nclin = 0, A is not referenced. (In that case, A may be
dimensioned (ldA,1) with ldA = 1, or it could be any convenient array.)

bl(nctotl), bu(nctotl) contain the lower and upper bounds for r(x) in problem DenseNP.

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where
infBnd is the Infinite Bound size (default value 1020).
To specify an equality constraint (say rj(x) = β), set bl(j) = bu(j) = β, where
|β| < infBnd.

For the data to be meaningful, it is required that bl(j) ≤ bu(j) for all j.

funcon, funobj are the names of subroutines that calculate the nonlinear constraint func-
tions f(x), the objective function f0(x) and (optionally) their gradients for a speci-
fied n-vector x. The arguments funcon and funobj must be declared as external
in the routine that calls dnNPSOL. See Sections 5.3–5.5.

38 DNOPT User’s Guide

istate(nctotl) is an integer array that need not be initialized if dnNPSOL is called with
the Cold Start option (the default).

For a Warm start, every element of istate must be set. If dnNPSOL has just been
called on a problem with the same dimensions, istate already contains valid values.
Otherwise, istate(j) should indicate whether either of the constraints rj(x) ≥ `j
or rj(x) ≤ uj is expected to be active at a solution of (DenseNP).

The ordering of istate is the same as for bl, bu and r(x), i.e., the first n components
of istate refer to the upper and lower bounds on the variables, the next nclin refer
to the bounds on ALx, and the last ncnln refer to the bounds on f(x). Possible
values for istate(j) follow.

0 Neither rj(x) ≥ `j nor rj(x) ≤ uj is expected to be active.

1 rj(x) ≥ `j is expected to be active.

2 rj(x) ≤ uj is expected to be active.

3 This may be used if `j = uj . Normally an equality constraint rj(x) = `j = uj
is active at a solution.

The values 1, 2 or 3 all have the same effect when bl(j) = bu(j). If necessary,
dnNPSOL will override the user’s specification of istate, so that a poor choice will
not cause the algorithm to fail.

JCon(ldJ,*) is an array of dimension (ldJ,k) for some k ≥ n. If ncnln = 0, JCon is not
referenced. (In that case, JCon may be dimensioned (ldJ,1) with ldJ = 1.)

In general, JCon need not be initialized before the call to dnNPSOL. However, if
Derivative level = 3, any constant elements of JCon may be initialized. Such
elements need not be reassigned on subsequent calls to funcon (see Section 5.6).

cMul(nctotl) is an array that need not be initialized if dnNPSOL is called with a Cold

start (the default).

Otherwise, the ordering of cMul is the same as for bl, bu and istate. For a
Warm start, the components of cMul corresponding to nonlinear constraints must
contain a multiplier estimate. The sign of each multiplier should match istate

as follows. If the ith nonlinear constraint is defined as “inactive” via the initial
value istate(j) = 0, j = n + nclin + i, then cMul(j) should be zero. If the
constraint rj(x) ≥ `j is active (istate(j) = 1), cMul(j) should be non-negative,
and if rj(x) ≤ uj is active (istate(j) = 2), cMul(j) should be non-positive.

If necessary, dnNPSOL will change cMul to match these rules.

Hess(ldH,*) is an array of dimension (ldH,k) for some k ≥ n. Hess need not be initialized
if dnNPSOL is called with a Cold Start (the default), and will be taken as the
identity. For a Warm Start, Hess provides the initial approximation of the Hessian
of the Lagrangian, i.e., H(i, j) ≈ ∂2L(x, λ)/∂xi∂xj , where L(x, λ) = f0(x)− f(x)Tλ
and λ is an estimate of the optimal Lagrange multipliers. Hess must be a positive-
definite matrix.

x(n) is an initial estimate of the solution.

iw(leniw), rw(lenrw) are integer and real arrays of workspace for dnNPSOL.

Both leniw and lenrw must be at least 500. In general, leniw and lenrw should
be as large as possible because it is uncertain how much storage will be needed for
the basis factors. As an estimate, leniw should be about 100(m+n) or larger, and
lenrw should be about 200(m+ n) or larger.

5. The dnNPSOL interface 39

Appropriate values may be obtained from a preliminary run with leniw = lenrw =
500. If Print level is positive, the required amounts of workspace are printed
before dnNPSOL terminates with INFO = 43 or 44.

40 DNOPT User’s Guide

On exit:

INFO reports the result of the call to dnNPSOL. Here is a summary of possible values.
Further details are in Section 7.4.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equalities
13 nonlinear infeasibilities minimized
14 infeasibilities minimized

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
71 terminated during function evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem

System error
141 wrong number of basic variables
142 error in basis package

iter is the number of major iterations performed.

5. The dnNPSOL interface 41

istate describes the status of the constraints ` ≤ r(x) ≤ u in problem DenseNP. For the
jth lower or upper bound, j = 1 to nctotl, the possible values of istate(j) are as
follows, where δ is the specified Feasibility tolerance:

−2 (Region 1) The lower bound is violated by more than δ.
−1 (Region 5) The upper bound is violated by more than δ.

0 (Region 3) Both bounds are satisfied by more than δ.
1 (Region 2) The lower bound is active (to within δ).
2 (Region 4) The upper bound is active (to within δ).
3 (Region 2 = Region 4) The bounds are equal and the

equality constraint is satisfied (to within δ).

These values of istate are labeled in the printed solution as follows:

Region 1 2 3 4 5 2 ≡ 4

istate(j) −2 1 0 2 −1 3
Printed solution -- LL FR UL ++ EQ

fCon is an array of dimension at least ncnln. If ncnln = 0, fCon is not accessed, and
may then be declared to be of dimension (1), or the actual parameter may be any
convenient array. If ncnln > 0, fCon contains the values of the nonlinear constraint
functions fi(x), i = 1: ncnln, at the final iterate.

JCon contains the Jacobian matrix of the nonlinear constraints at the final iterate, i.e.,
JCon(i, j) contains the partial derivative of the ith constraint function with respect
to the jth variable, i = 1: ncnln, j = 1: n. (See the discussion of JCon under
funcon in Section 5.5.)

cMul contains the QP multipliers from the last QP subproblem. cMul(j) should be non-
negative if istate(j) = 1 and non-positive if istate(j) = 2.

fObj is the value of the objective f0(x) at the final iterate.

gObj(n) contains the objective gradient (or its finite-difference approximation) at the final
iterate.

Hess(ldH,*) contains an estimate of H, the Hessian of the Lagrangian at x.

x contains the final estimate of the solution.

5.3. User-supplied subroutines for dnNPSOL

The user must provide subroutines that define the objective function and nonlinear con-
straints. The objective function is defined by subroutine funobj, and the nonlinear con-
straints are defined by subroutine funcon. On every call, these subroutines must return
appropriate values of the objective and nonlinear constraints in fObj and fCon. The user
should also provide the available partial derivatives. Any unspecified derivatives are ap-
proximated by finite differences; see Section 6 for a discussion of the optional parameter
Derivative level. Just before either funobj or funcon is called, each element of the cur-
rent gradient array g or JCon is initialized to a special value. On exit, any element that
retains the given value is estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives
(see Chapter 8 of Gill, Murray and Wright [13] for a detailed discussion). If all gradients
cannot be provided, it is similarly advisable to provide as many as possible. During the
development of subroutines funobj and funcon, the Verify parameter (p. 60) should be
used to check the calculation of any known gradients.

42 DNOPT User’s Guide

5.4. Subroutine funobj

This subroutine must calculate the objective function f0(x) and (optionally) the gradient
g(x).

subroutine funobj

& (mode, n, x, fObj, gObj, nState)

integer

& mode, n, nState

double precision

& fObj, x(n), gObj(n)

On entry:

mode is set by dnNPSOL to indicate which values are to be assigned during the call of
funobj. If Derivative level = 1 or Derivative level = 3, then all components
of the objective gradient are defined by the user and mode will always have the
value 2. If some gradient elements are unspecified, dnNPSOL will call funobj with
mode = 0, 1 or 2.

• If mode = 2, assign fObj and the known components of gObj.

• If mode = 1, assign all available components of gObj; fObj is not required.

• If mode = 0, only fObj needs to be assigned; gObj is ignored.

n is the number of variables, i.e., the dimension of x. The actual parameter n will
always be the same Fortran variable as that input to dnNPSOL, and must not be
altered by funobj.

x(n) is an array containing the values of the variables x for which f0 must be evaluated.
The array x must not be altered by funobj.

nState allows the user to save computation time if certain data must be read or calculated
only once. If nState = 1, dnNPSOL is calling funobj for the first time. If there
are nonlinear constraints, the first call to funcon will occur before the first call to
funobj.

On exit:

mode may be used to indicate that you are unable or unwilling to evaluate the objective
function at the current x. (Similarly for the constraint functions.)

During the linesearch, the functions are evaluated at points of the form x = xk +αpk
after they have already been evaluated satisfactorily at xk. For any such x, if you
set mode to −1, dnNPSOL will reduce α and evaluate the functions again (closer to xk,
where they are more likely to be defined).

If for some reason you wish to terminate the current problem, set mode ≤ −2.

fObj must contain the computed value of f0(x) (except perhaps if mode = 1).

gObj must contain the assigned components of the gradient vector g(x), i.e., gObj(j) con-
tains the partial derivative ∂f0(x)/∂xj (except perhaps if mode = 0).

5. The dnNPSOL interface 43

5.5. Subroutine funcon

This subroutine must compute the nonlinear constraint functions {fi(x)} and (optionally)
their derivatives. (A dummy subroutine funcon must be provided if there are no nonlin-
ear constraints.) The ith row of the Jacobian JCon is the vector (∂fi/∂x1, ∂fi/∂x2, . . . ,
∂fi/∂xn).

subroutine funcon

& (mode, ncnln, n, ldJ,

& needc, x, fCon, JCon, nState)

integer

& mode, ncnln, n, ldJ, nState, needc(*)

double precision

& x(n), fCon(*), JCon(ldJ,*)

On entry:

mode is set by dnNPSOL to request values that must be assigned during each call of funcon.
mode will always have the value 2 if all elements of the Jacobian are available, i.e.,
if Derivative level is either 2 or 3 (see Section 6). If some elements of JCon are
unspecified, dnNPSOL will call funcon with mode = 0, 1, or 2:

• If mode = 2, only the elements of fCon corresponding to positive values of
needc need to be set (and similarly for the known components of JCon).

• If mode = 1, the knowm components of the rows of JCon corresponding to
positive values in needc must be set. Other rows of JCon and the array fCon

will be ignored.

• If mode = 0, the components of fCon corresponding to positive values in needc

must be set. Other components and the array JCon are ignored.

ncnln is the number of nonlinear constraints, i.e., the dimension of fCon. The actual
parameter ncnln is the same Fortran variable as that input to dnNPSOL, and must
not be altered by funcon.

n is the number of variables, i.e., the dimension of x. The actual parameter n is the
same Fortran variable as that input to dnNPSOL, and must not be altered by funcon.

ldJ is the leading dimension of the array JCon (ldJ ≥ 1 and ldJ ≥ ncnln).

needc is an array of dimension at least ncnln containing the indices of the elements of
fCon or JCon that must be evaluated by funcon. needc can be ignored if every
constraint is provided.

x is an array of dimension at least n containing the values of the variables x for which
the constraints must be evaluated. x must not be altered by funcon.

nState has the same meaning as for funobj.

On exit:

mode may be set as in funobj.

44 DNOPT User’s Guide

fCon is an array of dimension at least ncnln that contains the appropriate values of the
nonlinear constraint functions. If needc(i) is nonzero and mode = 0 or 2, the value
of the ith constraint at x must be stored in fCon(i). (The other components of
fCon are ignored.)

JCon is an array of declared dimension (ldJ,k), where k ≥ n. It contains the appropriate
elements of the Jacobian evaluated at x. (See the discussion of mode and JCon

above.)

mode may be set as in funobj.

5.6. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3,
any constant elements may be assigned to JCon one time only at the start of the optimization.
An element of JCon that is not subsequently assigned in funcon will retain its initial value
throughout. Constant elements may be loaded into JCon either before the call to dnNPSOL

or during the the first call to funcon (signalled by the value nState = 1). The ability to
preload constants is useful when many Jacobian elements are identically zero, in which case
JCon may be initialized to zero and nonzero elements may be reset by funcon.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
JCon(i, j) is set to a constant value, it need not be reset in subsequent calls to funcon, but
the value JCon(i, j)*x(j) must nonetheless be added to fCon(i).

It must be emphasized that, if Derivative level < 2, unassigned elements of JCon are
not treated as constant; they are estimated by finite differences, at non-trivial expense.

6. Optional parameters

The performance of each DNOPT interface is controlled by a number of parameters or
“options”. Each option has a default value that should be appropriate for most problems.
Other values may be specified in two ways:

• By calling subroutine dnSpec to read a Specs file (Section 6.1).

• By calling the option-setting routines dnSet, dnSetInt, dnSetReal (Section 6.5).

The current value of an optional parameter may be examined by calling one of the routines
dnGet, dnGetChar, dnGetInt, dnGetReal (Section 6.6).

6.1. The SPECS file

The Specs file contains a list of options and values in the following general form:

Begin options

Iterations limit 500

Minor feasibility tolerance 1.0e-7

Solution Yes

End options

We call such data a Specs file because it specifies various options. The file starts with the
keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

6. Optional parameters 45

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space or new line.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*) anywhere on a line. All subsequent characters on the line are ignored.

The Begin line is echoed to the Summary file.

6.2. Multiple sets of options in the Specs file

The keyword Skip allows you to collect several sets of options within a single Specs file. In
the following example, only the second set of options will be input.

Skip Begin options

Scale all variables

End options

Begin options 2

Scale linear variables

End options 2

The keyword Endrun prevents subroutine dnSpec from reading past that point in the
Specs file while looking for Begin.

6.3. SPECS file checklist and defaults

The following example Specs file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(ε ≈ 2.22× 10−16).

BEGIN checklist of SPECS file parameters and their default values

* Printing

Major print level 1 * 1-line major iteration log
Minor print level 1 * 1-line minor iteration log
Print file ? * specified by subroutine dnBEGIN

Summary file ? * specified by subroutine dnBEGIN

Print frequency 100 * minor iterations log on Print file
Summary frequency 100 * minor iterations log on Summary file
Solution Yes * on the Print file

* Suppress options listing * options are normally listed
System information No * Yes prints more system information

* Problem specification

Minimize * (opposite of Maximize)
* Feasible point * (alternative to Max or Min)

Infinite bound 1.0e+20 *

* Convergence Tolerances

Major feasibility tolerance 1.0e-6 * target nonlinear constraint violation

46 DNOPT User’s Guide

Major optimality tolerance 1.0e-6 * target complementarity gap
Minor feasibility tolerance 1.0e-6 * for satisfying the QP bounds

* Derivative checking

Verify level 0 * cheap check on gradients
Start objective check at col 1 *

Stop objective check at col n′1 *

Start constraint check at col 1 *

Stop constraint check at col n′′1 *

* Scaling

Scale option 1 * linear constraints and variables
Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

Linesearch tolerance 0.9 * smaller for more accurate search
Pivot tolerance 3.7e-11 * ε2/3

* QP subproblems

Elastic weight 1.0e+4 * used only during elastic mode
Iterations limit 10000 * or 20m if that is more
Partial price 1 * 10 for large LPs

* SQP method

* Cold start * has precedence over argument start

* Warm start * (alternative to a cold start)
Time limit 0 * no time limit
Major iterations limit 1000 * or m if that is more
Minor iterations limit 500 * or 3m if that is more
Major step limit 2.0 *

Derivative level 3 *

Derivative linesearch *

* Nonderivative linesearch *

Function precision 3.0e-13 * ε0.8 (almost full accuracy)
Difference interval 5.5e-7 * (Function precision)1/2

Central difference interval 6.7e-5 * (Function precision)1/3

Penalty parameter 0.0 * initial penalty parameter
Proximal point method 1 * satisfies linear constraints near x0
Violation limit 10.0 * unscaled constraint violation limit
Unbounded step size 1.0e+18 *

Unbounded objective 1.0e+15 *

* Hessian approximation

Hessian frequency 999999 * for full Hessian (never reset)
Hessian flush 999999 * no flushing

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure
Factorization frequency 50 * 100 for LPs

* Partitions of cw, iw, rw

Total character workspace lencw *

6. Optional parameters 47

Total integer workspace leniw *

Total real workspace lenrw *

User character workspace 500 *

User integer workspace 500 *

User real workspace 500 *

* Miscellaneous

Debug level 0 * for developers

Sticky parameters No * Yes makes parameter values persist

End of SPECS file checklist

6.4. Subroutine dnSpec

Subroutine dnSpec may be called to input a Specs file (to specify options for a subsequent
call of DNOPT).

subroutine dnSpec

& (iSpecs, INFO, cw, lencw, iw, leniw, rw, lenrw)

integer

& iSpecs, INFO, lencw, leniw, lenrw, iw(leniw)

double precision

& rw(lenrw)

character

& cw(lencw)*8

On entry:

iSpecs is a unit number for the Specs file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before dnSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

INFO reports the result of calling dnSpec. Here is a summary of possible values.

Finished successfully

101 Specs file read.

Errors while reading Specs file

131 No Specs file specified (iSpecs ≤ 0 or iSpecs > 99).

132 End-of-file encountered while looking for Specs file. dnSpec encountered
end-of-file or Endrun before finding Begin (see Section 6.2). The Specs file
may not be properly assigned.

133 End-of-file encountered before finding End. Lines containing Skip or Endrun
may imply that all options should be ignored.

134 Endrun found before any valid sets of options.

> 134 There were i = INFO− 134 errors while reading the Specs file.

48 DNOPT User’s Guide

6.5. Subroutines dnSet, dnSetInt, dnSetReal

These routines specify an option that might otherwise be defined in one line of a Specs file.

subroutine dnSet

& (buffer, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw)

subroutine dnSetInt

& (buffer, ivalue, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw)

subroutine dnSetReal

& (buffer, rvalue, iPrint, iSumm, Errors,

& cw, lencw, iw, leniw, rw, lenrw)

character*(*)

& buffer

integer

& Errors, ivalue, iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

double precision

& rvalue, rw(lenrw)

character

& cw(lencw)*8

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72 (dnSet) or ≤ 55
(dnSetInt, dnSetReal). Use dnSet if the string contains all relevant data. For
example,

call dnSet (’Iterations 1000’, iPrint, iSumm, Errors, ...)

ivalue is an integer value associated with the keyword in buffer. Use dnSetInt if it is
convenient to define the value at run time. For example,

itnlim = 1000

if (m .gt. 500) itnlim = 8000

call dnSetInt(’Iterations’, itnlim, iPrint, iSumm, Errors, ...)

rvalue is a real value associated with the keyword in buffer. For example,

factol = 100.0d+0

if (illcon) factol = 5.0d+0

call dnSetReal(’LU factor tol’, factol, iPrint, iSumm, Errors, ...)

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to the option-setting routines.

On exit:

cw(lencw), iw(leniw), rw(lenrw) hold the specified option.

Errors is the number of errors encountered so far.

6. Optional parameters 49

6.6. Subroutines dnGet, dnGetChar, dnGetInt, dnGetReal

These routines obtain the current value of a single option or indicate if an option has been
set.

integer function dnGet

& (buffer, Errors, cw, lencw, iw, leniw, rw, lenrw)

subroutine dnGetChar

& (buffer, cvalue, Errors, cw, lencw, iw, leniw, rw, lenrw)

subroutine dnGetInt

& (buffer, ivalue, Errors, cw, lencw, iw, leniw, rw, lenrw)

subroutine dnGetReal

& (buffer, rvalue, Errors, cw, lencw, iw, leniw, rw, lenrw)

character*(*)

& buffer

integer

& Errors, ivalue, lencw, leniw, lenrw, iw(leniw)

character

& cvalue*8, cw(lencw)*8

double precision

& rvalue, rw(lenrw)

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-getting routines.

cw(lencw), iw(leniw), rw(lenrw) contain the current options data.

On exit:

dnGet is 1 if the option contained in buffer has been set, otherwise 0. Use dnGet to find if
a particular optional parameter has been set. For example: if

i = dnGet(’Hessian limited memory’, Errors, ...)

then i will be 1 if DNOPT is using a limited-memory approximate Hessian.

cvalue is a string associated with the keyword in buffer. Use dnGetChar to obtain the
names associated with an MPS file. For example, for the name of the bounds section
use

call dnGetChar(’Bounds’, MyBounds, Errors, ...)

ivalue is an integer value associated with the keyword in buffer. Example:

call dnGetInt(’Iterations limit’, itnlim, Errors, ...)

rvalue is a real value associated with the keyword in buffer. Example:

call dnGetReal(’LU factor tol’, factol, Errors, ...)

Errors is the number of errors encountered so far.

50 DNOPT User’s Guide

6.7. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the Specs file, and
a description of their effect. In the description of the options we use the notation of the
problem format NP to refer to the objective and constraint functions.

Central difference interval r Default = ε1/3 ≈ 6.0e-6

When Derivative level < 3) with dnOpt, the central-difference interval r is used near
an optimal solution to obtain more accurate (but more expensive) estimates of gradients.
Twice as many function evaluations are required compared to forward differencing. The
interval used for the jth variable is hj = r(1 + |xj |). The resulting derivative estimates
should be accurate to O(r2), unless the functions are badly scaled.

Check frequency k Default = 60

Every kth minor iteration after the most recent working-set factorization, a numerical test
is made to see if the current solution x satisfies the general linear constraints (including
linearized nonlinear constraints, if any). The constraints are of the form Ax− s = b, where
s is the set of slack variables. To perform the numerical test, the residual vector r = b−Ax+s
is computed. If the largest component of r is judged to be too large, the current working
set is refactorized and the variables are recomputed to satisfy the general constraints more
accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Cold Start Default = value of input argument start

Requests that the CRASH procedure be used to choose an initial working set.
This parameter has the same effect as the input arguments start = 0 for dnOpt. If

specified as an optional parameter, this value has precedence over the value of the input
argument start. This allows the start parameter to be changed at run-time using the
Specs file.

Crash tolerance t Default = 0.1

This value is used in conjunction with the optional parameter Cold start (the default
value). When making a cold start, the QP algorithm in dnOpt must select an initial working
set. When r ≥ 0, the initial working set will include (if possible) bounds or general inequality
constraints that lie within r of their bounds. In particular, a constraint of the form aTjx ≥ l
will be included in the initial working set if |aTjx − l| ≤ r(1 + |l|). If r < 0 or r > 1, the
default value is used.

Derivative level i Default = 3

The keyword Derivative level specifies which nonlinear function gradients are known
analytically and will be supplied to DNOPT by the user subroutines funobj and funcon.

i Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gra-
dient are unknown.

6. Optional parameters 51

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

0 Some components of the objective gradient are unknown and some of the constraint
gradients are unknown.

The value i = 3 should be used whenever possible. It is the most reliable and will usually
be the most efficient.

If i = 0 or 2, DNOPT will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine funobj. However, it
could increase the total run-time substantially (since a special call to funobj is required
for each missing element), and there is less assurance that an acceptable solution will be
located. If the nonlinear variables are not well scaled, it may be necessary to specify a
nonstandard Difference interval (see below).

If i = 0 or 1, DNOPT will estimate missing elements of the Jacobian. For each column of
the Jacobian, one call to funcon is needed to estimate all missing elements in that column,
if any. If the Jacobian happens to be

* * * *

* ? ? *

* * ? *

* * * *


where * indicates a known gradient and ? indicates an unknown element, DNOPT will use
one call to funcon to estimate the missing element in column 2, and another call to estimate
both missing elements in column 3. No calls are needed to estimate the elements in columns
1 and 4.

At times, central differences are used rather than forward differences. Twice as many
calls to funobj and funcon are then needed. (This is not under the user’s control.)

Derivative linesearch Default
Nonderivative linesearch

At each major iteration a linesearch is used to improve the merit function. A Derivative

linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step αk. If some analytic derivatives are not provided,
or a Nonderivative linesearch is specified, DNOPT employs a linesearch based upon
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is
recommended that the default be used if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the functions,
a nonderivative linesearch may give a significant decrease in computation time.

The selection of Nonderivative linesearch for dnOpt means that funobj and funcon

are called with mode = 0 in the linesearch. Once the linesearch is completed, the problem
functions are called again with mode = 2. If the potential savings provided by a nonderivative
linesearch are to be realized, it is essential that funobj and funcon be coded so that the
derivatives are not computed when mode = 0.

Difference interval h1 Default = ε1/2 ≈ 1.5e-8

This alters the interval h1 that is used to estimate gradients by forward differences in the
following circumstances:

52 DNOPT User’s Guide

• In the initial (“cheap”) phase of verifying the problem derivatives.

• For verifying the problem derivatives.

• For estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of
x to the value xj + h1(1 + |xj |), and then evaluating f0(x) or f(x) at the perturbed point.
The resulting gradient estimates should be accurate to O(h1) unless the functions are badly
scaled. Judicious alteration of h1 may sometimes lead to greater accuracy.

Elastic weight ω Default = 104

This keyword determines the initial weight γ associated with problem NP(γ) on p. 10.
At major iteration k, if elastic mode has not yet started, a scale factor σk = 1+‖g(xk)‖∞

is defined from the current objective gradient. Elastic mode is then started if the QP
subproblem is infeasible, or the QP dual variables are larger in magnitude than σkω. The
QP is re-solved in elastic mode with γ = σkω.

Thereafter, major iterations continue in elastic mode until they converge to a point that
is optimal for problem NP(γ). If the point is feasible for NP (v = w = 0), it is declared
locally optimal. Otherwise, γ is increased by a factor of 10 and major iterations continue.
If γ has already reached a maximum allowable value, NP is declared locally infeasible.

Expand frequency k Default = 10000

This option is part of the EXPAND anti-cycling procedure [11] designed to make progress
even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Minor feasibility tolerance is δ. Over a period of k iterations, the tolerance actually
used by DNOPT increases from 1

2δ to δ (in steps of 1
2δ/k).

For nonlinear models, the same procedure is used for iterations in which there is only one
degree of freedom. (Cycling can occur only when the current solution is at a vertex of the
feasible region.) Thus, zero steps are allowed if there is more than one degree of freedom,
but otherwise positive steps are enforced.

Increasing k helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during a resetting procedure). However, it also diminishes the freedom
to choose a large pivot element (see Pivot tolerance).

Factorization frequency k Default = 100 (LP) or 50 (NP)

At most k constraint changes will occur between factorizations of the working set matrix.

• With linear programs, the working-set factors are usually updated every iteration.
The default k is reasonable for typical problems. Higher values up to k = 100 (say)
may be more efficient on problems that are extremely sparse and well scaled.

• When the objective function is nonlinear, fewer updates to the working set will occur
as an optimum is approached. The number of iterations between working set fac-
torizations will therefore increase. During these iterations a test is made regularly
(according to the Check frequency) to ensure that the general constraints are satis-
fied. If necessary the working set will be refactorized before the limit of k updates is
reached.

6. Optional parameters 53

Feasible point

see Minimize

Function precision εR Default = ε0.8 ≈ 3.7e-11

The relative function precision εR is intended to be a measure of the relative accuracy
with which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be correct,
the appropriate value for εR would be 1.0e-6.

(Ideally the functions f(x) or Fi(x) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, εR should be the absolute precision. For example,
if f(x) = 1.23456789e-4 at some point and if the first 6 significant digits are known to be
correct, the appropriate value for εR would be 1.0e-10.)

• The default value of εR is appropriate for simple analytic functions.

• In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate Function precision may lead to savings,
by allowing the linesearch procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Feasibility tolerance t Default = 1.0e-6

see Minor feasibility tolerance

Infinite bound r Default = 1.0e+20

If r > 0, r defines the “infinite” bound infBnd in the definition of the problem constraints.
Any upper bound greater than or equal to infBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to −infBnd). If r ≤ 0, the default value is
used.

Iterations limit i Default = max{10000, 20m}
This is the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (Itns is an alternative
keyword.)

Linesearch tolerance t Default = 0.9

This controls the accuracy with which a steplength will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the
merit function is identified. This parameter determines the accuracy to which this target
value is approximated.

• t must be a real value in the range 0.0 ≤ t ≤ 1.0.

• The default value t = 0.9 requests just moderate accuracy in the linesearch.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be ap-
propriate; try t = 0.1, 0.01 or 0.001. The number of major iterations might decrease.

54 DNOPT User’s Guide

• If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. If all gradients are known, try t = 0.99. (The number of major iterations
might increase, but the total number of function evaluations may decrease enough to
compensate.)

• If not all gradients are known, a moderately accurate search remains appropriate.
Each search will require only 1–5 function values (typically), but many function calls
will then be needed to estimate missing gradients for the next iteration.

Log frequency k Default = 100

see Print frequency

Major feasibility tolerance εr Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied. The default value
of 1.0e-6 is appropriate when the linear and nonlinear constraints contain data to about
that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy

rowerr = max
i

violi/‖x‖ ≤ εr, (6.1)

where violi is the violation of the ith nonlinear constraint (i = 1 : mNCon).
In the major iteration log, rowerr appears as the quantity labeled “Feasibl”. If some

of the problem functions are known to be of low accuracy, a larger Major feasibility

tolerance may be appropriate.

Major iterations limit k Default = max{1000,m}
This is the maximum number of major iterations allowed. It is intended to guard against
an excessive number of linearizations of the constraints. If k = 0, both feasibility and
optimality are checked.

Major optimality tolerance εd Default = 1.0e-6

This specifies the final accuracy of the dual variables. On successful termination, DNOPT

will have computed a solution (x, s, π) such that

maxComp = max
j

Compj/‖π‖ ≤ εd, (6.2)

where Compj is an estimate of the complementarity slackness for variable j (j = 1 :n+m).
The values Compj are computed from the final QP solution using the reduced gradients

dj = gj−πTaj (where gj is the jth component of the objective gradient, aj is the associated
column of the constraint matrix

(
A − I

)
, and π is the set of QP dual variables):

Compj =

{
dj min{xj − `j , 1} if dj ≥ 0;

−dj min{uj − xj , 1} if dj < 0.

In the major iteration log, maxComp appears as the quantity labeled “Optimal”.

6. Optional parameters 55

Major print level p Default = 00001

This controls the amount of output to the Print and Summary files each major iteration.
Major print level 1 gives normal output for linear and nonlinear problems, and Major

print level 11 gives addition details of the Jacobian factorization that commences each
major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major print level JFDXs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is
not strictly binary since the summary line is printed whenever JFDXbs ≥ 1).

X xk, the nonlinear variables involved in the objective function or the constraints.

D πk, the dual variables for the nonlinear constraints.

F F (xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.
If J=1, the Jacobian matrix will be output column-wise at the start of each major

iteration. Column j will be preceded by the value of the corresponding variable xj . (Hence
if J=1, there is no reason to specify X=1 unless the objective contains more nonlinear variables
than the Jacobian.)

Major print level 0 suppresses most output, except for error messages.

Major step limit r Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear prob-
lems, once a “feasible solution” or “feasible subproblem” has been found.

1. A linesearch determines a step α over the range 0 < α ≤ β, where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter r is therefore
used to define a limit β̄ = r(1 + ‖x‖)/‖p‖ (where p is the search direction), and the
first evaluation of f(x) is at the potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evalua-
tion of nonlinear functions at meaningless points. The Major step limit provides
an additional safeguard. The default value r = 2.0 should not affect progress on well
behaved problems, but setting r = 0.1 or 0.01 may be helpful when rapidly vary-
ing functions are present. A “good” starting point may be required. An important
application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate
an optimum near the starting point.

Minimize Default
Maximize

Feasible point

The keywords Minimize and Maximize specify the required direction of optimization. It
applies to both linear and nonlinear terms in the objective.

56 DNOPT User’s Guide

The keyword feasible point means “Ignore the objective function” while finding a
feasible point for the linear and nonlinear constraints. It can be used to check that the
nonlinear constraints are feasible without altering the call to DNOPT.

Minor iterations limit k Default = 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds k,
then all nonbasic QP variables that have not yet moved are frozen at their current values
and the reduced QP is solved to optimality.

Note that more than k minor iterations may be necessary to solve the reduced QP to
optimality. These extra iterations are necessary to ensure that the terminated point gives a
suitable direction for the linesearch.

In the major iteration log, a t at the end of a line indicates that the corresponding QP
was artificially terminated using the limit k.

Note that Iterations limit defines an independent absolute limit on the total number
of minor iterations (summed over all QP subproblems).

Minor feasibility tolerance t Default = 1.0e-6

DNOPT tries to ensure that all variables eventually satisfy their upper and lower bounds
to within the tolerance t. This includes slack variables. Hence, general linear constraints
should also be satisfied to within t.

Feasibility with respect to nonlinear constraints is judged by the Major feasibility

tolerance (not by t).

• If the bounds and linear constraints cannot be satisfied to within t, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is
quite small, it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some
error in the data should be suspected.

• Nonlinear functions will be evaluated only at points that satisfy the bounds and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem.

For example, if f(x) =
√
x1 + log x2, it is essential to place lower bounds on both

variables. If t = 1.0e-6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate.
(The log singularity is more serious. In general, keep x as far away from singularities
as possible.)

• If Scale option ≥ 1, feasibility is defined in terms of the scaled problem (since it is
then more likely to be meaningful).

• In reality, DNOPT uses t as a feasibility tolerance for satisfying the bounds on x and
s in each QP subproblem. If the sum of infeasibilities cannot be reduced to zero,
the QP subproblem is declared infeasible. DNOPT is then in elastic mode thereafter
(with only the linearized nonlinear constraints defined to be elastic). See the Elastic

options.

Minor print level k Default = 1

This controls the amount of output to the Print and Summary files during solution of the
QP subproblems. The value of k has the following effect:

6. Optional parameters 57

0 No minor iteration output except error messages.

≥ 1 A single line of output each minor iteration (controlled by Print frequency and
Summary frequency).

≥ 10 Factorization statistics generated during the periodic refactorization of the working
set (see Factorization frequency). Statistics for the first factorization each major
iteration are controlled by the Major print level.

Pivot tolerance t Default = ε2/3 ≈ 3.7e-11

During solution of QP subproblems, the pivot tolerance is used to prevent constraints from
entering the working set if they would cause the working-set matrix to become almost
singular.

• When x changes to x+αp for some search direction p, a “ratio test” determines which
constraint reaches an upper or lower bound first. The corresponding element of p or
aTi p is called the pivot element.

• Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance t.

• It is common for two or more variables to reach a bound at essentially the same time. In
such cases, the Feasibility tolerance provides some freedom to maximize the pivot
element and thereby improve numerical stability. An excessively small Feasibility
tolerance should therefore not be specified.

• To a lesser extent, the Expand frequency also provides some freedom to maximize the
pivot element. Hence, an excessively large Expand frequency should not be specified.

Print file f
Print frequency k Default = 100

If f > 0, the Print file is output to file number f . If Minor print level > 0, a line of the
QP iteration log is output every kth iteration. The default f is obtained from subroutine
dnBEGIN’s parameter iPrint. Set f = 0 to suppress output to the Print file.

Proximal point method i Default = 1

i = 1 or 2 specifies minimization of ‖x − x0‖1 or 1
2‖x − x0‖

2
2 when the starting point x0 is

changed to satisfy the linear constraints (where x0 refers to nonlinear variables).

Scale option i Default = 2 (LP) or 1 (NP)
Scale tolerance t Default = 0.9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix (and
Jacobian) never have very large elements (say, larger than 100).

58 DNOPT User’s Guide

1 Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer [5]). This will
sometimes improve the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, an additional
scaling is performed that takes into account columns of

(
A −I

)
that are fixed or

have positive lower bounds or negative upper bounds.

If nonlinear constraints are present, the scales depend on the Jacobian at the first point
that satisfies the linear constraints. Scale option 2 should therefore be used only if
(a) a good starting point is provided, and (b) the problem is not highly nonlinear.

Scale tolerance t affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than t times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising t from 0.9 to 0.99 (say) usually increases the number of
scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled
matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks
are ¯̀

j = `j/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Solution file f Default = 0

The first three options determine whether the final solution obtained is to be output to
the Print file. The file option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

• For the Yes and If Optimal options, floating-point numbers are printed in f16.5

format, and “infinite” bounds are denoted by the word None.

• For the file option, all numbers are printed in 1p,e16.6 format, including “infinite”
bounds, which will have magnitude infBnd (default value 1.000000e+20).

• To see more significant digits in the printed solution, it is sometimes useful to make f
refer to the Print file (i.e., the number specified by Print file).

Start Objective Check at Column k Default = 1
Start Constraint Check at Column k Default = 1
Stop Objective Check at Column l Default = n′1
Stop Constraint Check at Column l Default = n′′1

The default values depend on n′1 and n′′1 , the numbers of nonlinear objective variables and
Jacobian variables (see p. 11).

If Verify level > 0, these options may be used to abbreviate the verification of in-
dividual derivative elements computed by subroutines funobj, funcon and usrfun. For
example:

6. Optional parameters 59

• If the first 100 objective gradients appeared to be correct in an earlier run, and if
you have just found a bug in funobj that ought to fix up the 101-th component,
then you might as well specify Start Objective Check at Column 101. Similarly
for columns of the Jacobian.

• If the first 100 variables occur nonlinearly in the constraints, and the remaining vari-
ables are nonlinear only in the objective, then funobj must set the first 100 components
of g(*) to zero, but these hardly need to be verified. The above option would again
be appropriate.

Sticky parameters No Default
Sticky parameters Yes

User-defined optional parameters may be modified so that they lie in a sensible range. For
example, any tolerance specified as negative or zero will be changed to its positive default
value. Specifying Sticky parameters No will result in the original user-defined parameters
being reloaded into workspace after the run is completed. If a second run is made immediatly
following a call with Sticky parameters Yes (e.g., with the Hot start option) then any
modified parameter values will persist in workspace for the second run.

Summary file f
Summary frequency k Default = 100

If f > 0, the Summary file is output to file f . If Minor print level > 0, a line of the QP
iteration log is output every kth minor iteration. The default f is obtained from subroutine
dnBEGIN’s parameter iSumm. Set f = 0 to suppress the Summary file.

Suppress parameters

Normally DNOPT prints the Specs file as it is being read, and then prints a complete list
of the available keywords and their final values. The Suppress Parameters option tells
DNOPT not to print the full list.

Total real workspace maxrw Default = lenrw

Total integer workspace maxiw Default = leniw

Total character workspace maxcw Default = lencw

User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine DNOPT to certain parts of its workspace arrays cw,
iw, rw. (The arrays are defined by the last six parameters of DNOPT.)

The Total ... options place an upper limit on DNOPT’s workspace. They may be
useful on machines with virtual memory. For example, some systems allow a very large
array rw(lenrw) to be declared at compile time with no overhead in saving the resulting
object code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict DNOPT to the lower end of rw in order to reduce paging activity slightly.
(However, DNOPT accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If DNOPT’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the
nonlinear function routines will be free to use ru(maxrw + 1 : lenru) for their own purpose.
Similarly for the other work arrays.

60 DNOPT User’s Guide

The User ... options place a lower limit on DNOPT’s workspace (not counting the
first 500 elements). Again, if DNOPT’s parameters ru, lenru happen to be the same as
rw, lenrw, the function routines will be free to use ru(501 : maxru) for their own purpose.
Similarly for the other work arrays.

System information No Default
System information Yes

The Yes option provides additional information on the progress of the iterations.

Time limit ` Default = 0

This places a limit of ` cpu seconds on the time used for solving the problem. The default
value ` = 0 implies that no cpu limit is imposed.

Timing level ` Default = 3

` = 0 suppresses output of cpu times. (Intended for installations with dysfunctional timing
routines.)

Unbounded objective value fmax Default = 1.0e+15

Unbounded step size αmax Default = 1.0e+18

These parameters are intended to detect unboundedness in nonlinear problems. (They may
not achieve that purpose!) During a linesearch, f0 is evaluated at points of the form x+αp,
where x and p are fixed and α varies. if |f0| exceeds fmax or α exceeds αmax, iterations are
terminated with the exit message Problem is unbounded (or badly scaled).

If singularities are present, unboundedness in f0(x) may be manifested by a floating-
point overflow (during the evaluation of f0(x + αp)), before the test against fmax can be
made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the
variables.

Verify level l Default = 0

This option refers to finite-difference checks on the derivatives computed by the user-
provided routines. Derivatives are checked at the first point that satisfies all bounds and
linear constraints.

l Meaning

0 Only a “cheap” test will be performed, requiring 2 calls to funcon and 3 calls to
funobj for dnOpt.

1 Individual objective gradients will be checked (with a more reliable test). A key of the
form “OK” or “Bad?” indicates whether or not each component appears to be correct.

2 Individual columns of the problem Jacobian will be checked.

3 Options 2 and 1 will both occur (in that order).

−1 Derivative checking is disabled.

7. Output 61

Verify level 3 should be specified whenever a new function routine is being developed.
The Start and Stop keywords may be used to limit the number of nonlinear variables
checked. Missing derivatives are not checked, so they result in no overhead.

Violation limit τ Default = 10

This keyword defines an absolute limit on the magnitude of the maximum constraint viola-
tion after the linesearch. On completion of the linesearch, the new iterate xk+1 satisfies the
condition

vi(xk+1) ≤ τ max{1, vi(x0)}, (6.3)

where x0 is the point at which the nonlinear constraints are first evaluated and vi(x) is the
ith nonlinear constraint violation vi(x) = max(0, `i − fi(x), fi(x)− ui).

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible
region whose size depends on the magnitude of τ . This makes it possible to keep the iterates
within a region where the objective is expected to be well-defined and bounded below. If the
objective is bounded below for all values of the variables, then τ may be any large positive
value.

Warm start Default = value of input argument start

This parameter indicates that a working set is already specified via the input arrays for
DNOPT. This option has the same effect as the input arguments start = 2. If specified
as an optional parameter, this value has precedence over the value of the input argument
start. This allows the start parameter to be changed at run-time using the Specs file.

7. Output

Subroutine dnBEGIN specifies unit numbers for the Print and Summary files described in
this section. The files can be redirected with the Print file and Summary file options
(or suppressed).

7.1. The PRINT file

If Print file > 0, the following information is output to the Print file during the solution
process. All printed lines are less than 131 characters.

• A listing of the Specs file, if any.

• A listing of the options that were or could have been set in the Specs file.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• A summary of the scaling procedure, if Scale option > 0.

• Notes about the initial working set resulting from a CRASH procedure.

• The major iteration log.

• The minor iteration log.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections.

62 DNOPT User’s Guide

7.2. The major iteration log

If Major print level > 0, one line of information is output to the Print file every kth
minor iteration, where k is the specified Print frequency (default k = 1).

Label Description

Itns The cumulative number of minor iterations.

Major The current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 2).

Step The step length α taken along the current search direction p. The variables x
have just been changed to x + αp. On reasonably well-behaved problems, the
unit step will be taken as the solution is approached.

nCon The number of times subroutines usrfun or funcon have been called to evaluate
the nonlinear problem functions. Evaluations needed for the estimation of the
derivatives by finite differences are not included. nCon is printed as a guide to
the amount of work required for the linesearch.

Feasible is the value of rowerr, the maximum component of the scaled nonlinear con-
straint residual (6.1). The solution is regarded as acceptably feasible if Feasible
is less than the Major feasibility tolerance. In this case, the entry is con-
tained in parenthesis.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of maxgap, the maximum complementarity gap (6.2). It is an estimate
of the degree of nonoptimality of the reduced costs. Both Feasbl and Optimal

are small in the neighborhood of a solution.

MeritFunction is the value of the augmented Lagrangian merit function (see (2.5)). This
function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 2). As the solution is approached, Merit will
converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the con-
straint violations weighted by the elastic weight.

If the constraints are linear, this item is labeled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

nZ The current number of degrees of freedom.

CondHz An estimate of the condition number of RTR, an estimate of ZTHZ, the reduced
Hessian of the Lagrangian. It is the square of the ratio of the largest and small-
est diagonals of the upper triangular matrix R (which is a lower bound on the
condition number of RTR). Cond Hz gives a rough indication of whether or not
the optimization procedure is having difficulty. If ε is the relative precision of
the machine being used, the SQP algorithm will make slow progress if Cond Hz

becomes as large as ε−1/2 ≈ 108, and will probably fail to find a better solution
if Cond Hz reaches ε−3/4 ≈ 1012.

To guard against high values of Cond Hz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add

7. Output 63

upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

The summary line may include additional code characters that indicate what happened
during the course of the major iteration.

Code Meaning

c Central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if either
the linesearch gives a small step, or x is close to being optimal. In some cases,
it may be necessary to re-solve the QP subproblem with the central-difference
gradient and Jacobian.

d During the linesearch it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation limit.

l The norm-wise change in the variables was limited by the value of the Major

step limit. If this output occurs repeatedly during later iterations, it may be
worthwhile increasing the value of Major step limit.

i If DNOPT is not in elastic mode, an “i” signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains
in effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem NP(γ).

If DNOPT is already in elastic mode, an “i” indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M An extra evaluation of the problem functions was needed to define an acceptable
positive-definite quasi-Newton update to the Lagrangian Hessian. This modifica-
tion is only done when there are nonlinear constraints.

m This is the same as “M” except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n No positive-definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R The approximate Hessian has been reset by discarding all but the diagonal el-
ements. This reset will be forced periodically by the Hessian frequency and
Hessian updates keywords. However, it may also be necessary to reset an ill-
conditioned Hessian from time to time.

r The approximate Hessian was reset after ten consecutive major iterations in which
no BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s A self-scaled BFGS update was performed. This update is used when the Hessian
approximation is diagonal, and hence always follows a Hessian reset.

t The minor iterations were terminated because of the Minor iterations limit.

u The QP subproblem was unbounded.

w A weak solution of the QP subproblem was found.

64 DNOPT User’s Guide

7.3. The minor iteration log

If Minor print level > 0, one line of information is output to the Print file every kth minor
iteration, where k is the specified Minor print frequency (default k = 1). A heading is
printed before the first such line following a matrix factorization.

The heading contains the items described below.

Label Description

Itn The current iteration number.

Bnd The number of bound constraints in the QP working set.

Lin The number of general constraints in the QP working set.

Art The number of artificial constraints in the QP working set.

yMin The value of the largest nonoptimal Lagrange multiplier.

jDel The index of the constraint selected for removal from the working set.

jAdd The index of the constraint added to the working set.

Step The step length α taken along the current search direction p. The variables x have
just been changed to x+αp. If a constraint is added to the working set during the
current iteration, Step will be the step to the nearest bound. During Phase 2, the
step can be greater than one only if the reduced Hessian is not positive definite.

pInf,dInf The number of primal and dual infeasibilities after the present iteration. The
number of primal infeasibilities (pInf) will not increase unless the iterations are
in elastic mode. The number of dual infeasibilities (dInf) is zero at a solution,
but may increase or decrease between iterations.

SumInf/Objective If nInf > 0, this is sInf, the sum of infeasibilities after the present
iteration. It usually decreases at each nonzero Step, but if nInf decreases by 2 or
more, SumInf may occasionally increase.

If nInf = 0, then Objective is the objective value for the QP subproblem.

In elastic mode, the heading is changed to nonElastic Inf in elastic phase 1
and Elastic Obj in elastic phase 2. nonElastic Inf gives the number infeasible
nonelastic constraints. Elastic Obj gives the objective function in phase 2 of
elastic mode. Elastic Obj decreases monotonically.

Cond T The ratio of the diagonal elements of T with largest and smallest magnitude. Cond
T estimates the condition number of the working-set matrix.

nZ The current number of degrees of freedom. (The heading is not printed if the
problem is linear.)

norm gZ The norm of the reduced-gradient vector at the start of the iteration. During
Phase 2 this norm will be approximately zero after a unit step.

(The heading is not printed if the problem is linear.)

cond Hz See the major iteration log. (The heading is not printed if the problem is linear.)

7. Output 65

7.4. EXIT conditions

When any solver or auxliliary routine in the DNOPT package terminates, a message of the
following form is output to the Print and Summary files:

SOLVER EXIT e -- exit condition

SOLVER INFO i -- informational message

where e is an integer that labels a generic exit condition, and i labels one of several alternative
informational messages. For example, DNOPT may output

DNOPT EXIT 20 -- the problem appears to be unbounded

DNOPT INFO 21 -- unbounded objective

where the exit condition gives a broad definition of what happened, while the informational
message is more specific about the cause of the termination. The integer i is the value of
the output argument INFO. The integer e may be recovered from INFO by changing the least
significant digit to zero. Possible exit conditions for DNOPT follow:

0 Finished successfully
10 The problem appears to be infeasible
20 The problem appears to be unbounded
30 Resource limit error
40 Terminated after numerical difficulties
50 Error in the user-supplied functions
60 Undefined user-supplied functions
70 User requested termination
80 Insufficient storage allocated
90 Input arguments out of range

100 Finished successfully (associated with DNOPT auxiliary routines)
130 Errors while reading the Specs file
140 System error

Exit conditions 0–20 arise when a solution exists (though it may not be optimal). The
solution is output to the Print or Solution files if requested.

We describe each exit message from dnOpt and suggest possible courses of action.

EXIT -- 0 finished successfully

INFO -- 1 optimality conditions satisfied

INFO -- 2 feasible point found (from option Feasible point only)
INFO -- 3 requested accuracy could not be achieved

INFO -- 5 elastic objective minimized

INFO -- 6 elastic infeasibilities minimized

These messages usually indicate a successful run. The solution is printed and/or saved
on the Solution file.

For INFO 1 the final point seems to be a solution of NP. This means that x is feasible
(it satisfies the constraints to the accuracy requested by the Feasibility tolerance), the
reduced gradient is negligible, the reduced costs are optimal, and R is nonsingular.

In all cases, some caution should be exercised. For example, if the objective value is
much better than expected, DNOPT may have obtained an optimal solution to the wrong
problem! Almost any item of data could have that effect if it has the wrong value. Verifying
that the problem has been defined correctly is one of the more difficult tasks for a model
builder. It is good practice in the function subroutines to print any data that is input during
the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one
local optimum? When the constraints are linear and the objective is known to be convex

66 DNOPT User’s Guide

(e.g., a sum of squares) then all will be well if we are minimizing the objective: a local
minimum is a global minimum in the sense that no other point has a lower function value.
(However, many points could have the same objective value, particularly if the objective is
largely linear.) Conversely, if we are maximizing a convex function, a local maximum cannot
be expected to be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor
concave. Our advice is always to specify a starting point that is as good an estimate
as possible, and to include reasonable upper and lower bounds on all variables, in order to
confine the solution to the specific region of interest. We expect modelers to know something
about their problem, and to make use of that knowledge as they themselves know best.

One other caution about “Optimality conditions satisfied”. Some of the variables
or slacks may lie outside their bounds more than desired, especially if scaling was requested.
Some information concerning the run can be obtained from the short summary given at the
end of the print and summary files. Here is an example from the problem Toy discussed in
Section 3.2.

DNOPT EXIT 0 -- finished successfully

DNOPT INFO 1 -- optimality conditions satisfied

Problem name Toy

No. of iterations 16 Objective 1.9001249992E+00

No. of major iterations 13 Linear obj. term 9.9625002777E-02

Penalty parameter 4.264E+14 Nonlinear obj. term 1.8004999964E+00

No. of calls to funobj 22 No. of calls to funcon 22

Degrees of freedom 1

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.4E+00 Max pi 1 1.9E+01

Max Primal inf 0 0.0E+00 Max Dual inf 1 3.8E-08

Nonlinear constraint violn 5.9E-13

Max Primal infeas refers to the largest bound infeasibility and which variable is in-
volved. If it is too large, consider restarting with a smaller Minor feasibility tolerance

(say 10 times smaller) and perhaps Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal
value. Broadly speaking, if

Max Dual infeas/Max pi = 10−d,

then the objective function would probably change in the dth significant digit if optimiza-
tion could be continued. If d seems too large, consider restarting with a smaller Major

optimality tolerance.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlin-
ear rows. If it seems too large, consider restarting with a smaller Major feasibility

tolerance.

If the requested accuracy could not be achieved, a feasible solution has been found,
but the requested accuracy in the dual infeasibilities could not be achieved. An abnormal
termination has occurred, but DNOPT is within 10−2 of satisfying the Major optimality

tolerance. Check that the Major optimality tolerance is not too small.

7. Output 67

EXIT -- 10 The problem appears to be infeasible

INFO -- 11 infeasible linear constraints

INFO -- 12 infeasible linear equality constraints

INFO -- 13 nonlinear infeasibilities minimized

INFO -- 14 linear infeasibilities minimized

INFO -- 15 infeasible nonelastic constraints

This exit occurs if DNOPT is unable to find a point satisfying the constraints.
When the constraints are linear, the output messages are based on a relatively reliable

indicator of infeasibility. Feasibility is measured with respect to the upper and lower bounds
on the variables and slacks. Among all the points satisfying the general constraints Ax−s =
0, there is apparently no point that satisfies the bounds on x and s. Violations as small
as the Minor feasibility tolerance are ignored, but at least one component of x or s
violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize cor-
rectly. Even if a feasible solution exists, the current linearization of the constraints may not
contain a feasible point. In an attempt to deal with this situation, when solving each QP
subproblem, DNOPT is prepared to relax the bounds on the slacks associated with nonlinear
rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier
estimates for the nonlinear constraints become large), DNOPT enters so-called “nonlinear
elastic” mode. The subproblem includes the original QP objective and the sum of the
infeasibilities—suitably weighted using the Elastic weight parameter. In elastic mode,
some of the bounds on the nonlinear rows “elastic”—i.e., they are allowed to violate their
specified bounds. Variables subject to elastic bounds are known as elastic variables. An
elastic variable is free to violate one or both of its original upper or lower bounds. If
the original problem has a feasible solution and the elastic weight is sufficiently large, a
feasible point eventually will be obtained for the perturbed constraints, and optimization
can continue on the subproblem. If the nonlinear problem has no feasible solution, DNOPT

will tend to determine a “good” infeasible point if the elastic weight is sufficiently large.
(If the elastic weight were infinite, DNOPT would locally minimize the nonlinear constraint
violations subject to the linear constraints and bounds.)

Unfortunately, even though DNOPT locally minimizes the nonlinear constraint violations,
there may still exist other regions in which the nonlinear constraints are satisfied. Wherever
possible, nonlinear constraints should be defined in such a way that feasible points are known
to exist when the constraints are linearized.

EXIT -- 20 The problem appears to be unbounded

INFO -- 21 unbounded objective at a feasible point

INFO -- 22 constraint violation limit reached

For linear problems, unboundedness is detected by the simplex method when an active
variable or constraint can be increased or decreased by an arbitrary amount without causing
a constraint to violate a bound. A message prior to the EXIT message will give the index
of the active constraint. Consider adding an upper or lower bound to the variable. Also,
examine the constraints that have nonzeros in the associated column, to see if they have
been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

For nonlinear problems, DNOPT monitors both the size of the current objective function
and the size of the change in the variables at each step. If either of these is very large
(as judged by the Unbounded parameters—see Section 6.7), the problem is terminated and
declared unbounded. To avoid large function values, it may be necessary to impose bounds

68 DNOPT User’s Guide

on some of the variables in order to keep them away from singularities in the nonlinear
functions.

The second informational message indicates an abnormal termination while enforcing
the limit on the constraint violations. This exit implies that the objective is not bounded
below in the feasible region defined by expanding the bounds by the value of the Violation

limit.

EXIT -- 30 Resource limit error

INFO -- 31 iteration limit reached

INFO -- 32 major iteration limit reached

Some limit was exceeded before the required solution could be found. Check the iteration
log to be sure that progress was being made.

EXIT -- 40 Terminated after numerical difficulties

INFO -- 41 current point cannot be improved

INFO -- 42 ill-conditioned working set

INFO -- 43 cannot satisfy the working-set constraints

INFO -- 44 Reduced gradient too large

For INFO 41, DNOPT was unable to improve on a non-optimal point.

1. Subroutines usrfun, funobj or funcon may be returning accurate function values but
inaccurate gradients (or vice versa). This is the most likely cause. Study the comments
given for INFO 51 and 52, and check that the coding of the problem functions is correct.

2. The function and gradient values could be consistent, but their precision could be too
low. For example, accidental use of a real data type when double precision was
intended would lead to a relative function precision of about 10−6 instead of something
like 10−15. The default Major optimality tolerance of 10−6 would need to be raised
to about 10−3 for optimality to be declared (at a rather suboptimal point). Of course,
it is better to revise the function coding to obtain as much precision as economically
possible.

3. If function values are obtained from an expensive iterative process, they may be ac-
curate to rather few significant figures, and gradients will probably not be available.
One should specify

Function precision t

Major optimality tolerance
√
t

but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same
exit condition may occur. At present the only remedy is to increase the accuracy of
the function calculation.

For INFO 42, the first factorization attempt found the working-set matrix to be numer-
ically singular. (Some diagonals of the triangular matrix T were deemed too small.)

For INFO 43, the variables x have been recomputed, given the present the working set.
A step of “iterative refinement” has also been applied to increase the accuracy of x, but
a row check has revealed that the resulting solution does not satisfy the QP constraints
Ax− s = b sufficiently well.

For INFO 44, during QP iterations, the reduced gradient could not be reduced after
several steps of iterative refinement.

7. Output 69

In all cases, the problem must be badly scaled (or the working set must be pathologically
ill-conditioned without containing any large entries). Try Scale option 2 if it has not yet
been used.

EXIT -- 50 Error in the user-supplied functions

INFO -- 51 incorrect objective derivatives

INFO -- 52 incorrect constraint derivatives

There may be errors in the subroutines that define the problem objective and constraints.
If the objective derivatives appear to incorrect, a check has been made on some individual
elements of the objective gradient array at the first point that satisfies the linear constraints.
At least one component (G(k) or gObj(j)) is being set to a value that disagrees markedly
with its associated forward-difference estimate ∂f0/∂xj . (The relative difference between
the computed and estimated values is 1.0 or more.) This exit is a safeguard because DNOPT

will usually fail to make progress when the computed gradients are seriously inaccurate. In
the process it may expend considerable effort before terminating with INFO 41 above.

For INFO 51 Check the function and gradient computation very carefully in usrfun

or funobj. A simple omission (such as forgetting to divide f0 by 2) could explain the
discrepancy. If f0 or a component ∂f0/∂xj is very large, then give serious thought to
scaling the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference
estimate is therefore wrong), you can specify Verify level 0 to prevent individual elements
from being checked. However, the optimization procedure may have difficulty.

For INFO 52, at least one of the computed constraint derivatives is significantly different
from an estimate obtained by forward-differencing the constraint vector f(x) of problem
NP. Follow the advice for INFO 51, trying to ensure that the arrays F and G are being set
correctly in usrfun or funcon.

EXIT -- 60 Undefined user-supplied functions

INFO -- 61 undefined function at the first feasible point

INFO -- 62 undefined function at the initial point

INFO -- 63 unable to proceed into undefined region

The parameter mode was assigned the value−1 in one of the user-defined routines usrfun,
funobj or funcon. This value is used to indicate that the functions are undefined at the
current point. DNOPT attempts to evaluate the problem functions closer to a point at which
the functions have already been computed.

For INFO 61 and 62, DNOPT was unable to proceed because the functions are undefined
at the initial point or the first feasible point.

For INFO 63, repeated attempts to move into a region where the functions are not defined
resulted in the change in variables being unacceptably small. At the final point, it appears
that the only way to decrease the merit function is to move into a region where the problem
functions are not defined.

EXIT -- 70 User requested termination

INFO -- 71 terminated during function evaluation

INFO -- 72 terminated during constraint evaluation

INFO -- 73 terminated during objective evaluation

INFO -- 74 terminated from monitor routine

These exits occur when Status < −1 is set during some call to the user-defined routines.
DNOPT assumes that you want the problem to be abandoned immediately.

70 DNOPT User’s Guide

EXIT -- 80 Insufficient storage allocated

INFO -- 81 work arrays must have at least 500 elements

INFO -- 82 not enough character storage

INFO -- 83 not enough integer storage

INFO -- 84 not enough real storage

DNOPT cannot start to solve a problem unless the character, integer, and real work
arrays are at least 500 elements.

If the storage arrays cw(*), iw(*), rw(*) are not large enough for the current problem,
an estimate of the additional storage required is given in messages preceding the exit. The
routine declaring cw, iw, rw should be recompiled with larger dimensions lencw, leniw,
lenrw.

EXIT -- 90 Input arguments out of range

INFO -- 91 invalid input argument

These conditions occur if some data associated with the problem is out of range.
For INFO 91, at least one input argument for the interface is invalid. The Print and

Summary files provide more detail about which arguments must be modified.

7.5. Solution output

At the end of a run, the final solution is output to the Print file in accordance with the
Solution keyword. Some header information appears first to identify the problem and the
final state of the optimization procedure. A variables section, a nonlinear constraint section
and a linear constraint section then follow, giving one line of information for each variable
and constraint.

An example of the printed solution is given in Section 7. In general, numerical values
are output with format f16.5. The maximum record length is 111 characters, including the
first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The
values ±1 are also printed specially as 1.0 and -1.0. Infinite bounds (±1020 or larger) are
printed as None.

Note: If two problems are the same except that one minimizes an objective f0(x) and the
other maximizes −f0(x), their solutions will be the same but the signs of the dual variables
πi and the reduced gradients dj will be reversed.

The VARIABLES section

Here we talk about the “variables” xj , j = 1: n. We assume that a typical variable has
bounds α ≤ xj ≤ β.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the
iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.

LL xj is in the working set at its lower limit, α.

UL xj is in the working set at its upper limit, β.

7. Output 71

EQ xj is in the working set and fixed at the value α = β.

FX xj is temporarily fixed at some value strictly between its bounds: α < xj < β.

FR xj is not in the working set. Usually α < xj < β.

A key is sometimes printed before the State to give some additional information
about the state of xj .

A Alternative optimum possible. The variable is in the working set, but its La-
grange multiplier is essentially zero. This means that if xj were allowed to
start moving from its current value, there would be no change in the objective
function. The values of other variables and constraints not in the working set
might change, giving a genuine alternative solution. The values of the dual
variables might also change.

D Degenerate. xj is not in the working set, but it is equal to (or very close to)
one of its bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by more than
the Feasibility tolerance.

N Not precisely optimal. xj is in the working set. Its dual infeasibility is larger
than the Major optimality tolerance.

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled
problem because the keys are then more likely to be meaningful.

Value The value of the variable xj .

Lower bound α, the lower bound on xj .

Upper bound β, the upper bound on xj .

Lagr multiplier The dual variable is the value zj = gj−πTaj , where aj is the jth column
of the constraint matrix (or the jth column of the Jacobian at the start of the final
major iteration).

Slack The amount by which the variable differs from its nearest bound. (For free rows, it
is taken to be minus the Value.)

The NONLINEAR ROWS and LINEAR ROWS sections

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the
form

α ≤ aTx ≤ β,

and the value of aTx is called the constraint value.
Nonlinear constraints α ≤ fi(x) + aTx ≤ β are treated similarly.

Label Description

Number The value n + i. This is the internal number used to refer to the ith row in the
iteration log.

Row The name of the ith constraint.

State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is in the working set at its lower limit, α.

72 DNOPT User’s Guide

UL The row is in the working set at its upper limit, β.

EQ The row is in the working set with α = β.

FR The constraint is not in the working set.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The constraint is active, but its Lagrange multi-
pliers is essentially zero. This means that if the constraint value were allowed to
start moving from its current value, there would be no change in the objective
function. The values of the dual variables might also change.

D Degenerate. The constraint is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The constraint is free and is currently violating one of its bounds
by more than the Feasibility tolerance.

N Not precisely optimal. The constraint is active. Its Lagrange multiplier is larger
than the Major optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled
problem because the keys are then more likely to be meaningful.

Value The constraint value aTx (or fi(x) + aTx for nonlinear constraints).

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual variable The value of the Lagrange multiplier πi, often called the shadow price (or
simplex multiplier) for the ith constraint.

Slack The amount by which the constraint value differs from its nearest bound. (For free
rows, it is taken to be minus the Value.)

The following SOLUTION file is from the example of Section 3.2, using Solution Yes.

7. Output 73

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

D
N
O
P
T

2
.
2
-
1

(
M
a
y
2
0
1
6
)

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

S
P
E
C
S
f
i
l
e

-
-
-
-
-
-
-
-
-
-

B
e
g
i
n

O
p
t
i
o
n
s
f
o
r
d
n
t
o
y

(
e
x
a
m
p
l
e
p
r
o
g
r
a
m
f
o
r
d
n
o
p
t
)

M
a
j
o
r
I
t
e
r
a
t
i
o
n
s
L
i
m
i
t

5
0

M
a
j
o
r
P
r
i
n
t
L
e
v
e
l

1
*
O
n
e
l
i
n
e
o
r
m
o
r
e
e
v
e
r
y
m
a
j
o
r

M
i
n
o
r
P
r
i
n
t
L
e
v
e
l

0
*
O
n
e
l
i
n
e

e
v
e
r
y
m
i
n
o
r
s

P
r
i
n
t

F
r
e
q
u
e
n
c
y

1
*
P
r
i
n
t
e
v
e
r
y
i
t
n

S
u
m
m
a
r
y
F
r
e
q
u
e
n
c
y

1
*
P
r
i
n
t
e
v
e
r
y
i
t
n

S
o
l
u
t
i
o
n

Y
e
s

E
l
a
s
t
i
c
w
e
i
g
h
t

1
0
0
.
0

E
n
d

O
p
t
i
o
n
s
f
o
r
d
n
t
o
y

D
N
S
P
E
C

E
X
I
T
1
0
0
-
-
f
i
n
i
s
h
e
d
s
u
c
c
e
s
s
f
u
l
l
y

D
N
S
P
E
C

I
N
F
O
1
0
1
-
-
S
P
E
C
S
f
i
l
e
r
e
a
d

P
a
r
a
m
e
t
e
r
s

=
=
=
=
=
=
=
=
=
=

F
i
l
e
s

-
-
-
-
-

S
t
a
n
d
a
r
d
i
n
p
u
t
.
.
.
.
.
.
.
.
.

5
S
o
l
u
t
i
o
n
f
i
l
e
.
.
.
.
.
.
.
.
.
.

0

(
P
r
i
n
t
e
r
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.

9

(
S
p
e
c
s
f
i
l
e
)
.
.
.
.
.
.
.
.
.
.
.

4

S
t
a
n
d
a
r
d
o
u
t
p
u
t
.
.
.
.
.
.
.
.

6

F
r
e
q
u
e
n
c
i
e
s

-
-
-
-
-
-
-
-
-
-
-

P
r
i
n
t
f
r
e
q
u
e
n
c
y
.
.
.
.
.
.
.
.

1
C
h
e
c
k
f
r
e
q
u
e
n
c
y
.
.
.
.
.
.
.
.

6
0

E
x
p
a
n
d
f
r
e
q
u
e
n
c
y
.
.
.
.
.
.
.

1
0
0
0
0

74 DNOPT User’s Guide

S
u
m
m
a
r
y
f
r
e
q
u
e
n
c
y
.
.
.
.
.
.

1
F
a
c
t
o
r
i
z
a
t
i
o
n
f
r
e
q
u
e
n
c
y

5
0

H
e
s
s
i
a
n
f
r
e
q
u
e
n
c
y
.
.
.
.
.
.

3
0

Q
P
s
u
b
p
r
o
b
l
e
m
s

-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
c
a
l
e
t
o
l
e
r
a
n
c
e
.
.
.
.
.
.
.
.

0
.
0
0
0

M
i
n
o
r
f
e
a
s
i
b
i
l
i
t
y
t
o
l
.
.

1
.
0
0
E
-
0
6

I
t
e
r
a
t
i
o
n
l
i
m
i
t
.
.
.
.
.
.
.
.

1
0
0
0

S
c
a
l
e
o
p
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.

0
M
i
n
o
r
o
p
t
i
m
a
l
i
t
y
t
o
l
.
.
.

1
.
0
0
E
-
0
6

M
i
n
o
r
p
r
i
n
t
l
e
v
e
l
.
.
.
.
.
.

0

C
r
a
s
h
t
o
l
e
r
a
n
c
e
.
.
.
.
.
.
.
.

0
.
1
0
0

P
i
v
o
t
t
o
l
e
r
a
n
c
e
.
.
.
.
.
.
.
.

3
.
2
5
E
-
1
1

C
r
a
s
h
o
p
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.

3

T
h
e
S
Q
P
M
e
t
h
o
d

-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
i
n
i
m
i
z
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

C
o
l
d
s
t
a
r
t
.
.
.
.
.
.
.
.
.
.
.
.
.

P
r
o
x
i
m
a
l
p
o
i
n
t
m
e
t
h
o
d
.
.

1

N
o
n
l
i
n
e
a
r
o
b
j
e
c
t
i
v
v
a
r
s

3
M
a
j
o
r
o
p
t
i
m
a
l
i
t
y
t
o
l
.
.
.

2
.
0
0
E
-
0
6

F
u
n
c
t
i
o
n
p
r
e
c
i
s
i
o
n
.
.
.
.
.

3
.
0
0
E
-
1
3

U
n
b
o
u
n
d
e
d
s
t
e
p
s
i
z
e
.
.
.
.

1
.
0
0
E
+
2
0

M
a
x
d
e
g
r
e
e
s
o
f
f
r
e
e
d
o
m
.

4
D
i
f
f
e
r
e
n
c
e
i
n
t
e
r
v
a
l
.
.
.
.

5
.
4
8
E
-
0
7

U
n
b
o
u
n
d
e
d
o
b
j
e
c
t
i
v
e
.
.
.
.

1
.
0
0
E
+
1
0

E
l
a
s
t
i
c
w
e
i
g
h
t
.
.
.
.
.
.
.
.
.

1
.
0
0
E
+
0
2

C
e
n
t
r
a
l
d
i
f
f
e
r
e
n
c
e
i
n
t
.

6
.
7
0
E
-
0
5

M
a
j
o
r
s
t
e
p
l
i
m
i
t
.
.
.
.
.
.
.

2
.
0
0
E
+
0
0

D
e
r
i
v
a
t
i
v
e
l
i
n
e
s
e
a
r
c
h
.
.

D
e
r
i
v
a
t
i
v
e
l
e
v
e
l
.
.
.
.
.
.
.

3

M
a
j
o
r
i
t
e
r
a
t
i
o
n
s
l
i
m
i
t
.

5
0

L
i
n
e
s
e
a
r
c
h
t
o
l
e
r
a
n
c
e
.
.
.

0
.
9
0
0
0
0

V
e
r
i
f
y
l
e
v
e
l
.
.
.
.
.
.
.
.
.
.
.

0

M
i
n
o
r
i
t
e
r
a
t
i
o
n
s
l
i
m
i
t
.

1
0
0

P
e
n
a
l
t
y
p
a
r
a
m
e
t
e
r
.
.
.
.
.
.

0
.
0
0
E
+
0
0

M
a
j
o
r
P
r
i
n
t
L
e
v
e
l
.
.
.
.
.
.

1

T
i
m
e
l
i
m
i
t
(
s
e
c
s
)
.
.
.
.
.
.
9
9
9
9
9
9
9
.
0

H
e
s
s
i
a
n
A
p
p
r
o
x
i
m
a
t
i
o
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
e
s
s
i
a
n
q
u
a
s
i
-
N
e
w
t
o
n
.
.
.

H
e
s
s
i
a
n
u
p
d
a
t
e
s
.
.
.
.
.
.
.
.

3
0

N
o
n
l
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
s

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N
o
n
l
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
s
.
.

2
M
a
j
o
r
f
e
a
s
i
b
i
l
i
t
y
t
o
l
.
.

1
.
0
0
E
-
0
6

V
i
o
l
a
t
i
o
n
l
i
m
i
t
.
.
.
.
.
.
.
.

1
.
0
0
E
+
0
6

N
o
n
l
i
n
e
a
r
J
a
c
o
b
i
a
n
v
a
r
s

2

M
i
s
c
e
l
l
a
n
e
o
u
s

-
-
-
-
-
-
-
-
-
-
-
-
-

D
e
b
u
g
l
e
v
e
l
.
.
.
.
.
.
.
.
.
.
.
.

0
T
i
m
i
n
g
l
e
v
e
l
.
.
.
.
.
.
.
.
.
.
.

3

e
p
s
(
m
a
c
h
i
n
e
p
r
e
c
i
s
i
o
n
)

2
.
2
2
E
-
1
6

S
y
s
t
e
m
i
n
f
o
r
m
a
t
i
o
n
.
.
.
.
.

N
o

S
t
i
c
k
y
p
a
r
a
m
e
t
e
r
s
.
.
.
.
.
.

N
o

7. Output 75

T
o
t
a
l
c
h
a
r
*
8

w
o
r
k
s
p
a
c
e

5
0
0

T
o
t
a
l
i
n
t
e
g
e
r
w
o
r
k
s
p
a
c
e

4
0
0
0

T
o
t
a
l
r
e
a
l

w
o
r
k
s
p
a
c
e

3
0
0
0

T
o
t
a
l
c
h
a
r
*
8

(
m
i
n
i
m
u
m
)

5
0
0

T
o
t
a
l
i
n
t
e
g
e
r
(
m
i
n
i
m
u
m
)

5
3
2

T
o
t
a
l
r
e
a
l

(
m
i
n
i
m
u
m
)

7
5
4

M
a
t
r
i
x
s
t
a
t
i
s
t
i
c
s

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
o
t
a
l

N
o
r
m
a
l

F
r
e
e

F
i
x
e
d

B
o
u
n
d
e
d

R
o
w
s

4
1

1
2

0

C
o
l
u
m
n
s

4
2

2
0

0

B
i
g
g
e
s
t

c
o
n
s
t
a
n
t
e
l
e
m
e
n
t

4
.
0
0
0
0
E
+
0
0

(
e
x
c
l
u
d
i
n
g
f
i
x
e
d
c
o
l
u
m
n
s
,

S
m
a
l
l
e
s
t
c
o
n
s
t
a
n
t
e
l
e
m
e
n
t

0
.
0
0
0
0
E
+
0
0

f
r
e
e
r
o
w
s
,
a
n
d
R
H
S
)

N
o
.
o
f
o
b
j
e
c
t
i
v
e
c
o
e
f
f
i
c
i
e
n
t
s

1

B
i
g
g
e
s
t

3
.
0
0
0
0
E
+
0
0

(
e
x
c
l
u
d
i
n
g
f
i
x
e
d
c
o
l
u
m
n
s
)

S
m
a
l
l
e
s
t

3
.
0
0
0
0
E
+
0
0

N
o
n
l
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
s

2
L
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
s

2

N
o
n
l
i
n
e
a
r
v
a
r
i
a
b
l
e
s

3
L
i
n
e
a
r
v
a
r
i
a
b
l
e
s

1

J
a
c
o
b
i
a
n

v
a
r
i
a
b
l
e
s

2
O
b
j
e
c
t
i
v
e
v
a
r
i
a
b
l
e
s

3

T
o
t
a
l
c
o
n
s
t
r
a
i
n
t
s

4
T
o
t
a
l
v
a
r
i
a
b
l
e
s

4

T
h
e
u
s
e
r
h
a
s
d
e
f
i
n
e
d

4
o
u
t
o
f

4
c
o
n
s
t
r
a
i
n
t
g
r
a
d
i
e
n
t
s
.

T
h
e
u
s
e
r
h
a
s
d
e
f
i
n
e
d

3
o
u
t
o
f

3
o
b
j
e
c
t
i
v
e

g
r
a
d
i
e
n
t
s
.

C
h
e
a
p
t
e
s
t
o
f
u
s
e
r
-
s
u
p
p
l
i
e
d
p
r
o
b
l
e
m
d
e
r
i
v
a
t
i
v
e
s
.
.
.

T
h
e
c
o
n
s
t
r
a
i
n
t
g
r
a
d
i
e
n
t
s
s
e
e
m
t
o
b
e
O
K
.

-
-
>

T
h
e
l
a
r
g
e
s
t
d
i
s
c
r
e
p
a
n
c
y
w
a
s

1
.
2
2
E
-
0
7

i
n
c
o
n
s
t
r
a
i
n
t

1

T
h
e
o
b
j
e
c
t
i
v
e

g
r
a
d
i
e
n
t
s
s
e
e
m
t
o
b
e
O
K
.

G
r
a
d
i
e
n
t
p
r
o
j
e
c
t
e
d
i
n
o
n
e
d
i
r
e
c
t
i
o
n

0
.
0
0
0
0
0
0
0
0
0
0
0
E
+
0
0

76 DNOPT User’s Guide

D
i
f
f
e
r
e
n
c
e
a
p
p
r
o
x
i
m
a
t
i
o
n

6
.
0
8
5
9
0
1
1
6
1
6
9
E
-
0
8

I
t
n
s
M
a
j
o
r
m
i
n
o
r
s

S
t
e
p

n
C
o
n
F
e
a
s
i
b
l
e

O
p
t
i
m
a
l

M
e
r
i
t
F
u
n
c
t
i
o
n

n
Z

c
o
n
d
H
z
P
e
n
a
l
t
y

2
0

2
1

4
.
0
E
+
0
0

4
.
0
E
-
0
1

0
.
0
0
0
0
0
0
0
E
+
0
0

1
1
.
0
E
+
0
0

_
r

3
1

1
3
.
3
E
-
0
1

2
2
.
7
E
+
0
0

3
.
1
E
-
0
1

2
.
8
6
6
6
6
6
7
E
+
0
1

1
1
.
0
E
+
0
0
3
.
5
E
+
0
0
_

r
l

4
2

1
4
.
3
E
-
0
1

3
7
.
5
E
-
0
1

6
.
7
E
-
0
1

2
.
9
3
1
5
6
5
5
E
+
0
1

1
1
.
0
E
+
0
0
3
.
9
E
+
0
0
_
s

l

7
3

3
1
.
0
E
+
0
0

5
5
.
9
E
-
0
2

1
.
2
E
+
0
0

2
.
6
8
3
6
4
1
7
E
+
0
1

1
1
.
0
E
+
0
0
3
.
9
E
+
0
0
_
m

8
4

1
4
.
8
E
-
0
1

1
0

5
.
0
E
-
0
1

3
.
4
E
+
0
0

1
.
8
1
1
4
9
7
1
E
+
0
1

1
1
.
0
E
+
0
0
3
.
9
E
+
0
0
_
m

9
5

1
1
.
0
E
+
0
0

1
1

6
.
3
E
-
0
3

2
.
8
E
+
0
0

1
.
0
0
0
1
1
4
7
E
+
0
1

3
.
9
E
+
0
0
_

1
0

6
1
1
.
0
E
+
0
0

1
3

8
.
2
E
-
0
1

9
.
0
E
-
0
1

7
.
8
9
3
7
5
0
5
E
-
0
1

1
1
.
0
E
+
0
0
3
.
9
E
+
0
0
_
m

1
1

7
1
1
.
0
E
+
0
0

1
5

1
.
3
E
-
0
1

1
.
0
E
+
0
0

4
.
1
6
8
5
8
2
2
E
+
0
0

2
.
1
E
+
0
1
_
M

1
1

8
0
1
.
0
E
+
0
0

1
6

4
.
1
E
-
0
2

3
.
5
E
-
0
1

2
.
0
7
3
8
1
9
8
E
+
0
0

5
.
3
E
+
0
0
_

1
2

9
1
1
.
0
E
+
0
0

1
7

8
.
5
E
-
0
3

7
.
2
E
-
0
2

1
.
9
0
7
4
9
4
1
E
+
0
0

1
1
.
0
E
+
0
0
5
.
6
E
+
0
2
_

1
3

1
0

1
1
.
0
E
+
0
0

1
8

6
.
2
E
-
0
4

1
.
0
E
-
0
2

1
.
9
0
2
1
1
4
9
E
+
0
0

1
1
.
0
E
+
0
0
9
.
3
E
+
0
3
_

1
4

1
1

1
1
.
0
E
+
0
0

1
9

9
.
4
E
-
0
6

4
.
0
E
-
0
4

1
.
9
0
0
1
6
4
1
E
+
0
0

1
1
.
0
E
+
0
0
8
.
7
E
+
0
5
_

1
5

1
2

1
1
.
0
E
+
0
0

2
0
(
1
.
4
E
-
0
8
)
2
.
6
E
-
0
6

1
.
9
0
0
1
2
5
2
E
+
0
0

1
1
.
0
E
+
0
0
1
.
8
E
+
0
9
_

1
6

1
3

1
1
.
0
E
+
0
0

2
1
(
5
.
9
E
-
1
3
)
(
3
.
2
E
-
0
9
)
1
.
9
0
0
1
2
5
0
E
+
0
0

1
1
.
0
E
+
0
0
4
.
3
E
+
1
4
_

D
N
O
P
T

E
X
I
T

0
-
-
f
i
n
i
s
h
e
d
s
u
c
c
e
s
s
f
u
l
l
y

D
N
O
P
T

I
N
F
O

1
-
-
o
p
t
i
m
a
l
i
t
y
c
o
n
d
i
t
i
o
n
s
s
a
t
i
s
f
i
e
d

P
r
o
b
l
e
m
n
a
m
e

T
o
y

N
o
.
o
f
i
t
e
r
a
t
i
o
n
s

1
6

O
b
j
e
c
t
i
v
e

1
.
9
0
0
1
2
4
9
9
9
2
E
+
0
0

N
o
.
o
f
m
a
j
o
r
i
t
e
r
a
t
i
o
n
s

1
3

L
i
n
e
a
r

o
b
j
.
t
e
r
m

9
.
9
6
2
5
0
0
2
7
7
7
E
-
0
2

P
e
n
a
l
t
y
p
a
r
a
m
e
t
e
r

4
.
2
6
4
E
+
1
4

N
o
n
l
i
n
e
a
r
o
b
j
.
t
e
r
m

1
.
8
0
0
4
9
9
9
9
6
4
E
+
0
0

N
o
.
o
f
c
a
l
l
s
t
o
f
u
n
o
b
j

2
2

N
o
.
o
f
c
a
l
l
s
t
o
f
u
n
c
o
n

2
2

D
e
g
r
e
e
s
o
f
f
r
e
e
d
o
m

1

N
o
.
o
f
d
e
g
e
n
e
r
a
t
e
s
t
e
p
s

0
P
e
r
c
e
n
t
a
g
e

0
.
0
0

M
a
x
x

2
1
.
4
E
+
0
0

M
a
x
p
i

1
1
.
9
E
+
0
1

M
a
x
P
r
i
m
a
l
i
n
f

0
0
.
0
E
+
0
0

M
a
x
D
u
a
l

i
n
f

1
3
.
8
E
-
0
8

N
o
n
l
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
v
i
o
l
n

5
.
9
E
-
1
3

S
e
c
t
i
o
n
1
-
V
a
r
i
a
b
l
e
s

7. Output 77

N
u
m
b
e
r
.
C
o
l
u
m
n
.
S
t
a
t
e

V
a
l
u
e

L
o
w
e
r
b
o
u
n
d

U
p
p
e
r
b
o
u
n
d

L
a
g
r
m
u
l
t
i
p
l
i
e
r

S
l
a
c
k

1
x
1

F
R

-
0
.
7
0
6
2
2
0
1
E
-
0
1

N
o
n
e

N
o
n
e

2
x
2

F
R

1
.
4
1
2
4
4
9

N
o
n
e

N
o
n
e

3
x
3

L
L

0
.
0
0
0
0
0
0

.
N
o
n
e

2
4
.
6
8
3
7
8

.

4
x
4

F
R

0
.
1
9
9
2
5
0
0
E
-
0
1

.
N
o
n
e

.
0
.
1
9
9
3
E
-
0
1

S
e
c
t
i
o
n
2
-
N
o
n
l
i
n
e
a
r
R
o
w
s

N
u
m
b
e
r
.
.
.
R
o
w
.
.
S
t
a
t
e

V
a
l
u
e

L
o
w
e
r
b
o
u
n
d

U
p
p
e
r
b
o
u
n
d

L
a
g
r
m
u
l
t
i
p
l
i
e
r

S
l
a
c
k

5
n
c
1

E
Q

2
.
0
0
0
0
0
0

2
.
0
0
0
0
0
0

2
.
0
0
0
0
0
0

-
1
9
.
0
0
0
1
2

-
0
.
5
8
8
4
E
-
1
2

6
n
c
2

E
Q

4
.
0
0
0
0
0
0

4
.
0
0
0
0
0
0

4
.
0
0
0
0
0
0

5
.
0
0
0
0
0
0

-
0
.
2
1
3
2
E
-
1
3

S
e
c
t
i
o
n
3
-
L
i
n
e
a
r
R
o
w
s

N
u
m
b
e
r
.
.
.
R
o
w
.
.
S
t
a
t
e

V
a
l
u
e

L
o
w
e
r
b
o
u
n
d

U
p
p
e
r
b
o
u
n
d

L
a
g
r
m
u
l
t
i
p
l
i
e
r

S
l
a
c
k

7
l
c
1

F
R

5
.
5
0
8
5
5
2

.
N
o
n
e

.
5
.
5
0
9

8
l
c
2

F
R

0
.
9
9
6
2
5
0
0
E
-
0
1

N
o
n
e

N
o
n
e

78 DNOPT User’s Guide

7.6. The SOLUTION file

The information in a printed solution (Section 7.5) may be output as a Solution file, accord-
ing to the Solution file option (which may refer to the Print file if so desired). Infinite
bounds appear as ±1020 rather than None. Other numerical values are output with format
1p, e16.6.

A Solution file is intended to be read by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically the first 14 records
would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that
starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
COLUMNS section can then be read under the same format. (There should be no need for
backspace statements.)

7.7. The SUMMARY file

If Summary file > 0, the following information is output to the Summary file. (It is a brief
form of the Print file.) All output lines are less than 72 characters.

• The Begin line from the Specs file, if any.

• The basis file loaded, if any.

• A brief Major iteration log.

• A brief Minor iteration log.

• The EXIT condition and a summary of the final solution.

The following Summary file is from the example of Section 3.2, using Major print level

1 and Minor print level 0.

==============================

D N O P T 2.2-1 (May 2016)

==============================

Begin Options for dntoy (example program for dnopt)

DNSPEC EXIT 100 -- finished successfully

DNSPEC INFO 101 -- SPECS file read

Nonlinear constraints 2 Linear constraints 2

Nonlinear variables 3 Linear variables 1

Jacobian variables 2 Objective variables 3

Total constraints 4 Total variables 4

Starting dntoy

The user has defined 4 out of 4 constraint gradients.

The user has defined 3 out of 3 objective gradients.

Major minors Step nCon Feasible Optimal MeritFunction nZ Penalty

0 2 - 1 4.0E+00 4.0E-01 0.0000000E+00 1 r

1 1 3.3E-01 2 2.7E+00 3.1E-01 2.8666667E+01 1 3.5E+00 rl

2 1 4.3E-01 3 7.5E-01 6.7E-01 2.9315655E+01 1 3.9E+00 s l

3 3 1.0E+00 5 5.9E-02 1.2E+00 2.6836417E+01 1 3.9E+00 m

4 1 4.8E-01 10 5.0E-01 3.4E+00 1.8114971E+01 1 3.9E+00 m

7. Output 79

5 1 1.0E+00 11 6.3E-03 2.8E+00 1.0001147E+01 3.9E+00

6 1 1.0E+00 13 8.2E-01 9.0E-01 7.8937505E-01 1 3.9E+00 m

7 1 1.0E+00 15 1.3E-01 1.0E+00 4.1685822E+00 2.1E+01 M

8 0 1.0E+00 16 4.1E-02 3.5E-01 2.0738198E+00 5.3E+00

9 1 1.0E+00 17 8.5E-03 7.2E-02 1.9074941E+00 1 5.6E+02

Major minors Step nCon Feasible Optimal MeritFunction nZ Penalty

10 1 1.0E+00 18 6.2E-04 1.0E-02 1.9021149E+00 1 9.3E+03

11 1 1.0E+00 19 9.4E-06 4.0E-04 1.9001641E+00 1 8.7E+05

12 1 1.0E+00 20 (1.4E-08) 2.6E-06 1.9001252E+00 1 1.8E+09

13 1 1.0E+00 21 (5.9E-13)(3.2E-09) 1.9001250E+00 1 4.3E+14

DNOPT EXIT 0 -- finished successfully

DNOPT INFO 1 -- optimality conditions satisfied

Problem name Toy

No. of iterations 16 Objective 1.9001249992E+00

No. of major iterations 13 Linear obj. term 9.9625002777E-02

Penalty parameter 4.264E+14 Nonlinear obj. term 1.8004999964E+00

No. of calls to funobj 22 No. of calls to funcon 22

Degrees of freedom 1

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.4E+00 Max pi 1 1.9E+01

Max Primal inf 0 0.0E+00 Max Dual inf 1 3.8E-08

Nonlinear constraint violn 5.9E-13

Solution printed on file 9

Finishing dntoy

Acknowledgements

We are grateful to Mark Milam and Mike Messina of Northrop Grumman Aerospace Systems
for their helpful comments during the development of the DNOPT package. We would also
like to thank Mark Milam for his invaluable support of the DNOPT project.

80 DNOPT User’s Guide

References
[1] A. R. Conn, Constrained optimization using a nondifferentiable penalty function, SIAM J. Numer.

Anal., 10 (1973), pp. 760–779. 10

[2] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, New
Jersey, 1963. 4

[3] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, A Fortran-to-C converter, Com-
puting Science Technical Report 149, AT&T Bell Laboratories, Murray Hill, NJ, 1990. 4

[4] R. Fletcher, An `1 penalty method for nonlinear constraints, in Numerical Optimization 1984, P. T.
Boggs, R. H. Byrd, and R. B. Schnabel, eds., Philadelphia, 1985, SIAM, pp. 26–40. 10

[5] R. Fourer, Solving staircase linear programs by the simplex method. 1: Inversion, Math. Program.,
23 (1982), pp. 274–313. 58

[6] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale constrained
optimization, SIAM J. Optim., 12 (2002), pp. 979–1006. 4

[7] , SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005),
pp. 99–131. 4

[8] , User’s guide for SNOPT Version 7: Software for large-scale nonlinear programming, Numerical
Analysis Report 06-2, Department of Mathematics, University of California, San Diego, La Jolla, CA,
2006. 4

[9] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Procedures for optimization problems
with a mixture of bounds and general linear constraints, ACM Trans. Math. Software, 10 (1984),
pp. 282–298. 9

[10] , User’s guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming, Report
SOL 86-2, Department of Operations Research, Stanford University, Stanford, CA, 1986. 36

[11] , A practical anti-cycling procedure for linearly constrained optimization, Math. Program., 45
(1989), pp. 437–474. 52

[12] , Some theoretical properties of an augmented Lagrangian merit function, in Advances in Opti-
mization and Parallel Computing, P. M. Pardalos, ed., North Holland, North Holland, 1992, pp. 101–
128. 10

[13] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], London, 1981. 41

[14] P. E. Gill, M. A. Saunders, and E. Wong, An SQP method for medium-scale nonlinear program-
ming, Center for Computational Mathematics Report CCoM 16-2, Department of Mathematics, Uni-
versity of California, San Diego, La Jolla, CA, 2016. 6

[15] P. E. Gill and E. Wong, Sequential quadratic programming methods, in Mixed Integer Nonlinear
Programming, J. Lee and S. Leyffer, eds., vol. 154 of The IMA Volumes in Mathematics and its
Applications, Springer New York, 2012, pp. 147–224. 7

	Introduction
	Problem types
	Implementation
	Files
	Overview of the package
	Subroutines dnBEGIN, dnEND

	Description of the SQP method
	Major iterations
	Minor iterations
	The merit function
	Treatment of constraint infeasibilities

	The dnOpt interface
	Subroutines used by dnOpt
	Identifying structure in the objective and constraints
	Problem dimensions
	Subroutine dnOpt
	User-supplied subroutines for dnOpt
	Subroutine funcon
	Subroutine funobj
	Constant Jacobian elements
	Example

	The dnOptH interface
	Subroutines used by dnOptH
	Subroutine dnOptH
	User-supplied subroutines for dnOptH
	Subroutine funhes
	Example

	The dnNPSOL interface
	Subroutines used by dnNPSOL
	Subroutine dnNPSOL
	User-supplied subroutines for dnNPSOL
	Subroutine funobj
	Subroutine funcon
	Constant Jacobian elements

	Optional parameters
	The SPECS file
	Multiple sets of options in the Specs file
	SPECS file checklist and defaults
	Subroutine dnSpec
	Subroutines dnSet, dnSetInt, dnSetReal
	Subroutines dnGet, dnGetChar, dnGetInt, dnGetReal
	Description of the optional parameters

	Output
	The PRINT file
	The major iteration log
	The minor iteration log
	EXIT conditions
	Solution output
	The SOLUTION file
	The SUMMARY file

	References
	Index

