
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Active-Set Methods for Quadratic Programming

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Elizabeth Wong

Committee in charge:

Professor Philip E. Gill, Chair
Professor Henry D. I. Abarbanel
Professor Randolph E. Bank
Professor Michael J. Holst
Professor Alison L. Marsden

2011

Copyright

Elizabeth Wong, 2011

All rights reserved.

The dissertation of Elizabeth Wong is approved, and it is accept-

able in quality and form for publication on microfilm and electron-

ically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

List of Algorithms . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Dissertation . xi

1 Introduction . 1
1.1 Overview . 1
1.2 Contributions of this Thesis . 3
1.3 Notation, Definitions, and Useful Results . 4

2 Quadratic Programming . 7
2.1 Background . 7
2.2 Active-Set Methods for Mixed-Constraint Problems 9

2.2.1 Binding-direction method . 12
2.2.2 Nonbinding-direction method . 20
2.2.3 Relation between the binding and nonbinding methods 28

3 Problems in Standard Form . 30
3.1 Introduction . 30
3.2 Nonbinding-Direction Method for Standard-Form QP 31
3.3 Linear Programs in Standard Form . 41

4 Dual Quadratic Programming . 42
4.1 Background . 43

4.1.1 Regularized dual problem . 44
4.2 A Dual Nonbinding-Direction Method . 45

4.2.1 Dual linear programming . 56
4.2.2 Degeneracy of the dual QP . 56

5 Finding an Initial Point . 57
5.1 Getting Feasible . 57
5.2 Second-Order-Consistent Basis . 58

5.2.1 Variable-reduction method . 59
5.2.2 Schur-complement and block-LU method 59

5.3 Stationarity . 61

iv

6 Single-Phase Methods . 63
6.1 Penalty-Function Methods . 63
6.2 QP Regularization . 65
6.3 Inner Iterations . 69

6.3.1 Constraint-shifted approach . 69
6.3.2 Variable-shifted approach . 72

6.4 Outer Iterations . 79

7 Solving the KKT Systems . 81
7.1 Variable-Reduction Method . 81

7.1.1 Equations for the standard-form algorithm 82
7.2 Schur-Complement and Block-LU Method . 84

7.2.1 Augmenting the KKT matrix . 84
7.2.2 Factoring the matrices . 85
7.2.3 Updating the factors . 87

8 Numerical Results . 88
8.1 Implementation . 88
8.2 Performance Profiles . 90
8.3 Results for the Nonbinding-Direction Method . 91

8.3.1 Results on icQP with different linear solvers 92
8.3.2 Results on icQP and SQOPT . 93

A Test Problem Data . 118

Bibliography . 121

v

LIST OF FIGURES

Figure 2.1: Sequence of subspace minimizer for the binding-direction method 18
Figure 2.2: Sequence of subspace minimizer for the nonbinding-direction method 26

Figure 3.1: Subspace minimizer sequence for the nonbinding-direction method 39

Figure 8.1: Performance profile of solve times for icQP on the CUTEr QP test set. 92
Figure 8.2: Performance profile of solve times for icQP on the Maros and Mészáros QP

test set. 93
Figure 8.3: Performance profile of solve times for SQOPT and icQP on 55 convex CUTEr

QPs with a small number of degrees of freedom. 96
Figure 8.4: Performance profile of solve times for SQOPT and icQP on 115 Maros and

Mészáros QPs with a small number of degrees of freedom. 96
Figure 8.5: Performance profile of solve times for SQOPT and icQP on 35 convex CUTEr

QPs with a large number of degrees of freedom. 97
Figure 8.6: Performance profile of solve times for SQOPT and icQP on 21 Maros and

Mészáros QPs with a large number of degrees of freedom. 97
Figure 8.7: Performance profile of solve times for SQOPT and icQP–HSL MA57 on 56 con-

vex CUTEr and Maros and Mészáros QPs with a large number of degrees of
freedom. 98

vi

LIST OF TABLES

Table 8.1: Number of temporary constraints for icQP with HSL MA57 90
Table 8.2: Results on a subset of problems from the CUTEr set for icQP–HSL MA57 and

icQP–HSL MA57v . 94
Table 8.3: Results for CUTEr QPs . 99
Table 8.4: Results for Maros and Mészáros QPs . 104
Table 8.5: Number of superbasics and factorizations for CUTEr problems 110
Table 8.6: Number of superbasics and factorizations for Maros and Mészáros problems . 113
Table 8.7: Number of temporarily fixed variables for a vertex for CUTEr problems 116
Table 8.8: Number of temporarily fixed variables for a vertex for Maros and Mészáros

problems . 117

Table A.1: Problem sizes for CUTEr QPs . 118
Table A.2: Problem sizes for Maros and Mészáros QPs . 119

vii

LIST OF ALGORITHMS

Algorithm 2.1: Binding-direction method for general QP 19
Algorithm 2.2: Nonbinding-direction method for general QP 27

Algorithm 3.1: Nonbinding-direction method for a general QP in standard form 40

Algorithm 4.1: Dual nonbinding-direction method for a convex QP in standard form . . 54

Algorithm 6.1: Constraint-shifted algorithm . 73
Algorithm 6.2: Variable-shifted algorithm . 78
Algorithm 6.3: Bound-constrained Lagrangian algorithm 80

viii

ACKNOWLEDGEMENTS

It would several pages to thank my advisor Philip Gill. I am most grateful for his patience

and encouragement over the years. I am also thankful for the funding he has provided, and for

the opportunities to travel to various conferences and workshops around the world. On a lighter

note, I would also like to thank Philip for teaching me the importance of booking air travel in

advance, and the aesthetic value of dropping subscripts in LATEX.

I would like to thank Henry Abarbanel, Randy Bank, Michael Holst, and Alison Marsden

for taking time to be on my committee.

I would also like to thank Michael Saunders for numerous conversations about quadratic

programming and all things in life, and for his company at several workshops and conferences. I

would also like to thank Michael for inviting me to give a talk at Stanford University.

Some of the work in this dissertation would not be possible without the help of Iain Duff,

who provided an additional subroutine for HSL MA57. I also thank Chris Maes for discussions

on the interfaces to various testing environments.

Finally, I would like to thank my mom (who jokingly tells people who mention how hard

it must be to get a Ph.D., that she doesn’t think it’s hard because she never sees me working),

my sister, and all of my friends, some of whom I don’t see for months, yet always seem to be

there for me. I thank all of them for their love and support through the years.

ix

VITA

2005 B.A. Computer Science, University of California, San Diego
B.A. Mathematics, University of California, San Diego

2007 M.A. Applied Mathematics, University of California, San Diego

2011 Ph.D. Mathematics, University of California, San Diego

PUBLICATIONS

H. D. I. Abarbanel, P. Bryant, P. E. Gill, M. Kostuk, J. Rofeh, Z. Singer, B. Toth, and E. Wong.
Dynamical parameter and state estimation in neuron models. In M. Ding and D. Glanzman,
editors, An Exploration of Neuronal Variability and its Functional Significance, 139–180. Oxford
University Press, New York and Oxford, 2011.

P. E. Gill and E. Wong. Sequential quadratic programming methods. In J. Lee and S. Leyffer,
editors, Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications, The
IMA Volumes in Mathematics and its Applications. Springer Verlag, Berlin, Heidelberg, and
New York, 2011 (To appear).

x

ABSTRACT OF THE DISSERTATION

Active-Set Methods for Quadratic Programming

by

Elizabeth Wong

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Philip E. Gill, Chair

Computational methods are considered for finding a point satisfying the second-order

necessary conditions for a general (possibly nonconvex) quadratic program (QP). A framework

for the formulation and analysis of feasible-point active-set methods is proposed for a generic

QP. This framework is defined by reformulating and extending an inertia-controlling method

for general QP that was first proposed by Fletcher and subsequently modified by Gould. This

reformulation defines a class of methods in which a primal-dual search pair is the solution of a

“KKT system” of equations associated with an equality-constrained QP subproblem defined in

terms of a “working set” of linearly independent constraints. It is shown that, under certain

circumstances, the solution of this KKT system may be updated using a simple recurrence rela-

tion, thereby giving a significant reduction in the number of systems that need to be solved. The

use of inertia control guarantees that the KKT systems remain nonsingular throughout, thereby

allowing the utilization of third-party linear algebra software.

The algorithm is suitable for indefinite problems, making it an ideal QP solver for stand-

alone applications and for use within a sequential quadratic programming method using exact

xi

second derivatives. The proposed framework is applied to primal and dual quadratic problems,

as well as to single-phase problems that combine the feasibility and optimality phases of the

active-set method, producing a range of formats that are suitable for a variety of applications.

The algorithm is implemented in the Fortran code icQP. Its performance is evaluated

using different symmetric and unsymmetric linear solvers on a set of convex and nonconvex

problems. Results are presented that compare the performance of icQP with the convex QP

solver SQOPT on a large set of convex problems.

xii

1 Introduction

1.1 Overview

Quadratic programming (QP) minimizes a quadratic objective function subject to linear

constraints on the variables. A general form of the problem may be written with mixed (equality

and inequality) constraints as

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx

subject to Ax = b, ` ≤ Dx ≤ u,

where ϕ is the quadratic objective function, H is the symmetric n × n Hessian matrix, c ∈ Rn

is the constant objective vector, A is the m × n equality constraint matrix, D is the mD × n
inequality constraint matrix, and ` and u are vectors such that ` ≤ u.

The difficulty of solving a QP depends on the convexity of the quadratic objective func-

tion. If the Hessian matrix H is positive semidefinite, then the QP is convex. In this case, a local

solution of the QP is also a global solution. However, when H is indefinite, the QP is nonconvex

and the problem is NP-hard—even for the calculation of a local minimizer [12, 32].

The majority of methods for solving quadratic programs can be categorized into either

active-set methods (which are discussed heavily in Section 2.2) or interior methods. Briefly,

active-set methods are iterative methods that solve a sequence of equality-constrained quadratic

subproblems. The goal of the method is to predict the active set, the set of constraints that are

satisfied with equality, at the solution of the problem. The conventional active-set method is

divided into two phases; the first focuses on feasibility, while the second focuses on optimality.

An advantage of active-set methods is that the methods are well-suited for “warm starts”, where

a good estimate of the optimal active set is used to start the algorithm. This is particularly useful

in applications where a sequence of quadratic programs is solved, e.g., in a sequential quadratic

programming method (discussed in the next section) or in an ODE- or PDE-constrained prob-

lem with mesh refinements (e.g., see SNCTRL [46], an optimal control interface for nonlinear

solver SNOPT). Other applications of quadratic programming include portfolio analysis, struc-

tural analysis, and optimal control. Some existing active-set quadratic programming solvers

include QPOPT [37], SQOPT [39], and QPA (part of the GALAHAD library) [51].

1

2

Interior-point methods compute iterates that lie in the interior of the feasible region,

rather than on the boundary of the feasible region. The method computes and follows a contin-

uous path to the optimal solution. In the simplest case, the path is parameterized by a positive

scalar that may be interpreted as a perturbation of the optimality conditions for the problem.

This parameter also serves as a regularization parameter of the linear equations that are solved

at each iteration.

Generally, interior methods require fewer iterations than active-set methods. However,

each iteration of interior-point methods is more expensive because the method must solve linear

systems involving all the variables of the problem whereas active-set methods solve systems

involving some subset of the variables. An advantage of having all variables in the equations

makes the dimension of the equations and the sparsity pattern of the matrix involved fixed

throughout. The path-following feature of interior-point methods also causes difficulties when

the problem is warm-started, as a warm-start point is typically far from the path and many

iterations are required to move onto the path. IPOPT [68] and LOQO [67] are two examples of

interior-point codes.

To simplify the exposition, inequality constraints with only lower bounds are considered

in this thesis, although the methods are easily extended to problems with lower and upper bounds.

The simplified mixed-constraint QP becomes

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx

subject to Ax = b, Dx ≥ f,
(1.1)

where f is a constant vector. If the inequality constraint matrix D is the identity matrix, and

the vector f of lower bounds is zero, then the problem said to be in standard-form, where the

constraints are linear equalities and simple bounds on the variables:

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx

subject to Ax = b, x ≥ 0.
(1.2)

Every QP may be written in standard form. For example, consider a problem with a mixture of

general inequalities and simple bounds:

minimize
x∈Rn,s∈Rm

ϕ(x) = cTx+ 1
2x

THx subject to Ax ≥ 0, x ≥ 0.

By introducing a set of nonnegative slack variables s, the all-inequality problem may be rewritten

as

minimize
x∈Rn,s∈Rm

ϕ(x) = cTx+ 1
2x

THx

subject to Ax− s = 0, x ≥ 0, s ≥ 0.
(1.3)

The advantage of including slack variables is that the constraint matrix
(
A − I

)
trivially has

full row rank, which is an important assumption in the methods to be described. However, for

simplicity, we do not include slack variables explicitly our discussion, but consider only problems

of the form (1.1) or (1.2) with the assumption that the constraint matrix A has full row rank.

3

1.2 Contributions of this Thesis

Our work in quadratic programming is driven by our interest in nonlinear programming

(NLP), the minimization of nonlinear functions subject to nonlinear constraints. An important

algorithm for NLP is sequential quadratic programming (or SQP). The method solves a sequence

of quadratic subproblems whose objective function is a quadratic model of the nonlinear objective

subject to a linearization of the constraints.

The purpose of the work in this thesis is to address some of the difficulties that arise in

SQP methods. In general, it is difficult to implement SQP methods using exact second derivatives

because the QP subproblems can be nonconvex. The complexity of the QP subproblem has been a

major impediment to the formulation of second-derivative SQP methods (although methods based

on indefinite QP have been proposed by Fletcher and Leyffer [30, 31]). To avoid this difficulty,

algorithm developers refrain from using exact second derivatives and instead use a positive-

semidefinite approximation of the Hessian to define convex QP subproblems (see SNOPT [38]).

Another difficulty associated with conventional SQP methods is the reliance on customized linear

algebra software. This prevents algorithms from taking advantage of advanced linear algebra

solvers that can exploit developments in computer hardware and architecture. (For a detailed

review of SQP methods, see [44].) In addition, the presented algorithm will address some of the

deficiencies of the existing convex QP solver SQOPT [39]. The goal is for this work to complement

the capabilities of SQOPT, in order to cover a larger range of problems and applications.

A framework for the formulation and analysis of feasible-point active-set methods is

proposed for a generic QP. This framework is discussed in the context of two broad classes

of active-set method for quadratic programming: binding-direction methods and nonbinding-

direction methods. Broadly speaking, the working set for a binding-direction method consists of

a subset of the active constraints, whereas the working set for a nonbinding direction method

may involve constraints that need not be active (nor even feasible). A binding-direction method

for general QP, first proposed by Fletcher [29] and subsequently modified by Gould [49], is

recast as a nonbinding-direction method. This reformulation defines a class of methods in which

a primal-dual search pair is the solution of a “KKT system” of equations associated with an

equality-constrained QP subproblem defined in terms of a “working set” of linearly independent

constraints. It is shown that, under certain circumstances, the solution of this KKT system

may be updated using a simple recurrence relation, thereby giving a significant reduction in the

number of systems that need to be solved. This framework addresses the current difficulties of

QP methods, creating an algorithm that is suitable for indefinite problems and that is capable

of utilizing external linear algebra software.

In Chapter 2, we provide background information on active-set methods. Detailed de-

scriptions of the binding-direction and nonbinding-direction methods are also given for problems

in mixed-format, providing the framework for the methods discussed in subsequent chapters. In

4

Chapter 3, the nonbinding-direction method is defined for standard-form problems. It will be

shown that the standard-form version of the algorithm leads to a reduction in the dimension

of the KKT systems solved at each iteration. This form of the nonbinding-direction method is

implemented in the Fortran code icQP, and numerical results of this implementation are dis-

cussed in Chapter 8. Chapter 4 considers the application of the nonbinding-direction method

to the dual of a convex quadratic program. Many existing dual methods require the inverse of

the Hessian, limiting the methods to strictly convex problems. It will be shown that the method

presented is appropriate for problems that are not strictly convex. Chapter 5 addresses the issues

of computing an initial point for the algorithm. In Chapter 6, single-phase methods that com-

bine the feasibility and optimality phases of the active-set method are described. Two methods

involving variants of the augmented Lagrangian function are derived. Chapter 7 describes the

two methods for solving the linear equations involved in the QP method. The first approach

utilizes a symmetric transformation of the reduced Hessian matrix. The second approach uses

a symmetric indefinite factorization of a fixed KKT matrix with the factorization of a smaller

matrix that is updated at each iteration of the method.

1.3 Notation, Definitions, and Useful Results

The vector g(x) denotes c + Hx, the gradient of the objective ϕ evaluated at x. Occa-

sionally, the gradient will be referred to as simply g. The vector dTi refers to the i-th row of the

constraint matrix D, so that the i-th inequality constraint is dTi x ≥ fi. The i-th component of

a vector labeled with a subscript will be denoted by [·]i, e.g., [vN]i is the i-th component of the

vector vN . Similarly, a subvector of components with indices in the index set S is denoted by

(·)S , e.g., (vN)S is the vector with components [vN]i for i ∈ S. The symbol I is used to denote

an identity matrix with dimension determined by the context. The j-th column of I is denoted

by ej . The vector e will be used to denote the vector of all ones with length determined by the

context. The vector with components max{−xi, 0} (i.e., the magnitude of the negative part of

x) is denoted by [x]−. Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm

or its induced matrix norm. Given vectors a and b with the same dimension, the vector with i-th

component aibi is denoted by a · b. For any set S and index s, the notation S + {s} is used to

denote the addition of s to the set S. Similar notation with the symbol “−” is used to denote

the removal of an index. Given vectors x, y and z, the long vector consisting of the elements of

x augmented by elements of y and z is denoted by (x, y, z).

Definition 1.3.1 (Inertia of a matrix). Given a symmetric matrix A, its inertia, denoted by

In(A) is the integer triple (a+, a−, a0), giving the number of positive, negative and zero eigenvalues

of A.

Result 1.3.1 (Sylvester’s Law of Inertia). Given a symmetric matrix A and a nonsingular matrix

5

S, then In(STAS) = In(A).

Theorem 1.3.1. Given an n× n symmetric matrix H and an m× n matrix A, let r denote the

rank of A and let the columns of Z form a basis for the null space of A. If K is the matrix

K =

(
H AT

A 0

)
, then In(K) = In(ZTHZ) + (r, r,m− r).

Corollary 1.3.1. Given an n × n symmetric matrix H and an m × n matrix A of rank m, let

the columns of Z form a basis for the null space of A. If K is the matrix

K =

(
H AT

A 0

)
,

then In(K) = In(ZTHZ) + (m,m, 0). If ZTHZ is positive definite, then In(K) = (n,m, 0) and

we say that K has correct inertia.

Theorem 1.3.2. Let H be an n×n symmetric matrix, A be an m×n matrix and scalar µ > 0.

Define K as the matrix

K =

(
H AT

A −µI

)
.

Then In(K) = In(H +
1

µ
ATA) + In(0,m, 0).

Proof. Define the nonsingular matrix S

S =

(
I 0

1
µA I

)
.

By Sylvester’s Law of Inertia,

In(K) = In(STKS) = In

(
H + 1

µA
TA 0

0 −µI

)

= In(H +
1

µ
ATA) + (0,m, 0).

Result 1.3.2 (Debreu’s Lemma). Given an m×n matrix A and an n×n symmetric matrix H,

then xTHx > 0 for all nonzero x satisfying Ax = 0 if and only if there is a finite µ̄ ≥ 0 such

that H + 1
µA

TA is positive definite for all 0 < µ ≤ µ̄.

Result 1.3.3 (Schur complement). Given a symmetric matrix

K =

 M NT

N G

 , (1.4)

6

with M nonsingular, the Schur complement of M in K will be denoted by K/M , and is defined

as

K/M 4
= G−NM−1NT .

Moreover, In(K) = In(K/M) + In(M). We sometimes refer simply to “the” Schur complement

when the relevant matrices are clear.

Result 1.3.4 (Symmetric indefinite factorization). Let K be an n × n symmetric matrix with

rank r. Then there exists a permutation matrix P , a unit upper-triangular matrix U , and a block

diagonal matrix D such that

PTKP = UTDU, with D = diag(D1, D2, . . . , Ds, 0n−r,n−r),

where each Dj is nonsingular and has dimension 1 × 1 or 2 × 2. Moreover, each of the 2 × 2

blocks has one positive and one negative eigenvalue. The equivalent factorization

K = LDLT , with L = (PU)T ,

is known as the LDLT factorization.

Lemma 1.3.1. Let A be a m× n matrix of full row rank (rank(A) = m) and g be any n-vector.

(a) If g = ATy and there exists an index s such that ys < 0, then there exists a vector p such

that gTp < 0 and Ap ≥ 0.

(b) g /∈ range(AT) if and only if there exists a vector p such that gT p < 0 and Ap = 0.

Result 1.3.5 (The interlacing eigenvalue property). Assume K is a symmetric n × n matrix

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Suppose that K is partitioned so that

K =

(
A B

BT C

)

with A m×m. If the eigenvalues of A are µ1 ≥ µ2 ≥ · · · ≥ µm, then

λk+n−m ≤ µk ≤ λk, k = 1, 2, . . . ,m.

2 Quadratic Programming

This chapter introduces the framework for the formulation and analysis of active-set

methods for quadratic programs. The framework is described for problems in mixed format,

which involve minimizing a quadratic objective function subject to linear equality and inequality

constraints. The problem is assumed to be of the form

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx

subject to Ax = b, Dx ≥ f,
(2.1)

where ϕ(x) : Rn → R is the quadratic objective function, the Hessian matrix H is symmetric and

the constraint matrices A and D are m×n and mD×n, respectively. Without loss of generality,

A is assumed to have rank m. No assumptions are made about H other than symmetry, which

implies that the objective ϕ need not be convex. In the nonconvex case, however, convergence

will be to local minimizers only.

Section 2.1 provides information on the optimality conditions of mixed-constraint prob-

lems. Section 2.2 introduces a general class of methods for solving QPs known as active-set

methods. In Sections 2.2.1 and 2.2.2, two particular active-set method based on inertia control

are presented. The remaining sections extend the method to quadratic programs in different

formats, and discuss the relationship of the method to the simplex method for linear programs.

2.1 Background

The necessary and sufficient conditions for a local solution of the QP (2.1) involve the

existence of vectors π and z of Lagrange multipliers associated with the constraints Ax = b and

Dx ≥ f , respectively.

Definition 2.1.1 (First-order KKT point). A point x is a first-order KKT point for (2.1) if

7

8

there exists at least one pair of Lagrange multiplier vectors π and z such that

Ax = b, Dx ≥ f (feasibility)

g(x) = ATπ +DTz (stationarity)

z ≥ 0 (nonnegativity)

z · (Dx− f) = 0 (complementarity).

Following conventional linear programming terminology, the x variables are referred to

as the primal variables and the Lagrange multipliers π and z are the dual variables. We may

refer to a first-order KKT point x together with its Lagrange multipliers as (x, π, z).

In addition to being a first-order KKT point, a point x must also satisfy certain second-

order conditions to be a local solution of the QP. The conditions are summarized by the following

result, which is stated without proof (see, e.g., Borwein [7], Contesse [12] and Majthay [55]).

Result 2.1.1 (QP optimality conditions). The point x∗ is a local minimizer of the quadratic

program (2.1) if and only if

(a) x∗ is a first-order KKT point, and

(b) pTHp ≥ 0 for all nonzero p satisfying g(x)Tp = 0, Ap = 0, and dTi p ≥ 0 for every i such

that dTi x
∗ = fi.

If H has at least one negative eigenvalue and (x, π, z) is a first-order KKT point with an

index i such that zi = 0 and dTi x = fi, then x is known as a dead point. Verifying condition (b) at a

dead point requires finding the global minimizer of an indefinite quadratic form over a cone, which

is an NP-hard problem (see, e.g., Cottle, Habetler and Lemke [14], Pardalos and Schnitger [58],

and Pardalos and Vavasis [59]). This implies that the optimality of a candidate solution of a

general quadratic program can be verified only if more restrictive (but computationally tractable)

sufficient conditions are satisfied. A dead point is a point at which the sufficient conditions are

not satisfied, but certain necessary conditions for optimality hold. Computationally tractable

necessary conditions are based on the following result.

Result 2.1.2 (Necessary conditions for optimality). The point x∗ is a local minimizer of the QP

(2.1) only if

(a) x∗ is a first-order KKT point;

(b) it holds that pTHp ≥ 0 for all nonzero p satisfying Ap = 0, and dTi p = 0 for each i such

that dTi x
∗ = fi.

Suitable sufficient conditions for optimality are given by (a)–(b) with (b) replaced by the

condition that pTHp ≥ 0 for all p such that Ap = 0, and dTi p = 0 for every i ∈ A+(x∗), where

A+(x∗) is the index set A+(x∗) = {i : dTi x
∗ = fi and zi > 0}.

9

These conditions may be expressed in terms of the constraints that are satisfied with

equality at x∗. Let x be any point satisfying the equality constraints Ax = b. (The assumption

that A has rank m implies that there must exist at least one such x.) An inequality constraint

is active at x if it is satisfied with equality. The indices associated with the active constraints

comprise the active set, denoted by A(x). An active-constraint matrix Aa (x) is a matrix with

rows consisting of the rows of A and the gradients of the active constraints. By convention, the

rows of A are listed first, giving the active-constraint matrix

Aa (x) =

(
A

Da (x)

)
,

where Da (x) comprises the rows of D with indices in A(x). Let ma denote the number of indices

in A(x), so that the number of rows in Aa (x) is m+ma . The argument x is generally omitted

if it is clear where Da is defined.

With this definition of the active set, an equivalent statement of Result 2.1.2 is given.

Result 2.1.3 (Necessary conditions in active-set form). Let the columns of the matrix Za form

a basis for the null space of Aa . The point x∗ is a local minimizer of the QP (2.1) only if

(a) x∗ is a first-order KKT point, i.e., (i) Ax∗ = b, Dx∗ ≥ f ; (ii) g(x∗) lies in range(ATa),

or equivalently, there exist vectors π∗ and z∗a such that g(x∗) = ATπ∗ + DT
a z
∗
a ; and (iii)

z∗a ≥ 0,

(b) the reduced Hessian ZTa HZa is positive semidefinite.

2.2 Active-Set Methods for Mixed-Constraint Problems

Active-set methods are two-phase iterative methods that provide an estimate of the

active set at the solution. In the first phase (the feasibility phase or phase 1), the objective

is ignored while a feasible point is found for the constraints Ax = b and Dx ≥ f . In the

second phase (the optimality phase or phase 2), the objective is minimized while feasibility is

maintained. For efficiency, it is beneficial if the computations of both phases are performed by

the same underlying method. The two-phase nature of the algorithm is reflected by changing the

function being minimized from a function that reflects the degree of infeasibility to the quadratic

objective function. For this reason, it is helpful to consider methods for the optimality phase

first. Methods for the feasibility phase are considered in Chapter 5.

Given a feasible point x0, active-set methods compute a sequence of feasible iterates {xk}
such that xk+1 = xk + αkpk and ϕ(xk+1) ≤ ϕ(xk), where pk is a nonzero search direction and

αk is a nonnegative step length. Active-set methods are motivated by the main result of Farkas’

Lemma, which states that a feasible x must either satisfy the first-order optimality conditions or

10

be the starting point of a feasible descent direction, i.e., a direction p such that

Aa p ≥ 0 and g(x)Tp < 0. (2.2)

In most of the active-set methods considered here, the active set is approximated by a working set

W of row indices of D. The working set has the form W = {ν1, ν2, . . . , νmw
}, where mw is the

number of indices inW. Analogous to the active-constraint matrix Aa , the (m+mw)×n working-

set matrix Aw contains the gradients of the equality constraints and inequality constraints in

W. The structure of the working-set matrix is similar to that of the active-set matrix, i.e.,

Aw =

(
A

Dw

)
,

where Dw is a matrix formed from the mw rows of D with indices in W. The vector fw denotes

the components of f with indices in W.

There are two important distinctions between the definitions of A and W.

(a) The indices of W must define a subset of the rows of D that are linearly independent of

the rows of A, i.e., the working set matrix Aw has full row rank. It follows that mw must

satisfy 0 ≤ mw ≤ min{n−m,mD}.

(b) The active set A is uniquely defined at any feasible x, whereas there may be many choices

forW. The setW is determined by the properties of the particular active-set method being

employed.

Conventional active-set methods define the working set as a subset of the active set (as in the

method described in Section 2.2.1). However, in the considered method of Section 2.2.2, the

requirement is relaxed—a working-set constraint need not necessarily be active at x.

Given a working set W and an associated working-set matrix Aw at x, the notions of

stationarity and optimality with respect to W are introduced.

Definition 2.2.1 (Subspace stationary point). Let W be a working set defined at x such that

Ax = b. Then x is a subspace stationary point with respect to W (or, equivalently, with respect

to Aw) if g(x) ∈ range(ATw), i.e., there exists a vector y such that g(x) = ATw y. Equivalently, x

is a subspace stationary point with respect to the working set W if the reduced gradient ZTw g(x)

is zero, where the columns of Zw form a basis for the null space of Aw .

At a subspace stationary point, the components of y are the Lagrange multipliers associated with

a QP with equality constraints Ax = b and Dw x = fw . To be consistent with the optimality

conditions of Result 2.1.3, the first m components of y are denoted as π (the multipliers associated

with Ax = b) and the last mw components of y as zw (the multipliers associated with the

constraints in W). With this notation, the identity g(x) = ATw y = ATπ + DT
w zw holds at a

subspace stationary point.

11

To classify subspace stationary points based on curvature information, we define the

terms second-order-consistent working set and subspace minimizer.

Definition 2.2.2 (Second-order-consistent working set). Let W be a working set associated with

x such that Ax = b, and let the columns of Zw form a basis for the null space of Aw . The

working set W is second-order consistent if the reduced Hessian ZTwHZw is positive definite.

The inertia of the reduced Hessian is related to the inertia of the (n+m+mw)× (n+m+mw)

KKT matrix K =

(
H ATw

Aw

)
through the identity In(K) = In(ZTwHZw)+(m+mw ,m+mw , 0)

from Theorem 1.3.1. It follows that an equivalent characterization of a second-order-consistent

working set is that K has inertia (n,m+mw , 0), in which case, K is said to have correct inertia.

Definition 2.2.3 (Subspace minimizer). If x is a subspace stationary point with respect to a

second-order-consistent basis W, then x is known as a subspace minimizer with respect to W.

If every constraint in the working set is active, then x is called a standard subspace minimizer;

otherwise x is called a nonstandard subspace minimizer.

A vertex is a point at which rank(Aa) = n and ma ≥ n−m. If rank(Aa) = n, then the

null space of Aa is trivial, so that a vertex such that g(x) ∈ range(ATa) is a subspace minimizer.

A feasible x is said to be a degenerate point if g(x) lies in range(ATa) and the rows of Aa are

linearly dependent, i.e., rank(Aa) < m+ma . If exactly n−m constraints of Dx ≥ f are active

at a vertex, then the vertex is nondegenerate. If more than n −m are active, then the vertex

is degenerate. At a degenerate point there are infinitely many vectors y such that g(x) = ATa y.

Moreover, at least one of these vectors has a zero component. Degeneracy can be a problem as it

can lead to dead points. Degenerate points can also lead to cycling, where the active-set method

does not move from the current iterate but returns to an earlier working set, causing an infinite

sequence where the same working sets are repeated.

In the following sections, two active-set methods for solving QPs are described, the

binding-direction method and the nonbinding-direction method. In the binding-direction method,

every direction lies in the null space of the working-set matrix, so that all working-set constraints

are active or binding. In the nonbinding-direction method, directions are nonbinding (inactive)

with respect to one of the constraints in the working set. Both methods produce the same se-

quence of iterates and differ only in the equations solved at each step. The binding-direction

method is tied to a specific method for modifying the factors of the working-set matrix. The

nonbinding-direction method is designed so that only nonsingular systems are solved at each step,

making the method more easily adapted for use with general-purpose solvers. Both methods are

inertia-controlling methods that limit the number of nonpositive eigenvalues in the KKT matrices.

In the binding-direction method, the reduced Hessians are limited to having at most one non-

positive eigenvalue, while the nonbinding-direction method computes only subspace minimizers

(e.g., working sets that define positive-definite reduced Hessians) at each iteration.

12

2.2.1 Binding-direction method

The binding-direction produces a sequence of iterates that begins and ends at a subspace

minimizer but defines intermediate iterates that are not subspace minimizers. One iteration of

the method is described. The working-set matrix Aw at the k-th iteration will be denoted by Ak

to differentiate between the working sets at different iterates. Similar notation for other vectors

or matrices with working-set subscripts apply.

The method starts at a standard subspace minimizer xk with working set Wk, i.e.,

gk = ATk yk for a unique yk and a reduced Hessian matrix ZTkHZk that is positive definite. If

xk is non-optimal, then there exists an index νs ∈ Wk such that [yk]m+s < 0. By part (i) of

Lemma 1.3.1, there exists a descent direction for ϕ such that gTk p < 0 and Akp = em+s. Instead

of imposing the condition that Akp = em+s, we increase the iteration counter to k + 1 and set

xk = xk−1. The new working set is defined as Wk = Wk−1 − {νs}, and yk be the vector yk−1

with the (m+ s)-th component removed. The removal of dTνsx ≥ fνs means that xk is no longer

a subspace stationary point with respect to Wk since

g(xk) = g(xk−1) = ATk−1yk−1 = ATk yk + [yk−1]m+sdνs with [yk−1]m+s < 0, (2.3)

and hence g(xk) /∈ range(ATk). In this case, there exists a descent direction in the null space of

Ak such that

gTk p < 0 and Akp = 0, and dTνsp > 0. (2.4)

The direction p is a binding direction because the constraints in the working set remain active

for any step along p. The first two conditions of (2.4) are satisfied by part (ii) of Lemma 1.3.1.

For the last condition, first note that xk = xk−1, gk = gk−1 = ATk−1yk−1 with [yk−1]m+s < 0

and the working-set matrix Ak is Ak−1 with the constraint normal dTνs removed. The identity

Akpk = 0 implies that pk must be orthogonal to every row of Ak−1 except dTνs . Thus,

0 > gTk pk = gTk−1pk = pTk (ATk−1yk−1)

= (dTνspk)eTm+syk−1 = (dTνspk)[yk−1]m+s.

It follows that dTνspk > 0 and hence pk satisfies (2.4).

An obvious choice for pk is the solution of the equality-constrained quadratic program

minimize
p

ϕ(xk + p) subject to Akp = 0. (2.5)

Assume for the moment that this problem has a bounded solution (i.e., that ZTk HZk is positive

definite). The optimality conditions for (2.5) imply the existence of vector qk such that g(xk +

pk) = ATk (yk + qk), i.e., qk defines the step to the multipliers at the optimal solution xk + pk.

This optimality condition combined with the feasibility condition imply that pk and qk satisfy

the KKT equations (
H ATk

Ak 0

)(
pk

−qk

)
= −

(
gk −ATk yk

0

)
. (2.6)

13

The point xk + pk is a subspace minimizer with respect to W, with appropriate multiplier vector

yk + qk. If the KKT matrix is indefinite (but not singular), a direction is still computed from

(2.6), though xk + pk will not be a subspace minimizer and pk must be limited by some step

(discussed in the next subsection).

For any scalar α, the direction defined in (2.6) satisfies

g(xk + αpk) = gk + αHpk = gk + α(−(gk −ATk yk) +ATk qk)

= (1− α)gk + αATk (yk + qk)

= (1− α)(ATk yk + ym+sdνs) + αATk (yk + qk)

= (1− α)ym+sdνs +ATk (yk + αqk), (2.7)

using the identity in (2.3).

If the KKT matrix of (2.6) is singular, or equivalently, the associated reduced Hessian

ZTkHZk is singular, the subproblem (2.5) is unbounded and the system (2.6) cannot be used to

define pk. In this situation, a direction is found such that

gTk pk < 0, pTkHpk = 0 and Akpk = 0.

This vector, called a descent direction of zero curvature, is a descent direction such that Hpk = 0.

Since the KKT matrix is singular, it must have a null vector, and pk and qk may be computed

from the system (
H ATk

Ak 0

)(
pk

−qk

)
=

(
0

0

)
. (2.8)

In this case, the directions pk and qk satisfy

g(xk + αpk)−ATk(yk + αqk) = gk −ATkyk + α(Hpk −ATkqk) = gk −ATkyk, (2.9)

for every scalar α, so that the norm ‖gk −ATkyk‖ is unchanged by any step xk + αpk.

Solving for the direction. Regardless of whether pk is computed from (2.6) or (2.8), it must

be a descent direction, i.e., gTkpk < 0. There are three basic approaches to solving either equation

(2.6) or (2.8), each of which can utilize direct methods or iterative methods. A range-space

method requires H to be nonsingular and solves (2.6) by solving the equivalent equations

AkH
−1ATkqk = AkH

−1(gk −ATkyk) and Hp = −(gk −ATkyk) +ATkqk, (2.10)

which require a solve with H and a factorization of the matrix AkH
−1ATk . Obviously, the need

for nonsingular H limits this method to strictly convex problems.

The equations (2.6) and (2.8) may also be solved by computing some matrix factorization,

e.g., a symmetric indefinite LDLT factorization of the KKT matrix (see Result 1.3.4). This full-

space method works directly with the KKT system, but is impractical in an active-set method as

the KKT matrix changes at every iteration.

14

A more appropriate method for computing pk is a null-space method, which computes

pk as pk = ZkpZ . If ZTkHZk is positive definite, then pZ is the unique solution of

ZTkHZkpZ = −ZTk(gk −ATkyk),

which is an n × (n −m −mk) system. If the reduced Hessian is singular, then pZ may be any

vector such that

ZTkHZkpZ = 0 and gTkZkpZ < 0.

The computation of an LDLT factorization of a symmetrically permuted reduced Hessian may be

used to detect singularity and compute pZ . When the QP is strictly convex, H is positive definite

and at every iterate, the reduced Hessian is positive definite. The matrix can be factored such

that

ZTkHZk = RTkRk and AkQk =
(

0 Tk

)
, (2.11)

where Rk and Tk are upper triangular, and Qk is an orthogonal matrix that forms an orthogonal

basis for the null space of Ak. These factors can then be used to solve the equations in the

null-space method above. In addition, the factors may be modified when constraints are added

or deleted from the working set. This amounts to significantly less work than it would take to

recompute the factorizations from scratch.

If ϕ is not strictly convex, then ZTkHZk can have an arbitrary number of nonpositive

eigenvalues. It is not possible to modify the factorizations in (2.11) in a way that is efficient

and numerically stable. At each iteration, it is necessary to decide which of the two systems

should be solved. If the relevant factorizations are computed from scratch at each iteration, then

the difficulties can be overcome, though the reliable numerical estimation of rank is a difficult

problem. If the factors are modified at each step, then it is much more difficult to compute factors

that provide a reliable estimate of the rank. Similar difficulties arise in full-space methods based

on direct factorization of the KKT matrix in (2.6) or (2.8).

Each of the three methods above may also utilize iterative methods to solve the linear

systems. In particular, when the matrix is positive definite, the conjugate-gradient method can

be applied. However, iterative methods may take many iterations to converge to a solution and

ill-conditioning may cause difficulties in constructing a preconditioner.

Computing a step length. Once a direction is found, an appropriate step α must be com-

puted. Since pk is a descent direction, there must exist α̂ > 0 such that ϕ(xk + αpk) < ϕ(xk)

for all 0 < α ≤ α̂. If ZTkHZk is positive definite, pk is defined by (2.6) and pTkHpk > 0, so that ϕ

has positive curvature along pk. In this case, there is a unique and computable local minimizer

α∗ of ϕ(xk + αpk) with respect to α. As α∗ must be a stationary point, it must satisfy

d

dα
ϕ(xk + αpk)

∣∣
α=α∗

= g(xk + α∗pk)Tpk = gTkpk + α∗p
T
kHpk = 0.

15

The unique step α∗ from xk to the local minimizer of ϕ along the descent direction pk is given

by

α∗ = −gTk pk/pTkHpk. (2.12)

However, the first equation of (2.6) implies that pTkHpk = −gTk pk, so that α∗ = 1.

If ZTk HZk is indefinite or singular, then no minimizer exists and α∗ = +∞. The direction

pk satisfies the identity

ϕ(xk + αpk) = ϕ(xk) + αgTk pk + 1
2α

2pTkHpk.

In particular, when pk is a direction of zero curvature defined by (2.8), then ϕ(xk + αpk) =

ϕ(xk) + αgTk pk, which implies that ϕ is linear along pk and is unbounded below for α > 0. In

the indefinite case, ϕ is unbounded below for α > 0 since pTkHpk < 0 and gTk pk < 0.

If xk + α∗pk is infeasible or α∗ = ∞, then the maximum feasible step from xk along pk

is computed as

αF = min γi, with γi =


dTi x− fi
− dTi pk

if dTi pk < 0,

+∞ otherwise,

(2.13)

where any constraint satisfying dTi pk < 0 is a decreasing constraint along pk. The decreasing

constraint with index r such that αF = γr is called a blocking constraint. While there may be

several blocking constraints, the value of αF is unique. Once αF is computed, the next iterate

is defined as xk+1 = xk + αkpk, where αk = min{α∗, αF }. If αk = +∞, then pk must be a

descent direction of zero or negative curvature along which there is no blocking constraint. This

means the QP is unbounded and the algorithm terminates. Otherwise, if α∗ ≤ αF , we take

an unconstrained step and xk + pk is feasible and a subspace minimizer with respect to Ak. If

αF < α∗, then the working set is modified to include a blocking constraint that is active at

xk+1, e.g., Wk+1 = Wk + {r}. If multiple blocking constraints exist, only one is chosen to be

added. Lemma 1.3.1 implies that any decreasing constraint must be linearly independent of the

constraints in the working set.

If x is a degenerate point (a point where the active constraint normals are linearly

dependent), then there exists at least one active constraint not in the working set. If this active

constraint is decreasing along pk, then αF = 0. Consequently, the step αk will be zero and

xk+1 = xk, resulting in no change in the objective. However, the working set does change with

Wk+1 differing from Wk by the addition of one blocking active constraint.

Constraint deletion and addition. The following results show the effects of deleting and

adding constraints on stationarity and the reduced Hessian. The first shows the effect of the

deletion of a constraint from Wk at a subspace minimizer. The second considers the effects of

adding a blocking constraint to the working set.

16

Result 2.2.1 (Constraint deletion). Let xk−1 be a subspace minimizer with working set Wk−1.

Define xk = xk−1 and Wk = Wk−1 − {νs}. For simplicity, assume that the working-set matrix

has the form

Ak−1 =

(
Ak

dTνs

)
.

Then xk and Wk satisfy the following:

(a) gk = ATkyk + σdνs for some vector yk and σ < 0; and

(b) the reduced Hessian ZTkHZk has at most one nonpositive eigenvalue.

Proof. Part (a) holds from (2.3).

For part (b), let the columns of Zk−1 form a basis for the null space of Ak−1. Then

AkZk−1 = 0 and Zk−1 can be extended to form a basis for the null space of Ak, with Zk =(
Zk−1 z

)
. Then,

ZTkHZk =

(
ZTk−1HZk−1 ZTk−1Hz

zTHZk−1 zTHz

)
.

Let {λj} denote the eigenvalues of ZTkHZk with λj ≤ λj−1. Similarly, let {λ−j } denote the

eigenvalues of ZTk−1HZk−1 with λ−j ≤ λ−j−1. The interlacing eigenvalue property (Result 1.3.5)

implies that

λn−(m+mk+1) ≥ λ
−
n−(m+mk+1) ≥ λn−(m+mk).

Since ZTk−1HZk−1 is positive definite, λ−n−(m+mk+1) > 0 and ZTkHZk has at most one nonpositive

eigenvalue.

Result 2.2.2 (Constraint addition). Suppose that dTrx ≥ fr is a blocking constraint at xk+1 =

xk + αkpk. Let Wk+1 = Wk + {r} and assume that νs is the index of the most recently deleted

constraint. Define the matrix Zk such that its columns form a basis for null space for Ak. Then

xk+1 and Wk+1 satisfy the following:

(a) gk+1 = ATk+1yk+1 + σdνs for some σ < 0;

(b) the reduced Hessian ZTk+1HZk+1 has at most one nonpositive eigenvalue; and

(c) the set Wk+1 + {νs} is a second-order-consistent working set.

Proof. If pk is defined by (2.6), then (2.7) implies gk+1 = ATk(yk +αqk) + (1−α)[yk]m+sdνs with

(1 − α)[yk]m+s < 0 since α < 1. Otherwise, pk is defined by (2.8) and (2.9) holds. The desired

result follows by induction.

For part (b), let the columns of Zk form a null space for Ak and denote the KKT matrices

associated with Wk and Wk+1 as

K =

(
H ATk

Ak 0

)
and K+ =


H ATk dr

Ak 0 0

dTr 0 0

 .

17

Assume that K has eigenvalues {λj} with λj ≥ λj−1. Similarly, K+ has eigenvalues {λ+
j } with

λ+
j ≥ λ

+
j−1. The eigenvalue interlacing property (Result 1.3.5) implies

λ+
n−1 ≥ λn−1 ≥ λ+

n ≥ λn ≥ λ+
n+1. (2.14)

Since Ak has full row rank, Corollary 1.3.1 implies that In(K) = In(ZTkHZk) + (m +

mk,m+mk, 0). If ZTkHZk is positive definite, then In(K) = (n,m+mk, 0) and it must hold that

λn > 0. The equation (2.14) implies that λ+
n > 0, so that K+ has at least n positive eigenvalues

and at most m + mk + 1 nonpositive eigenvalues. Thus, since the inertia of K+ satisfies the

relation In(K+) = In(ZTk+1HZk+1) + (m+mk + 1,m+mk + 1, 0), then ZTk+1HZk+1 is positive

definite.

If ZTkHZk has one nonpositive eigenvalue, then λn−1 > 0 and K+ has at least n − 1

positive eigenvalues and at most m+mk + 2 nonpositive eigenvalues. Thus, ZTk+1HZk+1 has at

most one nonpositive eigenvalue.

Thus far, we have only established that a subspace minimizer is reached when the reduced

Hessian is positive definite and an unconstrained step is taken. It remains to show that if a

subspace stationary point is reached by taking a blocking step and adding a constraint to the

working set, then that point is also a subspace minimizer.

Result 2.2.3 (Subspace minimizer with blocking constraint). Let Wk be a working set such that

ZTkHZk is nonsingular. Assume that the constraint with index νs is deleted from the working set

and pk is defined by (2.6). Suppose that dTrx ≥ fr is a blocking constraint at xk + αkpk, where

αk < 1. Let Wk+1 =Wk + {r}.

(a) The point xk+αkpk is stationary with respect toWk+1 if and only if dr is linearly dependent

on the rows of Ak and dνs .

(b) If xk + αkpk is a stationary point with respect to Wk+1, then xk + αkpk is a subspace

minimizer with respect to Wk+1.

Proof. Suppose that xk + αkpk is a stationary point with respect to Wk+1. Then there exist a

vector v and nonzero scalar σ such that g(xk + αkpk) = ATkv + σdr. However, (2.7) implies that

g(xk + αkpk) = ATk(yk + αkqk) + (1− αk)[yk]m+sdνs . Eliminating g(xk + αkpk) yields

ATk(yk + αkqk − v) + (1− αk)[yk]m+sdνs = σdr.

Since αk < 1, dr is linearly dependent on the rows of Ak and dνs .

Now suppose that dr is linearly dependent on the rows of Ak and dνs , with dr = σdνs +

ATkv and σ 6= 0. Then by (2.7),

g(xk + αkpk) = ATk(yk + αkqk) + (1− αk)
1

σ
(dr −ATkv)

=
1

σ
(1− αk)[yk]m+sdr +ATk(yk + αkqk −

1

σ
(1− αk)[yk]m+sv).

18

x0 −→ x1 −→ x2 −→ · · · xk −→ xk+1

(A) W0

delete νs
−→ W1

move, add
−→ W2

move, add
−→ · · · Wk

move
−→ Wk+1

(B) W0

delete νs
−→ W1

move, add
−→ W2

move, add
−→ · · · Wk

move, add
−→ Wk+1

Figure 2.1: This figure depicts the two types of sequence of consecutive iterates in the binding-
direction method. Each sequence starts and ends with subspace minimizers x0 and xk+1, with
intermediate iterates that are not subspace minimizers. The sequences differ in how the final point
is reached. In (A), an unconstrained step is taken (α = 1). In (B), a blocking step (αF < α∗)
is taken, and a blocking constraint is added to the working set that makes the reduced Hessian
positive definite and hence, makes xk+1 a subspace minimizer.

Again, αk < 1, σ 6= 0 and ym+s < 0, so that xk + αkpk is a stationary point with respect to

Wk+1.

For part (b), if z is in the null space of Ak+1, then Akz = 0 and dTrz = 0. However, by

part (a), dr must be linearly dependent on the rows of Ak and dνs . Therefore,

0 = dTrz =
(
vT σ

)(Ak
dTνs

)
z = σdTνsz.

Since σ 6= 0, dTνsz = 0 and z lies in the null space of

(
Ak

dTνs

)
. By part (c) of Result 2.2.2,

the reduced Hessian associated with this matrix is positive definite. Therefore, ZTk+1HZk+1 is

positive definite and xk + αkpk is a subspace minimizer with respect to Wk+1.

Algorithm Summary. Given an arbitrary feasible point x0, and an initial second-order-

consistent working setW0, the procedure defined generates a sequence of points {xk} and associ-

ated working setsWk such that xk+1 = xk+αkpk, where pk is computed from either (2.6) or (2.8).

Because a constraint cannot be deleted until a subspace minimizer is found, the algorithm starts

by adding constraints to the working set until either an unconstrained step is taken (αk = 1) or

sufficiently many constraints are added to define a subspace minimizer (e.g., at a vertex, which is

trivially a subspace minimizer). Once the first subspace minimizer is found, the iterates occur in

groups of consecutive iterates where each group starts with a constraint deletion and ends with

a step to a subspace minimizer. Figure 2.1 illustrates the two ways that the algorithm arrives at

a subspace minimizer.

At every iteration, either x or the working set changes, giving a sequence of distinct

pairs {xk,Wk}, where xk+1 6= xk or Wk+1 6= Wk. With a suitable nondegeneracy assumption,

the algorithm terminates in a finite number of iterations. Since the number of constraints is

19

finite, the sequence {xk} must contain a subsequence {xik} of subspace minimizers with respect

to their working sets {Wik}. If the Lagrange multipliers are nonnegative at any of these points,

the algorithm terminates with the desired solution. Otherwise, at least one multiplier must be

strictly negative, and hence the nondegeneracy assumption implies that αF > 0 at xik. Thus,

ϕ(xik) > ϕ(xik + αikpik), since at each iteration, the direction is defined as a descent direction

with gTp < 0. The subsequence {xik} must be finite because the number of subspace minimizers

is finite and the strict decrease in ϕ(x) guarantees that no element of {xik} is repeated. The

finiteness of the subsequence implies that the number of intermediate iterates must also be finite.

This follows because a constraint is added to the working set (possibly with a zero step) for every

intermediate iteration. Eventually, either a nonzero step will be taken, giving a strict decrease

in ϕ, or enough constraints will be added to define a vertex (a trivial subspace minimizer).

Algorithm 2.1: Binding-direction method for general QP

Find x such that Ax = b, Dx ≥ f ; k = 0;

Choose W ⊆ A(x) such that the working-set matrix has full row rank;[
x,W0

]
= subspaceMin(x,H,A,D,W);

k = 0; g = c+Hx;

repeat

while k > 0 and g 6= ATπ +DT
kz do[

p, q
]

= descent direction(Dk, A,H);

αF = maxStep(x, p,D, f);

if pTHp > 0 then α∗ = 1 else α∗ = +∞;

α = min{α∗, αF};
if α = +∞ then stop; [the solution is unbounded]

if αF < α∗ then [add a blocking constraint]

Choose a blocking constraint index t; Wk+1 ←Wk + {t};
end;

x← x+ αp; g ← g + αHp;

k ← k + 1;

end do;

Solve g =
(
AT DT

k

)(π
z

)
; s = argmini{zi};

if zs < 0 then [delete a constraint]

Wk+1 ←Wk − {νs}; k ← k + 1;

end;

until zs ≥ 0;

20

The binding-direction algorithm is summarized in Algorithm 2.1. The subspaceMin

function computes an initial point and basis (see Section 5.2). The function maxStep simply

computes the maximum feasible step, while the direction p is computed by an appropriate “black

box” function descent direction.

2.2.2 Nonbinding-direction method

A feature of the binding-direction method is that the reduced Hessian may have one

nonpositive eigenvalue, which precludes the use of the Cholesky factorization ZTkHZk = RTkRk.

In this section, the nonbinding-direction method is introduced as an active-set method that keeps

the reduced Hessian positive definite (and hence keeps the KKT matrices nonsingular) allowing

for the efficient calculation of search directions.

As in the binding-direction method, the nonbinding-direction method starts at a standard

subspace minimizer x, i.e., g(x) = ATwy = ATπ +DT
wzw and In(K) = (n,m+mw , 0). Let νs be

an index in the working set such that [zw]s < 0. To proceed, a descent direction is defined that

is feasible for the equality constraints and the constraints in the working set. Analogous to (2.2),

p is defined so that

g(x)Tp < 0 and Aw p = em+s.

Unlike the binding-direction method, the direction p is computed without removing νs

from the working set. As any nonzero step along p must increase the residual of the νs-th

constraint (thereby making it inactive or nonbinding), the working set is no longer a subset of

the active set. The direction is defined as the solution of the equality-constrained subproblem

minimize
p

ϕ(x+ p) subject to Aw p = em+s. (2.15)

The optimality conditions for this subproblem imply the existence of a vector q such that g(x+

p) = ATw(y + q); i.e., q is the step to the multipliers associated with the optimal solution x + p.

This condition, along with the feasibility condition, implies that p and q satisfy the equations(
H ATw

Aw 0

)(
p

−q

)
=

(
−(g(x)−ATwy)

em+s

)
.

Important properties of the primal and dual vectors are summarized in the next result.

Result 2.2.4 (Properties of a nonbinding search direction). Let x be a subspace minimizer such

that g = ATwy = ATπ +DT
wzw , with [zw]s < 0. Then the vectors p and q satisfying the equations(
H ATw

Aw 0

)(
p

−q

)
=

(
−(g(x)−ATwy)

em+s

)
=

(
0

em+s

)
(2.16)

constitute the unique primal and dual solutions of the equality constrained problem defined by

minimizing ϕ(x+ p) subject to Aw p = em+s. Moreover, p and q satisfy the identities

gTp = ym+s = [zw]s and pTHp = qm+s = [qw]s, (2.17)

21

where qw denotes the vector of last mw components of q.

Proof. The assumption that x is a subspace minimizer implies that the subproblem (2.15) has

a unique bounded minimizer. The optimality of p and q follows from the equations in (2.16),

which represent the feasibility and optimality conditions for the minimization of ϕ(x+ p) on the

set {p : Aw p = em+s}. The equation g = ATwy and the definition of p from (2.16) give

gTp = pT(ATwy) = yTAw p = yTem+s = ym+s = [zw]s.

Similarly, pTHp = pT(ATwq) = eTm+sq = qm+s = [qw]s.

Once p and q are known, a nonnegative step α is computed so that x+αp is feasible and

ϕ(x+αp) ≤ ϕ(x). If pTHp > 0, the step that minimizes ϕ(x+αp) as a function of α is given by

α∗ = −gTp/pTHp. The identities (2.17) give

α∗ = −gTp/pTHp = −[zw]s/[qw]s. (2.18)

Since [zw]s < 0, if [qw]s = pTHp > 0, the optimal step α∗ is positive. Otherwise [qw]s = pTHp ≤
0 and ϕ has no bounded minimizer along p and α∗ = +∞.

The maximum feasible step is computed as in (2.13) to limit α in case the optimal step

is unbounded or infeasible. The step α is then min{α∗, αF}. If α = +∞, the QP has no bounded

solution and the algorithm terminates. In the discussion below, we assume that α is a bounded

step.

The primal and dual directions p and q defined by (2.16) have the property that x+ αp

remains a subspace minimizer with respect to Aw for any step α. This follows from the equations

(2.16), which imply that

g(x+ αp) = g(x) + αHp = ATwy + αATwq = ATw(y + αq), (2.19)

so that the gradient at x + αp is a linear combination of the columns of ATw. The step x + αp

does not change the KKT matrix K associated with the subspace minimizer x, which implies

that x + αp is also a subspace minimizer with respect to Aw . This means that x + αp may be

interpreted as the solution of a problem in which the working-set constraint dTνsx ≥ fνs is shifted

to pass through x + αp. The component [y + αq]m+s = [zw + αqw]s is the Lagrange multiplier

associated with the shifted version of dTνsx ≥ fνs . This property is known as the parallel subspace

property of quadratic programming. It shows that if x is stationary with respect to a nonbinding

constraint, then it remains so for all subsequent iterates for which that constraint remains in the

working set.

Once α has been defined, the new iterate is x̄ = x + αp. The composition of the new

working set and multipliers depends on the definition of α.

22

Case 1: α = α∗ In this case, α = α∗ = −[zw]s/[qw]s minimizes ϕ(x+ αp) with respect to α,

giving the s-th element of zw + αqw as

[zw + αqw]s = [zw]s + α∗[qw]s = 0,

which implies that the Lagrange multiplier associated with the shifted constraint is zero at x̄.

The nature of the stationarity may be determined using the next result.

Result 2.2.5 (Constraint deletion). Let x be a subspace minimizer with respect to W. Assume

that [zw]s < 0. Let x̄ denote the point x+αp, where p is defined by (2.16) and α = α∗ is bounded.

Then x̄ is a subspace minimizer with respect to W̄ =W − {νs}.

Proof. Let K and K̄ denote the matrices

K =

(
H ATw

Aw

)
and K̄ =

(
H ĀTw

Āw

)
,

where Aw and Āw are the working-set matrices associated with W and W̄. It suffices to show

that K̄ has the correct inertia, i.e., In(K̄) = (n,m+mw − 1, 0).

Consider the matrix M such that

M 4
=

(
K em+n+s

eTm+n+s

)
.

By assumption, x is a subspace minimizer with In(K) = (n,m + mw , 0). In particular, K is

nonsingular and the Schur complement of K in M exists with

M/K = −eTn+m+sK
−1en+m+s = −eTn+m+s

(
p

−q

)
= [qw]s.

It follows that

In(M) = In(M/K) + In(K) = In([qw]s) + (n,m+mw , 0). (2.20)

Now consider a symmetrically permuted version of M :

M̃ =


0 1

1 0 dTνs

dνs H ĀTw

Āw

 . (2.21)

Inertia is unchanged by symmetric permutations, so In(M) = In(M̃). The 2 × 2 block in the

upper-left corner of M̃ , denoted by E, has eigenvalues ±1, so that In(E) = (1, 1, 0) with E−1 = E.

The Schur complement of E in M̃ is

M̃/E = K̄ −

(
0 dνs

0 0

)(
0 1

1 0

)(
0 0

dTνs 0

)
= K̄, (2.22)

23

which implies that In(M̃) = In(M̃/E) + In(E) = In(K̄) + (1, 1, 0). Combining this with (2.20)

yields

In(K̄) = In([qw]s) + (n,m+mw , 0)− (1, 1, 0)

= In([qw]s) + (n− 1,m+mw − 1, 0).

Since α = α∗, [qw]s must be positive. It follows that

In(K̄) = (1, 0, 0) + (n− 1,m+mw − 1, 0) = (n,m+mw − 1, 0)

and the subspace stationary point x̄ is a (standard) subspace minimizer with respect to the new

working set W̄ =W − {νs}.

Case 2: α = αF In this case, α is the step to the blocking constraint dTrx ≥ fr, which is

eligible to be added to the working set at x+αp. However, the definition of the new working set

depends on whether or not the blocking constraint is dependent on the constraints already inW.

If dr is linearly independent of the columns of ATw, then the index r is added to the working set.

Otherwise, we show in Result 2.2.7 below that a suitable working set is defined by exchanging

rows dνs and dr in Aw . The following result provides a computable test for the independence of

dr and the columns of ATw.

Result 2.2.6 (Test for constraint dependency). Assume that x is a subspace minimizer with

respect to Aw . Assume that dTrx ≥ fr is a blocking constraint at x̄ = x + αp, where p satisfies

(2.16). Let vectors u and v be the solutions of the system(
H ATw

Aw

)(
u

−v

)
=

(
dr

0

)
, (2.23)

then

(a) the vector dr and the columns of ATw are linearly independent if and only if u 6= 0;

(b) vm+s = −dTrp > 0, and if u 6= 0, then uTdr > 0.

Proof. For part (a), equations (2.23) giveHu−ATwv = dr and Aw u = 0. If u = 0 then−ATwv = dr,

and dr must be dependent on the columns of ATw. Conversely, if −ATwv = dr, then the definition

of u gives uTdr = −uTATwv = 0, which implies that uTHu = uT(Hu − ATwv) = uTdr = 0. By

assumption, x is a subspace minimizer with respect to Aw , which is equivalent to the assumption

that H is positive definite for all u such that Aw u = 0. Hence uTHu = 0 can hold only if u is

zero.

For part (b), we use equations (2.16) and (2.23) to show that

vm+s = eTm+sv = pTATwv = pT(Hu− dr) = qTAw u− pTdr = −dTrp > 0,

24

where the final inequality follows from the fact that dTrp must be negative if dTrx ≥ fr is a blocking

constraint.

Equations (2.23) imply Hu−ATwv = dr and Aw u = 0. Multiplying the first equation by

uT and applying the second equation gives uTHu = uTdr. As x is a subspace minimizer and u is

nonzero with u ∈ null(Aw), it must hold that uTHu = uTdr > 0, as required.

The next result provides expressions for the updated multipliers.

Result 2.2.7 (Multiplier updates). Assume that x is a subspace minimizer with respect to Aw .

Assume that dTrx ≥ fr is a blocking constraint at the next iterate x̄ = x+αp, where the direction

p satisfies (2.16). Let u and v satisfy (2.23).

(a) If dr and the columns of ATw are linearly independent, then the vector ȳ formed by appending

a zero to the vector y + αq satisfies g(x̄) = ĀTwȳ, where Āw denotes the matrix Aw with

row dTr added in the last position.

(b) If dr and the columns of ATw are linearly dependent, then the vector ȳ such that

ȳ = y + αq + σv, with σ = −[y + αq]m+s/vm+s, (2.24)

satisfies g(x̄) = ATwȳ + σdr with ȳm+s = 0 and σ > 0.

Proof. For part (a), the identity (2.19) implies that g(x+ αp) = g(x̄) = ATw(y + αq). As dr and

the columns of ATw are linearly independent, we may add the index r to W and define the new

working-set matrix ĀTw =
(
ATw dr

)
. This allows us to write g(x̄) = ĀTwȳ, with ȳ given by y+αq

with an appended zero component.

Now assume that ATw and dr are linearly dependent. From Result 2.2.6 it must hold that

u = 0 and there exists a unique v such that dr = −ATwv. For any value of σ, it holds that

g(x̄) = ATw(y + αq) = ATw(y + αq + σv) + σdr.

If we choose σ = −[y + αq]m+s/vm+s and define the vector ȳ = y + αq + σv, then

g(x̄) = ATwȳ + σdr, with ȳm+s = [y + αq + σv]m+s = 0.

It follows that g(x̄) is a linear combination of dr and every column of ATw except dνs .

In order to show that σ = −[y + αq]m+s/vm+s is positive, consider the linear function

η(α) = [y + αq]m+s, which satisfies η(0) = ym+s < 0. If qm+s = pTHp > 0, then α∗ < ∞ and

η(α) is an increasing linear function of positive α with η(α∗) = 0. This implies that η(α) < 0

for any α < α∗ and η(αk) < 0. If qm+s ≤ 0, then η(α) is a non-increasing linear function

of α so that η(α) < 0 for any positive α. Thus, [y + αq]m+s < 0 for any α < α∗, and σ =

−[y + αq]m+s/vm+s > 0 from part (b) of Result 2.2.6.

25

Result 2.2.8. Let x be a subspace minimizer with respect to the working set W. Assume that

dTrx ≥ fr is a blocking constraint at x̄ = x+ αp, where p is defined by (2.16).

(a) If dr is linearly independent of the columns of ATw, then x̄ is a subspace minimizer with

respect to the working set W̄ =W + {r}.

(b) If dr is dependent on the columns of ATw, then x̄ is a subspace minimizer with respect to the

working set W̄ =W + {r} − {νs}.

Proof. Parts (a) and (b) of Result 2.2.7 imply that x̄ is a subspace stationary point with respect

to W̄. It remains to show that in each case, the KKT matrix for the new working set has correct

inertia.

For part (a), it suffices to show that the KKT matrix for the new working set W̄ =

W + {r} has inertia (n,m + mw + 1, 0). Assume that dr and the columns of ATw are linearly

independent, so that the vector u of (2.23) is nonzero. Let K and K̄ denote the KKT matrices

associated with the working sets W and W̄, i.e.,

K =

(
H ATw

Aw

)
and K̄ =

(
H ĀTw

Āw

)
,

where Āw is the matrix Aw with the row dTr added in the last position.

By assumption, x is a subspace minimizer and In(K) = (n,m+mw , 0). It follows that

K is nonsingular and the Schur complement of K in K̄ exists with

K̄/K = −
(
dTr 0

)
K−1

(
dr

0

)
= −

(
dTr 0

)(u

−v

)
= −dTru < 0,

where the last inequality follows from part (b) of Result 2.2.6. Then,

In(K̄) = In(K̄/K) + In(K) = In(−uTdr) + (n,m+mw , 0)

= (0, 1, 0) + (n,m+mw , 0) = (n,m+mw + 1, 0).

For part (b), assume that dr and the columns of ATw are linearly dependent and that

W̄ = W + {r} − {νs}. By Result 2.2.7 and equation (2.23), it must hold that u = 0 and

−ATwv = dr. Let Aw and Āw be the working-set matrices associated with W and W̄. The

change in the working set replaces row s of Dw by dTr , so that

Āw = Aw + em+s(d
T
r − dTνs) = Aw + em+s(−vTAw − eTm+sAw)

=
(
I − em+s(v + em+s)

T
)
Aw

= MAw ,

where M = I − em+s(v + em+s)
T. The matrix M has m + mw − 1 unit eigenvalues and one

eigenvalue equal to vm+s. From part (b) of Result 2.2.6, it holds that vm+s > 0 and hence M is

26

x0 −→ · · · xk−1 −→ xk −→ xk+1

(A) W0

move, add
−→ · · · Wk−1

move, add
−→ Wk

move and delete νs
−→ Wk+1

(B) W0

move, add
−→ · · · Wk−1

move, add
−→ Wk

move and swap
−→ Wk+1

Figure 2.2: Each sequence starts and ends with a standard subspace minimizer x0 and xk+1,
with intermediate iterates that are nonstandard subspace minimizers. In (A), xk+1 is reached
by taking an optimal step and the νs-th constraint is removed from the working set. In (B),
a linearly dependent blocking constraint is swapped with the νs-th constraint making xk+1 a
standard subspace minimizer.

nonsingular. The new KKT matrix for W̄ can be written as(
H ĀTw

Āw

)
=

(
I

M

)(
H ATw

Aw

)(
I

MT

)
.

By Sylvester’s Law of Inertia, the old and new KKT matrices have the same inertia, which implies

that x̄ is a subspace minimizer with respect to W̄.

The first part of this result shows that x̄ is a subspace minimizer both before and after

an independent constraint is added to the working set. This is crucial because it means that the

directions p and q for the next iteration satisfy the KKT equations (2.16) with Āw in place of

Aw . The second part shows that the working-set constraints can be linearly dependent only at a

standard subspace minimizer associated with a working set that does not include constraint νs.

This implies that it is appropriate to remove νs from the working set. The constraint dTνsx ≥ fνs
plays a significant (and explicit) role in the definition of the search direction and is called the

nonbinding working-set constraint. The method generates sets of consecutive iterates that begin

and end with a standard subspace minimizer. The nonbinding working-set constraint dTνsx ≥ fνs
identified at the first point of the sequence is deleted from the working set at the last point (either

by deletion or replacement).

The proposed method is the basis for Algorithm 2.2 given below. Each iteration requires

the solution of two KKT systems:

Full System 1

(
H ATw

Aw 0

)(
p

−q

)
=

(
0

em+s

)
(2.25a)

Full System 2

(
H ATw

Aw 0

)(
u

−v

)
=

(
dr

0

)
. (2.25b)

However, for those iterations for which the number of constraints in the working set increases, it

is possible to update the vectors p and q, making it unnecessary to solve (2.25a).

27

Algorithm 2.2: Nonbinding-direction method for general QP

Find x such that Ax = b, Dx ≥ f ; k = 0;

Choose W, any full-rank subset of A(x); Choose π and zw ;[
x, π, zw ,W

]
= subspaceMin(x, π, zw ,W); mw = |W| ;

g = c+Hx; s = argmini [zw]i;

while [zw]s < 0 do

Solve


H AT DT

w

A 0 0

Dw 0 0




p

−qπ
−qw

 =


0

0

es

;

αF = maxStep(x, p,D, f);

if [qw]s > 0 then α∗ = −[zw]s/[qw]s else α∗ = +∞;

α = min{α∗, αF};
if α = +∞ then stop; [the solution is unbounded]

x← x+ αp; π ← π + αqπ; zw ← zw + αqw ; g ← g + αHp;

if αF < α∗ then [add constraint r to the working set]

Choose a blocking constraint index r;

Solve


H AT DT

w

A 0 0

Dw 0 0




u

−vπ
−vw

 =


dr

0

0

;

if u = 0 then σ = −[zw]s/[vw]s else σ = 0;

π ← π + σvπ; zw ←

(
zw + σvw

σ

)
;

W ←W + {r}; mw ← mw + 1;

end;

if [zw]s = 0 then [delete constraint νs from the working set]

W ←W − {νs}; mw ← mw − 1;

for i = s :mw do [zw]i ← [zw]i+1;

s = argmini [zw]i;

end;

k ← k + 1;

end do

28

Result 2.2.9. Let x be a subspace minimizer with respect to Aw . Assume the vectors p, q, u

and v are defined by (2.25). Let dr be the gradient of a blocking constraint at x̄ = x + αp such

that dr is independent of the columns of ATw. If ρ = −dTrp/dTru, then the vectors

p̄ = p+ ρu and q̄ =

(
q + ρv

ρ

)

are well-defined and satisfy(
H ĀTw

Āw

)(
p̄

−q̄

)
=

(
0

em+s

)
, where Āw =

(
Aw

dTr

)
. (2.26)

Proof. Result 2.2.6 implies that u is nonzero and that uTdr > 0, so that ρ is well defined (and

strictly positive).

For any scalar ρ, (2.25a) and (2.25b) imply that
H ATw dr

Aw

dTr




p+ ρu

−(q + ρv)

−ρ

 =


0

em+s

dTrp+ ρdTru

 .

If ρ is chosen so that dTrp+ ρdTru = 0, the last component of the right-hand side vanishes, and p̄

and q̄ satisfy (2.26) as required.

2.2.3 Relation between the binding and nonbinding methods

Result 2.2.10 (Equivalence of binding and nonbinding directions). Suppose that x is a standard

subspace minimizer with respect to W, and let vectors π and zw satisfy g(x) = ATπ + DT
wzw.

Assume that both the binding- and nonbinding-direction methods identify an index νs ∈ W such

that [zw]s < 0. Define the set W̄ =W − {νs}.
Let p be the nonbinding direction from (2.16). If the reduced Hessian ZTw̄HZw̄ is positive

definite, then p̄ = α∗p, where p̄ is the binding direction from (2.6), and α∗ is the bounded non-

binding optimal step α∗ = −[zw]s/qm+s. Otherwise, p̄ = δp, where p̄ is defined by (2.8) and δ is

a bounded positive scalar.

Proof. Because x is a stationary point, g(x) = ATπ + DT
wzw = ATπ + DT

w̄zw̄ + [zw]sdνs , where

zw̄ is zw with the s-th component removed. This implies that

[zw]sdνs = g(x)−ATπ −DT
w̄zw̄. (2.27)

By definition, the nonbinding direction p satisfies the equations(
H ATw

Aw 0

)(
p

−q

)
=

(
0

em+s

)
.

29

The second block of equations is Aw p = em+s, which implies that Aw̄ p = 0 and dTνsp = 1.

Similarly, the first block of equations gives

Hp−ATwq = Hp−ATw̄ q̄ − qm+s dνs = 0, (2.28)

where q̄ is the (m+mw̄)-vector defined by removing the (m+ s)-th component from q.

The definition of the binding direction depends on the inertia of the reduced Hessian

ZTw̄HZw̄. Suppose that it is nonsingular (either positive definite or indefinite). Then qm+s =

pTHp 6= 0 since p lies in the null space of Aw̄ and the binding direction satisfies(
H ATw̄

Aw̄ 0

)(
p̄

−q̄

)
= −

(
g(x)−ATπ −DT

w̄zw̄

0

)
.

The equations (2.27) and (2.28) imply that

α∗(Hp−ATw̄ q̄) = α∗qm+s dνs =
α∗qm+s

[zw]s

(
g(x)−ATπ −DT

w̄zw̄

)
= −(g(x)−ATπ −DT

w̄zw̄).

Therefore α∗p and α∗q̄ satisfy(
H ATw̄

Aw̄ 0

)(
α∗p

−α∗q̄

)
= −

(
g(x)−ATπ −DT

w̄zw̄

0

)
.

If ZTw̄HZw̄ is singular, then p̄ and q̄ satisfy (2.8)(
H ATw̄

Aw̄ 0

)(
p̄

−q̄

)
=

(
0

0

)
.

The first equation states that Hp̄ − ATw̄ q̄ = 0, which means that Hp̄ − ATw q = 0 since qm+s =

pTHp = 0 because p lies in the null space of Aw̄ . The second equation implies that Aw p̄ =

(dTνs p̄)em+s. If δ = 1/dTνs p̄, then(
H ATw

Aw 0

)(
δp̄

−δq̂

)
=

(
0

em+s

)
,

as required.

3 Problems in Standard Form

Probably the most common form for expressing quadratic programs, often called standard

form, is

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx subject to Ax = b, x ≥ 0. (3.1)

This problem is a particular instance of the mixed constraints Ax = b, Dx ≥ f in which D is the

n-dimensional identity and f = 0. The constraints x ≥ 0, called simple bounds or just bounds,

are the only inequality constraints in a standard-form problem. Any mixed-constraint problem

may be written in standard form. For example, the general inequality constraint dTi x ≥ fi can

be converted to a general equality dTi x − si = fi by adding an extra (“slack”) variable si that

is required to be nonnegative. However, QPs in standard form arise naturally in the theory of

duality (see Chapter 4).

In this chapter, we show that the application of the nonbinding-direction method to a

quadratic program in standard-form leads to an algorithm in which the two fundamental systems

(2.25a) and (2.25b) may be expressed in terms of a smaller “reduced” KKT system involving a

subset of the columns of A.

3.1 Introduction

A first-order KKT point for (3.1) is defined as a point x satisfying the following conditions

Ax = b, x ≥ 0 (feasibility)

g(x) = ATπ + z (stationarity)

z ≥ 0 (nonnegativity)

x · z = 0 (complementarity).

Since the only inequality constraints of (3.1) are simple bounds on x, the active set

at a point x is defined as A(x) = {i : xi = 0}, with cardinality ma . The stationarity and

complementarity conditions above are equivalent to the condition g(x) = ATπ + Pa za , where

z = Pa za and Pa is the n×ma permutation matrix defined by A(x).

30

31

The necessary optimality conditions of (3.1) in active-set format are given in the following

result:

Result 3.1.1 (Necessary optimality conditions for standard-form QP). If x∗ is a local minimizer

of the quadratic program (3.1), then

(a) Ax∗ = b, x ≥ 0;

(b) there exist vectors π∗ and za such that g(x∗) = ATπ∗ + Pa za , where za ≥ 0 and Pa is

defined by A(x∗); and

(b) it holds that pTHp ≥ 0 for all nonzero p satisfying Ap = 0, and pi = 0 for each i ∈ A(x∗).

3.2 Nonbinding-Direction Method for Standard-Form QP

In standard-form, the working-set matrix Dw consists of rows of the identity matrix,

and each working-set index i is associated with a variable xi that is implicitly fixed at its current

value. In this situation, as is customary for constraints in standard form, we refer to the working

set as the nonbasic set N , and denote its elements as {ν1, ν2, . . . , νnN
} with nN = mw . The

complementary set B of nB = n − nN indices that are not in the working set is known as the

basic set. The elements of the basic set are denoted by {β1, β2, . . . , βnB
}.

If PN denotes the n× nN matrix of unit columns { ei } with i ∈ N , then the working-set

matrix Aw may be written as:

Aw =

(
A

PTN

)
.

Similarly, if PB is the n× nB matrix with unit columns { ei } with i ∈ B, then P =
(
PB PN

)
is

a permutation matrix that permutes the columns of Aw as

Aw

(
PB PN

)
= Aw P =

(
A

PTN

)
P =

(
AP

PTN P

)
=

(
AB AN

InN

)
,

where AB and AN are matrices with columns { aβj
} and { aνj } respectively. If y is any n-vector,

yB (the basic components of y) denotes the nB-vector whose j-th component is component βj

of y, and yN (the nonbasic components of y) denotes the nN -vector whose j-th component is

component νj of y. The same convention is used for matrices, with the exception of IB and IN ,

which are reserved for the identity matrices of order nB and nN , respectively. With this notation,

the effect of P on the Hessian and working-set matrix may be written as

PTHP =

(
HB HD

HT
D HN

)
and Aw P =

(
AB AN

IN

)
. (3.2)

As in the mixed-constraint formulation, Aw must have full row rank. This is equivalent to

requiring that AB has full row rank since rank(Aw) = nN + rank(AB).

32

We will see that for standard-form problems, the nonbinding-direction method is char-

acterized by the basic set instead of the nonbasic (or working) set. Consequently, we redefine a

subspace stationary point with respect to a basic set and a second-order-consistent working set

as a second-order-consistent basis.

Result 3.2.1 (Stationary point and second-order consistent basis). Let x be a feasible point with

basic set B. Let the columns of ZB form a basis for the null space for AB.

(a) If x is stationary point with respect to Aw , then gB = ATBπ for some vector π, or equiva-

lently, the reduced gradient ZTB gB = 0 and x is referred to as a subspace stationary point

with respect to B (or AB).

(b) If B is a second-order-consistent basis for (3.1), then the reduced Hessian ZTBHZB is positive

definite. Equivalently, the KKT matrix KB =

(
HB ATB

AB

)
has inertia (nB,m, 0).

Proof. Definition 2.2.1 implies that there exists a vector y such that g(x) = ATwy. Applying the

permutation P to the equation implies(
gB

gN

)
= PTg = PTATwy =

(
ATB

ATN IN

)
y,

so that gB = ATBπ ∈ range(ATB), where the vector π is the first m components of the vector y.

For part (b), let the columns of Z define a basis for the null space of Aw . Applying the

permutation PT of (3.2) to Z gives

PTZ =

(
ZB

ZN

)
.

Then

Aw Z = Aw PP
TZ =

(
AB AN

IN

)(
ZB

ZN

)
=

(
ABZB +ANZN

ZN

)
= 0,

so that ZN = 0. This implies that

ZTHZ = ZTPPTHPPTZ =
(
ZTB ZTN

)(HB HD

HT
D HN

)(
ZB

ZN

)
= ZTBHBZB.

Consequently, ZTHZ is positive definite if and only if ZTBHBZB is positive definite. Moreover,

In(ZTHZ) = In(ZTBHBZB).

By definition, since x is a subspace minimizer, ZTHZ is positive definite and has inertia

(n− (m+ nN), 0, 0). By Corollary 1.3.1, the inertia of KB satisfies

In(KB) = In(ZTBHZB) + (m,m, 0) = In(ZTHZ) + (m,m, 0)

= (n− (m+ nN), 0, 0) + (m,m, 0)

= (n− nN ,m, 0) = (nB,m, 0).

33

As in linear programming, the components of the vector z = g(x) − ATπ are called

the reduced costs. For constraints in standard form, the multipliers zw associated inequality

constraints in the working set are denoted by zN , whose components are the nonbasic components

of the reduced-cost vector, i.e.,

zN = (g(x)−ATπ)N = gN −ATNπ.

At a subspace stationary point, it holds that gB − ATBπ = 0, which implies that the basic

components of the reduced costs zB are zero.

The fundamental property of constraints in standard form is that the mixed-constraint

method may be formulated so that the number of variables involved in the equality-constraint

QP subproblem (2.15) is reduced from n to nB. Suppose that zνs < 0 for νs ∈ N . By applying

the permutation matrix P to the KKT system (2.25a), we have
HB HD ATB

HT
D HN ATN IN

AB AN

IN




pB

pN

−qπ
−qN

 =


0

0

0

es

 , where p = P

(
pB

pN

)
and q =

(
qπ

qN

)
. (3.3)

These equations imply that pN = es and pB and qπ satisfy the reduced KKT system(
HB ATB

AB 0

)(
pB

−qπ

)
=

(
−HDpN

−ANpN

)
= −

(
(hνs)B

aνs

)
. (3.4)

In practice, pN is defined implicitly and only the components of pB and qπ are computed explicitly.

Once pB and qπ are known, the increment qN for multipliers zN associated with the constraints

pN = es are given by qN = (Hp−ATqπ)N . The computed search directions satisfy the identities

in Result 2.2.4. In terms of the standard form variables, these identities imply

gTp = [zN]s and pTHp = [qN]s, (3.5)

so that the optimal step α∗ = −[zN]s/[qN]s.

The solution of the second KKT system (2.25b) can be similarly computed from the

KKT equation (
HB ATB

AB

)(
uB

−vπ

)
=

(
er

0

)
, (3.6)

with uN = 0 and vN = (Hu−ATvπ)N , where u = P

(
uB

uN

)
and v =

(
vπ

vN

)
.

The KKT equations (3.4) and (3.6) allow the mixed-constraint algorithm to be formu-

lated in terms of the basic variables only, which implies that the algorithm is driven by variables

entering or leaving the basic set rather than constraints entering or leaving the working set. With

34

this interpretation, changes to the KKT matrix are based on column-changes to AB instead of

row-changes to Aw .

For completeness Results 2.2.5—2.2.8 are summarized in terms of the quantities associ-

ated with constraints in standard form.

Result 3.2.2. Let x be a subspace minimizer with respect to the basic set B, with [zN]s < 0. Let

x̄ be the point such that x̄N = xN + αes and x̄B = xB + αpB, where pB is defined as in (3.4).

(1) The step to the minimizer of ϕ(x+ αp) is α∗ = −zνs/[qN]s. If α∗ is bounded and α = α∗,

then x̄ is a subspace minimizer with respect to the basic set B̄ = B + {νs}.

(2) Alternatively, the largest feasible step is defined by the minimum ratio test:

αF = min γi, where γi =


[xB]i
−[pB]i

if [pB]i < 0,

+∞ otherwise.

(3.7)

Suppose α = αF and [xB + αpB]βr = 0 and let uB and vπ be defined by (3.6).

(a) er and the columns of ATB are linearly independent if and only if uB 6= 0.

(b) [vN]s = −[pB]r > 0, and if uB 6= 0, then [uB]r > 0.

(c) If er and the columns of ATB are linearly independent, then x̄ is a subspace minimizer

with respect to B̄ = B − {βr}. Moreover, gB̄(x̄) = ATB̄ π̄ and gN̄(x̄) = ATN̄ π̄ + z̄N , where

π̄ = π+αqπ and z̄N is formed by appending a zero component to the vector zN +αqN .

(d) If er and the columns of ATB are linearly dependent, define σ = −[zN + αqN]s/[vN]s.

Then x̄ is a subspace minimizer with respect to B̄ = B−{βr}+{νs} with gB̄(x̄) = ATB̄ π̄

and gN̄(x̄) = ATN̄ π̄ + z̄N , where π̄ = π + αqπ + σvπ with σ > 0, and z̄N is formed by

appending σ to zN + αqN + σvN .

Proof. For part (1), we first show that x̄ remains a stationary point for B̄. Since α = α∗ =

−[zN]s/[qN]s, the multiplier of the νs-th constraint [zN + αqN]s = 0 so that zB̄ = 0.

Now let KB and KB̄ denote the matrices associated with basic sets B and B̄. We must

show that KB̄ has the correct inertia. However, since inertia is unchanged by symmetric permu-

tations, we consider a permuted version of KB̄:

K̃B̄ = QTKB̄Q =


HB ATB (hνs)B

AB aνs

(hνs)TB aTνs hνs,νs


where Q is a permutation matrix. Because KB is associated with a subspace minimizer, KB is

nonsingular with In(KB) = (nB,m, 0). In particular, K̃B̄/KB the Schur complement of KB in

K̃B̄ exists with

K̃B̄/KB = hνs,νs −
(

(hνs)TB aTνs

)
K−1

B

(
(hνs)B

aνs

)
.

35

It follows from equation (3.4) that

KB

(
pB

−qπ

)
= −

(
(hνs)B

aνs

)
.

Thus, the Schur complement can be written as

K̃B̄/KB = hνs,νs −
(

(hνs)TB aTνs

)(−pB

qπ

)

= hνs,νs + (hνs)TB pB − aTνsqπ

= eTsHNes + eTsH
T
D pB − eTsATNqπ

= eTsqN = [qN]s by (3.4) .

Then In(KB̄) = In(K̃B̄) = In(KB) + In(K̃B̄/KB) = In(KB) + In([qN]s).

Since α∗ is bounded, [qN]s = pTHp must be positive, so that In([qN]s) = (1, 0, 0). It

follows the KKT matrix associated with B̄ has inertia (nB + 1,m, 0) and the subspace stationary

point x̄ is a subspace minimizer with respect to B̄.

For part (2a), equation (3.6) implies that HBuB −ATBvπ = er and ABuB = 0. If uB = 0,

then −ATBvπ = er so er must be dependent on the rows of AB. Conversely, if −ATBvπ = er, then

the definition of uB gives uTBer = −uTBATBvπ = 0, which implies uTBHBuB = 0. By assumption,

x is a subspace minimizer with respect to B which is equivalent to the assumption that HB is

positive definite for all uB such that ABuB = 0. Thus, uTBHBuB = 0 can hold only if uB = 0.

Part (2b) follows directly from Result 2.2.6 since vm+s = [vN]s = −eTβr
p = −[pB]r > 0

and uTeβr
= [uB]r > 0 if uB 6= 0.

For part (2c), observe that (2.19) implies

gB(x̄) = ATB(π + αqπ) and gN(x̄) = ATN(π + αqπ) + (zN + αqN).

Since er and the rows of AB are linearly independent, the index βr may be added to the nonbasic

set. The new basic and nonbasic sets are defined as B̄ = B − {βr} and N̄ = N + {βr}. The

column of AB corresponding to the t-th variable is removed from AB to form AB̄ and is appended

to AN to form the new nonbasic matrix AN̄ . Then

gB̄(x̄) = ATB̄ π̄ and gN̄(x̄) = ATN̄ π̄ + z̄N ,

where z̄N is formed by appending a zero to the vector zN + αqN .

It suffices to show that for B̄ = B − {βr}, KB̄ has inertia (nB − 1,m, 0). Consider the

matrix

M 4
=

(
KB er

eTr

)
.

36

By assumption, x is a subspace minimizer and In(KB) = (nB,m, 0). Thus, KB is nonsingular

and the Schur complement of KB in M exists with

M/KB = −eTrK−1
B er = −eTr

(
uB

−vπ

)
by (3.6)

= −[uB]r < 0.

Then,

In(M) = In(M/KB) + In(KB) = In(−[uB]r) + (nB,m, 0)

= (0, 1, 0) + (nB,m, 0)

= (nB,m+ 1, 0). (3.8)

Since B̄ = B − {βr}, a permutation can be applied to KB such that

KB =

(
HB ATB

AB

)
∼


HB̄ (hβr

)B̄ ATB̄

(hβr
)TB̄ hβr,βr

aTβr

AB̄ aβr
0

 .

Similarly, applying symmetric permutations to M gives

M 4
=

(
KB er

eTr

)
∼


HB̄ (hβr

)B̄ ATB̄ 0

(hβr
)TB̄ hβr,βr

aTβr
1

AB̄ aβr 0 0

0 1 0 0



∼


hβr,βr

1 (hβr
)TB̄ aTβr

1 0 0 0

(hβr)B̄ 0 HB̄ ATB̄

aβr
0 AB̄ 0

 4
= M̃.

The leading 2 × 2 block of M̃ , denoted by E, has det(E) = −1 so In(E) = (1, 1, 0). The Schur

complement of E in M̃ is

M̃/E = KB̄ −

(
(hβr

)B̄ 0

aβr
0

)(
hβr,βr

1

1 0

)−1(
(hβr

)TB̄ aTβr

0 0

)

= KB̄ −

(
(hβr)B̄ 0

aβr
0

)(
0 1

1 −hβr,βr

)(
(hβr)TB̄ aTβr

0 0

)
= KB̄,

which implies that In(M) = In(M̃) = In(M̃/E) + In(E) = In(KB̄) + (1, 1, 0). Combining this

with (3.8) yields

In(KB̄) = In(M)− (1, 1, 0) = (nB,m+ 1, 0)− (1, 1, 0) = (nB − 1,m, 0),

37

so that KB̄ has correct inertia and x̄ is a subspace minimizer with respect to B̄.

For part (2d), assume that er and the rows of AB are linearly dependent so that uB = 0

with −ATBvπ = er and vN = −ATNvπ.

Let σ be an arbitrary scalar. It follows that the basic components of the gradient satisfy

gB(x̄) = ATB(π + αqπ) = ATB(π + αqπ + σvπ)− σATBvπ
= ATB(π + αqπ + σvπ) + σer

= ATB π̄ + σer,

where π̄ = π + αqπ + σvπ. Similarly, for the nonbasic components, it follows that

gN(x̄) = ATN(π + αqπ) + zN + αqN

= ATN(π + αqπ + σvπ) + zN + αqN − σATNvπ
= ATN π̄ + z̄N , with z̄N = zN + αqN + σvN .

If σ is defined as σ = −[zN +αqN]s/[vN]s, then [z̄N]s = [zN +αqN −σvN]s = 0. This implies that

the next basic and nonbasic sets can be defined as B̄ = B−{βr}+{νs} and N̄ = N +{βr}−{νs},
so that

gB̄(x̄) = ATB̄ π̄ and gN̄(x̄) = ATN̄ π̄ + z̃N ,

with π̄ = π + αqπ + σvπ and z̃N formed by appending σ to z̄N .

To show that σ > 0, notice that η(α) = [zN + αqN]s is a nondecreasing linear function

of α such that η(0) = [zN]s < 0 and η(α∗) = 0. This implies that if a constraint is blocking,

then α < α∗ and [zN + αqN]s < 0. Now σ > 0 if [vN]s > 0. But [vN]s = eTs(−ATNvπ) = −aTνsvπ =

pTBA
T
Bvπ = −pTBer = −[pB]r > 0 since r is the index of a blocking constraint. Thus σ > 0.

Let KB and KB̄ denote the KKT matrices associated with B and B̄ and denote the

intermediate basic set B−{βr} as B̂. Since B̄ is B with the r-th index replaced by νs, KB̄ differs

from KB by a single row and column. Although it is very similar to the proofs in part (1) and

(2c), a concise proof to show that KB̄ has correct inertia is provided for completeness.

Define the matrix M as
HB ATB (hνs)B er

AB 0 aνs 0

(hνs)TB aTνs hνs,νs 0

eTr 0 0 0

 .

38

The (1, 1)-block is KB, which is nonsingular, so that the Schur complement M/KB is

M/KB =

(
hνs,νs 0

0 0

)
−

(
(hνs)TB aTνs

eTr 0

)
K−1

B

(
(hνs)B er

aνs 0

)

=

(
hνs,νs 0

0 0

)
−

(
(hνs)TB aTνs

eTr 0

)(
−pB 0

qπ −vπ

)

=

(
hνs,νs + (hνs)TB pB − aTνsqπ aTνsvπ

eTr pB 0

)

=

(
[qN]s [vN]s

[pB]r 0

)

Since [vN]s = −[pB]r > 0, M/KB has inertia (1, 1, 0). Thus, In(M) = (nB,m, 0) + (1, 1, 0) =

(nB + 1,m+ 1, 0).

Now consider a permuted M such that

M̄ =



HB̂ AT
B̂

(hνs)B̂ (hβr
)B̂ 0

AB̂ 0 aνs aβr
0

(hνs)TB̂ aTνs hνs,νs 0 0

(hβr)TB̂ aTβr
0 hβr,βr 1

0 0 0 1 0


.

Since the (1, 1)-block of this matrix is a permuted version of KB̄, it remains to show that this

block has correct inertia. Notice that the (2, 2)-block of the above matrix (which we denote by E)

is nonsingular, so that the Schur complement must exist. By a simple calculation, M̄/E = KB̄.

Therefore In(KB̄) = In(M̄)− In(E) = (nB,m, 0).

As in the general mixed-constraint method, the direction pB and multiplier qπ can be

updated in the linearly independent case.

Result 3.2.3. Let x be a subspace minimizer with respect to B. Assume the vectors pB, qπ,

uB and vπ are defined by (3.4) and (3.6). Let βr be the index of a linearly independent blocking

constraint at x̄, where x̄N = xN + αes and x̄B = xB + αpB. Let ρ = −[pB]r/[uB]r, and consider

the vectors p̄B and q̄π, where p̄B is the vector pB + ρuB with the r-th component omitted, and

q̄π = qπ + ρvπ. Then p̄B and q̄π are well-defined and satisfy the KKT equations for the basic set

B̄ = B − {βr}.

Proof. Since the blocking constraint is linearly independent, uB 6= 0 and [uB]r is nonzero by

part (2b) of Result 3.2.2, so that ρ is well-defined.

Let K be the matrix KB with the r-th components zeroed out, i.e., K = KB−Kr, where

Kr =

(
HBere

T
r + er(HBer)

T− hβrβr
ere

T
r ere

T
rA

T
B

ABere
T
r

)
.

39

x0 −→ · · · xk−1 −→ xk −→ xk+1

(A) B0

move, delete
−→ · · · Bk−1

move, delete
−→ Bk

move, add νs
−→ Bk+1

(B) B0

move, delete
−→ · · · Bk−1

move, delete
−→ Bk

move, swap νs & βr
−→ Bk+1

Figure 3.1: This figure depicts the two types of sequence of consecutive iterates in the
nonbinding-direction method. Each sequence starts and ends with standard subspace minimizers
x0 and xk+1. Intermediate iterates are nonstandard subspace minimizers. The sequences differ in
how the final point is reached. In (A), νs is added to the basic set after an optimal step α = α∗.
In (B), βr is the index of a linearly dependent blocking constraint and it is swapped with the
νs-th constraint after a blocking step (αF < α∗) is taken.

Then

KB

(
pB + ρuB

−(qπ + ρvπ)

)
= −

(
(hνs)B

aνs

)
+ ρ

(
er

0

)
and Kr

(
pB + ρuB

−(qπ − ρvπ)

)
=

(
ρer − [hνs]rer

0

)
,

so that

K

(
pB + ρuB

−(qπ − ρvπ)

)
= −

(
(hνs)B − [hνs]rer

aνs

)
.

If p̄B is the vector pB + ρuB with the r-th component removed, then the above equation implies

that

KB̄

(
p̄B

−q̄π

)
= −

(
(hνs)B̄

aνs

)
,

where KB̄ is the KKT matrix associated with B̄.

The standard-form version of the nonbinding-direction method computes sequences of

iterates that start and end with a standard subspace minimizer with intermediate iterates con-

sisting of nonstandard subspace minimizers. Figure 3.1 shows the two possible types of sequences.

In both sequences, intermediate iterates are reached by taking blocking steps where the blocking

constraint is linearly independent of the constraints in the current basic set. In the upper se-

quence (A), the final standard subspace minimizer is reached when an optimal step is taken and

νs is added to the basic set. In the lower sequence (B), we encounter a blocking constraint that

is linearly dependent of the basic set constraints. In this case, νs is added to the basic set and

the index βr of the blocking constraint is removed.

Algorithm 3.1 summarizes the nonbinding-direction method for quadratic programming.

Instead of using the vectors qN and vN to update z, the algorithm recomputes z from π using

z = g − ATπ. Furthermore, the relation in part 2(b) of Result 3.2.2 is used to simplify the

computation of [vN]s.

40

Algorithm 3.1: Nonbinding-direction method for a general QP in standard form

Find x0 such that Ax0 = b and x0 ≥ 0; k = 0;

[x, π,B,N] = subspaceMin(x0);

g = c+Hx; z = g −ATπ;

νs = argmini{zi};
while zνs < 0 do

Solve

(
HB ATB

AB

)(
pB

−qπ

)
= −

(
(hνs)B

aνs

)
; pN = es; p = P

(
pB

pN

)
;

αF = minRatioTest(xB, pB);

if [qN]s > 0 then α∗ = −zνs/[qN]s else α∗ = +∞;

α = min{α∗, αF};
if α = +∞ then stop; [the solution is unbounded]

x← x+ αp; g ← g + αHp;

π ← π + αqπ; z = g −ATπ;

if αF < α∗ then [remove the r-th basic variable]

Find the blocking constraint index r;

Solve

(
HB ATB

AB

)(
uB

−vπ

)
=

(
er

0

)
;

if uB = 0 then σ = zνs/[pB]r else σ = 0;

B ← B − {βr}; N ← N + {βr};
π ← π + σvπ; z = g −ATπ;

end;

if zνs = 0 then [add the s-th nonbasic variable]

B ← B + {νs}; N ← N − {νs};
νs = argmini{zi};

end;

k ← k + 1;

end do

41

3.3 Linear Programs in Standard Form

If the problem is a linear program (i.e., H = 0), then the basic set B may be chosen

so that AB is always nonsingular (i.e., it is square with rank m). In this case, we show that

Algorithm 3.1 simplifies to a variant of the primal simplex method in which the π-values and

reduced costs are updated by a two-term recurrence relation.

When H = 0, the equations (3.4) reduce to ABpB = −aνs and ATBqπ = 0, with pN = es

and qN = −ATNqπ. Since AB is nonsingular, both qπ and qN are zero, and the directions pB

and pN are identical to those defined by the simplex method. In the case of (3.6), the basic

and nonbasic components of u satisfy ABuB = 0 and uN = 0. Similarly, vN = −ATNvπ, where

−ATBvπ = er. Again, as AB is nonsingular, uB = 0 and the linearly dependent case always

applies in Algorithm 3.1. This implies that the r-th basic and the s-th nonbasic variables are

always swapped, as in the primal simplex method. Every iterate for an LP is a standard subspace

minimizer.

As qπ and qN are zero, the updates to the multiplier vectors π and zN defined by part 2(d)

of Result 3.2.2 depend only on vπ, vN and the scalar σ = −[zN]s/[vN]s. The resulting updates

to the multipliers are:

π ← π + σvπ, and zN ←

(
zN + σvN

σ

)
,

which are used in many implementations of the simplex method.

4 Dual Quadratic Programming

In this chapter, we formulate a dual active-set method by applying the nonbinding-

direction method to the dual problem of the standard-form quadratic problem introduced in

Chapter 3. The original “primal” standard-form problem is restated here:

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx subject to Ax = b, x ≥ 0. (4.1)

The stationarity condition of the primal QP gives an explicit relation between the primal variables

x and the dual variable π and z. Based on this condition, a dual problem is formulated where

the roles of the primal and dual variables are reversed. Instead of minimizing over the primal

variables x, a dual QP minimizes over variables π and z that satisfy the stationarity and non-

negativity conditions of the primal QP. If the original primal problem is not convex, it may not

be possible to recover a primal solution from the dual. Therefore, the dual method is only applied

to convex primal problems, i.e., to problems with positive-semidefinite H.

The relationship between the primal and dual was first given by Dorn in [21]. A dual

active-set method for strictly convex problems was proposed by Goldfarb and Idnani [47]. This

method was extended by Powell [60] to deal with ill-conditioned problems, and reformulated

by Boland [5] to handle the general convex case. These methods require the factorization of a

matrix defined in terms of the inverse of H, and as such, they are unsuitable for large-scale QP.

In particular, the Goldfarb-Idnani method uses a range-space method to solve a KKT system of

the form (
H ATa

Aa 0

)(
p

q

)
=

(
aj

0

)
.

The solution is defined by the inverse of the Hessian and the Moore-Penrose pseudoinverse such

that

M† = (AaH
−1ATa)−1AaH

−1 and N = H−1(I −ATaM†),

with p = Naj and q = M†aj . The pseudoinverse M and matrix N are not computed explicitly,

but are stored in factored form as dense matrices. The difficulty of using the inverse of H and

dense factorizations was addressed by Bartlett and Biegler [2] in the code QPSchur, which is a

reformulation of the Goldfarb-Idnani method utilizing the Schur-complement method to solve

the linear systems (see Section 7.2 for a discussion of the Schur-complement method). However,

42

43

QPSchur is only appropriate for strictly convex problems as strict convexity is required to ensure

a positive definite reduced Hessian at every iteration of the method.

In the next section, background information on dual problems is given and the dual

problem format is introduced. In Section 4.2, the dual version of the nonbinding algorithm is

described.

4.1 Background

A point x satisfying the constraints of the primal problem is called primal feasible.

Multipliers π and z satisfying the stationarity and non-negativity conditions (i.e., g(x) = ATπ+z

and z ≥ 0) of (4.1) are called dual feasible. Given such primal-dual points, we have

0 ≤ zTx = (c+Hx−ATπ)Tx = cTx+ 1
2x

THx+ 1
2x

THx− bTπ,

which implies that ϕ(x) ≥ −(1
2x

THx − bTπ). Based on this inequality, we wish to determine π

and z by maximizing − 1
2x

THx + bTπ or, equivalently, minimizing the dual quadratic objective

function ϕD(x, π) = 1
2x

THx− bTπ over the set of dual feasible points.

The “dual” quadratic problem for (4.1) is written as

minimize
w,z∈Rn,π∈Rm

ϕD(w, π) = 1
2w

THw − bTπ

subject to Hw −ATπ − z = −c, z ≥ 0.
(4.2)

The relationship between the primal and the dual problems is evident from the optimality condi-

tions for (4.2) provided by the following result. The stationarity conditions for the dual are the

feasibility conditions of the primal and vice versa.

Result 4.1.1 (Dual QP optimality conditions). The point (w∗, π∗, z∗) is a solution to the dual

QP (4.2) if and only if

(a) Hw∗ −ATπ∗ − z∗ = −c and z∗ ≥ 0;

(b) there exists a vector x∗ such that (i) Hw∗ = Hx∗, (ii) Ax∗ = b, (iii) x∗ ≥ 0, and (iv)

x∗ · z∗ = 0.

Second-order conditions are unnecessary because H is positive semidefinite. If the so-

lution of the primal problem is unbounded, then the dual is infeasible. Similarly, if the dual

is unbounded, then the primal is infeasible. If the dual has a bounded solution, then part (b)

implies that x∗, the Lagrange multiplier vector for the dual, is a KKT point for the primal, and

hence constitutes a primal solution. Moreover, if the dual has a bounded solution and H is

nonsingular, then w∗ = x∗.

Methods that solve the dual are useful because the dual formulation does not require

feasibility with respect to the equality constraints Ax = b. For example, in branch-and-cut

44

methods for mixed-integer nonlinear programming (MINLP), introducing a new cut constraint

produces a new QP that is better solved by dual methods than primal methods. When a cut is

generated, then (i) a new row and new column are added to the constraint matrix A, (ii) a zero

element is added to the objective vector c, and (iii) the Hessian is extended to include a zero

row and column. These changes give a new QP with data Â, b̂, ĉ and Ĥ. The new column of

Â corresponds to the unit vector associated with the new slack column. An obvious initial basis

for the new problem is

ÂB =

(
AB 0

aT 1

)
,

so the new basic solution x̂B is the old solution xB augmented by the new slack, which is infeasible.

The infeasible slack implies that it is necessary to go into phase 1 before solving the primal QP.

However, by solving the dual QP, then we have an initial feasible subspace minimizer for the dual

based on x̂B such that ÂBx̂B = b̂ and ẑ = ĉ+ Ĥx̂− ÂT π̂. In this situation, the vector π̂ may be

chosen as the old π augmented by a zero in the position of the new row of Â. The new element

of x̂B corresponds to the new slack, so the new elements of ĉ and row and column of Ĥ are zero.

This implies that ẑ is essentially z, and hence ẑ ≥ 0.

4.1.1 Regularized dual problem

The dual active-set method is formulated by applying the standard-form nonbinding

direction method to the dual problem (4.2). The method is suitable for QPs that are not strictly

convex (as in the primal case) and, as in the Bartlett-Biegler approach, the method may be

implemented without the need for customized linear algebra software. However, the method

cannot be applied directly to (4.2). If H is singular, then a bounded dual solution (w, π, z) is

not unique because (w + q, π, z) is also a solution for all q ∈ null(H). In addition, a working-set

matrix for (4.2) has the form (
H −AT −I
0 0 PT

)
,

where P is some submatrix of the identity matrix In. If H is singular, then the working-set matrix

will be rank deficient, so that the dual has no subspace minimizers—i.e., the reduced Hessian is

positive semidefinite and singular at every subspace stationary point. These difficulties may be

overcome by including additional artificial equality constraints in the dual that do not alter the

optimal dual objective. Let Z be a matrix whose columns form a basis for the null space of H.

The regularized dual problem is defined as

minimize
w,z∈Rn,π∈Rm

ϕD(w) = 1
2w

THw − bTπ

subject to Hw −ATπ − z = −c, ZTw = 0, z ≥ 0.
(4.3)

The additional constraint ZTw = 0 forces w to lie in the range-space of H. The following result

shows that any solution of the regularized dual (4.3) is a solution of the original dual (4.2).

45

Result 4.1.2 (Optimality of the regularized dual QP). A bounded solution (w∗, π∗, z∗) of the

regularized dual QP (4.3) is a solution of the dual QP (4.2).

Proof. The regularized dual (4.3) is a convex problem in standard form. The optimality condi-

tions follow from part (a) of Result 3.1.1. If (w∗, π∗, z∗) is a bounded solution of the regularized

dual, then ZTw∗ = 0, Hw∗−ATπ∗− z∗ = −c, z∗ ≥ 0, and there exist vectors x∗, y∗ and q∗ such

that 
Hw∗

−b
0

 =


Z H

0 −A
0 −I


(
q∗

x∗

)
+


0

0

y∗

 , (4.4)

with y∗ ≥ 0, and y∗ · z∗ = 0. The first block of equations in (4.4) gives H(w∗−x∗) = Zq∗, which

implies that Zq∗ = 0 because Zq∗ lies in both the null space and range space of H. As the columns

of Z are linearly independent, it must hold that q∗ = 0. The second block of equations implies

Ax∗ = b, and the third implies y∗ = x∗. Hence (w∗, π∗, z∗) satisfies Hw∗−ATπ∗− z∗ = −c, and

x∗ is such that Hw∗ = Hx∗, Ax∗ = b, with x∗ · z∗ = 0 and x∗ ≥ 0. It follows that (w∗, π∗, z∗)

and the dual “π-vector” x∗ satisfies the optimality conditions for the dual QP (4.2).

The restriction that w ∈ range(H) implies that the optimal w is the unique vector of

least two-norm that satisfies Hw −ATπ − z = −c. In many cases the null-space basis Z may be

determined by inspection. For example, consider a QP with H and A of the form

H =

(
H̄ 0

0 0

)
and A =

(
Ā −Im

)
, (4.5)

where H̄ is an (n −m) × (n −m) positive-definite matrix. (This format arises when a strictly

convex QP with all-inequality constraints Āx ≥ b̄ is converted to standard form (see (1.3)). In

this case, Z is the (n + m) × m matrix consisting of a zero n × m block and the identity Im.

Similarly if the QP is a linear program, then Z = In and w = 0.

4.2 A Dual Nonbinding-Direction Method

Consider a feasible point (w, π, z, x) for the dual QP (4.3). To make the notation for the

dual algorithm consistent with the notation for the primal algorithm in Chapter 3, the working

(or basic) set B will be used to denote the nB indices of inequality constraints in the working set

for the dual QP. The associated working-set matrix has the form

Aw =


ZT

H −AT −I
PTB

 , (4.6)

where PB is the n × nB matrix with unit columns { ei } such that i ∈ B. As in the primal

case, the working-set matrix must have full row rank. H being singular causes no complications

46

because the additional constraints ZTw = 0 ensure that Aw will have full row rank. In the primal

standard-form algorithm, independence of the rows of Aw implies independence of the columns

of AB. In the dual context, however, the independence of the columns of AB must be imposed

explicitly.

As the dual problem is convex (i.e., H is positive semidefinite), the reduced Hessian

ZTBHZB is always positive semidefinite, where the columns of ZB form a basis for the null space

of AB. By Corollary 1.3.1, implies that the reduced KKT matrix KB is nonsingular if and only

if ZTBHZB is positive definite. Moreover, these conditions are equivalent to KB having inertia

(nB,m, 0). Therefore, for the remainder of this section, we discuss the nonsingularity of KB

instead of its inertia. In the following result, we show that the full KKT matrix of the dual

problem is nonsingular if and only if the reduced KKT matrix

KB =

(
HB ATB

AB 0

)
(4.7)

is nonsingular.

Result 4.2.1 (Nonsingularity of the dual KKT matrix). Let B be a basic set with an associated

working-set matrix. Then the full KKT matrix K of the dual problem (4.3) is nonsingular if and

only if the reduced KKT matrix KB is nonsingular.

Proof. Let KB denote the reduced KKT matrix in (4.7) and assume that KB is nonsingular. It

suffices to show that K has the trivial null space, i.e., if Ku = 0, then u = 0. Let K and u be

partitioned conformably as

K =



H 0 0 Z H 0

0 0 0 0 −A 0

0 0 0 0 −I PB

ZT 0 0 0 0 0

H −AT −I 0 0 0

0 0 PTB 0 0 0


, and u =



u1

u2

u3

u4

u5

u6


. (4.8)

The first block of the system Ku = 0 yields u4 = 0 and Hu1 = −Hu5. Furthermore, the third

and sixth blocks imply that (u3)B = 0 and (u5)N = 0. Combining these identities with the fifth

block, Hu5 +ATu2 + u3 = 0 and partitioning the resulting vectors into their basic and nonbasic

components, gives (
HB ATB

AB 0

)(
(u5)B

u2

)
=

(
0

0

)
,

with the second block of this system coming from the second block of (4.8). Since the reduced

KKT system is nonsingular by assumption, we have u2 = 0 and u5 = 0. Moreover, since u3 is a

linear combination of u2 and u5, it holds that u3 = 0. The third block further implies u6 = 0.

47

Because u5 = 0, then Hu1 = 0 and ZTu1 = 0 from the first and fourth blocks of (4.8).

Then, u1 lies in both the range space and null space, and u1 = 0. Therefore, Ku = 0 implies

u = 0 and K is nonsingular.

Now assume that K is nonsingular, and that there exist vectors xB and y such that(
HB ATB

AB 0

)(
xB

y

)
=

(
0

0

)
.

If x is defined such that x = PTB xB, then Ax = ABxB = 0. Also, let u1 be the range-space

portion of x, in which case Hu1 = Hx and ZTu1 = 0. Also, define u3 = −Hx−ATy.

Then, 

H 0 0 Z H 0

0 0 0 0 −A 0

0 0 0 0 −I PB

ZT 0 0 0 0 0

H −AT −I 0 0 0

0 0 PTB 0 0 0





u1

y

u3

0

x

xB


=



0

0

0

0

0

0


.

As K is nonsingular by assumption, we must have that xB = 0 and y = 0. It follows that KB

must also be nonsingular.

The properties of a dual subspace stationary point and a dual second-order-consistent

basis are summarized in the following result.

Result 4.2.2 (Dual stationary point and dual subspace minimizer). Let (w, π, z, x) be a dual-

feasible point with basic set B.

(a) If (w, π, z, x) is a dual stationary point with respect to B, then Hw = Hx and Ax = b with

xN = 0.

(b) Furthermore, if B is a dual second-order-consistent basis for the dual problem (4.3), then

the reduced KKT matrix

KB =

(
HB ATB

AB 0

)
is nonsingular.

Proof. For (w, π, z, x) to be a stationary point, the gradient of the objective at this point must

lie in the range space of the transpose of the working-set matrix (4.6). Thus, at a stationary

point, there must exist vectors q, x and yB such that

∇ϕD(w, π, z) =


Hw

−b
0

 =


Z H 0

0 −A 0

0 −I PB



q

x

yB

 .

48

As in the proof of Result 4.1.2, q = 0, so that Hw = Hx and Ax = b. The last block of the

system implies x = PByB so that xN = 0.

For B to be a second-order-consistent basis, the full KKT matrix of the dual must be

nonsingular (with restrictions on the sign of its eigenvalues being unnecessary, as explained

above), which implies that KB is also nonsingular by Result 4.2.1.

At a subspace stationary point, the variables x (the dual variables of the dual problem)

define a basic solution of the primal equality constraints. Moreover, the dual equality constraints

imply that z = Hw − ATπ + c = g(w)− ATπ = g(x)− ATπ, which are the primal reduced-costs

corresponding to both w and x. With the regularizing constraints ZTw = 0, the vectors w and

x differ by a vector in the null space of H. It will be shown below that if the QP gradient

g(w) = c+Hw is known, the vector w need not be computed explicitly.

Let (w, π, z) be a nonoptimal dual subspace minimizer. Since the point is not optimal,

there is at least one negative component of the dual multiplier vector x, say xβr < 0. The

application of the nonbinding-direction method of Chapter 3 to the dual gives a search direction

(∆w,∆π,∆z) that is feasible for the dual working-set constraints, and increases a designated

constraint with a negative multiplier. The direction satisfies

ZT∆w = 0, H∆w −AT∆π −∆z = 0, and PTB∆z = er.

These equations are incorporated into the following system of equations that are the dual-

algorithm equivalent to System 1 (3.3):

H 0 0 Z H 0

0 0 0 0 −A 0

0 0 0 0 −I PB

ZT 0 0 0 0 0

H −AT −I 0 0 0

0 0 PTB 0 0 0





∆w

∆π

∆z

−∆q
−∆x
−∆yB


=



0

0

0

0

0

er


. (4.9)

The first block implies that H∆w = Z∆q +H∆x, so that Z∆q lies in the range space and null

space of H. It follows that Z∆q = 0 and ∆q = 0. Therefore, H∆w = H∆x. In addition, the

third block ∆x = PB∆yB implies that ∆xN = 0 and ∆xB = ∆yB.

As in the primal standard-form case, the search direction may be computed from the

smaller system (
HB ATB

AB 0

)(
∆xB

−∆π

)
=

(
er

0

)
, (4.10)

with ∆xN = 0, ∆zB = er, ∆zN = (H∆x−AT∆π)N and H∆w = H∆x.

Result 4.2.3 (Properties of a dual nonbinding search directions). Let ∆w, ∆π, ∆z and ∆x

satisfy the KKT system (4.9). Then the following properties are satisfied

49

(a) ∆xTH∆x = [∆xB]r;

(b)
(
∆w,∆π,∆z

)T∇ϕD(w, π, z) = [xB]r.

Proof. For part (a), since A∆x = 0, we have

∆xTH∆x = ∆xT(H∆x−AT∆π)

= ∆xT∆z = ∆xTB∆zB = ∆xTBer = [∆xB]r.

For part (b), we use the definition of the gradient of the dual problem to give

(
∆w,∆π,∆z

)T∇ϕD =
(
∆w,∆π,∆z

)T


Hw

−b
0


= ∆wTHw − bT∆π

= ∆wTHx− xTAT∆π (because Ax = b and Hx = Hw)

= xT(H∆w −AT∆π)

= xT∆z = xTBer (because xN = 0)

= [xB]r,

as required.

If the curvature ∆xTH∆x is nonzero, the optimal step α∗ = −[xB]r/[∆xB]r minimizes

the dual objective ϕD(w + α∆w, π + α∆π, z + α∆z) with respect to α, and the r-th element of

xB +α∗∆xB is zero. If xB are interpreted as estimates of the primal variables (i.e., variables of the

primal QP), then the step from xB to xB + α∗∆xB increases the negative (and hence infeasible)

primal variable [xB]r until it reaches its bound of zero. If the step α = α∗ gives a feasible point for

the dual inequalities (i.e., z+α∗∆z ≥ 0), then the next iterate is (w+α∆w, π+α∆π, z+α∆z).

Updates to the basic set in this case are given in the following result.

Result 4.2.4 (Constraint deletion). Let (w, π, z, x) be a subspace minimizer with respect to B.

Assume that xβr < 0, and let (w̄, π̄, z̄, x̄) = (w + α∆w, π + α∆π, z + α∆z, x + α∆x), where

(∆w,∆π,∆z,∆x) are defined by (4.10), and α = α∗ is bounded. Then (w̄, π̄, z̄, x̄) is a subspace

minimizer with respect to B̄ = B − {βr}.

Proof. By (4.10), A∆x = 0, so that A(x + α∆x) = b. Since H∆w = H∆x, we have H(w +

α∆w) = H(x + α∆x). The definition of α = α∗ implies that [x + α∆x]βr = 0, so that x̄N̄ = 0,

where N̄ = N + {βr}.
Now we show that B̄ = B − {βr} is a second-order-consistent basis by showing that KB̄

is nonsingular. Consider the matrix

M 4
=

(
KB er

eTr

)
.

50

By assumption, (w, π, z) is a subspace minimizer and KB is nonsingular, so that the Schur

complement of KB in M exists, with

M/KB = −eTr K−1
B er = −eTr

(
∆xB

−∆π

)
(from (4.10))

= −[∆xB]r 6= 0 (because α∗ is bounded).

Then In(M) = In(M/KB) + In(KB) = In(−[∆xB]r) + In(KB), and M is nonsingular because

both M/KB and KB are nonsingular.

Since B̄ = B − {βr}, a permutation can be applied to KB such that

KB =

(
HB ATB

AB

)
∼


HB̄ (hβr

)B̄ ATB̄

(hβr
)TB̄ hβr,βr

aTβr

AB̄ aβr
0

 .

Similarly, applying symmetric permutations to M gives

M 4
=

(
KB er

eTr

)
∼


HB̄ (hβr

)B̄ ATB̄ 0

(hβr)TB̄ hβr,βr aTβr
1

AB̄ aβr
0 0

0 1 0 0



∼


hβr,βr 1 (hβr)TB̄ aTβr

1 0 0 0

(hβr
)B̄ 0 HB̄ ATB̄

aβr 0 AB̄ 0

 4
= M̃.

The leading 2× 2 block of M̃ , denoted by E, has det(E) = −1 so the Schur complement of E in

M̃ is

M̃/E = KB̄ −

(
(hβr

)B̄ 0

aβr
0

)(
hβr,βr

1

1 0

)−1(
(hβr

)TB̄ aTβr

0 0

)

= KB̄ −

(
(hβr

)B̄ 0

aβr 0

)(
0 1

1 −hβr,βr

)(
(hβr

)TB̄ aTβr

0 0

)
= KB̄,

which implies that In(M) = In(M̃) = In(M̃/E) + In(E) = In(KB̄) + In(E).

Thus, In(KB̄) = In(M) − In(E), which implies KB̄ is nonsingular since M and E are

nonsingular. It follows that B̄ is a second-order-consistent basis, and (w̄, π̄, z̄, x̄) is a subspace

minimizer with respect to B̄.

If α∗ is unbounded, or steps to an infeasible point, then α is defined as the largest step

51

such that z remains nonnegative, i.e., αF = min1≤i≤nN
{γi}, where

γi =


[zN]i
−[∆zN]i

if [∆zN]i < 0,

+∞ otherwise.

If αF < α∗, then at least one of the dual residuals is zero at (w+α∆w, π+α∆π, z+α∆z, x+α∆x),

and the index of one of these, say νs is moved to B.

The removal of βr from B is determined by a constraint dependency test that is based on

the solution of a system that is analogous to System 2 of the mixed-constraint and standard-form

algorithms. Let u, uπ, uz, q, v, and uB be the solution to the full KKT system

H 0 0 Z H 0

0 0 0 0 −A 0

0 0 0 0 −I PB

ZT 0 0 0 0 0

H −AT −I 0 0 0

0 0 PTB 0 0 0





u

uπ

uz

−q
−v
−uB


=



0

0

eνs

0

0

0


. (4.11)

Using Result 2.2.6, linear dependence occurs if and only if the vectors u, uπ and uz are all zero.

However, it can be shown that it is unnecessary to solve the full KKT system or check all three

vectors in the dependency test.

Result 4.2.5 (Test for dual constraint dependency). Let u, uπ, uz, q, v, and uB be the solution to

the full KKT system (4.11). Assume that (w, π, z) is a subspace minimizer for the dual. Assume

that the νs-th dual inequality constraint is blocking at (w̄, π̄, z̄) = (w, π, z)+α(∆w,∆π,∆z), where

(∆w,∆π,∆z) satisfies (4.10). Then

(a) u = 0 if and only if uπ = 0 and uz = 0 if and only if Hv = 0, where v = PBuB + eνs ;

(b) the vectors uB and uπ satisfy the reduced KKT system(
HB ATB

AB 0

)(
uB

−uπ

)
= −

(
(hνs)B

aνs

)
, (4.12)

with v = PBuB + eνs and uz = Hv −ATuπ;

(c) the gradient of the νs-th dual constraint eνs is linearly independent of the gradients of the

working-set constraints if and only if Hv = H(PBuB) + hνs 6= 0;

(d) [uB]r = −[∆z]νs > 0; and if u 6= 0, then [uz]νs > 0.

Proof. The last block of (4.11) implies (uz)B = 0. Notice that if u = 0, then uz = −ATuπ, so

that 0 = −ATBuπ. Since ATB has linearly independent columns, uπ = 0 and uz = 0. If uπ = 0 and

uz = 0, then Hu = 0 and ZTu = 0 and u = 0. Thus, u = 0 if and only if uπ = uz = 0.

52

If Hv = 0, then Hu = 0 and the fourth block of 4.11 implies ZTu = 0, so that u is in

both the null space and range space of H. Thus u = 0. If u = 0, then Hu = Hv = 0.

For part (b), the first block implies q = 0, and Hu = Hv and ZTu = 0. The third

block gives v = PBuB + eνs . Combining these results implies Hu = H(PBuB) + hνs and Av =

ABuB + aνs = 0. By the fifth block, uz = Hu−ATuπ = H(PBuB) + hνs . Since the last block of

the system implies (uz)B = 0, we have that

HBuB −ATBuπ = −(hνs)B and ABuB = −aνs ,

so that uB and uπ satisfy the reduced KKT system(
HB ATB

AB 0

)(
uB

−uπ

)
= −

(
(hνs)B

aνs

)
.

Hence part (c) follows by part (a) and Result 2.2.6.

For part (d),

[uB]r = eTr uB = ∆zTBuB = uTB(HB∆wB −ATB∆π)

= −(hνs)TB∆wB + aTνs∆π

= −(∆wTHeνs −∆πTAeνs) = −eTνs(H∆w −AT∆π)

= −eTνs∆z = −[∆z]νs > 0,

where the last inequality holds since zνs ≥ 0 is a blocking constraint and [∆z]νs < 0.

Using the fact that eνs = v − PBuB implies

uTz eνs = uTz (Hv − PBuB) = vTHuz since PTB uz = 0

= vT(Hv −ATuπ) = vTHv > 0.

The last inequality follows since Av = 0 and H is positive definite in the null space of A at a

subspace minimizer.

Once constraint dependency is determined, the basic set for the next iterate is updated

according to the following result.

Result 4.2.6 (Basic set updates). Let (w, π, z, x) be a subspace minimizer with respect to B.

Assume that the νs-th dual constraint is blocking at (w̄, π̄, z̄, x̄) = (w, π, z, x)+α(∆w,∆π,∆z,∆x),

where the search directions satisfy (4.10). Let uB, uπ and v be defined by (4.12).

(a) If the νs-th constraint gradient is linearly independent of the working-set constraint gradients

(4.6), then (w̄, π̄, z̄, x̄) is a subspace minimizer with respect to B̄ = B + {νs}.

(b) If the νs-th constraint gradient is linearly dependent on the working-set constraint gradients

(4.6), then the scalar σ = −[x + α∆x]βr
/[uB]r is well defined. Moreover, (w̄, π̄, z̄, x̄) is a

subspace minimizer with respect to B̄ = B + {νs} − {βr}, and the associated multipliers x̄

are given by x+ α∆x+ σv.

53

Proof. Assume the constraint gradients are linearly independent. Stationarity holds trivially

since xN = 0 at a stationary point and (4.10) implies ∆xN = 0.

Now let KB and KB̄ denote the matrices associated with basic sets B and B̄. We must

show that KB̄ is nonsingular.

Define K̃B̄ as the permuted version of KB̄ such that

K̃B̄ = QTKB̄Q =


HB ATB (hνs)B

AB aνs

(hνs)TB aTνs hνs,νs

 ,

where Q is a permutation matrix. By assumption, the matrix KB is nonsingular, so the Schur

complement of KB in K̃B̄ exists. Using Result 1.3.3, the matrix K̃B̄ is nonsingular if and only if

K̃B̄/KB is nonsingular. We can see that

K̃B̄/KB = hνs,νs −
(

(hνs)TB aTνs

)
K−1

B

(
(hνs)B

aνs

)

= hνs,νs +
(

(hνs)TB aTνs

)(uB

−uπ

)
(from (4.12))

= eTνsHeνs + (hνs)TBuB − eTνsA
Tuπ

= eTνs(H(PBuB) + hνs −ATuπ) = eTνsuz.

Result 4.2.5 implies that [uz]νs > 0. Thus KB̄ is nonsingular with respect to B̄ and the next

iterates remains a subspace minimizer.

For part (b), we begin by observing that Hv = 0 and uπ = uz = 0. Let B̄ = B + {νs} −
{βr}. By definition, v = PBuB + eνs , so that vB = uB. Because of the definition of σ, it must

hold that [x + α∆x + σv]βr
= 0. Then the next iterate is a stationary point with respect to B̄.

It remains to show that KB̄ is nonsingular.

Let y denote the vector (uB, 0). Then since uπ = 0, (4.12) implies

KBy = −

(
(hνs)B

aνs

)
.

The updated condensed KKT matrix can be written in terms of the symmetric rank-one modifi-

cation to KB:

KB̄ = KB + (KBy −KBer)e
T
r + er(KBy −KBer)

T + er
(
(y − er)TKB(y − er)

)
eTr

=
(
I + er(y − er)T

)
KB

(
I + (y − er)eTr

)
.

Since [uB]r 6= 0 by part (d) of Result 4.2.5, the matrix I + er(y − er)T and its transpose are

nonsingular. Therefore, KB̄ is nonsingular if and only if KB is nonsingular.

Algorithm 4.1 summarizes the nonbinding-direction method for solving the dual of a

convex quadratic programming problem in standard form.

54

Algorithm 4.1: Dual nonbinding-direction method for a convex QP in standard form

Find (x, π, z) such that Ax = b, z = c+Hx−ATπ and z ≥ 0; k = 0;

[x, π,B,N] = subspaceMin(x, π, z);

g = c+Hx;

βr = argmini{[xB]i};
while xβr

< 0 do

Solve

(
HB ATB

AB

)(
∆xB

−∆π

)
=

(
er

0

)
; ∆z = H∆x−AT∆π;

αF = minRatioTest(zN , ∆zN);

if [∆xB]r > 0 then α∗ = −[xB]r/[∆xB]r else α∗ = +∞;

α = min{α∗, αF};
if α = +∞ then stop; [the primal is infeasible]

x← x+ α∆x; g ← g + αH∆x;

π ← π + α∆π; z ← z + α∆z;

if αF < α∗ then [add the dual working-set constraint νs]

Find the blocking constraint index νs;

Solve

(
HB ATB

AB 0

)(
uB

−uπ

)
= −

(
(hνs)B

aνs

)
, v = PBuB + eνs ;

if Hv = 0 then σ = −[xB]r/[uB]r else σ = 0;

B ← B + {νs}; N ← N − {νs};
x← x+ σv;

g ← g + σHv; z ← g −ATπ;

end;

if xβr
= 0 then [delete the dual working-set constraint βr]

B ← B − {βr}; N ← N + {βr};
βr = argmini{[xB]i};

end;

k ← k + 1;

end do

55

The definition of the updates to the search directions for the linearly independent con-

straint case are summarized in the following result.

Result 4.2.7 (Direction updates). Assume that (x, π, z) is a subspace minimizer with respect to

B, and that equations (4.10) and (4.12) hold. Then if the gradient of the blocking bound zνs ≥ 0

at x + α∆x is linearly independent of the working-set constraints (4.6) defined by B, then the

vectors ∆xB + ρuB and ∆π + ρuπ such that ρ = −[∆z]νs/[uz]νs are well-defined, and satisfy

KB̄


∆xB + ρuB

ρ

−(∆π + ρuπ)

 =


er

0

0

 ,

which is the KKT equation (4.10) for the basic set B̄ = B + {νs}.

Proof. Since the blocking constraint is linearly independent of the basic-set constraints, [uz]νs 6= 0

by part (d) of Result 4.2.5, so that ρ is well-defined.

Let KB̄ be a permuted version of the KKT matrix for B̄ such that

KB̄ =


HB ATB (hνs)B

AB 0 aνs

(hνs)TB aTνs hνsνs

 .

Then the following equations hold:
HB ATB (hνs)B

AB 0 aνs

(hνs)TB aTνs hνsνs




∆xB

−∆π
0

 =


er

0

(hνs)TB∆xB − aTνs∆π

 (4.13)

and 
HB ATB (hνs)B

AB 0 aνs

(hνs)TB aTνs hνsνs




ρuB

−ρuπ
ρ

 = ρ


0

0

hνs,νs + (hνs)TBuB − aTνsuπ

 . (4.14)

If ρ is defined as ρ = −[∆z]νs/[uz]νs , then notice that

[∆z]νs = eTνs(H∆x−AT∆π) = (hνs)TB∆xB − aTνs∆π,

and

[uz]νs = eTνs(Hv −ATuπ) = hνs,νs + eTνsH(PBuB)− aTνsuπ = hνs,νs + (hνs)TBuB − aTνsuπ,

which are the expressions in the right-hand-sides of (4.13) and (4.14). Summing the two equations

yields 
HB ATB (hνs)B

AB 0 aνs

(hνs)TB aTνs hνsνs




(∆xB + ρuB)

−(∆π + ρuπ)

ρ

 =


er

0

0

 ,

which is System 1 (4.10) for B̄.

56

4.2.1 Dual linear programming

If H is zero, then the primal QP is a linear program. In this case we may choose Z as the

identity matrix for the regularized problem (4.3). It follows from Result 4.2.2 that (w, π, z) is a

subspace minimizer if AB is nonsingular—i.e., it is square with rank m. In this case, equations

(4.10) and (4.12) give

−ATB∆π = er, AB∆xB = 0, ATBuπ = 0, and ABuB = −aνs ,

with uz = −ATuπ. AB being nonsingular implies ∆xB = 0 so ∆x = 0 and uπ = 0, so that

uz = 0. By part (a) of Result 4.2.5, Hv = 0, so that the linearly dependent case always applies

and the index βr is replaced by νs in B, as in the dual simplex method. The update for the dual

multiplier x defined by part (b) of Result 4.2.6 is given by x̄ = x+ σv, where σ = −[xB]r/[uB]r,

and v = PBuB + eνs .

4.2.2 Degeneracy of the dual QP

Suppose that (w, π, z) is a feasible point for the regularized dual QP (4.3) such that r

of the z-variables are at their bounds. If (w, π, z) is degenerate for the dual constraints, it must

hold that r must be greater than the difference between the number of variables and equality

constraints. It follows that if (w, π, z) is degenerate, then

r > (n+ n+m)− (n+ nz) = n+m− nz = rank(H) +m,

where nz is the number of columns in the null-space basis Z. If H is nonsingular, then Z = 0 and

a degenerate (w, π, z) would require more than n+m of the n z-variables to be on their bounds,

which is clearly impossible. It follows that if the primal QP is strictly convex, then there are no

degenerate points for the dual.

In the general case, if m+ rank(H) ≥ n for the dual (4.2), then there are no degenerate

points. In this situation, Algorithm 4.1 cannot cycle, and will either terminate with an optimal

solution or declare the dual problem to be unbounded. Observe that this nondegeneracy property

does not hold for a dual linear program, but it does hold for strictly convex problems, and for

any QP with H and A given by (4.5).

5 Finding an Initial Point

Thus far, discussions have been focused on the optimality phase of the active-set method.

In this chapter, methods for finding the initial point for our algorithms are discussed. Section 5.1

reviews phase 1 methods for finding a feasible point such that Ax = b and x ≥ 0. Then, the

process of moving to a stationary point is explained in Section 5.3. Lastly, Section 5.2 describes

methods for finding a second-order-consistent basis.

5.1 Getting Feasible

The process of finding a feasible point for the constraints Ax = b and x ≥ 0 during phase 1

of the active-set methods is described in this section. There are generally two approaches. The

first, common in linear programming, is to find an x that satisfies Ax = b, and then iterate (if

necessary) to satisfy the bounds x ≥ 0. The second method defines a nonnegative x and then

iterates to satisfy Ax = b. We use the former approach and assume that the initial iterate x0

satisfies Ax = b (such an x0 must exist because A has full row rank by assumption).

Suppose that the bounds x ≥ 0 are written in the equivalent form x = u − v, u ≥ 0

and v = 0. The idea is to relax the equality constraint v = 0 by minimizing some norm of v.

Choosing the one-norm gives the following piecewise-linear program for a feasible point:

minimize
x,u,v∈Rn

‖v‖1 subject to Ax = b, x = u− v, u ≥ 0.

By adding the restriction that v ≥ 0, the one-norm objective may be replaced by eTv, giving the

conventional linear program

minimize
x,u,v∈Rn

eTv subject to Ax = b, x = u− v, u ≥ 0, v ≥ 0. (5.1)

The vectors u and v are referred to as elastic variables. At the optimal solution, u and v are the

magnitudes of the positive and negative parts of the vector x that is closest in one-norm to the

positive orthant and satisfies Ax = b. If the constraints are feasible, then v = 0 and x (= u) ≥ 0.

At an initial x0 satisfying Ax0 = b, the vi corresponding to feasible components of x0

may be fixed at zero, so that the number of infeasibilities cannot increase during subsequent

iterations. In this case, if the constraints are infeasible, the optimal solution minimizes the sum

57

58

of the violations of those bounds that are violated at x0 subject to Ax = b. Similarly, once a

component xi becomes feasible, its corresponding violation vi can be permanently fixed at zero.

However, if the sum of the violations is to be minimized when there is no feasible point, it is

necessary to allow every element of v to move.

This minimum one-norm problem is equivalent to the standard method for minimizing

the sum of infeasibilities that has been used in QP and LP packages for many years. In practice,

the variables u and v need not be stored explicitly, and the LP (5.1) may be solved using a variant

of the simplex method in which the basis has the same dimension as that of a conventional LP

with constraints Ax = b and x ≥ 0. During the solution of the LP, the search is restricted to

pairs (u, v) with components satisfying ui ≥ 0, vi ≥ 0, and uivi = 0. A feasible pair (u, v)

is reconstructed from any x such that Ax = b. In particular, (ui, vi) = (xi, 0) if xi ≥ 0, and

(ui, vi) = (0,−xi) if xi < 0. It follows that an infeasible xi must be kept basic because it

corresponds to (ui, vi) = (0,−xi), with an (implicit) positive elastic variable vi. This technique

is often called elastic programming in the linear and nonlinear programming literature (see, e.g.,

Brown and Graves [8], and Gill, Murray and Saunders [38]).

The same technique can be used to find a feasible point (w, π, z) for the dual constraints

Hw −ATπ − z = −c and z ≥ 0.

5.2 Second-Order-Consistent Basis

The nonbinding-direction methods described in Chapters 3 and 4 have the property

that if the initial iterate x0 is a subspace minimizer, then all subsequent iterates are subspace

minimizers. Methods for finding an initial subspace minimizer utilize an initial estimate xI of

the QP solution, together with matrices AB and AN associated with an estimate of the optimal

basic and nonbasic sets. These estimates are often available from the known solution of a related

QP—e.g., from the solution of the previous QP subproblem in the SQP context. The initial point

xI may or may not be feasible, and the associated matrix AB may or may not have rank m.

The definition of a second-order-consistent basis requires that the matrix AB has rank

m, so it is necessary to identify a set of linearly independent basic columns of A. One algorithm

for doing this has been proposed by Gill, Murray and Saunders [38], who use a sparse LU

factorization of ATB to identify a square nonsingular subset of the columns of AB. If necessary,

a “basis repair” scheme is used to define additional unit columns that make AB have full rank.

The nonsingular matrix B obtained as a by-product of this process may be expressed in terms

of A using a column permutation P such that

AP =
(
AB AN

)
=
(
B S AN

)
, (5.2)

where B is m×m and nonsingular, S is m× (nB −m), and AN is the m× nN matrix consisting

of the nonbasic columns of A.

59

The nonsingular matrix B can be used to compute a feasible point from the (possibly

infeasible) initial point xI . Given xI , a point x0 satisfying Ax = b may be computed as

x0 = xI + P


pY

0

0

 , where BpY = −(AxI − b).

The basic set B is second-order-consistent if the reduced KKT matrix

KB =

(
HB ATB

AB

)
(5.3)

has correct inertia, i.e., nB positive eigenvalues and m negative eigenvalues. A KKT matrix with

incorrect inertia will have too many negative or zero eigenvalues. In this case, an appropriate

KB may be obtained by imposing temporary constraints that are deleted during the course of

subsequent iterations. For example, if n − m variables are temporarily fixed at their current

values, then AB is a square nonsingular matrix, and KB necessarily has exactly m negative

eigenvalues. The form of the temporary constraints depends on the method used to solve the

reduced KKT equations (see Chapter 7).

5.2.1 Variable-reduction method

In the variable reduction method a dense Cholesky factor of the reduced Hessian ZTHZ

is updated to reflect changes in the basic set (see Section 7.1). At the initial x0 a partial Cholesky

factorization with interchanges is used to find an upper-triangular matrix R that is the factor

of the largest positive-definite leading submatrix of ZTHZ. The use of interchanges tends to

maximize the dimension of R. Let ZR denote the columns of Z corresponding to R, and let Z be

partitioned as Z =
(
ZR ZA

)
. A nonbasic set for which ZR defines an appropriate null space can

be obtained by fixing the variables corresponding to the columns of ZA at their current values.

As described above, minimization of ϕ(x) then proceeds within the subspace defined by ZR. If a

variable is removed from the basic set, a row and column is removed from the reduced Hessian

and an appropriate update is made to the Cholesky factor.

5.2.2 Schur-complement and block-LU method

If Schur-complement block-LU method is used, the procedure for finding a second-order-

consistent basis is given as follows.

• Factor the reduced KKT matrix (5.3) in the form KB = LDLT , where L is a row-permuted

unit lower-triangular matrix and D is block diagonal with 1 × 1 and 2 × 2 blocks (see

Result 1.3.4). The inertia is determined by counting the number of positive and negative

eigenvalues of D. If the inertia of KB is correct, then we are done.

60

• If the inertia is incorrect, factor

HA = HB + ρATBAB = LADAL
T
A ,

where ρ is a modest positive penalty parameter. As the inertia of KB is not correct, DA

will have some negative eigenvalues for all positive ρ.

The factorization of HA may be written in the form

HA = LAUΛU
TLTA = V ΛV T ,

where UΛUT is the spectral decomposition of DA and V = LAU . The block-diagonal

structure of DA implies that U is a block-diagonal orthonormal matrix.

Assume that HA has r nonpositive eigenvalues. The inertia of Λ is the same as the iner-

tia of HA, and there exists a positive-semidefinite diagonal matrix E such that Λ + E is

positive definite. Since there are r nonpositive eigenvalues, E can be written in the form

E = PrErP
T
r , where Er is an r × r diagonal matrix with positive elements and Pr is a

permutation matrix such that PrP
T
r projects the diagonals of Er into an nB × nB matrix.

If H̄A denotes the positive-definite matrix V (Λ+ E)V T , then

H̄A = HA + V EV T = HA + V PrErP
T
r V

T .

Define VB as the r × nB matrix VB = 1√
ρE

1
2
r PTr V

T , so that

H̄A = HA + ρV TB VB = HB + ρ(ATBAB + V TB VB).

Suppose ρ̄ = γ + ρ for some positive value of γ. Then, for any nonzero vector x,

xT
(
HB + ρ̄(ATBAB + V TB VB)

)
x

= xT
(
HB + ρ(ATBAB + V TB VB)

)
x+ γxT(ATBAB + V TB VB)x

The first term of the above expression is positive since H̄A is positive definite and the second

term is nonnegative. Therefore, the matrix HB + ρ̄(ATBAB + V TB VB) is positive definite for

any ρ̄ > ρ. It follows from Debreu’s Lemma 1.3.2 that the reduced Hessian ZTBHZB is

positive definite, where the columns of ZB form a basis for the null space of

(
AB

VB

)
. By

Theorem 1.3.1, the augmented KKT matrix
HB ATB V TB

AB 0 0

VB 0 0


has “correct” inertia (nB,m+ r, 0).

61

The minimization of ϕ(x) proceeds subject to the original constraints and the (general)

temporary constraints V TBxB = V TB (x0)B, where x0 is the initial point.

The efficiency of this scheme will depend on the number of surplus negative and zero

eigenvalues in HA. In practice, if the number of negative eigenvalues exceeds a preassigned

threshold, then a temporary vertex is defined by fixing the variables associated with the columns

of S in (5.2) (see Chapter 8).

5.3 Stationarity

Primal case. In the primal (standard-form) setting, a feasible x achieves stationarity if gB(x) =

ATBπ for some second-order-consistent basic set B.

Suppose x0 is feasible but not stationary, and B is second-order-consistent. Then x0 can

be used as the initial point for a sequence of Newton-type iterations in which ϕ(x) is minimized

with the nonbasic components of x fixed at their current values. Consider the equations(
HB ATB

AB

)(
pB

−qπ

)
= −

(
gB −ATBπ

0

)
.

These equations are the KKT equations of the equality-constrained problem

minimize
p∈Rn

ϕ(x0 + p) subject to Ap = 0, pN = 0. (5.4)

Let p be the solution of (5.4). If pB is zero (which may occur when nB = m), x is a subspace

stationary point (with respect to AB) at which KB has correct inertia. Otherwise, two situations

are possible. If xB + pB is infeasible, then feasibility is retained by determining the maximum

nonnegative step α < 1 such that xB +αpB is feasible. A variable on its bound at xB +αpB is then

removed from the basic set and the iteration is repeated. The removal of a basic variable cannot

increase the number of negative eigenvalues of KB, since the removal reduces the dimension of

the null space matrix ZB by one and does not affect the positive definiteness of the reduced

Hessian. Since there are a finite number of basic variables, a subspace stationary point must

be determined in a finite number of steps (trivially, when enough basic variables are removed to

define a vertex). If xB + pB is feasible, then pB is the step to the minimizer of ϕ(x) with respect

to the basic variables and it must hold that gB(xB + pB) = ATB(π + qπ), so that the point is a

stationary point.

Dual case. Assume B is second-order-consistent, and that x0 is a dual-feasible point such that

Hx0 − ATπ0 − z0 = −c with z0 ≥ 0. Then, to reach a stationary point, a dual-feasible direction

is required such that

x0 +∆x = 0 and A(x0 +∆x) = b, with ∆xN = 0. (5.5)

62

Such a direction can be computed as the solution of the system:

H 0 0 Z H 0

0 0 0 0 −A 0

0 0 0 0 −I PB

ZT 0 0 0 0 0

H −AT −I 0 0 0

0 0 PTB 0 0 0





∆w

∆π

∆z

−∆q
−∆x
−∆yB


= −



0

Ax0 − b
PN(x0)N

0

0

0


.

This direction satisfies ZT∆w = 0 and H∆w − AT∆π − ∆z = 0, so that the direction remains

feasible with respect to the equality constraints of the dual problem (4.3). In addition, the third

block of the system implies ∆x = PB∆yB − PN(x0)N , so that ∆xN = −(x0)N . It follows that

(x0)N +∆xN = 0. The second block implies A(x0 +∆x) = b. This means the direction satisfies

the conditions (5.5) required for a direction to a dual stationary point.

The defined direction can be computed from the smaller system:(
HB ATB

AB

)(
∆xB

−∆π

)
= −

(
−HD(x0)N

AB(x0)B − b

)
,

with ∆xN = −(x0)N , ∆zB = 0 and ∆zN = (H∆x−AT∆π)N .

If z +∆z is feasible, then a stationary point has been reached. If z +∆z is not feasible,

then a maximum feasible step αF is computed, and the blocking constraint at z + αF∆z ≥ 0

is removed from B. Again, the removal of a basic variable does not affect the second-order-

consistency of B, and a stationary point will be determined in a finite number of steps.

6 Single-Phase Methods

In this chapter, the focus turns to single-phase methods, methods that combine the

feasibility and optimality stages of the active-set method for standard-form problems

minimize
x∈Rn

ϕ(x) = cTx+ 1
2x

THx subject to Ax = b, x ≥ 0. (6.1)

Generally, single-phase methods solve the original QP by solving a sequence of subproblems whose

solutions converge to the solution of the original problem. These methods have an inner/outer

iteration structure, with the outer iterations handling the updates to parameters necessary for

the formulation of the subproblem, and the inner iterations being those of the method used to

solve the subproblem.

Section 6.1 begins with an overview of the penalty-function method, leading to the deriva-

tion of two augmented Lagrangian methods. In Section 6.2, a more generalized approach to the

augmented Lagrangian method is given from a regularization standpoint. Sections 6.3.1 and

6.3.2 consider the application of the nonbinding-direction method to the subproblems of the

inner iterations, while the outer iterations are discussed in Section 6.4.

6.1 Penalty-Function Methods

Penalty-function methods are a class of methods for solving constrained problems that

are not necessarily quadratic. Many choices exist for the penalty function. However, since we are

interested in continuously differentiable quadratic problems, we consider the quadratic penalty

function defined as

P(x;µ) = ϕ(x) +
1

2µ
‖Ax− b‖22,

where µ is the positive penalty parameter. In the “classical” penalty-function method, the smooth

function P(x;µ) is minimized subject to x ≥ 0 for a sequence of decreasing values of µ. Under

certain assumptions (see [28]), it can be shown that for a given sequence {µk},

lim
k→∞

x(µk) = x∗,

where x(µ) is the minimizer of P(x;µ) subject to x ≥ 0, and x∗ is the optimal solution of (6.1). In

practice, a finite sequence of the bound-constrained subproblems is solved, with the approximate

63

64

minimizer of P(x;µk) being used as the initial estimate of the minimizer of P(x;µk+1).

Unfortunately, it is necessary for µ → 0 to achieve a good approximation of the QP

solution. As µ decreases, the Hessian of the penalty function ∇2P = H + 1
µA

TA becomes

increasingly ill-conditioned, so that the subproblems become increasingly difficult to solve. To

circumvent this difficulty, the equality constraints of the problem are shifted to produce a new

problem that can exploit the smoothness of the quadratic penalty function and avoid the need

for µ to go to zero. The shifted problem is

minimize
x

ϕ(x) subject to Ax− s = b, x ≥ 0,

where the constant vector s defines the shifts for the equality constraints. The shifted problem

is then solved by applying the penalty-function method, which leads to

P(x; s, µ) = ϕ(x) +
1

2µ
‖Ax− s− b‖22

= ϕ(x)− 1

µ
sT(Ax− b) +

1

2µ
‖Ax− b‖22 +

1

2µ
‖s‖22.

As s and µ are fixed parameters, the last term is irrelevant to the minimization and can be

dropped. The penalty subproblem is therefore

minimize
x∈Rn

P(x; s, µ) = ϕ(x)− 1

µ
sT(Ax− b) +

1

2µ
‖Ax− b‖22 subject to x ≥ 0,

with the gradient and Hessian of P given by

∇P(x; s, µ) = g(x) +
1

µ
AT (Ax− b− s) and ∇2P = H +

1

µ
ATA.

The best choice for the shift s should make the solution of the penalty subproblem a

solution of the original standard-form problem for the current value of µ. If x(µ) is equal to x∗,

then it is necessary that Ax(µ) − b = 0, and that g(x∗) − ATπ∗ = ∇P(x; s, µ). Combined with

the above expression for the gradient, these equations imply that

π∗ = − 1

µ
(Ax(µ)− b− s) =

1

µ
s.

Thus, the optimal shift is s = µπ∗. Obviously, because the optimal multipliers are unknown,

the optimal shift cannot be used to define the penalty subproblem. Therefore, s is defined as

s = µπe, where πe is a vector that estimates the multipliers of Ax = b. With this definition, the

penalty function becomes the augmented Lagrangian function

M1(x;πe, µ) = ϕ(x)− πTe (Ax− b) +
1

2µ
‖Ax− b‖22. (6.2)

The subproblem is then

minimize
x∈Rn

M1(x;πe, µ) = ϕ(x)− πTe (Ax− b) +
1

2µ
‖Ax− b‖22 subject to x ≥ 0, (6.3)

which is the subproblem for the conventional augmented Lagrangian method.

65

The same approach can be applied to the bound constraints rather than the equality

constraints of (6.1). As in Section 5.1, x ≥ 0 can be rewritten as x = u − v, u ≥ 0, and v = 0.

Instead of shifting the equality constraints Ax = b, the constraints v = 0 are shifted such that

v − µze = 0, where ze is an estimate of the optimal multipliers for v = 0. This leads to the

subproblem

minimize
x,u,v∈Rn

M2(x, v; ze, µ) = ϕ(x)− zTe v +
1

2µ
‖v‖22

subject to Ax = b, x− u+ v = 0, u ≥ 0.
(6.4)

Since the objective of (6.4) is a variant of the augmented Lagrangian function derived by

shifting the variables v, we refer toM2(x, v; ze, µ) as the variable-shifted augmented Lagrangian.

For consistency, M1(x;πe, µ) is the constraint-shifted augmented Lagrangian. The methods for

solving the corresponding subproblems related to these functions are named accordingly. Also,

when the values of πe and µ are obvious from the context, they are not included as explicit

arguments of the augmented Lagrangian functions, e.g., M1(x) =M1(x;πe, µ).

6.2 QP Regularization

Thus far, the QP methods described have relied on the assumption that each basis

matrix AB has rank m. In an active-set method this condition is guaranteed (at least in exact

arithmetic) by the active-set strategy if the initial basis has rank m. For methods that solve the

KKT system by factoring a subset of m columns of AB (see Section 7.1), special techniques can be

used to select a linearly independent set of m columns from A. These procedures depend on the

method used to factor the basis—for example, the SQP code SNOPT employs a combination of

LU factorization and basis repair to determine a full-rank basis. If a factorization reveals that the

square submatrix is rank deficient, suspected dependent columns are discarded and replaced by

the columns associated with slack variables. However, for methods that solve the KKT system by

direct factorization, such as the Schur complement method of Section 7.2, basis repair is not an

option because the factor routine may be a “black-box” that does not incorporate rank-detection.

Unfortunately, over the course of many hundreds of iterations, performed with KKT matrices

of varying degrees of conditioning, an SQP method can place even the most robust symmetric

indefinite solver under considerable stress. (Even a relatively small collection of difficult problems

can test the reliability of a solver. Gould, Scott, and Hu [52] report that none of the 9 symmetric

indefinite solvers tested was able to solve all of the 61 systems in their test collection.) In

this situation it is necessary to use a regularized method, where equations are guaranteed to be

solvable without the luxury of basis repair.

To illustrate how a problem may be regularized, we start by considering a QP with

equality constraints, i.e.,

minimize
x∈Rn

cTx+ 1
2x

THx subject to Ax = b. (6.5)

66

Assume for the moment that this subproblem has a feasible primal-dual solution (x∗, π∗). Given

an estimate πe of the QP multipliers π∗, a positive µ and arbitrary ν, consider the generalized

augmented Lagrangian

M3(x, π;πe, µ, ν) = ϕ(x)− πTe (Ax− b) +
1

2µ
‖Ax− b‖22 +

ν

2µ
‖Ax− b− µ(πe − π)‖22 (6.6)

(see Gill and Robinson [43] for methods involving this function). The functionM3 involves n+m

variables and has gradient vector

∇M3(x, π;πe, µ, ν) =

g(x)−ATπ + (1 + ν)AT
(
π − π(x)

)
νµ
(
π − π(x)

)
 , (6.7)

where π(x) = πe − (Ax − b)/µ. If π∗ is known and πe is defined as πe = π∗, then simple

substitution in (6.7) shows that (x∗, π∗) is a stationary point of M3 for all ν and all positive µ.

The Hessian of M3 is given by

∇2M3(x, π;πe, µ, ν) =

H +
(

1+ν
µ

)
ATA νAT

νA νµI

 , (6.8)

which is independent of πe. If we make the additional assumptions that ν is nonnegative and the

reduced Hessian of the QP subproblem is positive definite, then ∇2M3 is positive semidefinite

for all µ sufficiently small. Under these assumptions, if πe = π∗ it follows that (x∗, π∗) is the

unique minimizer of the unconstrained problem

minimize
x∈Rn,π∈Rm

M3(x, π;πe, µ, ν). (6.9)

This result implies that if πe is an approximate multiplier vector (e.g., from the previous QP

subproblem in the SQP context), then the minimizer of M3(x, π;πe, µ, ν) will approximate the

minimizer of (6.5). In order to distinguish between a solution of (6.5) and a minimizer of (6.9)

for an arbitrary πe, we use (x∗, π∗) to denote a minimizer of M3(x, π;πe, µ, ν). Observe that

stationarity of ∇M3 at (x∗, π∗) implies that π∗ = π(x∗) = πe− (Ax∗− b)/µ. The components of

π(x∗) are the so-called first-order multipliers associated with a minimizer of (6.9).

Particular values of the parameter ν give some well-known functions that have appeared

in literature (although, as noted above, each function defines a problem with the common solution

(x∗, π∗)). If ν = 0, then M3 is independent of π, with

M3(x;πe, µ, 0) = ϕ(x)− (Ax− b)Tπe +
1

2µ
‖Ax− b‖22 ≡M1(x;πe, µ). (6.10)

This is the conventional Hestenes-Powell augmented Lagrangian (6.2) introduced in Section 6.1

applied to (6.5). If ν = 1 in (6.6), M3 is the primal-dual augmented Lagrangian

ϕ(x)− (Ax− b)Tπe +
1

2µ
‖Ax− b‖22 +

1

2µ
‖Ax− b− µ(πe − π)‖22. (6.11)

67

Methods for the primal-dual Lagrangian are considered in [61, 43]. If ν = −1, then M3 is the

proximal-point Lagrangian

ϕ(x)− (Ax− b)Tπ − µ

2
‖π − πe‖22.

As ν is negative in this case, ∇2M3 is indefinite and M3 has an unbounded minimizer. Never-

theless, a unique minimizer ofM3 for ν > 0 is a saddle-point for anM3 defined with a negative

ν. Moreover, for ν = −1, (x∗, π∗) solves the min-max problem

min
x

max
π

ϕ(x)− (Ax− b)Tπ − µ

2
‖π − πe‖22.

In what follows, we use M3(v) to denote M3 as a function of the primal-dual variables

v = (x, π) for given values of πe, µ and ν. Given the initial point v0 = (x0, π0), the stationary

point of M3(v) is v∗ = v0 + ∆v, where ∆v = (p, q) with ∇2M3(v0)∆v = −∇M3(v0). It can be

shown that ∆v satisfies the equivalent system(
H AT

A −µI

)(
p

−q

)
= −

(
g(x0)−ATπ0

Ax0 − b− µ(πe − π0)

)
, (6.12)

which is independent of the value of ν [43]. If ν 6= 0, the primal-dual direction is unique. If ν = 0

(i.e., M3 is the conventional augmented Lagrangian (6.2)), ∆v satisfies the equations(
H AT

A −µI

)(
p

−q

)
= −

(
g(x0)−ATπ

Ax0 − b− µ(πe − π)

)
, (6.13)

for an arbitrary vector π. In this case, p is unique but q depends on the choice of π. In particular,

if we define the equations (6.13) with π = π0, then we obtain directions identical to those of (6.12).

Clearly, it must hold that p is independent of the choice of ν in (6.6).

The point (x∗, π∗) = (x0 + p, π0 + q) is the primal-dual solution of the perturbed QP

minimize
x∈Rn

cTx+ 1
2x

THx subject to Ax− µ(πe − π∗) = b,

where the perturbation shifts each constraint of (6.5) by an amount that depends on the cor-

responding component of π∗ − πe. Observe that the constraint shift depends on the solution,

so it cannot be defined a priori. The effect of the shift is to regularize the KKT equations by

introducing the nonzero (2, 2) block −µI. In the regularized case it is not necessary for A to

have full row rank for the KKT equations to be nonsingular. A full-rank assumption is required

if the (2, 2) block is zero. In particular, if we choose πe = π0, the system (6.12) is:(
H AT

A −µI

)(
p

−q

)
= −

(
g(x0)−ATπ0

Ax0 − b

)
. (6.14)

These equations define a regularized version of the Newton equations and also form the basis

for the primal-dual formulations of the quadratic penalty method considered in [48] (for related

methods, see Murray [57],Biggs [3] and Tapia [66]).

68

The price paid for the regularized equations is an approximate solution of the original

problem. However, once (x∗, π∗) has been found, πe can be redefined as π∗ and the process

repeated—with a smaller value of µ if necessary. There is more discussion of the choice of πe

below. However, before turning to the inequality constraint case, we summarize the regularization

for equality constraints.

• The primal-dual solution (x∗, π∗) of the equality constraint problem (6.5) is approximated

by the solution of the perturbed KKT system (6.12).

• The resulting approximation (x∗, π∗) = (x0 +p, π0 + q) is a stationary point of the function

M3 (6.6) regardless of the choice of ν. If µ > 0 and ν ≥ 0 then (x∗, π∗) is a minimizer of

M3 for all µ sufficiently small.

As the solution of the regularized problem is independent of ν, there is little reason to use nonzero

values of ν in the equality-constraint case. However, the picture changes when there are inequality

constraints and an approximate solution of the QP problem is required, as is often the case in

the SQP context.

The method defined above can be extended to the inequality constraint problem (6.1)

by solving the bound-constrained subproblem

minimize
x∈Rn

M1(x;πe, µ) subject to x ≥ 0, (6.15)

which is identical to (6.3) derived via the shifted penalty-function method. This technique has

been proposed for general nonlinear programming (see, e.g., Conn, Gould and Toint [9, 10, 11],

Friedlander [33], and Friedlander and Saunders [35]), and to quadratic programming (see, e.g.,

Dostál, Friedlander and Santos [22, 23, 24], Delbos and Gilbert [19], Friedlander and Leyffer [34]),

and Maes [54]).

As in the equality-constraint case, the dual variables may be updated as πj+1 = πj+αjqj .

The dual iterates πj will converge to the multipliers π∗ of the perturbed QP:

minimize
x∈Rn

cTx+ 1
2x

THx subject to Ax− µ(πe − π∗) = b, x ≥ 0.

At an optimal solution (x∗, π∗) of (6.15) the vector z∗ = g(x∗)−ATπ∗ provides an estimate of the

optimal reduced costs z∗. As in the equality-constraint case, the vector of first-order multipliers

π(x∗) = πe − (Ax∗ − b)/µ is identical to π∗.

The algorithms defined above are dual regularization methods in the sense that the

regularization has the effect of bounding the Lagrange multipliers. For convex QP certain primal

regularization schemes may be used to bound the primal variables (see, e.g., Gill et al. [36],

Saunders [63], Saunders and Tomlin [65, 64], Altman and Gondzio [1], and Maes [54]). The

variable-shifted problem (6.4) is an example of primal regularization.

69

6.3 Inner Iterations

All of the methods considered above have an inner/outer iteration structure, with the

outer iterations handling the updates to parameters necessary for the formulation of the sub-

problem, and the inner iterations being those of the method used to solve the subproblem. Next

we focus on methods for solving each of the subproblems.

6.3.1 Constraint-shifted approach

If x∗ and π∗ satisfy the second-order sufficient conditions for the standard-form QP (6.1),

then there exists a µ̄ such that for all µ < µ̄, x∗ is a solution to the constraint-shifted quadratic

program (6.16) with πe = π∗. This result suggests that a solution for (6.1) may be found by

solving a finite sequence of problems of the form (6.3), restated here

minimize
x∈Rn

M1(x;πe, µ) = ϕ(x)− πTe (Ax− b) +
1

2µ
‖Ax− b‖22 subject to x ≥ 0, (6.16)

where πe is an estimate of the optimal multipliers for the equality constraints Ax = b. The

optimality conditions are given in terms of the gradient of M1,

∇M1(x;πe, µ) = g(x)−AT
(
πe −

1

µ
(Ax− b)

)
= g(x)−ATπ(x),

with π(x) defined as the vector π(x) = πe− 1
µ (Ax−b), and the Hessian ofM1,∇2M1 = H+ 1

µA
TA.

Result 6.3.1 (Optimality conditions). If x∗ is a local minimizer of the QP (6.16), then

(a) x∗ ≥ 0;

(b) there exists a vector z∗ such that ∇M1(x∗;πe, µ) = z∗ with z∗ ≥ 0;

(c) x∗ · z∗ = 0; and

(d) pT∇2M1p ≥ 0 for all p such that pi ≥ 0 if x∗i = 0.

The first-order optimality conditions for (6.16) may be written equivalently in active-set

form. Let PTa denote the active-set matrix at x∗. Conditions (b) and (c) of Result 6.3.1 are

equivalent to

∇M1(x∗) = Pa za , where z∗ = Pa za with za ≥ 0.

Result 6.3.2. If x∗ satisfies the second-order sufficient conditions of (6.1) with strict comple-

mentarity, then there exists a µ̄ such that x∗ is a solution to (6.16) for all µ such that 0 < µ ≤ µ̄.

Proof. Let PTa denote the active-set matrix at x∗. The first-order sufficient conditions for (6.1)

imply Ax∗ = b, x∗ ≥ 0, and g(x∗) = ATπ∗ + Pa za with za > 0. Thus, the feasibility condition

for (6.16) is satisfied because x ≥ 0.

70

Let πe = π∗. Then

∇M1(x∗) = g(x∗)−AT
(
πe −

1

µ
(Ax∗ − b)

)
= g(x∗)−ATπe (since Ax∗ = b)

= Pa za ,

so that the stationarity condition for (6.16) is satisfied.

The second-order sufficient conditions for (6.1) imply that there exists an ω > 0 such

that

pTHp ≥ ω‖p‖22 for all p ∈ null

(
A

PTa

)
.

By Debreu’s Lemma 1.3.2, this condition holds if and only if there exists a µ̄ > 0 such that

H + 1
µA

TA is positive definite for all 0 < µ ≤ µ̄. Thus, the sufficient conditions for (6.16) are

satisfied and x∗ is a solution of (6.16) with πe = π∗.

Application of the nonbinding-direction method to the constraint-shifted approach re-

sembles the standard-form version of the method. The working set is the nonbasic set N , with

corresponding working-set matrix PTN composed of unit columns {ei} with i ∈ N . The comple-

mentary basic set B defines the matrix PTB . Unlike the other algorithms described, no assumption

on the rank of AB is required.

Result 6.3.3 (Subspace minimizer). Let B be the basic set for a point x ≥ 0. Then

(a) If x is a subspace stationary point with respect to B, then gB(x) = ATBπ(x).

(b) If B is a second-order-consistent basis for the problem (6.16), then the KKT matrix(
HB ATB

AB −µI

)
(6.17)

has inertia (nB,m, 0).

Proof. By definition, a stationary point is a point where the gradient of the objective lies in the

range space of the transpose of the working-set matrix. Thus, there exists a vector zN such that

∇M1(x;πe, µ) = PNzN . This implies that zN = gN(x)−ATNπ(x) and 0 = gB(x)−ATBπ(x).

A second-order-consistent basis for subproblem (6.16) implies that the KKT matrix(
∇2M1 PN

PTN 0

)

has inertia (n, nN , 0), or equivalently, that ZT∇2M1Z is positive definite, where the columns of

Z form a basis for the null space of PTN . However, since PTN is a permutation matrix, Z can be

defined as Z = PB. Thus

ZT∇2M1Z = PTB (H +
1

µ
ATA)PB = HB +

1

µ
ATBAB.

71

Then by Theorem 1.3.2, the shifted KKT-matrix (6.17) has inertia (nB,m, 0).

Once a negative multiplier zνs = [zN]s is identified, the search direction is defined as the

solution of (
∇2M1 PN

PTN 0

)(
p

−qN

)
=

(
0

es

)
. (6.18)

If we define the auxiliary vector qπ = − 1
µAp, the first block of this system becomes

0 =
(
H +

1

µ
ATA

)
p− PNqN = Hp−ATqπ − PNqN .

The KKT system can be rewritten to include the components of qπ as unknowns, giving the

equivalent system 
H AT PN

A −µI
PTN




p

−qπ
−qN

 =


0

0

es

 .

If this system is reduced to its basic components as in Chapter 3, the solution of (6.18) can be

computed from (
HB ATB

AB −µI

)(
pB

−qπ

)
= −

(
(hνs)B

aνs

)
, (6.19)

with pN = es and qN = (Hp − ATqπ)N . Apart from the −µI term in the KKT matrix, these

equations are identical to System 1 of the standard-form nonbinding-direction method (3.4).

A simple calculation gives the identities

∇MT
1 p = pTPTN zN = [zN]s and pT∇2M1p = pTPNqN = [qN]s,

from which the optimal step may be calculated as α∗ = −[zN]s/[qN]s. The feasible step is identical

to that defined in (3.7), since the standard-form problem has the same inequality bounds x ≥ 0.

If the optimal step is taken, then νs can be added to B. Otherwise, if the problem is

bounded, there must be a blocking constraint xβr ≥ 0 at x + αp. In this case, the second KKT

system for the constraint-shifted problem is given by(
HB ATB

AB −µI

)(
uB

−vπ

)
=

(
er

0

)
, (6.20)

which may be derived in the same way as (6.19) above. If uB = 0, then the second block of

equations in (6.20) implies that vπ = 0. However, this implies a contradiction because the right-

hand side of the first block of equations of (6.20) is nonzero. Thus, uB cannot be zero and a

blocking constraint can be removed from B (and added to N) immediately by parts (2a) and (2c)

of Result 3.2.2. Since it is always permissible to add a blocking constraint, there is no need to

solve (6.20). This result may also be inferred from the fact that the working-set matrix consists

of rows of the identity, and any blocking constraint is linearly independent of the rows of PTN .

72

The following result summarizes the updates to the basic set. Proofs are omitted as they

are almost identical to those found in Chapter 3.

Result 6.3.4 (Basic set updates). Let x be a subspace minimizer with respect to B and let p and

q be defined by (6.19). Define x̄ = x+ αp.

(a) If α = α∗, then x̄ is a subspace minimizer with respect to B̄ = B + {νs}.

(b) If xβr ≥ 0 is a blocking constraint at x̄, then x̄ is a subspace minimizer with respect to

B̄ = B − {βr}.

There are two obvious benefits to the constraint-shifted method. First, there is no need

to find an initial point such that Ax = b. Second, it is necessary to solve only one KKT system at

each iteration, which implies that there is no advantage to updating p and q as in the conventional

nonbinding direction method.

Algorithm 6.1 summarizes the method. As before, minRatioTest computes the max-

imum feasible step, and subspaceMin returns a subspace minimizer. In Algorithm 6.1, the

multiplier z is computed explicitly at each iteration rather than being updated.

6.3.2 Variable-shifted approach

The subproblem of the variable-shifted method is

minimize
x,u,v∈Rn

M2(x, v; ze, µ) = ϕ(x)− zTe v +
1

2µ
‖v‖22

subject to Ax = b, x− u+ v = 0, u ≥ 0,
(6.21)

where µ is the positive penalty parameter and ze is a constant estimate of the multiplier vector

for the constraints v = 0. The gradient and Hessian of the objective function are given by

∇M2(x, v; ze, µ) =


g(x)

0

1
µv − ze

 , and ∇2M2 =


H 0 0

0 0 0

0 0 1
µI

 .

The first-order stationarity condition for this problem implies that there exist vectors π, z and

zu such that 
g(x)

0

1
µv − ze

 =


AT I

−I
I


(
π

y

)
+


0

z

0

 ,

with non-negativity and complementarity conditions z ≥ 0 and z · u = 0. Together, these

conditions imply that

g(x) = ATπ + z, z ≥ 0, z · u = 0, and z =
1

µ
v − ze.

73

Algorithm 6.1: Constraint-shifted algorithm

Find x0 such that x0 ≥ 0; k = 0;

[x,B] = subspaceMin(x0);

π ← πe − 1
µ (Ax− b); z ← c+Hx−ATπ;

νs = argmini{zi};
while zνs < 0 do

Solve

(
HB ATB

AB −µI

)(
pB

−qπ

)
= −

(
(hνs)B

aνs

)
; p = P

(
pB

es

)
; qN = (Hp−ATqπ)N ;

αF = minRatioTest(xB, pB);

if [qN]s > 0 then α∗ = −zνs/[qN]s else α∗ = +∞;

α = min{α∗, αF };
if α = +∞ then stop; [the solution is unbounded]

x← x+ αp; π ← π + αqπ; z ← c+Hx−ATπ;

if αF < α∗ then [remove r-th basic variable]

Find the blocking constraint index r;

B ← B − {βr};
else [add s-th nonbasic variable]

B ← B + {νs};
νs = argmini{zi};

end;

k ← k + 1;

end while

The working-set indices of u are denoted by N . The working-set matrix Aw is defined as

Aw =


A 0 0

I −I I

0 PTN 0

 , (6.22)

where PTN is defined by N . As usual, the basic set B is the complementary set of indices such

that B ∪N = {1, . . . , n}.
In the next result, we derive the properties of a subspace stationary point and a second-

order-consistent basis in terms relevant to the variable-shifted algorithm. In particular, the

matrix

K =


H AT PN

A 0 0

PTN 0 −µI

 ,

which appears in the equations solved in the algorithm, is shown to have a specific inertia.

74

Result 6.3.5 (Subspace minimizer). Let (x, u, v) be a feasible point with basic and nonbasic sets

B and N .

(a) If (x, u, v) is a subspace stationary point with respect to B, then gB(x) = ATBπ, and zN =

(1
µv − ze)N .

(b) If B is a second-order-consistent basis for (6.21), then the matrix

K =


H AT PN

A 0 0

PTN 0 −µI

 (6.23)

has inertia (n,m+ nN , 0).

Proof. By definition, ∇M2(x, v; ze, µ) lies in the range-space of the transpose of the working-set

matrix (6.22). Thus, there exist vectors π, y and zN such that
g(x)

0

1
µv − ze

 =


AT I 0

0 −I PN

0 I 0



π

y

zN

 .

This implies that g(x) = ATπ + PNzN and PNzN = 1
µv − ze. Therefore, at a subspace stationary

point, it holds that

gB(x) = ATBπ, with zB = 0 and zN = (
1

µ
v − ze)N .

For part (b), we use Theorem 1.3.2 to relate the inertia of K to the inertia of the reduced

Hessian matrix ZT(H + 1
µPNP

T
N)Z, where the columns of Z form a basis for the null space of A.

If “H” is the matrix

(
H AT

A 0

)
and “A” is

(
PTN 0

)
in Theorem 1.3.2, then the theorem states

that

In(K) = In
((H AT

A 0

)
+

1

µ

(
PN

0

)(
PTN 0

))
+ (0, nN , 0)

= In

(
H + 1

µPNP
T
N AT

A 0

)
+ (0, nN , 0)

= In(ZT(H +
1

µ
PNP

T
N)Z) + (m,m, 0) + (0, nN , 0),

where the last equality holds from Corollary 1.3.1. Therefore, it is sufficient to show that the

(n−m)× (n−m) reduced Hessian ZT(H + 1
µPNP

T
N)Z is positive definite, and hence has inertia

(n−m, 0, 0).

Define Q such that

Q =


Z 0

PBP
T
B Z PB

−PNP
T
N Z PB

 .

75

This matrix has linearly independent columns. For any vector u in the null space of Q, it must

hold that

0 = Qu =


Z 0

PBP
T
B Z PB

−PNP
T
N Z PB


(
u1

u2

)
,

which implies that Zu1 = 0 and PBu2 = 0, and hence u = 0. Also, since AwQ = 0, the columns

of Q form a basis for the null space for Aw (6.22). By definition of a second-order-consistent

basis, the matrix QT∇2M2Q must be positive definite. If the terms of Q and the Hessian are

expanded, then

QT∇2M2Q =

(
ZTHZ + 1

µZ
TPNP

T
N PNP

T
N Z − 1

µZ
TPNP

T
N PB

− 1
µP

T
B PNP

T
N Z

1
µP

T
B PB

)

=

(
ZTHZ + 1

µZ
TPNP

T
N Z 0

0 1
µIB

)

=

(
ZT(H + 1

µPNP
T
N)Z 0

0 1
µIB

)
.

Since the leading principal submatrix of a symmetric positive-definite matrix is positive definite,

ZT(H + 1
µPNP

T
N)Z is also positive definite. Therefore, K has inertia (n,m+ nN , 0).

If zνs < 0, a search direction is computed by solving the system:

H 0 0 AT I 0

0 0 0 0 −I PN

0 0 1
µI 0 I 0

A 0 0 0 0 0

I −I I 0 0 0

0 PTN 0 0 0 0





px

pu

pv

−qπ
−y
−qN


=



0

0

0

0

0

es


. (6.24)

The second and third blocks of these equations indicate that y = 1
µpv = PNqN , so that 1

µ (pv)N =

qN and (pv)B = 0. The sixth block implies (pu)N = es. Combined with the fifth block, px− pu +

pv = 0, we get that

(px)N = es − (pv)N = es − µqN and (px)B = (pu)B.

The remaining equations imply

Hpx −ATqπ − PNqN = 0, Apx = 0, PTN px = (px)N = es − µqN ,

which can be combined to form the variable-shifted version of System 1:
H AT PN

A 0 0

PTN 0 −µI




px

−qπ
−qN




0

0

es

 , (6.25)

76

with pv = µPNqN and pu = px + pv.

Based on previous experience, it may seem possible to reduce (6.25) further by decom-

posing it into its basic and nonbasic components. However, the −µI term in the (3, 3) block does

not allow for this possibility and the algorithm must solve the system with a KKT matrix that

includes the entire Hessian H and constraint matrix A.

If p is partitioned as (px, pu, pv), it must hold that

pT∇2M2p = pTxHpx +
1

µ
pTv pv = (es − µqN)T qN + µqTNqN = [qN]s,

because of the equations in System 1 (6.25). Moreover,

∇MT
2 p = gTpx + (

1

µ
v − ze)Tpv

= gTpx + zTN (pv)N (by the stationarity condition and the identity (pv)B = 0)

= (g −ATπ)Tpx + zTN (pv)N (since Apx = 0)

= zTN (px)N + zTN (es − (px)N) (since zB = 0)

= [zN]s.

Therefore, the optimal step for the variable-shifted problem is defined as α∗ = −[zN]s/[qN]s. The

feasible step is computed as in (3.7), except that x is replaced by u (since the bounds of (6.21)

are u ≥ 0).

Once the step and direction are known, the updates to the variables and multipliers are

x+ αpx, u+ αpu, v + αpv and, π + αqπ and z + αPNqN .

If α = α∗, then the next working set is B+ {νs}. Otherwise, if α = αF , a blocking constraint βr

is removed from the basic set, B − {βr} and a second system

H 0 0 AT I 0

0 0 0 0 −I PN

0 0 1
µI 0 I 0

A 0 0 0 0 0

I −I I 0 0 0

0 PTN 0 0 0 0





ux

uu

uv

−vπ
−y
−vN


=



0

eβr

0

0

0

0


(6.26)

is solved to determine constraint dependency in the working-set matrix. By Result 2.2.6, the

blocking constraint is linearly dependent on the working-set constraints if and only if ux = uu =

uv = 0. However, the second and third blocks of (6.26) imply that uv = µ(eβr
+ PNvN), so that

(uv)B = µer 6= 0. Thus, a blocking constraint is always linearly independent of the working-set

constraints. This can also be seen in the structure of the working-set matrix (6.22). Since A is

assumed to have rank m and rank(Aw) = rank(A) +n+nN . the working-set matrix trivially has

77

full-rank. For completeness, however, we note that System 2 for the variable-shifted method is
H AT PN

A 0 0

PTN 0 −µI




ux

−vπ
−vN



eβr

0

0

 , (6.27)

with uv = µ(PNvN + eβr
) and uu = ux + uv.

It only remains to show that the updated variables and basic sets define a subspace

minimizer.

Result 6.3.6. Let (x, u, v) be a subspace minimizer with respect to B. Assume the solution of

(6.25) has been computed and let (x̄, ū, v̄) = (x, u, v) + α(px, pu, pv), π̄ = π + αqπ, and z̄ =

z + αPNqN .

(a) If α = α∗, then (x̄, ū, v̄) is a subspace minimizer with respect to B̄ = B + {νs}.

(b) If α = αF , then (x̄, ū, v̄) is a subspace minimizer with respect to B̄ = B−{βr}, where βr is

a blocking constraint at ū.

Proof. We show that the parallel subspace property holds.

g(x̄)−ATπ̄ = g(x)−ATπ + α(Hpx −ATqπ) = z + αPNqN = z̄.

Thus, z̄B = 0. Also because pv = µPNqN , it holds that z̄N = (1
µ (v + pv) − ze)N . Since this

identity applies for any scalar α, (x̄, ū, v̄) remains a subspace stationary point in both cases.

The proof for part (a) is almost identical to the analogous proof in Result 2.2.5. The

only difference is the existence of −µ in the (1, 1) position of M̃ defined in (2.21), but this causes

no difficulties and (2.22) still holds. The remainder of the proof follows “as is”.

For part (b), the permuted KKT matrix for B̄ is

K̄ =


H AT PN eβr

A 0 0 0

PTN 0 −µI 0

eTβr
0 0 −µ

 .

The Schur complement matrix is given by K̄/K = −µ − eTβr
K−1eβr

= −(µ + eTβr
ux). The

following argument may be used to verify that eTβr
ux > 0. Using System 2 (6.27), we have

uTx eβr
= uTx (Hux −ATvπ − PNvN) = uTxHux − uTxPNvN

= uTxHux +
1

µ
uTxPNP

T
N ux = uTx (H +

1

µ
PNP

T
N)ux.

As Aux = 0, and the matrix H + 1
µPNP

T
N is positive definite on the null space of A by part (b)

of Result 6.3.5, it follows that eTβr
ux > 0. Thus, K̄/K < 0 and In(K̄) = In(K) + (0, 1, 0) =

(n,m+ nN + 1, 0), as required.

78

Algorithm 6.2: Variable-shifted algorithm

Find x such that Ax = b; k = 0;

Define u and v such that ui = max{xi, 0} and vi = min{vi, 0};
[x, π, z,B] = subspaceMin(x);

νs = argmini{zi};
while zνs < 0 do

Solve


H AT PN

A 0 0

PTN 0 −µI




px

−qπ
−qN

 =


0

0

es

; pv = µPNqN ; pu = px + pv;

αF = minRatioTest(uB, (pu)B);

if [qN]s > 0 then α∗ = −zνs/[qN]s else α∗ = +∞;

α = min{α∗, αF };
if α = +∞ then stop; [the solution is unbounded]

x← x+ αp; π ← π + αqπ; z ← z + αqN ;

if αF < α∗ then [add r-th basic variable]

Find the blocking constraint index r;

B ← B − {βr};
else [remove s-th nonbasic variable]

B ← B + {νs};
νs = argmini{zi};

end;

k ← k + 1;

end while

It is noted that the solution of a generic KKT system of the form
H AT PN

A 0 0

PTN 0 0



x

y

z

 =


a

b

c

 ,

can be computed from the smaller system(
H + 1

µPNP
T
N AT

A 0

)(
x

y

)
=

(
a+ 1

µPNc

b

)
,

with z = 1
µ (PTNx − c). However, within a QP algorithm, the latter KKT matrix is difficult to

maintain since the (1, 1) block is in terms of the matrix PN , which changes at every iteration.

79

6.4 Outer Iterations

In order to get a solution for the standard-form QP (6.1) using a single-phase methods

described in the previous section, a sequence of constraint-shifted (6.16) or the variable-shifted

(6.21) subproblems needs to be solved with decreasing values of µ. In this section, the updates

to the penalty parameter and the multiplier estimates that occur in the outer iterations are

addressed. However, the discussion is limited to describing an algorithm for the single-phase

method involving the constraint-shifted subproblem (6.16). The discussion can be extended to

methods using the variable-shifted subproblem (6.21).

If the QP is a “one-off” problem, then established techniques associated with the bound-

constrained augmented Lagrangian method can be used to update πe and µ (see, e.g., Conn,

Gould and Toint [10], Dostál, Friedlander and Santos [22, 23, 24], Delbos and Gilbert [19],

Friedlander and Leyffer [34], and Maes [54]). These rules are designed to update πe and µ without

the need to find the exact solution of (6.16). In the SQP context, it may be more appropriate to

find an approximate solution of (6.16) for a fixed value of πe, which is then updated in the outer

iteration. Moreover, as µ is being used principally for regularization, it is given a smaller value

than is typical in a conventional augmented Lagrangian method.

For the constraint-shifted problem (6.16), we apply the bound-constrained Lagrangian

(BCL) method considered in Friedlander [33], where global convergence results can be found. The

algorithm is given in Algorithm 6.3. The multiplier estimates πe are denoted by πk, where k is the

outer iteration count. Other quantities are also given a subscript k to denote their values at the

k-th iteration. Updates to the multiplier estimates and the penalty parameter µk are determined

by the solution of the subproblem, denoted by x∗k with multipliers z∗k. If ‖Ax∗k−b‖ > max{ηk, η∗}
for some convergence tolerances ηk and η∗, then the multiplier estimates are not updated, and

the penalty parameter is decreased. Otherwise, the value of πk is updated, and the penalty

parameter is unchanged. Furthermore, if the subproblem solution is deemed optimal for the

original standard-form QP, then the algorithm terminates.

The BCL algorithm can solve the bound-constrained subproblem of the inner iterations

inexactly, without impeding convergence. The first-order optimality conditions in Result 6.3.1 of

(6.16) are relaxed to give approximate conditions

x ≥ 0, (6.28a)

z ≥ −ωke, (6.28b)

z = ∇M1(x;πk, ρ), (6.28c)

x · z ≤ ωke, (6.28d)

where ωk ≥ 0 is the k-th optimality tolerance. These conditions are used as a stopping criteria

for solving the subproblems. Similar stopping criteria are given for the BCL algorithm. A point

(x, π, z) is deemed optimal for (6.1), if it satisfies the relaxed first-order optimality conditions of

80

(6.1), given as

x ≥ 0, (6.29a)

z ≥ −ω∗e, (6.29b)

z = ∇M1(x;π, ρ), (6.29c)

‖Ax− b‖ ≤ η∗, (6.29d)

x · z ≤ ω∗e, (6.29e)

where η∗ and ω∗ are the feasibility and optimality tolerances, respectively.

Algorithm 6.3: Bound-constrained Lagrangian algorithm

Set k = 0 and set initial penalty parameters: µ0 < 1, τ < 1;

Choose convergence tolerances ω∗, η∗ � 1;

Set constants α, β > 0 with α < 1;

converged← false;

Let π0 = πe;

while not converged do

Choose ωk ≥ ω∗ such that limk→∞ ωk = ω∗.

Solve (6.16) to obtain solution (x∗k, z
∗
k) satisfying (6.28);

if ‖Ax∗k − b‖ ≤ max{ηk, η∗} then

xk+1 = x∗k; zk+1 = z∗k; πk+1 = πk − 1
µk

(Ax∗k − b);
if (xk+1, πk+1, zk+1) satisfies condition (6.29) then

converged← true;

end if

µk+1 = µk; [keep µk]

ηk+1 = µβk+1ηk [decrease ηk]

else

µk+1 = τµk; [decrease µk]

xk+1 = xk; zk+1 = zk; πk+1 = πk;

ηk+1 = µαk+1η0 [increase or decrease ηk]

end if

k ← k + 1;

end while

7 Solving the KKT Systems

At each iteration of the quadratic programming methods, it is necessary to solve one

or two KKT systems. In this chapter, two alternative approaches for solving the systems are

considered. The first approach involves the symmetric transformation of the reduced Hessian

matrix. The second approach uses a symmetric indefinite factorization of a fixed KKT matrix in

conjunction with the factorization of a smaller matrix that is updated at each iteration.

7.1 Variable-Reduction Method

The variable-reduction method involves transforming a KKT equation to block-triangular

form using a nonsingular block-diagonal matrix. Instead of solving the reduced KKT system

normally associated with the standard-form algorithm, the variable-reduction method focuses on

solving the full KKT system. Therefore, in this section, we consider a generic full KKT system

of the form 
H AT PN

A

PTN



y

w1

w2

 =


h

f1

f2

 . (7.1)

First consider a column permutation P such that AP =
(
B S N

)
, with B an m×m

nonsingular matrix and S an m×nS matrix with nS = nB−m. The matrix P is a version of the

permutation
(
PB PN

)
of (3.2) that also arranges the columns of AB in the form AB =

(
B S

)
.

The nS variables associated with S are called the superbasic variables. Given P , consider the

nonsingular n× n matrix Q such that

Q = P


−B−1S Im 0

InS
0 0

0 0 IN

 .

81

82

The columns of Q may be partitioned so that Q =
(
Z Y W

)
, where

Z = P


−B−1S

InS

0

 , Y = P


Im

0

0

 and W = P


0

0

IN

 .

The columns of the n× nS matrix Z form a basis for the null-space of Aw with

AwQ =

(
A

PTN

)
Q =

(
0 B N

0 0 IN

)
.

Multiplying the KKT matrix in (7.1) by the diagonal-block matrix diag(Q, Im) leads to

ZTHZ ZTHY ZTHW

Y THZ Y THY Y THW BT

WTHZ WTHY WTHW NT IN

B N

IN





yZ

yY

yW

w1

w2


=



hZ

hY

hW

f1

f2


, (7.2)

with hZ = ZTh, hY = Y Th, and hW = WTh. Then the vector y may be computed as y =

Y yY + ZyZ +WyW . Additionally,

yW = f2,

ByY = f1 −Nf2, yR = Y yY +WyW ,

ZTHZyZ = ZT(h−HyR), yT = ZyZ , y = yR + yT ,

BTw1 = Y T(h−Hy), w2 = WT(h−Hy)−NTw1.

These equations may be solved using a Cholesky factorization of ZTHZ and an LU factorization

of B. The factors of B allow efficient calculation of matrix-vector products ZTv or Zv without

the need to form the inverse of B.

7.1.1 Equations for the standard-form algorithm

The equations simply considerably when the appropriate right-hand sides from the

standard-form nonbinding-direction method are substituted into the above equations. For Sys-

tem 1 (3.3), the substitutions are

y = p, w1 = −qπ, w2 = −qN , h = f1 = 0, and f2 = es,

83

leading to the equations

BpY = −aνs , pR = P


pY

0

es

 ,

ZTHZpZ = −ZTHpR, pT = ZpZ , p = pR + pT ,

BTqπ = (Hp)BB, qN = (Hp−ATqπ)N , q =

(
qπ

qN

)
.

(7.3)

Similarly for System 2, it holds that uW = 0, uY = 0, uR = 0 and

ZTHZuZ = ZTeβr
, u = ZuZ ,

BTvπ = (Hu− eβr)BB, vN = (Hu−ATvπ)N , v =

(
vπ

vN

)
.

(7.4)

The subscript BB refers to the indices forming B in AB (a subset of the basic set B). These

equations allow us to specialize part 2(a) of Result 3.2.2, which gives the conditions for the linear

independence of the matrix AB.

Result 7.1.1. Let x be a subspace minimizer with respect to B. Assume that p and q are defined

by (7.3), and that xβr is the incoming nonbasic variable at the next iterate. Let vectors uB and

vπ be defined by (7.4).

(a) If xβr
is superbasic, then er and the rows of AB are linearly independent.

(b) If xβr is not superbasic, then er and the rows of AB are linearly independent if and only if

ST z 6= 0, where z is the solution of BT z = er.

Proof. From (7.4), u = ZuZ , which implies that uB is nonzero if and only if uZ is nonzero.

Similarly, the nonsingularity of ZTHZ implies that uZ is nonzero if and only if ZTeβr
is nonzero.

Now

ZTeβr
=
(
−STB−T InS

0
)
er.

If r > m, then xβr
will change from being superbasic to nonbasic, and ZTer = er−m 6= 0.

However, if r ≤ m, then

ZTeβr
= −STB−T er = −ST z,

where z is the solution of BT z = er.

Variable-reduction is most efficient when the size of the reduced Hessian (nS = n−m−nN)

is small, i.e., when many constraints are active. This method is used in the current versions of

SQOPT [39] and SNOPT [38].

84

7.2 Schur-Complement and Block-LU Method

In this section, we consider a method for solving the reduced KKT system of the form(
HB ATB

AB −µI

)(
y

w

)
=

(
h

f

)
, (7.5)

where h and f are constant vectors defined by the algorithm implemented.

Solving a single linear system can be done very effectively using sparse matrix factoriza-

tion techniques. However, within a QP algorithm, many closely related systems must be solved

where the KKT matrix differs by a single row and column. Instead of reformulating the matrix

at each iteration, the matrix may be “bordered” in a way that reflects the changes to the basic

and nonbasic sets (see Bisschop and Meeraus [4], and Gill et al. [42]).

7.2.1 Augmenting the KKT matrix

Let B0 and N0 denote the initial basic and nonbasic sets that define the KKT system in

(7.5). There are four cases to consider:

(1) a nonbasic variable moves to the basic set and is not in B0,

(2) a basic variable in B0 becomes nonbasic,

(3) a basic variable not in B0 becomes nonbasic, and

(4) a nonbasic variable moves to the basic set and is in B0.

For case (1), let νs be the nonbasic variable that has become basic. The next KKT

matrix can be written as 
HB ATB (hνs)B0

AB −µI aνs

(hνs)TB0
aTνs hνs,νs

 .

Suppose that at the next stage, another nonbasic variable νr becomes basic. The KKT matrix is

augmented in a similar fashion, i.e.,
HB ATB (hνs)B0

(hνr)B0

AB −µI aνs aνr

(hνs)TB0
aTνs hνs,νs hνs,νr

(hνr)TB0
aTνr hνr,νs hνr,νr

 .

85

Now consider case (2) and let βr ∈ B0 become nonbasic. The change to the basic set is reflected

in the new KKT matrix 

HB ATB (hνs)B0
(hνr)B0

er

AB −µI aνs aνr 0

(hνs)TB0
aTνs hνs,νs hνs,νr 0

(hνr)TB0
aTνr hνr,νs hνr,νr 0

eTr 0 0 0 0


.

The unit row and column augmenting the matrix has the effect of zeroing out the components

corresponding to the removed basic variable.

In case (3), the basic variable must have been added to the basic set at a previous stage

as in case (1). Thus, removing it from the basic set can be done by removing the row and column

in the augmented part of the KKT matrix corresponding to its addition to the basic set. For

example, if νs is the basic to be removed, then the new KKT matrix is given by
HB ATB (hνr)B0

er

AB −µI aνr 0

(hνr)TB0
aTνr hνr,νr 0

eTr 0 0 0

 .

For case (4), a nonbasic variable in B0 implies that at some previous stage, the variable

was removed from B0 as in case (2). The new KKT matrix can be formed by removing the unit

row and column in the augmented part of the KKT matrix corresponding to the removal the

variable from the basic set. In this example, the new KKT matrix becomes
HB ATB (hνr)B0

AB −µI aνr

(hνr)TB0
aTνr hνr,νr

 .

After k iterations, the KKT system is maintained as a symmetric augmented system of

the form (
K V

V T B

)(
r

η

)
=

(
b

f

)
with K =

(
HB ATB

AB

)
, (7.6)

where B is of dimension at most 2k.

7.2.2 Factoring the matrices

Although the augmented system (in general) increases in dimension by one at every

iteration, the (1, 1)–block K is fixed and defined by the initial set of basic variables. The Schur

86

complement method assumes that factorizations for K and the Schur complement C = B −
V TK−1V exist. Then the solution of (7.6) can be determined by solving the equations

Kt = b, Cη = f − V Tt, Kr = b− V η.

The work required is dominated by two solves with the fixed matrix K and one solve with the

Schur complement C. If the number of changes to the basic set is small enough, dense factors of

C may be maintained.

The Schur complement method can be extended to a block-LU method by storing the

augmented matrix in block factors such that(
K V

V T B

)
=

(
L

ZT I

)(
U Y

C

)
, (7.7)

where K = LU , LY = V , UTZ = V , and C = B − ZTY is the Schur-complement matrix.

The solution of (7.6) with factors (7.7) can be computed by forming the block factors

and by solving the equations

Lt = b, Cη = f − ZTt, and Ur = t− Y η.

This method requires a solve with L and U each, one multiply with Y and ZT , and one solve

with the Schur complement C. For more details, see Gill et al. [40], Eldersveld and Saunders [27],

and Huynh [53].

As the iterations of the QP algorithm proceed, the size of C increases and the work

required to solve with C increases. It may be necessary to restart the process by discarding the

existing factors and re-forming K based on the current set of basic variables.

Using the LDLT factorization Since K is a symmetric indefinite matrix, K can be factored

using an LDLT factorization rather than an LU factorization (see Result 1.3.4). Given such a

factorization, the augmented matrix can be stored in the form(
K V

V T B

)
=

(
L

Y T I

)(
D

C

)(
LT Y

I

)
, (7.8)

In this case, less storage is required because only the LDLT factors, the Schur complement and

Y are stored. The solution of (7.6) is computed from the equations

Lt = b, Cη = f − Y Tt, Dy = t, and LTr = v − Y η,

requiring a solve with each of the matrices L, D, LT and C and a multiply with Y and its

transpose.

87

7.2.3 Updating the factors

Suppose the current KKT matrix is bordered by the vectors v and w, and the scalar σ
K V v

V T B w

vT wT σ

 .

The block-LU factors Y and Z, and the Schur complement C in (7.7) are updated every time

the system is bordered. The number of columns in matrices Y and Z and the dimension of the

Schur complement increase by one. The updates y, z, c and γ are defined by the equations

Ly = v, UTz = v,

c = w − ZTy = w − Y Tz, γ = σ − zTy,

so that the new block-LU factors satisfy
K V v

V T B w

vT wT σ

 =


L

ZT I

zT 1




U Y y

C c

cT γ

 . (7.9)

As demonstrated previously, it is also possible to border the KKT matrix with two rows

and columns in one iteration (e.g., a swap involving the removal of an original basic variable

(case (2) in Section 7.2.1) and the addition of a new nonbasic variable (case (1)). The above

updates still apply but with appropriate expansions of the vectors and scalars in the equations.

8 Numerical Results

In this chapter, numerical results are presented for the Fortran package icQP [45], which

is an implementation of the nonbinding-direction method for QPs in standard-form. The results

are compared with those of the convex QP solver SQOPT [39].

Problems were taken from the CUTEr problem collection [6, 50], and the Maros and

Mészáros convex quadratic programming set [56]. A total of 171 quadratic problems in the

CUTEr set were identified based on the classification code, while 138 convex quadratic programs

were taken from the Maros and Mészáros test set. Only 126 of the 171 CUTEr problems were

included in the icQP test set. 45 of the problems (those with names prefixed by A0, A2 and

A5) were deemed too expensive to include. In over twelve hours, icQP solved only 13 of the 45

problems. In the Maros and Mészáros set, problems BOYD1 and BOYD2 were also excluded for the

same reason.

The number of constraints m and variables n for the CUTEr and Maros and Mészáros sets

are given in Tables A.1 and A.2. The superscript i denotes a nonconvex problem. The CUTEr

problems are written in Standard Input Format (SIF), while the Maros and Mészáros problems

are written in QPS format, a subset of the SIF format. The CUTEr testing environment [50],

which includes the SIF decoder SifDec, was used to pass the problem data into icQP.

Results were obtained on an iMac with a 2.8 GHz Intel Core i7 processor and 16GB of

RAM. All software was compiled using gfortran 4.6.0 with code optimization flag -O3.

8.1 Implementation

icQP is a Fortran 2003 implementation of the standard-form version of the nonbinding-

direction algorithm presented in Section 3.2. The problem is assumed to be of the form

minimize
x∈Rn

ϕ(x) subject to ` ≤

(
x

Ax

)
≤ u,

where ϕ(x) is a linear or quadratic objective function, ` and u are constant lower and upper

bounds, and A is an m× n matrix. The objective function has the form

ϕ(x) = ϕ0 + cTx+ 1
2x

THx,

88

89

where ϕ0 is a scalar constant that does not affect the optimization. Internally, the problem is

converted to standard-form by introducing slack variables s such that

minimize
x∈Rn,s∈Rm

ϕ(x) subject to Ax− s = 0, ` ≤

(
x

s

)
≤ u.

An initial feasible point is found via a phase 1 LP using an experimental Fortran 90

version of SNOPT. This process also produces an initial basis. If this basis is not second-order-

consistent, then the number of non-positive eigenvalues of the KKT matrix is greater than m, and

the estimated number of temporary constraints ea is defined as the difference of these numbers.

If the estimate satisfies

ea > max{ 1
2 (nB −m), 10}, (8.1)

then a vertex is defined at the current point by temporarily fixing variables at their current

values. Otherwise, the method described in Section 5.2.2 is used to define temporary constraints

that define a second-order-consistent basis.

Three linear solvers have been incorporated into icQP to store the block-LU (or block-

LDLT) factors of the KKT matrix. These are LUSOL [41], HSL MA57 [25], and UMFPACK [15,

16, 17, 18]. The Schur complement matrix is maintained by the dense matrix factorization code

LUMOD [62]. LUMOD was updated to Fortran 90 by Huynh [53] for the QP code QPBLU, which

also utilizes a block-LU scheme. Modifications were made to the Fortran 90 version of LUMOD

to incorporate it into icQP.

The algorithm for computing temporary constraints for a second-order-consistent basis

requires a solver that computes an LDLT factorization and provides access to the matrix L.

Only HSL MA57 is a symmetric indefinite solver, but it does not provide access to L by default.

However, a subroutine returning L was provided by Iain Duff [26], and so HSL MA57 is the only

solver capable of defining temporary constraints using the method of Section 5.2.2. For all other

solvers, a vertex is defined if the initial basis is not second-order-consistent.

Table 8.1 lists the problems for which the phase 1 LP did not provide a second-order-

consistent basis when running icQP with HSL MA57. Based on whether or not (8.1) holds,

either variables were temporarily fixed at their current values to create a vertex, or temporary

constraints were computed to create an initial second-order-consistent basis. The superscript v

denotes the former case. The column labeled “nTmp” gives the number of temporary constraints

or temporarily fixed variables. Column “Dense” gives the density of HB + ρATBAB. Column

“Time” gives the time taken to compute the temporary constraints and factor the resulting KKT

matrix. The column “nFix” of Tables 8.7 and 8.8 list the number of fixed variables needed to

define a temporary vertex.

The condition for a blocking variable to give a linearly dependent basis is u = 0, where

u satisfies the equations (3.6). The test used in icQP is

‖uB‖∞ < τ,

90

Table 8.1: Number of temporary constraints for icQP with HSL MA57

Name nTmp Dense Time Name nTmp Dense Time

BLOCKQP1 5007v 0.00 0.38 NCVXQP2 446v 0.00 0.10

BLOCKQP2 1 49.97 101.44 NCVXQP3 155 0.54 0.23

BLOCKQP3 5007v 0.00 0.38 NCVXQP4 731v 0.00 0.03

BLOCKQP4 1 49.97 101.53 NCVXQP5 731v 0.00 0.03

BLOCKQP5 5003v 0.00 0.37 NCVXQP6 221 0.47 0.09

BLOWEYA 1 12.55 27.25 NCVXQP7 199v 0.00 0.29

BLOWEYB 1 12.55 27.25 NCVXQP8 199v 0.00 0.33

BLOWEYC 1 12.55 27.26 NCVXQP9 199v 0.00 0.29

GMNCASE1 1 22.03 0.07 STATIC3 58 0.95 0.00

HATFLDH 1 31.25 0.00 STNQP1 348 0.07 2.32

HS44NEW 3 28.00 0.00 STNQP2 769 0.12 3.84

NCVXQP1 446v 0.00 0.10

where τ is a scaled tolerance that is initialized at τ = (max(‖A‖1, ‖H‖1) + 1) × 9 × 10−12, and

increased, if necessary, subject to the fixed maximum value 5×10−7. The condition for increasing

τ is based on the norm of uB. If ‖uB‖∞ is close to τ , specifically, if ‖uB‖∞ satisfies

0 <
‖uB‖∞ − τ

τ
< 12,

then the tolerance is increased from τ to 12τ .

The KKT matrix is refactored when the dimension of the Schur complement becomes

greater than min(1000, 1
2 (nB +m)), or when the estimated condition number of the Schur com-

plement is greater than 108. The maximum dimension of the Schur complement was determined

empirically, and was based on the overall time required to solve the problems with large num-

bers of degrees of freedom (see Figures 8.5–8.6). Ideally, this limit should be chosen to balance

the time required to factor the KKT matrix and cumulative time needed to update the Schur

complement.

After the KKT matrix is factorized, the current x and π are updated using one step of

iterative refinement based on increments pB and qπ found by solving the additional system(
HB ATB

AB

)(
pB

−qπ

)
= −

(
gB −ATBπ

0

)
.

8.2 Performance Profiles

Performance profiles were created to analyze the results of the numerical experiments on

icQP. The merits of using performance profiles to benchmark optimization software are discussed

in [20]. The idea of a performance profile is to provide an “at-a-glance” comparison of the

performance of a set S of ns solvers applied to a test set P of np problems. For each solver s ∈ S

91

and problem p ∈ P in a profile, the number tps is the time (or some other measure, e.g., number

of iterations) needed to solve problem p with solver s. To compare the performance of a problem

p over the different solvers, the performance ratio for each successfully solved problem and solver

is defined as

rps =
tps

min{tps : s ∈ S}
.

If rms denotes the maximum time needed over all problems that were solved successfully, then

the performance ratio for problems that failed is defined as some value greater than rms.

Given the set of performance ratios, a function Ps(σ) is defined for each solver such that

Ps(σ) =
1

np
|{p ∈ P : rps ≤ σ}|,

where σ ∈ [1, rms]. The value Ps(σ) is the fraction of problems for solver s that were solved

within σ of the best time. Ps(1) is the fraction of problems for which s was the fastest solver.

Note that the summation of Ps(1) for all s does not necessarily equal one, because there may be

ties in the times (e.g., a “ 0 ” is recorded if a problem is solved in less than 10−3 seconds). The

value Ps(rms) gives the fraction of problems solved successfully by solver s.

The presented performance profiles are log-scaled, with τ = log2(σ) on the x-axis and

the function

Ps(τ) =
1

np
|{p ∈ P : log2(rps) ≤ τ}|,

on the y-axis for each solver. The y-axis can be interpreted as the fraction of problems that were

solved within 2τ of the best time. Because the y-axis is the fraction of problems solved, and the

x-axis is the factor of time needed to solve a problem, the “best” solver should have a function

Ps(τ) that lies towards the upper-left of the graph.

Performance profiles in this chapter were produced using a Matlab m-file adapted from

one given in [13]. If a problem is solved in 0.00 seconds, then that value is replaced by 0.001 to

prevent division by zero in the calculation of the performance ratios.

8.3 Results for the Nonbinding-Direction Method

Results were gathered from running the convex QP package SQOPT and four versions of

icQP on the CUTEr and Maros and Mészáros test sets. The versions of icQP are:

(1) icQP with LUSOL,

(2) icQP with HSL MA57,

(3) icQP with UMFPACK, and

(4) icQP with HSL MA57 starting at a vertex (referred to as HSL MA57v).

92

Each version is referred to as icQP-[solver] in the following sections. It must be emphasized

that icQP with LUSOL, UMFPACK and HSL MA57v start with a vertex, while icQP–HSL MA57

starts with any basic set that defines a subspace minimizer. In particular, icQP–HSL MA57 is

the only version capable of using temporary constraints to define a second-order-consistent basis

(see Section 5.2.2).

Default parameter settings were used throughout, including the third-party linear algebra

solvers. The only exception was matrix scaling, which was turned off for all the solvers.

8.3.1 Results on icQP with different linear solvers

In this section, we compare the performance of icQP for each of the linear solvers LUSOL,

HSL MA57, UMFPACK, and HSL MA57v. The performance of a given solver depends greatly on

the Fortran interface to icQP. Each solvers requires a different matrix input format (e.g., in

symmetric/unsymmetric coordinate form, or sparse-by-column format), and the timing often

depends on the efficiency of the implementation. In the case of HSL MA57, performance was

inhibited by the fact that the solver was not designed to be called repeatedly within an iterative

scheme.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lusol

ma57

umfpack

ma57v

τ

%
o
f
p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.1: Performance profile of solve times for icQP on the CUTEr QP test set.

The performance profile for icQP on the CUTEr test set is given in Figure 8.1. Although

icQP–LUSOL solves the most problems in the best time, it solved fewer problems than the other

versions of icQP. No version of icQP was able to solve the CUTEr problems CVXQP1, CVXQP3 and

CONT5-QP in the CUTEr set. In addition, icQP–LUSOL was unable to solve the problems KSIP,

93

QPCBLEND, QPCSTAIR, QPNBLEND, and QPNSTAIR.

Broadly speaking, the results on the Maros and Mészáros test set mirrored those for

the CUTEr test set, although the times for icQP–UMFPACK had a slight edge over those for

icQP–HSL MA57 and icQP–HSL MA57v. The performance profile is given in Figure 8.2.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lusol

ma57

umfpack

ma57v

τ

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.2: Performance profile of solve times for icQP on the Maros and Mészáros QP test set.

For the Maros and Mészáros set, no version of icQP was able to solve QPILOTNO, CVXQP1 L,

and CVXQP3 L. The versions icQP–HSL MA57 and icQP–HSL MA57v also failed to solve Q25FV47.

icQP–LUSOL failed to solve CVXQP2 L, HUESTIS, KSIP, MOSARQP1, MOSARQP2, Q25FV47, QPCBLEND,

QPILOTNO, and UBH1. The larger number of failures in the Maros and Mészáros set may be caused

by the limitations of QPS format, which specifies only 12 characters for a numeric field, thus

limiting the precision of the data. In fact, on inspection of the QPS files, many problems had far

fewer than 12 digits of precision.

Table 8.2 illustrates the potential benefit of icQP–HSL MA57, which uses the method of

Section 5.2.2 to define an initial second-order consistent basis. Observe that icQP–HSL MA57v,

which is forced start at a temporary vertex, requires substantially more iterations in all cases.

The improvement is most evident in problems AUG2DC, AUG3DC, and GRIDNETB, which are started

at an optimal solution and therefore require no iterations in icQP–HSL MA57.

8.3.2 Results on icQP and SQOPT

Since SQOPT is a convex QP solver, only convex problems were chosen for the comparison

with icQP. Nonconvex problems are denoted by a superscript i in Table A.1. The 90 convex

94

Table 8.2: Results on a subset of problems from the CUTEr set for icQP–HSL MA57 and icQP–
HSL MA57v

icQP-HSL MA57 icQP-HSL MA57v

Name Objective Itn Time Objective Itn Time

AUG2D 1.6874E+06 396 3.28 1.6874E+06 10193 86.56

AUG2DC 1.8184E+06 1 0.86 1.8184E+06 10201 86.58

AUG3DC 2.7654E+04 1 1.78 2.7654E+04 19544 224.60

DTOC3 2.3526E+02 3 0.48 2.3526E+02 4806 189.00

GRIDNETA 3.0498E+02 224 1.03 3.0498E+02 2255 11.58

GRIDNETB 1.4332E+02 1 0.39 1.4332E+02 6561 43.13

HUES-MOD 3.4824E+07 559 1.74 3.4830E+07 9304 24.53

HUESTIS 3.4824E+11 559 1.74 3.4830E+11 9304 24.50

CUTEr problems were divided into two sets. The first set contains 35 problems with number

of degrees of freedom (or number of superbasic variables), denoted by nS, greater than 1000 or

1
2 (m + n). The second set contains the remaining 55 problems. The Maros and Mészáros set

contains only convex problems, so all of those problems were included in the comparison. The

small/large nS partition of Maros and Mészáros problems resulted in a “small nS” set of 115

problems and a “large nS” set with 21 problems.

SQOPT. SQOPT uses a reduced-Hessian active-set method implemented as a reduced-gradient

method. The solver partitions the equality constraints Ax − s = 0 into the form BxB + SxS +

NxN = 0, where the basis matrix B is nonsingular and m×m, and S and N are the remaining

columns of the matrix
(
A − I

)
. The vectors xB, xS and xN are the basic, superbasic, and

nonbasic components of (x, s). Given this partition, a matrix Z with columns spanning the null

space of the active constraints can be defined as

Z = P


−B−1S

I

0

 ,

where P is the permutation matrix that permutes
(
A −I

)
into

(
B S N

)
(for more details, see

Section 7.1). A suitable direction is computed from an equation involving the reduced Hessian

and reduced gradient

ZTHZpS = −ZTg, (8.2)

a system with nS equations. If the number of superbasics is large, then solving (8.2) becomes

expensive. By default, SQOPT switches to a conjugate-gradient method to solve for a direction,

when nS is greater than 2000. Therefore, it is expected that SQOPT will provide superior

performance when there are few superbasics.

Tables 8.3 and 8.4 list the results for SQOPT and the different versions of icQP on the

CUTEr and Maros and Mészáros problems. The column “Objective” gives the final objective

95

value, column “Itn” is the total number of iterations, and the column “Time” lists the total

amount of time in seconds. Superscripts on the objective value denote an exit condition. If no

superscript is present, then the problem was solved to optimality. Otherwise, a “ 1 ” indicates

that a problem was declared to be unbounded, “ 2 ” implies that a problem was declared to be

infeasible, a “ i ” implies that the problem was declared to be nonconvex, and a “n ” indicates

that an algorithm exceeded its iteration limit. The superscript “ f ” indicates that difficulties

were encountered when factorizing a KKT matrix; either the matrix was deemed to be singular

by the linear solver, or the matrix had incorrect inertia. Failures of this kind were usually caused

by poor scaling. Tables 8.5 and 8.6 give the final number of superbasics and the total number of

factorizations of the KKT matrix needed for each problem.

Analysis. On CUTEr problems with a small value of nS, as expected, SQOPT performed sig-

nificantly better than every version of icQP. SQOPT has the fastest solve time for over 95% of the

problems in this set. The performance profile of the solve times is given in Figure 8.3. Similar

performance was observed for the Maros and Mészáros problems with a small value of nS. How-

ever, SQOPT failed to solve 27 of the 115 problems, while the worst version of icQP was unable

to solve 6. This behavior could, again, be attributed to the limitations of QPS format, and also

to the lack of scaling in the solvers.

The performance of icQP relative to SQOPT improves for problems with a large number

of superbasics. The performance profile for the 35 convex CUTEr problems with large nS is given

in Figure 8.5. For this set, icQP–HSL MA57 appears to have the best performance, with 60%

of the best times. No version of icQP was able to solve CVXQP1. In addition, icQP–LUSOL was

unable to solve HUESTIS, MOSARQP1, and UBH1. SQOPT failed to solve only UBH1.

The icQP’s improvement is more dramatic on the Maros and Mészáros set, with the

profile of icQP–HSL MA57 residing securely in the top-left corner of the graph in Figure 8.6.

icQP–HSL MA57 gives the best time on the same number of problems as SQOPT, but also solves

most of the problems within a factor of 12 of the best time.

These results are combined in the performance profile in Figure 8.7, which graphs the

performance of SQOPT and icQP–HSL MA57 on the convex CUTEr and Maros and Mészáros

problems with a large number of superbasics. SQOPT is more robust, but icQP–HSL MA57 solves

almost 70% of the problems in a faster time.

96

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lusol

ma57

umfpack

ma57v

SQOPT

τ

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.3: Performance profile of solve times for SQOPT and icQP on 55 convex CUTEr QPs
with a small number of degrees of freedom.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lusol

ma57

umfpack

ma57v

SQOPT

τ

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.4: Performance profile of solve times for SQOPT and icQP on 115 Maros and Mészáros
QPs with a small number of degrees of freedom.

97

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

lusol

ma57

umfpack

ma57v

SQOPT

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.5: Performance profile of solve times for SQOPT and icQP on 35 convex CUTEr QPs
with a large number of degrees of freedom.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lusol

ma57

umfpack

ma57v

SQOPT

τ

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.6: Performance profile of solve times for SQOPT and icQP on 21 Maros and Mészáros
QPs with a large number of degrees of freedom.

98

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

icQP-HSL MA57

SQOPT

τ

%
of

p
ro
b
le
m
s
so
lv
ed

w
it
h
in

2τ
of

b
es
t
ti
m
e

Figure 8.7: Performance profile of solve times for SQOPT and icQP–HSL MA57 on 56 convex
CUTEr and Maros and Mészáros QPs with a large number of degrees of freedom.

99

T
a
b

le
8
.3

:
R

es
u

lt
s

fo
r
C
U
T
E

r
Q
P

s

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

A
L
L
I
N
Q
P

-
1
.
0
9
4
5
E
+
0
3

4
8
1
6

9
.
0
2

-
1
.
0
9
4
5
E
+
0
3

3
3
8
7

1
0
.
3
1

-
1
.
0
9
4
5
E
+
0
3

4
8
1
6

9
.
7
6

-
1
.
0
9
4
5
E
+
0
3

4
8
1
6

1
5
.
1
4

-
1
.
0
9
4
5
E
+
0
3

4
8
1
6

5
2
.
6
8

A
U
G
2
D

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

7
4
.
1
8

1
.
6
8
7
4
E
+
0
6

3
9
6

3
.
2
8

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

9
2
.
7
1

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

8
6
.
5
6

1
.
6
8
7
4
E
+
0
6

1
0
6
1
5

5
5
8
.
1
2

A
U
G
2
D
C

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

7
7
.
1
8

1
.
8
1
8
4
E
+
0
6

1
0
.
8
6

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

9
7
.
4
8

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

8
6
.
5
8

1
.
8
1
8
4
E
+
0
6

1
0
6
2
2

5
5
5
.
0
9

A
U
G
2
D
C
Q
P

6
.
4
9
8
1
E
+
0
6

1
4
4
7
9

9
4
.
5
2

6
.
4
9
8
1
E
+
0
6

1
4
3
3
4

1
3
3
.
4
0

6
.
4
9
8
1
E
+
0
6

1
4
3
6
1

1
1
7
.
5
8

6
.
4
9
8
1
E
+
0
6

1
4
3
3
4

1
3
3
.
4
2

6
.
4
9
8
1
E
+
0
6

1
4
4
7
2

5
6
7
.
3
8

A
U
G
2
D
Q
P

6
.
2
3
7
0
E
+
0
6

1
4
5
9
9

9
3
.
6
5

6
.
2
3
7
0
E
+
0
6

1
4
5
9
1

1
3
3
.
1
8

6
.
2
3
7
0
E
+
0
6

1
4
2
6
6

1
1
4
.
3
7

6
.
2
3
7
0
E
+
0
6

1
4
5
9
1

1
3
3
.
2
2

6
.
2
3
7
0
E
+
0
6

1
4
1
8
5

5
5
9
.
7
8

A
U
G
3
D

2
.
4
5
6
1
E
+
0
4

1
6
9
1
0

1
4
9
.
7
7

2
.
4
5
6
1
E
+
0
4

2
1
6
4

4
6
.
9
0

2
.
4
5
6
1
E
+
0
4

1
6
9
1
0

1
9
9
.
5
9

2
.
4
5
6
1
E
+
0
4

1
6
9
1
0

2
1
1
.
6
1

2
.
4
5
6
1
E
+
0
4

1
7
6
4
7

1
0
8
5
.
7
2

A
U
G
3
D
C

2
.
7
6
5
4
E
+
0
4

1
9
5
4
4

2
1
7
.
5
0

2
.
7
6
5
4
E
+
0
4

1
1
.
7
8

2
.
7
6
5
4
E
+
0
4

1
9
5
4
4

2
9
5
.
4
5

2
.
7
6
5
4
E
+
0
4

1
9
5
4
4

2
2
4
.
6
0

2
.
7
6
5
4
E
+
0
4

1
9
7
0
7

9
3
1
.
6
8

A
U
G
3
D
C
Q
P

6
.
1
5
6
0
E
+
0
4

2
2
1
8
7

1
8
8
.
4
1

6
.
1
5
6
0
E
+
0
4

2
2
2
0
1

2
3
4
.
6
6

6
.
1
5
6
0
E
+
0
4

2
2
1
7
7

2
5
3
.
4
2

6
.
1
5
6
0
E
+
0
4

2
2
2
0
1

2
3
4
.
3
5

6
.
1
5
6
0
E
+
0
4

2
2
4
6
6

1
0
2
7
.
9
7

A
U
G
3
D
Q
P

5
.
4
2
2
9
E
+
0
4

1
8
5
1
0

1
3
8
.
9
7

5
.
4
2
2
9
E
+
0
4

1
8
4
5
5

1
7
8
.
5
3

5
.
4
2
2
9
E
+
0
4

1
8
5
0
5

1
8
6
.
1
0

5
.
4
2
2
9
E
+
0
4

1
8
4
5
5

1
7
8
.
5
0

5
.
4
2
2
9
E
+
0
4

1
8
2
8
7

5
8
8
.
2
8

A
V
G
A
S
A

-
4
.
6
3
1
9
E
+
0
0

9
0
.
0
0

-
4
.
6
3
1
9
E
+
0
0

8
0
.
0
0

-
4
.
6
3
1
9
E
+
0
0

9
0
.
0
0

-
4
.
6
3
1
9
E
+
0
0

9
0
.
0
0

-
4
.
6
3
1
9
E
+
0
0

8
0
.
0
0

A
V
G
A
S
B

-
4
.
4
8
3
2
E
+
0
0

9
0
.
0
0

-
4
.
4
8
3
2
E
+
0
0

8
0
.
0
0

-
4
.
4
8
3
2
E
+
0
0

9
0
.
0
0

-
4
.
4
8
3
2
E
+
0
0

9
0
.
0
0

-
4
.
4
8
3
2
E
+
0
0

8
0
.
0
0

B
I
G
G
S
C
4

-
2
.
4
3
7
5
E
+
0
1

1
1

0
.
0
0

-
2
.
4
3
7
5
E
+
0
1

1
1

0
.
0
0

-
2
.
4
3
7
5
E
+
0
1

1
1

0
.
0
0

-
2
.
4
3
7
5
E
+
0
1

1
1

0
.
0
0

-
3
.
0
0
0
0
E
+
0
0
i

5
0
.
0
0

B
L
O
C
K
Q
P
1

-
4
.
9
9
4
0
E
+
0
3

5
0
1
4

4
.
7
9

-
4
.
9
9
4
0
E
+
0
3

5
0
1
4

6
.
2
5

-
4
.
9
9
4
0
E
+
0
3

5
0
1
4

4
.
9
5

-
4
.
9
9
4
0
E
+
0
3

5
0
1
4

5
.
9
8

-
1
.
2
4
3
6
E
+
0
3
i

1
2

0
.
1
7

B
L
O
C
K
Q
P
2

-
4
.
9
9
2
8
E
+
0
3

7
5
1
5

3
2
8
.
8
9

-
4
.
9
9
3
8
E
+
0
3

5
0
0
6

1
2
9
.
1
8

-
4
.
9
9
2
8
E
+
0
3

7
5
1
5

3
6
9
.
3
4

-
4
.
9
9
2
8
E
+
0
3

7
5
1
5

1
5
0
.
9
2

-
2
.
6
1
7
9
E
+
0
3
i

5
0
3
0

8
5
.
0
5

B
L
O
C
K
Q
P
3

-
2
.
4
9
5
0
E
+
0
3

5
0
1
4

4
.
8
0

-
2
.
4
9
5
0
E
+
0
3

5
0
1
4

6
.
4
4

-
2
.
4
9
5
0
E
+
0
3

5
0
1
4

4
.
9
7

-
2
.
4
9
5
0
E
+
0
3

5
0
1
4

6
.
1
7

-
6
.
1
8
2
1
E
+
0
2
i

9
0
.
1
7

B
L
O
C
K
Q
P
4

-
2
.
4
9
3
3
E
+
0
3

8
4
9
2

7
2
3
.
8
2

-
2
.
4
9
5
8
E
+
0
3

7
4
0
1

1
4
9
.
3
9

-
2
.
4
9
3
3
E
+
0
3

8
4
9
2

3
7
1
.
2
0

-
2
.
4
9
3
3
E
+
0
3

8
4
9
2

1
6
7
.
1
4

-
1
.
3
4
3
3
E
+
0
3
i

5
8
0
9

5
6
.
5
6

B
L
O
C
K
Q
P
5

-
2
.
4
9
5
0
E
+
0
3

5
0
2
0

4
.
7
9

-
2
.
4
9
5
0
E
+
0
3

5
0
2
0

6
.
1
4

-
2
.
4
9
5
0
E
+
0
3

5
0
2
0

4
.
9
4

-
2
.
4
9
5
0
E
+
0
3

5
0
2
0

5
.
8
7

-
6
.
1
9
8
8
E
+
0
2
i

1
3

0
.
1
1

B
L
O
W
E
Y
A

-
2
.
0
0
5
0
E
-
0
5

3
0
.
0
4

-
2
.
2
7
8
1
E
-
0
2

8
0
6

5
2
.
0
3

-
2
.
0
0
5
0
E
-
0
5

3
0
.
1
3

-
2
.
0
0
5
0
E
-
0
5

3
0
.
0
4

-
2
.
0
0
5
0
E
-
0
5

1
0
.
0
1

B
L
O
W
E
Y
B

-
1
.
9
8
7
0
E
-
1
0

3
0
.
0
4

-
1
.
5
2
2
6
E
-
0
2

4
0
6

4
4
.
2
9

-
1
.
9
8
7
4
E
-
1
0

3
0
.
1
2

-
1
.
9
8
7
5
E
-
1
0

3
0
.
0
4

3
.
0
9
3
8
E
-
1
6

1
0
.
0
1

B
L
O
W
E
Y
C

-
8
.
0
1
0
0
E
-
0
5

3
0
.
0
4

-
1
.
5
2
4
6
E
-
0
2

8
0
6

5
2
.
0
4

-
8
.
0
1
0
0
E
-
0
5

3
0
.
1
3

-
8
.
0
1
0
0
E
-
0
5

3
0
.
0
4

-
8
.
0
1
0
0
E
-
0
5

1
0
.
0
1

C
O
N
T
5
-
Q
P

3
.
2
8
2
3
E
+
0
0
2

7
2
.
9
1

6
.
6
5
0
5
E
-
0
2
f

9
1
3
.
2
8

3
.
5
0
6
6
E
+
3
0
2

7
2
.
9
4

1
.
4
4
6
7
E
+
0
3
2

1
1

2
7
.
3
8

6
.
3
6
3
0
E
-
0
3

1
0
8
7

4
9
4
.
2
5

C
V
X
Q
P
1

3
.
5
0
5
3
E
+
0
8
2

2
3
7
0

2
.
1
2

1
.
6
7
0
2
E
+
0
8
f

6
0
6
4

8
0
9
.
0
7

2
.
4
4
4
4
E
+
0
8
2

2
9
9
6

6
7
9
.
5
7

3
.
5
0
5
3
E
+
0
8
f

2
3
7
3

2
9
.
3
5

1
.
0
8
7
0
E
+
0
8

1
2
5
3
0

1
6
.
2
8

C
V
X
Q
P
2

8
.
1
8
4
2
E
+
0
7

8
3
4
7

4
1
6
.
0
3

8
.
1
8
4
2
E
+
0
7

6
1
4
4

7
6
2
.
7
0

8
.
1
8
4
2
E
+
0
7

8
3
3
5

1
4
0
.
4
7

8
.
1
8
4
2
E
+
0
7

8
3
6
7

1
0
5
1
.
1
5

8
.
1
8
4
2
E
+
0
7

8
7
8
4

2
2
.
4
0

C
V
X
Q
P
3

2
.
9
5
7
3
E
+
0
8
2

5
9
3
8

2
9
.
7
4

0
.
0
0
0
0
E
+
0
0
f

6
1
8
6

2
4
8
.
1
8

8
.
1
1
6
8
E
+
2
6
2

5
9
4
3

5
0
.
7
5

2
.
9
5
7
3
E
+
0
8
f

5
9
4
1

1
8
0
.
2
5

1
.
1
5
7
1
E
+
0
8

1
0
4
7
8

1
2
.
6
1

D
E
G
E
N
Q
P

0
.
0
0
0
0
E
+
0
0

1
2

0
.
0
6

2
.
8
8
6
6
E
-
1
4

1
2

0
.
0
7

0
.
0
0
0
0
E
+
0
0

1
2

0
.
0
5

2
.
8
8
6
6
E
-
1
4

1
2

0
.
0
7

0
.
0
0
0
0
E
+
0
0

1
1

0
.
0
4

D
T
O
C
3

2
.
3
5
2
6
E
+
0
2

4
8
0
6

8
3
.
7
5

2
.
3
5
2
6
E
+
0
2

3
0
.
4
8

2
.
3
5
2
6
E
+
0
2

4
8
0
6

1
5
1
.
8
4

2
.
3
5
2
6
E
+
0
2

4
8
0
6

1
8
9
.
0
0

2
.
3
5
2
6
E
+
0
2

4
8
0
5

1
1
.
7
9

D
U
A
L
1

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
0

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
0

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
1

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
1

3
.
5
0
1
3
E
-
0
2

8
2

0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

100

T
a
b

le
8
.3

:
R

es
u

lt
s

fo
r
C
U
T
E

r
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

D
U
A
L
2

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

9
9

0
.
0
0

D
U
A
L
3

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
1
8

0
.
0
1

D
U
A
L
4

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
7

0
.
0
0

D
U
A
L
C
1

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
0

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
2

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
0

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
2

6
.
1
5
5
3
E
+
0
3

9
0
.
0
0

D
U
A
L
C
2

3
.
5
5
1
3
E
+
0
3

5
0
.
0
0

3
.
5
5
1
3
E
+
0
3

5
0
.
0
2

3
.
5
5
1
3
E
+
0
3

5
0
.
0
0

3
.
5
5
1
3
E
+
0
3

5
0
.
0
2

3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

D
U
A
L
C
5

4
.
2
7
2
3
E
+
0
2

8
0
.
0
0

4
.
2
7
2
3
E
+
0
2

8
0
.
0
3

4
.
2
7
2
3
E
+
0
2

8
0
.
0
0

4
.
2
7
2
3
E
+
0
2

8
0
.
0
3

4
.
2
7
2
3
E
+
0
2

7
0
.
0
0

D
U
A
L
C
8

1
.
8
3
0
9
E
+
0
4

7
0
.
0
0

1
.
8
3
0
9
E
+
0
4

7
0
.
1
2

1
.
8
3
0
9
E
+
0
4

7
0
.
0
0

1
.
8
3
0
9
E
+
0
4

7
0
.
1
2

1
.
8
3
0
9
E
+
0
4

8
0
.
0
0

F
E
R
R
I
S
D
C

0
.
0
0
0
0
E
+
0
0

1
0
.
0
6

-
3
.
3
8
9
0
E
-
0
5

4
6
6

3
.
6
1

0
.
0
0
0
0
E
+
0
0

1
0
.
0
5

4
.
8
2
1
9
E
-
2
7

1
0
.
0
8

0
.
0
0
0
0
E
+
0
0

0
0
.
0
3

G
E
N
H
S
2
8

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

1
0
.
0
0

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

G
M
N
C
A
S
E
1

2
.
6
6
9
7
E
-
0
1

9
6

0
.
0
4

2
.
6
6
9
7
E
-
0
1

5
4

0
.
1
0

2
.
6
6
9
7
E
-
0
1

9
6

0
.
0
4

2
.
6
6
9
7
E
-
0
1

9
6

0
.
0
8

2
.
6
6
9
7
E
-
0
1

1
0
2

0
.
0
2

G
M
N
C
A
S
E
2

-
9
.
9
4
4
4
E
-
0
1

9
9

0
.
0
6

-
9
.
9
4
4
4
E
-
0
1

5
6

0
.
0
7

-
9
.
9
4
4
4
E
-
0
1

9
9

0
.
0
5

-
9
.
9
4
4
4
E
-
0
1

9
9

0
.
1
1

-
9
.
9
4
4
4
E
-
0
1

9
7

0
.
0
3

G
M
N
C
A
S
E
3

1
.
5
2
5
1
E
+
0
0

1
2
8

0
.
0
7

1
.
5
2
5
1
E
+
0
0

9
8

0
.
2
1

1
.
5
2
5
1
E
+
0
0

1
2
8

0
.
0
6

1
.
5
2
5
1
E
+
0
0

1
2
8

0
.
1
1

1
.
5
2
5
1
E
+
0
0

1
2
6

0
.
0
3

G
M
N
C
A
S
E
4

5
.
9
4
6
9
E
+
0
3

1
7
3

0
.
1
2

5
.
9
4
6
9
E
+
0
3

1
7
3

0
.
2
6

5
.
9
4
6
9
E
+
0
3

1
7
3

0
.
1
2

5
.
9
4
6
9
E
+
0
3

1
7
3

0
.
2
6

5
.
9
4
6
9
E
+
0
3

1
7
2

0
.
0
6

G
O
U
L
D
Q
P
2

1
.
8
5
1
2
E
-
1
2

1
0
.
3
4

1
.
8
5
1
2
E
-
1
2

1
0
.
2
7

1
.
8
5
1
2
E
-
1
2

1
0
.
3
4

1
.
8
5
1
2
E
-
1
2

1
0
.
2
7

1
.
8
5
1
2
E
-
1
2

0
0
.
0
1

G
O
U
L
D
Q
P
3

2
.
3
7
9
6
E
-
0
5

5
7
2
5

2
7
.
2
3

2
.
3
7
9
6
E
-
0
5

5
7
2
5

6
5
.
3
7

2
.
3
7
9
6
E
-
0
5

5
7
2
5

3
5
.
2
5

2
.
3
7
9
6
E
-
0
5

5
7
2
5

6
4
.
0
4

2
.
3
7
9
6
E
-
0
5

7
5
1
1

8
3
.
4
3

G
R
I
D
N
E
T
A

3
.
0
4
9
8
E
+
0
2

2
2
7
1

7
.
7
2

3
.
0
4
9
8
E
+
0
2

2
2
4

1
.
0
3

3
.
0
4
9
8
E
+
0
2

2
2
7
1

8
.
6
6

3
.
0
4
9
8
E
+
0
2

2
2
5
5

1
1
.
5
8

3
.
0
4
9
8
E
+
0
2

2
2
4
5

1
0
.
7
6

G
R
I
D
N
E
T
B

1
.
4
3
3
2
E
+
0
2

6
5
6
1

4
4
.
4
0

1
.
4
3
3
2
E
+
0
2

1
0
.
3
9

1
.
4
3
3
2
E
+
0
2

6
5
6
1

4
5
.
4
1

1
.
4
3
3
2
E
+
0
2

6
5
6
1

4
3
.
1
3

1
.
4
3
3
2
E
+
0
2

6
7
4
1

2
1
4
.
9
6

G
R
I
D
N
E
T
C

1
.
4
8
3
2
E
+
0
2

5
2
6
5

3
0
.
0
0

1
.
4
8
3
2
E
+
0
2

2
5
0
4

1
3
.
3
7

1
.
4
8
3
2
E
+
0
2

5
2
5
7

3
2
.
5
4

1
.
4
8
3
2
E
+
0
2

5
2
5
9

3
1
.
6
1

1
.
4
8
3
2
E
+
0
2

5
3
4
2

1
5
3
.
3
3

H
A
T
F
L
D
H

-
2
.
4
5
0
0
E
+
0
1

4
0
.
0
0

-
2
.
4
5
0
0
E
+
0
1

6
0
.
0
0

-
2
.
4
5
0
0
E
+
0
1

4
0
.
0
0

-
2
.
4
5
0
0
E
+
0
1

4
0
.
0
0

-
2
.
4
5
0
0
E
+
0
1

3
0
.
0
0

H
S
1
1
8

6
.
6
4
8
2
E
+
0
2

2
2

0
.
0
0

6
.
6
4
8
2
E
+
0
2

1
6

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
2

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
2

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
1

0
.
0
0

H
S
2
1

-
9
.
9
9
6
0
E
+
0
1

2
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

2
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

2
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

H
S
2
6
8

-
3
.
6
3
8
0
E
-
1
2

7
0
.
0
0

-
3
.
6
3
8
0
E
-
1
2

3
0
.
0
0

3
.
6
3
8
0
E
-
1
2

6
0
.
0
0

-
1
.
0
9
1
4
E
-
1
1

6
0
.
0
0

0
.
0
0
0
0
E
+
0
0

8
0
.
0
0

H
S
3
5

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

2
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

H
S
3
5
I

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

2
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

H
S
3
5
M
O
D

2
.
5
0
0
0
E
-
0
1

2
0
.
0
0

2
.
5
0
0
0
E
-
0
1

1
0
.
0
0

2
.
5
0
0
0
E
-
0
1

2
0
.
0
0

2
.
5
0
0
0
E
-
0
1

2
0
.
0
0

2
.
5
0
0
0
E
-
0
1

1
0
.
0
0

H
S
4
4

-
1
.
5
0
0
0
E
+
0
1

3
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

3
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

3
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

3
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

2
0
.
0
0

H
S
4
4
N
E
W

-
1
.
5
0
0
0
E
+
0
1

5
0
.
0
0

-
3
.
0
0
0
0
E
+
0
0

3
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

5
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

5
0
.
0
0

-
1
.
5
0
0
0
E
+
0
1

4
0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

101

T
a
b

le
8
.3

:
R

es
u

lt
s

fo
r
C
U
T
E

r
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

H
S
5
1

-
8
.
8
8
1
8
E
-
1
6

3
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

-
8
.
8
8
1
8
E
-
1
6

3
0
.
0
0

1
.
7
7
6
4
E
-
1
5

3
0
.
0
0

-
8
.
8
8
1
8
E
-
1
6

2
0
.
0
0

H
S
5
2

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

1
0
.
0
0

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

2
0
.
0
0

H
S
5
3

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

1
0
.
0
0

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

2
0
.
0
0

H
S
7
6

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

H
S
7
6
I

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

5
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

H
U
E
S
-
M
O
D

3
.
4
8
3
0
E
+
0
7

9
3
0
4

2
1
.
5
2

3
.
4
8
2
4
E
+
0
7

5
5
9

1
.
7
4

3
.
4
8
3
0
E
+
0
7

9
3
0
4

2
1
.
6
6

3
.
4
8
3
0
E
+
0
7

9
3
0
4

2
4
.
5
3

3
.
4
8
3
0
E
+
0
7

8
8
2
9

1
2
.
8
7

H
U
E
S
T
I
S

2
.
3
2
1
8
E
+
1
4
f

1
4

0
.
0
1

3
.
4
8
2
4
E
+
1
1

5
5
9

1
.
7
4

3
.
4
8
3
0
E
+
1
1

9
3
0
4

2
1
.
5
8

3
.
4
8
3
0
E
+
1
1

9
3
0
4

2
4
.
5
0

3
.
4
8
2
4
E
+
1
1

9
7
0
0

1
4
.
9
0

K
S
I
P

6
.
4
2
2
0
E
+
0
0
f

4
8
1

0
.
2
8

5
.
7
5
8
0
E
-
0
1

2
5
3

0
.
7
5

5
.
7
5
8
0
E
-
0
1

2
7
6
9

2
.
8
3

5
.
7
5
8
0
E
-
0
1

2
7
6
9

5
.
3
7

5
.
7
7
1
4
E
-
0
1
i

7
3
7

0
.
0
6

L
I
N
C
O
N
T

0
.
0
0
0
0
E
+
0
0
2

1
3
8

0
.
0
3

0
.
0
0
0
0
E
+
0
0
2

1
3
8

0
.
0
3

0
.
0
0
0
0
E
+
0
0
2

1
3
8

0
.
0
3

0
.
0
0
0
0
E
+
0
0
2

1
3
8

0
.
0
3

0
.
0
0
0
0
E
+
0
0
2

1
3
8

0
.
0
3

L
I
S
W
E
T
1

3
.
6
1
2
1
E
+
0
1

3
0
.
5
9

3
.
6
1
2
1
E
+
0
1

1
0
.
2
3

3
.
6
1
2
1
E
+
0
1

3
0
.
6
1

3
.
6
1
2
0
E
+
0
1

3
0
.
4
4

3
.
6
1
2
1
E
+
0
1

2
6

0
.
0
2

L
I
S
W
E
T
1
0

4
.
9
4
8
3
E
+
0
1

4
1

3
.
6
1

4
.
9
4
8
3
E
+
0
1

2
2

0
.
7
3

4
.
9
4
8
3
E
+
0
1

4
1

3
.
8
4

4
.
9
4
8
3
E
+
0
1

4
6

2
.
7
1

4
.
9
4
8
3
E
+
0
1

9
6

0
.
0
7

L
I
S
W
E
T
1
1

4
.
9
5
2
4
E
+
0
1

5
0

2
.
4
2

4
.
9
5
2
4
E
+
0
1

4
5

1
.
7
2

4
.
9
5
2
4
E
+
0
1

5
0

2
.
5
9

4
.
9
5
2
4
E
+
0
1

5
0

1
.
9
2

4
.
9
5
2
4
E
+
0
1

9
2

0
.
0
7

L
I
S
W
E
T
1
2

1
.
7
3
6
9
E
+
0
3

2
6

2
.
9
7

1
.
7
3
6
9
E
+
0
3

2
7

1
.
6
0

1
.
7
3
6
9
E
+
0
3

2
6

3
.
1
8

1
.
7
3
6
9
E
+
0
3

2
6

2
.
2
2

1
.
7
3
6
9
E
+
0
3

3
8

0
.
0
3

L
I
S
W
E
T
2

2
.
5
0
0
0
E
+
0
1

2
1

0
.
6
1

2
.
5
0
0
0
E
+
0
1

1
9

0
.
7
2

2
.
5
0
0
0
E
+
0
1

2
1

0
.
6
5

2
.
5
0
0
0
E
+
0
1

2
1

0
.
5
1

2
.
5
0
0
0
E
+
0
1

1
3
8

0
.
1
0

L
I
S
W
E
T
3

2
.
5
0
0
0
E
+
0
1

4
3
4

2
.
8
6

2
.
5
0
0
0
E
+
0
1

4
3
6

6
.
2
8

2
.
5
0
0
0
E
+
0
1

4
3
4

4
.
8
3

2
.
5
0
0
0
E
+
0
1

4
3
0

5
.
0
8

2
.
5
0
0
0
E
+
0
1

7
7
8

0
.
5
6

L
I
S
W
E
T
4

2
.
5
0
0
0
E
+
0
1

4
2
6

3
.
1
1

2
.
5
0
0
0
E
+
0
1

4
2
4

5
.
7
7

2
.
5
0
0
0
E
+
0
1

4
2
6

4
.
6
3

2
.
5
0
0
0
E
+
0
1

4
1
4

4
.
3
9

2
.
5
0
0
0
E
+
0
1

8
2
2

0
.
7
3

L
I
S
W
E
T
5

2
.
5
0
0
0
E
+
0
1

4
0
9

2
.
7
7

2
.
5
0
0
0
E
+
0
1

4
0
7

5
.
3
3

2
.
5
0
0
0
E
+
0
1

4
0
9

3
.
9
5

2
.
5
0
0
0
E
+
0
1

4
1
3

4
.
5
8

2
.
5
0
0
0
E
+
0
1

7
9
4

0
.
7
1

L
I
S
W
E
T
6

2
.
5
0
0
0
E
+
0
1

3
3
7

3
.
4
7

2
.
5
0
0
0
E
+
0
1

3
3
5

5
.
3
4

2
.
5
0
0
0
E
+
0
1

3
3
7

4
.
3
8

2
.
4
9
9
7
E
+
0
1

4
0
8

7
.
0
6

2
.
5
0
0
0
E
+
0
1

6
4
5

0
.
4
6

L
I
S
W
E
T
7

4
.
9
8
8
4
E
+
0
2

3
0
.
5
9

4
.
9
8
8
4
E
+
0
2

1
0
.
2
3

4
.
9
8
8
4
E
+
0
2

3
0
.
6
3

4
.
9
8
8
4
E
+
0
2

3
0
.
4
4

4
.
9
8
8
4
E
+
0
2

2
6

0
.
0
2

L
I
S
W
E
T
8

7
.
1
4
4
7
E
+
0
2

2
2

1
.
8
2

7
.
1
4
4
7
E
+
0
2

1
9

0
.
7
2

7
.
1
4
4
7
E
+
0
2

2
2

1
.
9
1

7
.
1
4
4
7
E
+
0
2

2
2

1
.
3
6

7
.
1
4
4
7
E
+
0
2

5
3

0
.
0
4

L
I
S
W
E
T
9

1
.
9
6
3
2
E
+
0
3

2
1

2
.
9
9

1
.
9
6
3
2
E
+
0
3

1
8

1
.
1
4

1
.
9
6
3
2
E
+
0
3

2
1

3
.
1
8

1
.
9
6
3
2
E
+
0
3

2
3

2
.
4
2

1
.
9
6
3
2
E
+
0
3

3
8

0
.
0
3

L
O
T
S
C
H
D

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

8
0
.
0
0

M
O
S
A
R
Q
P
1

N
a
N

2
2
6
8

2
.
2
3

-
3
.
8
2
1
4
E
+
0
3

1
4
9
7

2
.
7
6

-
3
.
8
2
1
4
E
+
0
3

3
6
6
7

4
.
4
6

-
3
.
8
2
1
4
E
+
0
3

3
6
6
7

4
.
3
5

-
3
.
8
2
1
4
E
+
0
3

3
9
1
7

6
.
0
6

M
O
S
A
R
Q
P
2

-
5
.
0
5
2
6
E
+
0
3

2
5
5
2

2
.
7
8

-
5
.
0
5
2
6
E
+
0
3

8
5
0

1
.
5
0

-
5
.
0
5
2
6
E
+
0
3

2
5
5
2

2
.
8
8

-
5
.
0
5
2
6
E
+
0
3

2
5
5
2

3
.
0
9

-
5
.
0
5
2
6
E
+
0
3

2
5
9
1

6
.
3
2

N
A
S
H

0
.
0
0
0
0
E
+
0
0
2

5
0
.
0
0

0
.
0
0
0
0
E
+
0
0
2

5
0
.
0
0

0
.
0
0
0
0
E
+
0
0
2

5
0
.
0
0

0
.
0
0
0
0
E
+
0
0
2

5
0
.
0
0

0
.
0
0
0
0
E
+
0
0
2

5
0
.
0
0

N
C
V
X
Q
P
1

-
7
.
1
5
7
2
E
+
0
7

7
5
5

0
.
6
2

-
7
.
1
5
8
7
E
+
0
7

7
5
5

2
.
3
7

-
7
.
1
5
8
7
E
+
0
7

7
6
3

0
.
9
5

-
7
.
1
5
8
7
E
+
0
7

7
5
5

2
.
3
4

-
2
.
2
4
8
5
E
+
0
6
i

1
3
7

0
.
0
1

N
C
V
X
Q
P
2

-
5
.
7
7
6
1
E
+
0
7

1
0
5
4

0
.
9
6

-
5
.
7
7
4
6
E
+
0
7

1
1
8
2

9
.
8
8

-
5
.
7
7
4
9
E
+
0
7

1
0
5
2

1
.
7
8

-
5
.
7
7
4
6
E
+
0
7

1
1
8
2

9
.
5
9

2
.
6
3
9
7
E
+
0
4
i

1
3
9

0
.
0
1

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

102

T
a
b

le
8
.3

:
R

es
u

lt
s

fo
r
C
U
T
E

r
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

N
C
V
X
Q
P
3

-
2
.
9
8
8
6
E
+
0
7

1
2
5
6

2
.
1
3

-
2
.
9
9
8
1
E
+
0
7

1
3
9
2

2
6
.
5
1

-
2
.
9
8
8
6
E
+
0
7

1
2
8
1

3
.
4
1

-
2
.
9
1
8
3
E
+
0
7

1
2
3
7

1
0
.
0
4

1
.
3
0
5
7
E
+
0
5
i

3
0
5

0
.
0
2

N
C
V
X
Q
P
4

-
9
.
3
9
9
9
E
+
0
7

7
7
7

0
.
0
7

-
9
.
3
9
9
9
E
+
0
7

7
8
0

0
.
1
6

-
9
.
3
9
9
9
E
+
0
7

7
7
7

0
.
0
8

-
9
.
3
9
9
9
E
+
0
7

7
8
0

0
.
1
3

-
1
.
3
3
2
6
E
+
0
6
i

2
2

0
.
0
0

N
C
V
X
Q
P
5

-
6
.
6
2
6
0
E
+
0
7

8
0
4

0
.
0
9

-
6
.
6
2
6
0
E
+
0
7

8
0
4

0
.
1
9

-
6
.
6
2
6
0
E
+
0
7

8
0
4

0
.
1
1

-
6
.
6
2
6
0
E
+
0
7

8
0
4

0
.
1
6

-
6
.
1
8
3
4
E
+
0
5
i

2
2

0
.
0
0

N
C
V
X
Q
P
6

-
3
.
3
7
3
3
E
+
0
7

9
0
9

0
.
1
1

-
3
.
5
1
3
7
E
+
0
7

1
1
8
4

5
.
6
0

-
3
.
3
7
3
3
E
+
0
7

9
1
0

0
.
1
3

-
3
.
3
7
3
3
E
+
0
7

9
0
4

0
.
2
9

4
.
1
7
6
9
E
+
0
5
i

7
4

0
.
0
0

N
C
V
X
Q
P
7

-
4
.
3
5
2
3
E
+
0
7

8
2
7

3
.
5
8

-
4
.
3
5
2
3
E
+
0
7

8
2
8

1
7
.
5
5

-
4
.
3
5
2
3
E
+
0
7

8
8
0

8
.
9
8

-
4
.
3
5
2
3
E
+
0
7

8
2
8

1
7
.
2
5

-
2
.
4
0
7
0
E
+
0
6
i

3
5
9

0
.
0
2

N
C
V
X
Q
P
8

-
3
.
0
1
2
1
E
+
0
7

9
1
9

4
.
2
1

-
3
.
0
1
1
7
E
+
0
7

9
8
0

2
6
.
1
6

-
3
.
0
1
1
7
E
+
0
7

9
3
0

9
.
7
4

-
3
.
0
1
1
7
E
+
0
7

9
8
0

2
5
.
8
6

-
1
.
1
6
1
2
E
+
0
6
i

3
5
9

0
.
0
2

N
C
V
X
Q
P
9

-
2
.
1
1
4
6
E
+
0
7

1
0
6
3

7
.
0
4

-
2
.
1
1
4
6
E
+
0
7

1
1
3
4

3
2
.
6
5

-
2
.
1
1
4
6
E
+
0
7

1
0
4
4

1
4
.
3
5

-
2
.
1
1
4
6
E
+
0
7

1
1
3
4

3
2
.
4
4

2
.
6
1
7
0
E
+
0
5
i

4
4
7

0
.
0
3

P
O
R
T
S
N
Q
P

3
.
3
3
1
8
E
+
0
3

1
0
8
8
2

0
.
3
2

3
.
3
3
1
8
E
+
0
3

1
0
8
8
2

0
.
3
2

3
.
3
3
1
8
E
+
0
3

1
0
8
8
2

0
.
3
2

3
.
3
3
1
8
E
+
0
3

1
0
8
8
2

0
.
3
2

3
.
3
3
1
8
E
+
0
3

1
0
8
8
3

0
.
3
2

P
O
R
T
S
Q
P

3
.
3
3
1
4
E
+
0
3

1
0
1
0
0

0
.
1
3

3
.
3
3
1
4
E
+
0
3

1
0
0
9
9

0
.
1
3

3
.
3
3
1
4
E
+
0
3

1
0
1
0
0

0
.
1
4

3
.
3
3
1
4
E
+
0
3

1
0
1
0
0

0
.
1
3

3
.
3
3
1
4
E
+
0
3

1
0
1
0
2

0
.
1
5

P
O
W
E
L
L
2
0

5
.
2
0
9
0
E
+
1
0

5
0
0
2

2
5
.
5
0

5
.
2
0
9
0
E
+
1
0

5
0
0
0

3
1
.
7
6

5
.
2
0
9
0
E
+
1
0

5
0
0
2

2
8
.
8
1

5
.
2
0
9
0
E
+
1
0

5
0
0
2

4
2
.
4
2

5
.
2
0
9
0
E
+
1
0

5
0
0
5

2
.
6
8

P
R
I
M
A
L
1

-
3
.
5
0
1
3
E
-
0
2

2
1
7

0
.
0
4

-
3
.
5
0
1
3
E
-
0
2

7
0

0
.
0
3

-
3
.
5
0
1
3
E
-
0
2

2
1
7

0
.
0
4

-
3
.
5
0
1
3
E
-
0
2

2
1
6

0
.
0
5

-
3
.
5
0
1
3
E
-
0
2

2
4
8

0
.
0
2

P
R
I
M
A
L
2

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
0
9

-
3
.
3
7
3
4
E
-
0
2

9
7

0
.
0
5

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
1
2

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
1
1

-
3
.
3
7
3
4
E
-
0
2

4
2
3

0
.
0
6

P
R
I
M
A
L
3

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
2
7

-
1
.
3
5
7
6
E
-
0
1

1
0
2

0
.
1
0

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
2
9

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
3
5

-
1
.
3
5
7
6
E
-
0
1

1
2
5
8

0
.
3
1

P
R
I
M
A
L
4

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
5
2

-
7
.
4
6
0
9
E
-
0
1

6
3

0
.
0
6

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
6
3

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
6
9

-
7
.
4
6
0
9
E
-
0
1

1
5
9
7

0
.
8
1

P
R
I
M
A
L
C
1

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

5
0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

2
0

0
.
0
0

P
R
I
M
A
L
C
2

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

3
0
.
0
0

P
R
I
M
A
L
C
5

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

6
0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
3

0
.
0
0

P
R
I
M
A
L
C
8

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

9
0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
5

0
.
0
0

Q
P
B
A
N
D

-
9
.
9
9
9
2
E
+
0
3

2
9
9
5
9

5
5
.
2
1

-
9
.
9
9
9
2
E
+
0
3

2
9
9
5
9

1
8
1
.
8
0

-
9
.
9
9
9
2
E
+
0
3

2
9
9
5
9

5
9
.
4
0

-
9
.
9
9
9
2
E
+
0
3

2
9
9
5
9

1
8
1
.
3
4

-
9
.
9
9
9
2
E
+
0
3

2
6
9
5
1

8
.
7
5

Q
P
C
B
L
E
N
D

N
a
N

3
5

0
.
0
0

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

1
5
5

0
.
0
0

Q
P
C
B
O
E
I
1

1
.
1
5
0
4
E
+
0
7

1
1
0
8

0
.
1
9

1
.
1
5
0
4
E
+
0
7

1
1
0
6

0
.
4
6

1
.
1
5
0
4
E
+
0
7

1
1
0
6

0
.
2
2

1
.
1
5
0
4
E
+
0
7

1
1
0
6

0
.
4
5

1
.
1
5
0
4
E
+
0
7

1
3
3
3

0
.
1
2

Q
P
C
B
O
E
I
2

8
.
1
7
2
0
E
+
0
6

2
8
7

0
.
0
2

8
.
1
7
2
0
E
+
0
6

2
8
8

0
.
0
4

8
.
1
7
2
0
E
+
0
6

2
8
9

0
.
0
3

8
.
1
7
2
0
E
+
0
6

2
8
8

0
.
0
4

8
.
1
7
2
0
E
+
0
6

2
4
5

0
.
0
1

Q
P
C
S
T
A
I
R

N
a
N

2
7
5

0
.
0
7

6
.
2
0
4
4
E
+
0
6

4
4
3

0
.
1
5

6
.
2
0
4
4
E
+
0
6

4
4
2

0
.
1
9

6
.
2
0
4
4
E
+
0
6

4
4
3

0
.
1
5

6
.
2
0
4
4
E
+
0
6

5
7
6

0
.
0
6

Q
P
N
B
A
N
D

-
4
.
9
9
9
7
E
+
0
4

1
5
0
0
0

2
6
.
6
3

-
4
.
9
9
9
7
E
+
0
4

1
5
0
0
0

3
9
.
0
5

-
4
.
9
9
9
7
E
+
0
4

1
5
0
0
0

2
9
.
1
0

-
4
.
9
9
9
7
E
+
0
4

1
5
0
0
0

3
9
.
0
7

-
1
.
1
2
4
9
E
+
0
4
i

2
0
.
0
1

Q
P
N
B
L
E
N
D

N
a
N

3
5

0
.
0
0

-
8
.
7
0
5
6
E
-
0
3

8
3

0
.
0
1

-
8
.
7
0
5
6
E
-
0
3

8
3

0
.
0
1

-
8
.
7
0
5
6
E
-
0
3

8
3

0
.
0
1

-
1
.
5
7
0
5
E
-
0
3
i

7
0

0
.
0
0

Q
P
N
B
O
E
I
1

6
.
7
5
7
4
E
+
0
6

1
0
3
3

0
.
1
4

6
.
7
5
7
4
E
+
0
6

1
0
3
5

0
.
3
5

6
.
7
5
7
4
E
+
0
6

1
0
2
4

0
.
1
6

6
.
7
5
7
4
E
+
0
6

1
0
3
5

0
.
3
5

8
.
7
9
9
1
E
+
0
6
i

7
6
8

0
.
0
5

Q
P
N
B
O
E
I
2

1
.
3
6
8
3
E
+
0
6

2
6
3

0
.
0
2

1
.
3
6
8
3
E
+
0
6

2
6
1

0
.
0
3

1
.
3
6
8
3
E
+
0
6

2
6
1

0
.
0
2

1
.
3
6
8
3
E
+
0
6

2
6
1

0
.
0
3

1
.
7
2
6
0
E
+
0
6
i

1
7
4

0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

103

T
a
b

le
8
.3

:
R

es
u

lt
s

fo
r
C
U
T
E

r
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

Q
P
N
S
T
A
I
R

N
a
N

3
1
7

0
.
1
3

5
.
1
4
6
0
E
+
0
6

4
7
2

0
.
2
0

5
.
1
4
6
0
E
+
0
6

4
7
1

0
.
2
8

5
.
1
4
6
0
E
+
0
6

4
7
2

0
.
2
0

5
.
1
4
6
0
E
+
0
6
i

5
6
4

0
.
0
6

S
2
6
8

-
3
.
6
3
8
0
E
-
1
2

7
0
.
0
0

-
3
.
6
3
8
0
E
-
1
2

3
0
.
0
0

3
.
6
3
8
0
E
-
1
2

6
0
.
0
0

-
1
.
0
9
1
4
E
-
1
1

6
0
.
0
0

0
.
0
0
0
0
E
+
0
0

8
0
.
0
0

S
O
S
Q
P
1

-
2
.
4
5
0
0
E
-
1
1

2
0
.
5
3

-
3
.
7
8
2
3
E
-
1
1

2
1
.
0
2

-
2
.
4
5
0
0
E
-
1
1

2
0
.
5
2

-
2
.
4
5
0
0
E
-
1
1

2
0
.
4
4

5
.
6
3
5
7
E
-
1
4

1
0
.
0
1

S
O
S
Q
P
2

-
4
.
9
9
8
7
E
+
0
3

1
8
5
4
0

5
5
.
9
8

-
4
.
9
9
8
7
E
+
0
3

1
9
2
5
2

7
4
9
.
0
4

-
4
.
9
9
8
7
E
+
0
3

1
8
5
4
0

6
0
.
8
2

-
4
.
9
9
8
7
E
+
0
3

1
8
5
4
0

2
4
0
.
9
4

-
4
.
9
9
8
7
E
+
0
3

1
8
4
6
2

4
3
.
3
0

S
T
A
T
I
C
3

-
3
.
0
8
9
2
E
+
0
2
1

3
0
.
0
0

-
2
.
5
2
9
8
E
+
0
3
1

1
2

0
.
0
1

-
3
.
0
8
9
2
E
+
0
2
1

3
0
.
0
0

-
3
.
0
8
9
2
E
+
0
2
1

3
0
.
0
0

-
6
.
3
7
2
3
E
+
0
2
i

6
0
.
0
0

S
T
C
Q
P
1

3
.
6
7
1
0
E
+
0
5

7
2
6
6

1
6
.
0
9

3
.
6
7
1
0
E
+
0
5

1
5
5
0

9
.
4
5

3
.
6
7
1
0
E
+
0
5

7
2
6
6

1
8
.
8
8

3
.
6
7
1
0
E
+
0
5

7
2
6
6

5
6
.
2
2

3
.
6
7
1
0
E
+
0
5

7
3
9
1

3
4
.
8
7

S
T
C
Q
P
2

3
.
7
1
8
9
E
+
0
4

7
5
8
9

1
6
.
7
4

3
.
7
1
8
9
E
+
0
4

3
2
7
9

2
.
5
9

3
.
7
1
8
9
E
+
0
4

7
5
8
9

1
5
.
2
5

3
.
7
1
8
9
E
+
0
4

7
5
9
0

3
8
.
2
6

3
.
7
1
8
9
E
+
0
4

7
6
8
4

2
1
.
1
0

S
T
E
E
N
B
R
A

1
.
6
9
5
8
E
+
0
4

8
6

0
.
0
1

1
.
6
9
5
8
E
+
0
4

8
7

0
.
0
1

1
.
6
9
5
8
E
+
0
4

8
7

0
.
0
1

1
.
6
9
5
8
E
+
0
4

8
7

0
.
0
1

1
.
6
9
5
8
E
+
0
4

1
0
1

0
.
0
0

S
T
N
Q
P
1

-
3
.
1
1
7
0
E
+
0
5

7
2
4
9

1
5
.
2
9

-
3
.
1
1
7
0
E
+
0
5

2
1
0
1

6
2
.
9
4

-
3
.
1
1
7
0
E
+
0
5

7
2
4
9

1
7
.
8
8

-
3
.
1
1
7
0
E
+
0
5

7
2
4
9

5
1
.
5
2

-
2
.
3
1
3
5
E
+
0
5
i

8
2
8

0
.
2
3

S
T
N
Q
P
2

-
5
.
7
4
9
7
E
+
0
5

7
2
4
9

8
.
4
0

-
5
.
7
4
9
7
E
+
0
5

4
9
6
3

4
5
5
.
3
5

-
5
.
7
4
9
7
E
+
0
5

7
2
4
9

9
.
3
1

-
5
.
7
4
9
7
E
+
0
5

7
2
4
9

1
7
.
9
0

-
1
.
4
1
5
4
E
+
0
5
i

3
1
5
2

0
.
5
9

T
A
M
E

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

3
.
0
8
1
5
E
-
3
3

1
0
.
0
0

U
B
H
1

N
a
N
2

7
8
4

1
.
0
8

1
.
1
1
6
0
E
+
0
0

7
7
6
5

1
2
8
.
9
7

1
.
1
1
6
0
E
+
0
0

9
8
9
3

1
4
5
.
2
9

1
.
1
1
6
0
E
+
0
0

1
0
3
1
6

1
6
1
.
1
9

3
.
3
4
8
2
E
+
0
1
i

1
8
5
2

2
.
1
0

W
A
L
L
1
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
3

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

0
0
.
0
0

W
A
L
L
1
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
3

0
.
0
0
0
0
E
+
0
0

1
2
7
5
.
2
8

0
.
0
0
0
0
E
+
0
0

1
0
.
0
3

0
.
0
0
0
0
E
+
0
0

1
0
.
0
3

0
.
0
0
0
0
E
+
0
0

0
0
.
0
1

W
A
L
L
2
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
4
1

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

0
0
.
0
0

W
A
L
L
5
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
1

0
.
0
0
0
0
E
+
0
0

1
1
6
.
1
9

0
.
0
0
0
0
E
+
0
0

1
0
.
0
1

0
.
0
0
0
0
E
+
0
0

1
0
.
0
1

0
.
0
0
0
0
E
+
0
0

0
0
.
0
0

Y
A
O

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

1
2

0
.
0
0

Z
E
C
E
V
I
C
2

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

4
0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

104

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

A
D
A
T
1

-
2
.
8
5
2
7
E
+
0
7

1
1

0
.
0
3

-
2
.
8
5
2
7
E
+
0
7

2
0

3
.
8
4

-
2
.
8
5
2
7
E
+
0
7

1
1

0
.
0
3

-
2
.
8
5
2
7
E
+
0
7

6
0
.
0
4

-
2
.
8
5
2
7
E
+
0
7

2
8

0
.
0
2

A
D
A
T
2

-
3
.
2
6
2
7
E
+
0
1

3
2

0
.
1
1

-
3
.
2
6
2
7
E
+
0
1

3
2

7
.
0
0

-
3
.
2
6
2
7
E
+
0
1

3
0

0
.
0
7

-
3
.
2
6
2
7
E
+
0
1

2
8

0
.
0
9

-
3
.
2
6
2
7
E
+
0
1

4
2

0
.
0
2

A
D
A
T
3

-
3
.
5
7
7
9
E
+
0
1

1
9

0
.
3
8

-
3
.
5
7
7
9
E
+
0
1

1
9

1
6
.
1
6

-
3
.
5
7
7
9
E
+
0
1

2
1

0
.
1
7

-
3
.
5
7
7
9
E
+
0
1

3
0

0
.
2
7

-
3
.
5
7
7
9
E
+
0
1

2
6

0
.
0
2

A
U
G
2
D

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

7
4
.
3
3

1
.
6
8
7
4
E
+
0
6

3
9
6

3
.
2
7

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

9
2
.
9
2

1
.
6
8
7
4
E
+
0
6

1
0
1
9
3

8
6
.
7
9

1
.
6
8
7
4
E
+
0
6

1
0
6
1
5
5
6
0
.
1
5

A
U
G
2
D
C

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

7
7
.
1
1

1
.
8
1
8
4
E
+
0
6

1
0
.
8
7

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

9
7
.
5
8

1
.
8
1
8
4
E
+
0
6

1
0
2
0
1

8
6
.
8
4

1
.
8
1
8
4
E
+
0
6

1
0
6
2
2
5
5
6
.
7
6

A
U
G
2
D
C
Q
P

6
.
4
9
8
1
E
+
0
6

1
4
4
7
9

9
4
.
3
9

6
.
4
9
8
1
E
+
0
6

1
4
3
3
4

1
3
3
.
7
0

6
.
4
9
8
1
E
+
0
6

1
4
3
6
1

1
1
7
.
8
6

6
.
4
9
8
1
E
+
0
6

1
4
3
3
4

1
3
3
.
8
7

6
.
4
9
8
1
E
+
0
6

1
4
4
7
2
5
6
9
.
7
4

A
U
G
2
D
Q
P

6
.
2
3
7
0
E
+
0
6

1
4
5
9
9

9
3
.
4
4

6
.
2
3
7
0
E
+
0
6

1
4
5
9
1

1
3
3
.
5
1

6
.
2
3
7
0
E
+
0
6

1
4
2
6
6

1
1
4
.
7
0

6
.
2
3
7
0
E
+
0
6

1
4
5
9
1

1
3
3
.
5
7

6
.
2
3
7
0
E
+
0
6

1
4
1
8
5
5
6
0
.
2
7

A
U
G
3
D

5
.
5
4
0
7
E
+
0
2

2
1
5
9

6
.
5
2

5
.
5
4
0
7
E
+
0
2

4
8
4

0
.
7
3

5
.
5
4
0
7
E
+
0
2

2
1
5
9

6
.
4
0

5
.
5
4
0
7
E
+
0
2

2
1
5
9

6
.
0
5

5
.
5
4
0
7
E
+
0
2

2
3
5
6

5
.
4
8

A
U
G
3
D
C

7
.
7
1
2
6
E
+
0
2

2
8
7
4

1
0
.
4
0

7
.
7
1
2
6
E
+
0
2

1
0
.
0
4

7
.
7
1
2
6
E
+
0
2

2
8
7
4

1
0
.
5
2

7
.
7
1
2
6
E
+
0
2

2
8
7
4

8
.
7
0

7
.
7
1
2
6
E
+
0
2

2
8
7
3

8
.
1
8

A
U
G
3
D
C
Q
P

9
.
9
3
3
6
E
+
0
2

2
8
0
3

6
.
5
6

9
.
9
3
3
6
E
+
0
2

2
7
9
4

6
.
9
1

9
.
9
3
3
6
E
+
0
2

2
7
9
6

6
.
9
3

9
.
9
3
3
6
E
+
0
2

2
7
9
4

6
.
9
2

9
.
9
3
3
6
E
+
0
2

2
8
7
6

6
.
2
5

A
U
G
3
D
Q
P

6
.
7
5
2
4
E
+
0
2

1
9
5
4

5
.
5
1

6
.
7
5
2
4
E
+
0
2

1
9
4
0

5
.
5
4

6
.
7
5
2
4
E
+
0
2

1
9
4
7

5
.
7
0

6
.
7
5
2
4
E
+
0
2

1
9
4
0

5
.
5
4

6
.
7
5
2
4
E
+
0
2

1
9
4
8

1
.
7
8

C
O
N
T
-
0
5
0

-
4
.
5
6
3
9
E
+
0
0

1
2
4
1

1
.
1
8

-
4
.
5
6
3
9
E
+
0
0

1
2
4
1

1
.
5
1

-
4
.
5
6
3
9
E
+
0
0

1
2
4
1

1
.
3
0

-
4
.
5
6
3
9
E
+
0
0

1
2
4
1

1
.
5
1

-
4
.
5
6
3
9
E
+
0
0

1
2
4
2

0
.
9
5

C
O
N
T
-
1
0
0

-
4
.
6
4
4
4
E
+
0
0

1
8
8
2

1
8
.
2
9

-
4
.
6
4
4
4
E
+
0
0

1
8
8
2

2
4
.
8
2

-
4
.
6
4
4
4
E
+
0
0

1
8
8
2

1
7
.
9
1

-
4
.
6
4
4
4
E
+
0
0

1
8
8
2

2
4
.
7
4

-
4
.
6
4
4
4
E
+
0
0

2
0
3
3

1
2
.
6
0

C
O
N
T
-
1
0
1

1
.
9
5
5
3
E
-
0
1

1
0
9
4

1
0
.
4
0

1
.
9
5
5
3
E
-
0
1

1
0
9
4

1
1
.
8
4

1
.
9
5
5
3
E
-
0
1

1
0
9
4

1
0
.
0
1

1
.
9
5
5
3
E
-
0
1

1
0
9
4

1
1
.
8
4

1
.
9
5
5
3
E
-
0
1

1
1
0
1

8
.
9
8

C
O
N
T
-
2
0
0

-
4
.
6
8
4
9
E
+
0
0

2
6
3
8

2
1
2
.
8
0

-
4
.
6
8
4
9
E
+
0
0

2
6
3
8

3
2
1
.
9
4

-
4
.
6
8
4
9
E
+
0
0

2
6
3
8

2
0
5
.
1
9

-
4
.
6
8
4
9
E
+
0
0

2
6
3
8

3
2
2
.
3
2

-
4
.
6
8
4
9
E
+
0
0

3
1
5
6
1
8
0
.
4
6

C
O
N
T
-
2
0
1

1
.
9
2
4
8
E
-
0
1

2
2
2
3

1
8
0
.
0
5

1
.
9
2
4
8
E
-
0
1

2
2
2
3

2
0
2
.
9
0

1
.
9
2
4
8
E
-
0
1

2
2
2
3

1
7
2
.
4
2

1
.
9
2
4
8
E
-
0
1

2
2
2
3

2
0
2
.
5
8

1
.
9
2
4
8
E
-
0
1

2
1
8
8
1
6
4
.
4
7

C
O
N
T
-
3
0
0

1
.
9
1
5
1
E
-
0
1

3
4
4
8
1
4
3
2
.
4
1

1
.
9
1
5
1
E
-
0
1

3
4
5
1
1
1
1
6
.
2
2

1
.
9
1
5
1
E
-
0
1

3
4
4
8
1
0
5
7
.
2
5

1
.
9
1
5
1
E
-
0
1

3
4
5
1
1
1
1
5
.
3
0

1
.
9
1
5
1
E
-
0
1

3
4
3
0
9
7
2
.
0
9

C
V
X
Q
P
1
L

4
.
4
4
0
6
E
+
0
8
2

4
3
6
0

2
.
5
7

1
.
9
0
2
3
E
+
0
9
2

4
3
6
3

5
1
.
0
9

2
.
0
0
7
1
E
+
4
6
2

4
7
9
3

5
0
6
.
5
1

1
.
9
0
2
3
E
+
0
9
2

4
3
6
3

5
1
.
1
0

1
.
0
8
7
0
E
+
0
8

1
0
8
3
7

1
1
.
2
1

C
V
X
Q
P
1
M

1
.
0
8
7
5
E
+
0
6

5
1
7

0
.
8
2

1
.
0
8
7
5
E
+
0
6

5
1
2

3
.
1
1

1
.
0
8
7
5
E
+
0
6

5
1
0

1
.
2
0

1
.
0
8
7
5
E
+
0
6

5
1
2

3
.
1
1

1
.
0
8
7
5
E
+
0
6

6
6
7

0
.
0
6

C
V
X
Q
P
1
S

1
.
1
5
9
1
E
+
0
4

3
8

0
.
0
0

1
.
1
5
9
1
E
+
0
4

3
9

0
.
0
0

1
.
1
5
9
1
E
+
0
4

3
9

0
.
0
0

1
.
1
5
9
1
E
+
0
4

3
9

0
.
0
0

1
.
1
5
9
1
E
+
0
4

3
9

0
.
0
0

C
V
X
Q
P
2
L

N
a
N
2

1
2
4
6

1
7
.
5
5

8
.
1
8
4
2
E
+
0
7

3
2
4
2

6
0
8
.
6
6

8
.
1
8
4
2
E
+
0
7

3
2
1
5

8
8
.
9
7

8
.
1
8
4
2
E
+
0
7

3
2
4
2

6
0
8
.
7
0

8
.
1
8
4
2
E
+
0
7

3
6
3
4

1
0
.
8
3

C
V
X
Q
P
2
M

8
.
2
0
1
6
E
+
0
5

3
0
6

0
.
0
7

8
.
2
0
1
6
E
+
0
5

3
0
9

0
.
1
3

8
.
2
0
1
6
E
+
0
5

3
0
6

0
.
0
8

8
.
2
0
1
6
E
+
0
5

3
0
9

0
.
1
3

8
.
2
0
1
6
E
+
0
5

3
3
3

0
.
0
3

C
V
X
Q
P
2
S

8
.
1
2
0
9
E
+
0
3

3
0

0
.
0
0

8
.
1
2
0
9
E
+
0
3

3
1

0
.
0
0

8
.
1
2
0
9
E
+
0
3

3
0

0
.
0
0

8
.
1
2
0
9
E
+
0
3

3
1

0
.
0
0

8
.
1
2
0
9
E
+
0
3

3
1

0
.
0
0

C
V
X
Q
P
3
L

N
a
N
2

8
0
1
3

6
6
.
1
7

1
.
3
2
1
8
E
+
1
4
2

8
0
1
2

2
6
7
.
3
1

3
.
2
9
4
4
E
+
0
8
2

8
9
0
3
6
8
0
0
.
2
5

1
.
3
2
1
8
E
+
1
4
2

8
0
1
2

2
6
7
.
2
6

1
.
1
5
7
1
E
+
0
8

1
0
6
5
4

9
.
0
7

C
V
X
Q
P
3
M

1
.
3
6
2
8
E
+
0
6

6
0
1

3
.
7
1

1
.
3
6
2
8
E
+
0
6

6
0
2

1
3
.
3
2

1
.
3
6
2
8
E
+
0
6

5
7
9

6
.
5
4

1
.
3
6
2
8
E
+
0
6

6
0
2

1
3
.
3
2

1
.
3
6
2
8
E
+
0
6

6
2
4

0
.
0
5

C
V
X
Q
P
3
S

1
.
1
9
4
3
E
+
0
4

2
8

0
.
0
0

1
.
1
9
4
3
E
+
0
4

2
9

0
.
0
0

1
.
1
9
4
3
E
+
0
4

3
0

0
.
0
0

1
.
1
9
4
3
E
+
0
4

2
9

0
.
0
0

1
.
1
9
4
3
E
+
0
4

3
2

0
.
0
0

D
P
K
L
O
1

3
.
7
0
1
0
E
-
0
1

5
7

0
.
0
0

3
.
7
0
1
0
E
-
0
1

5
7

0
.
0
0

3
.
7
0
1
0
E
-
0
1

5
7

0
.
0
0

3
.
7
0
1
0
E
-
0
1

5
7

0
.
0
0

3
.
7
0
1
0
E
-
0
1

5
6

0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

105

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

D
T
O
C
3

2
.
3
5
2
6
E
+
0
2

4
8
0
6

8
3
.
5
5

2
.
3
5
2
6
E
+
0
2

3
0
.
4
8

2
.
3
5
2
6
E
+
0
2

4
8
0
6

1
5
2
.
4
1

2
.
3
5
2
6
E
+
0
2

4
8
0
6

1
8
9
.
8
0

2
.
3
5
2
6
E
+
0
2

4
8
0
5

1
1
.
7
9

D
U
A
L
1

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
0

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
0

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
1

3
.
5
0
1
3
E
-
0
2

8
9

0
.
0
0

3
.
5
0
1
3
E
-
0
2

8
2

0
.
0
0

D
U
A
L
2

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

1
0
0

0
.
0
1

3
.
3
7
3
4
E
-
0
2

9
9

0
.
0
0

D
U
A
L
3

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
0
7

0
.
0
1

1
.
3
5
7
6
E
-
0
1

1
1
8

0
.
0
1

D
U
A
L
4

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
2

0
.
0
0

7
.
4
6
0
9
E
-
0
1

6
7

0
.
0
0

D
U
A
L
C
1

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
0

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
2

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
0

6
.
1
5
5
3
E
+
0
3

1
0

0
.
0
2

6
.
1
5
5
3
E
+
0
3

9
0
.
0
0

D
U
A
L
C
2

3
.
5
5
1
3
E
+
0
3

5
0
.
0
0

3
.
5
5
1
3
E
+
0
3

5
0
.
0
2

3
.
5
5
1
3
E
+
0
3

5
0
.
0
0

3
.
5
5
1
3
E
+
0
3

5
0
.
0
2

3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

D
U
A
L
C
5

4
.
2
7
2
3
E
+
0
2

8
0
.
0
0

4
.
2
7
2
3
E
+
0
2

8
0
.
0
3

4
.
2
7
2
3
E
+
0
2

8
0
.
0
0

4
.
2
7
2
3
E
+
0
2

8
0
.
0
3

4
.
2
7
2
3
E
+
0
2

7
0
.
0
0

D
U
A
L
C
8

1
.
8
3
0
9
E
+
0
4

7
0
.
0
0

1
.
8
3
0
9
E
+
0
4

7
0
.
1
2

1
.
8
3
0
9
E
+
0
4

7
0
.
0
0

1
.
8
3
0
9
E
+
0
4

7
0
.
1
2

1
.
8
3
0
9
E
+
0
4

8
0
.
0
0

E
X
D
A
T
A

-
1
.
4
1
8
4
E
+
0
2

2
2
4
5

3
3
.
2
8

-
1
.
4
1
8
4
E
+
0
2

2
3
0
4

6
0
.
2
5

-
1
.
4
1
8
4
E
+
0
2

2
2
4
5

9
3
.
0
9

-
1
.
4
1
8
4
E
+
0
2

2
2
4
5

6
1
.
3
6

-
1
.
4
1
8
4
E
+
0
2

2
3
2
0

1
4
.
6
5

G
E
N
H
S
2
8

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

1
0
.
0
0

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

3
0
.
0
0

9
.
2
7
1
7
E
-
0
1

2
0
.
0
0

G
O
U
L
D
Q
P
2

1
.
8
4
2
7
E
-
0
4

3
4
3

0
.
0
7

1
.
8
4
2
7
E
-
0
4

3
4
3

0
.
1
0

1
.
8
4
2
7
E
-
0
4

3
4
3

0
.
0
8

1
.
8
4
2
7
E
-
0
4

3
4
3

0
.
1
0

1
.
8
4
2
7
E
-
0
4

3
4
2

0
.
0
3

G
O
U
L
D
Q
P
3

2
.
0
6
2
8
E
+
0
0

4
2
8

0
.
0
5

2
.
0
6
2
8
E
+
0
0

4
2
8

0
.
1
1

2
.
0
6
2
8
E
+
0
0

4
2
8

0
.
0
6

2
.
0
6
2
8
E
+
0
0

4
2
8

0
.
1
1

2
.
0
6
2
8
E
+
0
0

4
4
5

0
.
0
2

H
S
1
1
8

6
.
6
4
8
2
E
+
0
2

2
0

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
0

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
0

0
.
0
0

6
.
6
4
8
2
E
+
0
2

2
0

0
.
0
0

6
.
6
4
8
2
E
+
0
2

1
9

0
.
0
0

H
S
2
1

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

1
0
.
0
0

-
9
.
9
9
6
0
E
+
0
1

0
0
.
0
0

H
S
2
6
8

-
9
.
0
9
4
9
E
-
1
2

7
0
.
0
0

-
5
.
4
5
7
0
E
-
1
2

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

7
0
.
0
0

-
1
.
6
3
7
1
E
-
1
1

7
0
.
0
0

5
.
4
5
7
0
E
-
1
2

9
0
.
0
0

H
S
3
5

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

5
0
.
0
0

1
.
1
1
1
1
E
-
0
1

4
0
.
0
0

H
S
3
5
M
O
D

2
.
5
0
0
0
E
-
0
1

3
0
.
0
0

2
.
5
0
0
0
E
-
0
1

3
0
.
0
0

2
.
5
0
0
0
E
-
0
1

3
0
.
0
0

2
.
5
0
0
0
E
-
0
1

3
0
.
0
0

2
.
5
0
0
0
E
-
0
1

2
0
.
0
0

H
S
5
1

0
.
0
0
0
0
E
+
0
0

3
0
.
0
0

0
.
0
0
0
0
E
+
0
0

1
0
.
0
0

0
.
0
0
0
0
E
+
0
0

3
0
.
0
0

0
.
0
0
0
0
E
+
0
0

3
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

H
S
5
2

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

1
0
.
0
0

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

3
0
.
0
0

5
.
3
2
6
6
E
+
0
0

2
0
.
0
0

H
S
5
3

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

1
0
.
0
0

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

3
0
.
0
0

4
.
0
9
3
0
E
+
0
0

2
0
.
0
0

H
S
7
6

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

4
0
.
0
0

-
4
.
6
8
1
8
E
+
0
0

3
0
.
0
0

H
U
E
S
-
M
O
D

3
.
4
8
3
0
E
+
0
7

8
3
3
8

2
0
.
6
8

3
.
4
8
3
0
E
+
0
7

8
3
3
8

2
3
.
7
0

3
.
4
8
3
0
E
+
0
7

8
3
3
8

2
0
.
6
9

3
.
4
8
3
0
E
+
0
7

8
3
3
8

2
3
.
6
7

3
.
4
8
3
0
E
+
0
7

8
3
3
3

1
2
.
1
3

H
U
E
S
T
I
S

2
.
3
1
8
3
E
+
1
4
f

1
2

0
.
0
1

3
.
4
8
3
0
E
+
1
1

8
3
3
8

2
3
.
6
8

3
.
4
8
3
0
E
+
1
1

8
3
3
8

2
0
.
7
1

3
.
4
8
3
0
E
+
1
1

8
3
3
8

2
3
.
6
9

3
.
4
8
2
4
E
+
1
1

9
1
8
4

1
3
.
9
6

K
S
I
P

5
.
8
0
3
8
E
-
0
1
f

4
2
5

0
.
4
6

5
.
7
5
8
0
E
-
0
1

6
3
5

1
.
9
9

5
.
7
5
8
0
E
-
0
1

5
7
9

0
.
3
7

5
.
7
5
8
0
E
-
0
1

5
8
5

0
.
5
7

5
.
7
5
8
0
E
-
0
1

4
8
4

0
.
0
5

L
A
S
E
R

2
.
4
0
9
6
E
+
0
6

5
3
2

0
.
0
7

2
.
4
0
9
6
E
+
0
6

5
3
0

0
.
2
5

2
.
4
0
9
6
E
+
0
6

5
3
2

0
.
2
3

2
.
4
0
9
6
E
+
0
6

5
3
2

0
.
2
7

2
.
4
0
9
6
E
+
0
6

5
3
1

0
.
0
4

L
I
S
W
E
T
1

3
.
6
1
2
2
E
+
0
1

3
0
.
5
9

3
.
6
1
2
2
E
+
0
1

1
0
.
2
2

3
.
6
1
2
2
E
+
0
1

3
0
.
6
1

3
.
6
1
2
2
E
+
0
1

3
0
.
4
4

3
.
6
1
2
2
E
+
0
1

2
5

0
.
0
2

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

106

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

L
I
S
W
E
T
1
0

4
.
9
4
8
6
E
+
0
1

4
1

3
.
6
1

4
.
9
4
8
6
E
+
0
1

2
2

0
.
7
2

4
.
9
4
8
6
E
+
0
1

4
1

3
.
8
3

4
.
9
4
8
6
E
+
0
1

4
6

2
.
7
2

4
.
9
4
8
6
E
+
0
1

9
8

0
.
0
7

L
I
S
W
E
T
1
1

4
.
9
5
2
4
E
+
0
1

5
0

2
.
4
1

4
.
9
5
2
4
E
+
0
1

4
5

1
.
7
1

4
.
9
5
2
4
E
+
0
1

5
0

2
.
5
9

4
.
9
5
2
4
E
+
0
1

5
0

1
.
9
3

4
.
9
5
2
4
E
+
0
1

9
2

0
.
0
7

L
I
S
W
E
T
1
2

1
.
7
3
6
9
E
+
0
3

2
6

2
.
9
8

1
.
7
3
6
9
E
+
0
3

2
7

1
.
5
9

1
.
7
3
6
9
E
+
0
3

2
6

3
.
1
7

1
.
7
3
6
9
E
+
0
3

2
6

2
.
2
2

1
.
7
3
6
9
E
+
0
3

3
8

0
.
0
3

L
I
S
W
E
T
2

2
.
4
9
9
8
E
+
0
1

2
1

0
.
6
1

2
.
4
9
9
8
E
+
0
1

1
9

0
.
7
2

2
.
4
9
9
8
E
+
0
1

2
1

0
.
6
4

2
.
4
9
9
8
E
+
0
1

2
1

0
.
5
1

2
.
4
9
9
8
E
+
0
1

1
3
8

0
.
1
0

L
I
S
W
E
T
3

2
.
5
0
0
1
E
+
0
1

4
3
8

3
.
0
1

2
.
5
0
0
1
E
+
0
1

4
3
6

6
.
2
9

2
.
5
0
0
1
E
+
0
1

4
3
8

4
.
8
6

2
.
5
0
0
1
E
+
0
1

4
3
0

5
.
0
9

2
.
5
0
0
1
E
+
0
1

7
8
3

0
.
5
5

L
I
S
W
E
T
4

2
.
5
0
0
0
E
+
0
1

4
2
6

3
.
7
2

2
.
5
0
0
0
E
+
0
1

4
2
4

5
.
7
8

2
.
5
0
0
0
E
+
0
1

4
2
6

4
.
6
3

2
.
5
0
0
0
E
+
0
1

4
1
4

4
.
3
9

2
.
5
0
0
0
E
+
0
1

8
2
8

0
.
7
4

L
I
S
W
E
T
5

2
.
5
0
3
4
E
+
0
1

4
0
9

2
.
7
6

2
.
5
0
3
4
E
+
0
1

4
0
5

5
.
6
2

2
.
5
0
3
4
E
+
0
1

4
0
9

4
.
2
4

2
.
5
0
3
4
E
+
0
1

4
1
3

4
.
7
2

2
.
5
0
3
4
E
+
0
1

7
8
6

0
.
7
0

L
I
S
W
E
T
6

2
.
4
9
9
6
E
+
0
1

3
3
7

3
.
6
8

2
.
4
9
9
6
E
+
0
1

3
3
5

5
.
3
5

2
.
4
9
9
6
E
+
0
1

3
3
7

4
.
3
7

2
.
4
9
9
3
E
+
0
1

4
0
8

7
.
0
9

2
.
4
9
9
6
E
+
0
1

6
4
5

0
.
5
7

L
I
S
W
E
T
7

4
.
9
8
8
4
E
+
0
2

3
0
.
5
9

4
.
9
8
8
4
E
+
0
2

1
0
.
2
2

4
.
9
8
8
4
E
+
0
2

3
0
.
6
3

4
.
9
8
8
4
E
+
0
2

3
0
.
4
4

4
.
9
8
8
4
E
+
0
2

2
4

0
.
0
2

L
I
S
W
E
T
8

7
.
1
4
4
7
E
+
0
2

2
2

1
.
8
2

7
.
1
4
4
7
E
+
0
2

1
9

0
.
7
1

7
.
1
4
4
7
E
+
0
2

2
2

1
.
9
1

7
.
1
4
4
7
E
+
0
2

2
2

1
.
3
6

7
.
1
4
4
7
E
+
0
2

5
4

0
.
0
4

L
I
S
W
E
T
9

1
.
9
6
3
3
E
+
0
3

2
1

2
.
9
8

1
.
9
6
3
3
E
+
0
3

1
8

1
.
1
3

1
.
9
6
3
3
E
+
0
3

2
1

3
.
1
7

1
.
9
6
3
3
E
+
0
3

2
3

2
.
4
2

1
.
9
6
3
3
E
+
0
3

3
7

0
.
0
3

L
O
T
S
C
H
D

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

9
0
.
0
0

2
.
3
9
8
4
E
+
0
3

8
0
.
0
0

M
O
S
A
R
Q
P
1

-
9
.
3
4
2
3
E
+
0
2
2

1
6
3
0

1
.
7
0

-
9
.
5
2
8
8
E
+
0
2

7
3
0
5

2
0
.
4
2

-
9
.
5
2
8
8
E
+
0
2

7
2
2
0

2
5
.
1
1

-
9
.
5
2
8
8
E
+
0
2

7
3
0
5

2
0
.
4
3

-
9
.
5
2
8
8
E
+
0
2

3
3
7
3

3
.
8
7

M
O
S
A
R
Q
P
2

N
a
N
2

1
0
2
2

0
.
3
7

-
1
.
5
9
7
5
E
+
0
3

1
5
1
5

0
.
8
7

-
1
.
5
9
7
5
E
+
0
3

1
5
1
5

0
.
7
8

-
1
.
5
9
7
5
E
+
0
3

1
5
1
5

0
.
8
7

-
1
.
5
9
7
5
E
+
0
3

2
3
0
6

0
.
7
2

P
O
W
E
L
L
2
0

5
.
2
0
9
0
E
+
1
0

5
0
0
2

2
5
.
5
0

5
.
2
0
9
0
E
+
1
0

5
0
0
0

3
1
.
5
3

5
.
2
0
9
0
E
+
1
0

5
0
0
2

2
8
.
8
0

5
.
2
0
9
0
E
+
1
0

5
0
0
2

4
2
.
4
3

5
.
2
0
9
0
E
+
1
0

5
0
0
5

2
.
6
7

P
R
I
M
A
L
1

-
3
.
5
0
1
3
E
-
0
2

2
1
7

0
.
0
4

-
3
.
5
0
1
3
E
-
0
2

7
0

0
.
0
3

-
3
.
5
0
1
3
E
-
0
2

2
1
7

0
.
0
4

-
3
.
5
0
1
3
E
-
0
2

2
1
6

0
.
0
5

-
3
.
5
0
1
3
E
-
0
2

2
4
5

0
.
0
2

P
R
I
M
A
L
2

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
0
9

-
3
.
3
7
3
4
E
-
0
2

9
7

0
.
0
5

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
1
2

-
3
.
3
7
3
4
E
-
0
2

4
0
8

0
.
1
1

-
3
.
3
7
3
4
E
-
0
2

4
2
5

0
.
0
6

P
R
I
M
A
L
3

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
2
7

-
1
.
3
5
7
6
E
-
0
1

1
0
2

0
.
1
0

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
2
9

-
1
.
3
5
7
6
E
-
0
1

7
1
1

0
.
3
5

-
1
.
3
5
7
6
E
-
0
1

1
2
5
6

0
.
3
1

P
R
I
M
A
L
4

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
5
2

-
7
.
4
6
0
9
E
-
0
1

6
3

0
.
0
6

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
6
3

-
7
.
4
6
0
9
E
-
0
1

1
2
2
3

0
.
6
9

-
7
.
4
6
0
9
E
-
0
1

1
5
9
2

0
.
8
1

P
R
I
M
A
L
C
1

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

5
0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

1
9

0
.
0
0

-
6
.
1
5
5
3
E
+
0
3

2
0

0
.
0
0

P
R
I
M
A
L
C
2

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

4
0
.
0
0

-
3
.
5
5
1
3
E
+
0
3

3
0
.
0
0

P
R
I
M
A
L
C
5

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

6
0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
1

0
.
0
0

-
4
.
2
7
2
3
E
+
0
2

1
3

0
.
0
0

P
R
I
M
A
L
C
8

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

9
0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
9

0
.
0
0

-
1
.
8
3
0
9
E
+
0
4

2
5

0
.
0
0

Q
2
5
F
V
4
7

1
.
5
9
2
9
E
+
0
7
1

5
1
2
7

1
0
.
0
3

1
.
4
7
1
0
E
+
0
7
f

6
0
5
2

1
2
.
4
3

1
.
3
7
4
4
E
+
0
7

8
5
5
6

1
3
.
0
5

1
.
4
7
1
0
E
+
0
7
f

6
0
5
2

1
2
.
4
3

1
.
3
7
4
4
E
+
0
7
i
1
1
5
5
5

9
.
0
1

Q
A
D
L
I
T
T
L

4
.
8
0
3
2
E
+
0
5

1
4
8

0
.
0
0

4
.
8
0
3
2
E
+
0
5

1
4
8

0
.
0
1

4
.
8
0
3
2
E
+
0
5

1
4
8

0
.
0
1

4
.
8
0
3
2
E
+
0
5

1
4
8

0
.
0
1

4
.
8
0
6
6
E
+
0
5
i

1
5
6

0
.
0
0

Q
A
F
I
R
O

-
1
.
5
9
0
8
E
+
0
0

1
0

0
.
0
0

-
1
.
5
9
0
8
E
+
0
0

1
0

0
.
0
0

-
1
.
5
9
0
8
E
+
0
0

1
0

0
.
0
0

-
1
.
5
9
0
8
E
+
0
0

1
0

0
.
0
0

-
1
.
5
9
0
8
E
+
0
0

9
0
.
0
0

Q
B
A
N
D
M

1
.
6
3
5
2
E
+
0
4

6
1
5

0
.
0
5

1
.
6
3
5
2
E
+
0
4

6
1
5

0
.
0
9

1
.
6
3
5
2
E
+
0
4

6
1
5

0
.
0
6

1
.
6
3
5
2
E
+
0
4

6
1
5

0
.
0
9

1
.
6
4
0
1
E
+
0
4
i

3
8
2

0
.
0
2

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

107

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

Q
B
E
A
C
O
N
F

1
.
6
4
7
1
E
+
0
5

4
5

0
.
0
0

1
.
6
4
7
1
E
+
0
5

4
5

0
.
0
1

1
.
6
4
7
1
E
+
0
5

4
5

0
.
0
0

1
.
6
4
7
1
E
+
0
5

4
5

0
.
0
1

1
.
6
4
7
1
E
+
0
5

4
4

0
.
0
0

Q
B
O
R
E
3
D

3
.
1
0
0
2
E
+
0
3

1
1
1

0
.
0
1

3
.
1
0
0
2
E
+
0
3

1
1
1

0
.
0
1

3
.
1
0
0
2
E
+
0
3

1
1
1

0
.
0
1

3
.
1
0
0
2
E
+
0
3

1
1
1

0
.
0
1

3
.
1
0
0
2
E
+
0
3

1
1
8

0
.
0
0

Q
B
R
A
N
D
Y

2
.
8
3
7
5
E
+
0
4

4
0
4

0
.
0
2

2
.
8
3
7
5
E
+
0
4

3
9
9

0
.
0
4

2
.
8
3
7
5
E
+
0
4

3
9
9

0
.
0
3

2
.
8
3
7
5
E
+
0
4

3
9
9

0
.
0
4

2
.
8
3
7
5
E
+
0
4

4
1
2

0
.
0
2

Q
C
A
P
R
I

6
.
6
7
9
3
E
+
0
7

2
5
1

0
.
0
2

6
.
6
7
9
3
E
+
0
7

2
5
8

0
.
0
5

6
.
6
7
9
3
E
+
0
7

2
5
2

0
.
0
2

6
.
6
7
9
3
E
+
0
7

2
5
8

0
.
0
5

6
.
6
7
9
3
E
+
0
7

2
6
4

0
.
0
1

Q
E
2
2
6

2
.
1
2
6
5
E
+
0
2

6
8
7

0
.
0
8

2
.
1
2
6
5
E
+
0
2

6
8
8

0
.
1
3

2
.
1
2
6
5
E
+
0
2

6
8
8

0
.
1
2

2
.
1
2
6
5
E
+
0
2

6
8
8

0
.
1
3

2
.
5
3
7
5
E
+
0
2
i

1
8
6

0
.
0
1

Q
E
T
A
M
A
C
R

8
.
6
7
6
0
E
+
0
4

7
8
6

0
.
1
5

8
.
6
7
6
0
E
+
0
4

7
9
8

0
.
3
2

8
.
6
7
6
0
E
+
0
4

7
7
2

0
.
1
8

8
.
6
7
6
0
E
+
0
4

7
9
8

0
.
3
3

8
.
6
7
6
0
E
+
0
4

7
3
4

0
.
0
5

Q
F
F
F
F
F
8
0

8
.
7
3
1
5
E
+
0
5

7
2
3

0
.
1
5

8
.
7
3
1
5
E
+
0
5

7
3
4

0
.
3
0

8
.
7
3
1
5
E
+
0
5

7
3
2

0
.
1
7

8
.
7
3
1
5
E
+
0
5

7
3
4

0
.
3
0

9
.
1
2
4
4
E
+
0
5
i

6
4
0

0
.
0
5

Q
F
O
R
P
L
A
N

7
.
4
5
6
6
E
+
0
9

1
8
5

0
.
0
1

7
.
4
5
6
6
E
+
0
9

1
8
8

0
.
0
3

7
.
4
5
6
6
E
+
0
9

1
8
5

0
.
0
2

7
.
4
5
6
6
E
+
0
9

1
8
8

0
.
0
3

7
.
4
5
6
6
E
+
0
9

1
6
1

0
.
0
1

Q
G
F
R
D
X
P
N

1
.
0
0
7
9
E
+
1
1

5
7
8

0
.
0
7

1
.
0
0
7
9
E
+
1
1

5
7
7

0
.
1
8

1
.
0
0
7
9
E
+
1
1

5
7
8

0
.
0
9

1
.
0
0
7
9
E
+
1
1

5
7
7

0
.
1
8

1
.
0
0
7
9
E
+
1
1
i

4
0
8

0
.
0
2

Q
G
R
O
W
1
5

-
1
.
0
1
6
9
E
+
0
8

5
6
8

0
.
3
1

-
1
.
0
1
6
9
E
+
0
8

4
9
3

0
.
3
2

-
1
.
0
1
6
9
E
+
0
8

5
3
8

0
.
2
9

-
1
.
0
1
6
9
E
+
0
8

4
9
3

0
.
3
2

-
9
.
7
8
1
7
E
+
0
7
i

5
2
6

0
.
0
8

Q
G
R
O
W
2
2

-
1
.
4
9
6
3
E
+
0
8

9
0
7

0
.
5
3

-
1
.
4
9
6
3
E
+
0
8

9
4
8

0
.
6
6

-
1
.
4
9
6
3
E
+
0
8

1
0
1
1

0
.
7
8

-
1
.
4
9
6
3
E
+
0
8

9
4
8

0
.
6
6

-
1
.
0
7
9
2
E
+
0
4
1

3
5
0

0
.
0
6

Q
G
R
O
W
7

-
4
.
2
7
9
9
E
+
0
7

2
3
1

0
.
0
4

-
4
.
2
7
9
9
E
+
0
7

2
7
2

0
.
0
6

-
4
.
2
7
9
9
E
+
0
7

2
3
3

0
.
0
5

-
4
.
2
7
9
9
E
+
0
7

2
7
2

0
.
0
6

-
4
.
1
4
3
1
E
+
0
7
i

3
4
9

0
.
0
3

Q
I
S
R
A
E
L

2
.
5
3
4
8
E
+
0
7

1
9
9

0
.
0
1

2
.
5
3
4
8
E
+
0
7

2
1
2

0
.
0
3

2
.
5
3
4
8
E
+
0
7

2
0
2

0
.
0
2

2
.
5
3
4
8
E
+
0
7

2
1
2

0
.
0
3

2
.
5
3
4
8
E
+
0
7
i

1
1
3

0
.
0
0

Q
P
C
B
L
E
N
D

N
a
N

3
5

0
.
0
0

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

9
6

0
.
0
1

-
7
.
8
4
2
5
E
-
0
3

1
5
5

0
.
0
0

Q
P
C
B
O
E
I
1

1
.
1
5
0
4
E
+
0
7

1
1
0
0

0
.
1
8

1
.
1
5
0
4
E
+
0
7

1
1
1
3

0
.
4
2

1
.
1
5
0
4
E
+
0
7

1
0
9
4

0
.
2
1

1
.
1
5
0
4
E
+
0
7

1
1
1
3

0
.
4
2

1
.
1
5
0
4
E
+
0
7

1
4
5
3

0
.
1
5

Q
P
C
B
O
E
I
2

8
.
1
7
2
0
E
+
0
6

2
3
0

0
.
0
1

8
.
1
7
2
0
E
+
0
6

2
2
9

0
.
0
3

8
.
1
7
2
0
E
+
0
6

2
3
0

0
.
0
2

8
.
1
7
2
0
E
+
0
6

2
2
9

0
.
0
3

8
.
1
7
2
0
E
+
0
6

2
5
4

0
.
0
1

Q
P
C
S
T
A
I
R

6
.
2
0
4
4
E
+
0
6

4
4
6

0
.
1
7

6
.
2
0
4
4
E
+
0
6

4
4
4

0
.
1
7

6
.
2
0
4
4
E
+
0
6

4
4
0

0
.
2
2

6
.
2
0
4
4
E
+
0
6

4
4
4

0
.
1
7

6
.
2
0
4
4
E
+
0
6

5
6
4

0
.
0
6

Q
P
I
L
O
T
N
O

4
.
7
3
2
8
E
+
0
6
f

7
0
5
5

1
.
0
1

7
.
8
6
2
8
E
+
0
6
f

6
8
4
5

0
.
7
6

N
a
N
2

7
9
9
3

2
.
9
5

7
.
8
6
2
8
E
+
0
6
f

6
8
4
5

0
.
7
6

4
.
7
3
1
7
E
+
0
6
i
5
6
1
9
9

6
9
.
6
1

Q
P
T
E
S
T

4
.
3
7
1
9
E
+
0
0

2
0
.
0
0

4
.
3
7
1
9
E
+
0
0

2
0
.
0
0

4
.
3
7
1
9
E
+
0
0

2
0
.
0
0

4
.
3
7
1
9
E
+
0
0

2
0
.
0
0

4
.
3
7
1
9
E
+
0
0

1
0
.
0
0

Q
R
E
C
I
P
E

-
2
.
6
6
6
2
E
+
0
2

2
7

0
.
0
0

-
2
.
6
6
6
2
E
+
0
2

2
7

0
.
0
0

-
2
.
6
6
6
2
E
+
0
2

2
7

0
.
0
0

-
2
.
6
6
6
2
E
+
0
2

2
7

0
.
0
0

-
2
.
6
6
6
2
E
+
0
2

2
7

0
.
0
0

Q
S
C
2
0
5

-
5
.
8
1
4
0
E
-
0
3

2
1

0
.
0
0

-
5
.
8
1
4
0
E
-
0
3

2
1

0
.
0
0

-
5
.
8
1
4
0
E
-
0
3

2
1

0
.
0
0

-
5
.
8
1
4
0
E
-
0
3

2
1

0
.
0
0

-
5
.
8
1
4
0
E
-
0
3

2
1

0
.
0
0

Q
S
C
A
G
R
2
5

2
.
0
1
7
4
E
+
0
8

8
3
2

0
.
0
6

2
.
0
1
7
4
E
+
0
8

8
3
2

0
.
1
3

2
.
0
1
7
4
E
+
0
8

8
3
2

0
.
0
9

2
.
0
1
7
4
E
+
0
8

8
3
2

0
.
1
3

2
.
2
0
2
5
E
+
0
8
i

5
0
0

0
.
0
3

Q
S
C
A
G
R
7

2
.
6
8
6
6
E
+
0
7

1
2
5

0
.
0
0

2
.
6
8
6
6
E
+
0
7

1
2
9

0
.
0
1

2
.
6
8
6
6
E
+
0
7

1
2
9

0
.
0
1

2
.
6
8
6
6
E
+
0
7

1
2
9

0
.
0
1

2
.
7
0
7
9
E
+
0
7
i

9
3

0
.
0
0

Q
S
C
F
X
M
1

1
.
6
8
8
3
E
+
0
7

3
7
5

0
.
0
3

1
.
6
8
8
3
E
+
0
7

3
7
4

0
.
0
6

1
.
6
8
8
3
E
+
0
7

3
7
5

0
.
0
4

1
.
6
8
8
3
E
+
0
7

3
7
4

0
.
0
6

1
.
6
8
8
3
E
+
0
7

4
6
8

0
.
0
2

Q
S
C
F
X
M
2

2
.
7
7
7
7
E
+
0
7

7
4
5

0
.
1
4

2
.
7
7
7
7
E
+
0
7

7
4
3

0
.
2
6

2
.
7
7
7
7
E
+
0
7

7
4
3

0
.
1
6

2
.
7
7
7
7
E
+
0
7

7
4
3

0
.
2
6

2
.
7
7
8
9
E
+
0
7
i

5
9
8

0
.
0
4

Q
S
C
F
X
M
3

3
.
0
8
1
7
E
+
0
7

1
2
6
5

0
.
3
9

3
.
0
8
1
7
E
+
0
7

1
2
6
6

0
.
6
5

3
.
0
8
1
7
E
+
0
7

1
2
6
6

0
.
4
3

3
.
0
8
1
7
E
+
0
7

1
2
6
6

0
.
6
5

3
.
0
8
1
7
E
+
0
7

1
3
2
1

0
.
1
6

Q
S
C
O
R
P
I
O

1
.
8
8
0
5
E
+
0
3

2
1
3

0
.
0
2

1
.
8
8
0
5
E
+
0
3

2
1
9

0
.
0
4

1
.
8
8
0
5
E
+
0
3

2
1
2

0
.
0
2

1
.
8
8
0
5
E
+
0
3

2
1
9

0
.
0
4

1
.
8
8
0
5
E
+
0
3

1
8
4

0
.
0
1

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

108

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

Q
S
C
R
S
8

9
.
0
4
5
6
E
+
0
2

7
2
4

0
.
1
4

9
.
0
4
5
6
E
+
0
2

7
2
8

0
.
2
7

9
.
0
4
5
6
E
+
0
2

7
2
0

0
.
1
6

9
.
0
4
5
6
E
+
0
2

7
2
8

0
.
2
6

9
.
0
4
5
6
E
+
0
2
n
1
1
6
9
0

?
.
?
?

Q
S
C
S
D
1

8
.
6
6
6
7
E
+
0
0

2
4
0

0
.
0
2

8
.
6
6
6
7
E
+
0
0

1
9
9

0
.
0
2

8
.
6
6
6
7
E
+
0
0

2
1
9

0
.
0
2

8
.
6
6
6
7
E
+
0
0

1
9
9

0
.
0
2

8
.
6
6
6
7
E
+
0
0

2
2
2

0
.
0
1

Q
S
C
S
D
6

5
.
0
8
0
8
E
+
0
1

5
7
1

0
.
0
8

5
.
0
8
0
8
E
+
0
1

6
5
9

0
.
1
2

5
.
0
8
0
8
E
+
0
1

6
4
3

0
.
1
0

5
.
0
8
0
8
E
+
0
1

6
5
9

0
.
1
2

5
.
8
9
5
0
E
+
0
1
i

3
2
0

0
.
0
1

Q
S
C
S
D
8

9
.
4
0
7
6
E
+
0
2

1
1
9
3

0
.
3
7

9
.
4
0
7
6
E
+
0
2

1
2
0
2

0
.
5
3

9
.
4
0
7
6
E
+
0
2

1
2
4
4

0
.
4
0

9
.
4
0
7
6
E
+
0
2

1
2
0
2

0
.
5
3

1
.
4
0
5
4
E
+
0
3
i

4
4
1

0
.
0
2

Q
S
C
T
A
P
1

1
.
4
1
5
9
E
+
0
3

2
8
9

0
.
0
2

1
.
4
1
5
9
E
+
0
3

2
8
9

0
.
0
3

1
.
4
1
5
9
E
+
0
3

2
9
0

0
.
0
2

1
.
4
1
5
9
E
+
0
3

2
8
9

0
.
0
3

1
.
4
1
5
9
E
+
0
3

2
9
8

0
.
0
1

Q
S
C
T
A
P
2

1
.
7
3
5
0
E
+
0
3

1
3
0
0

1
.
0
3

1
.
7
3
5
0
E
+
0
3

1
3
2
2

1
.
6
0

1
.
7
3
5
0
E
+
0
3

1
2
9
3

1
.
0
5

1
.
7
3
5
0
E
+
0
3

1
3
2
2

1
.
6
0

1
.
7
3
5
0
E
+
0
3

1
3
7
4

0
.
2
3

Q
S
C
T
A
P
3

1
.
4
3
8
8
E
+
0
3

1
6
1
6

0
.
5
0

1
.
4
3
8
8
E
+
0
3

1
5
9
7

1
.
3
5

1
.
4
3
8
8
E
+
0
3

1
6
5
3

1
.
0
2

1
.
4
3
8
8
E
+
0
3

1
5
9
7

1
.
3
5

2
.
2
9
2
2
E
+
0
3
i

1
0
5
9

0
.
1
9

Q
S
E
B
A

8
.
1
4
8
3
E
+
0
7

2
9
6

0
.
0
2

8
.
1
4
8
3
E
+
0
7

2
9
6

0
.
0
3

8
.
1
4
8
3
E
+
0
7

2
9
6

0
.
0
2

8
.
1
4
8
3
E
+
0
7

2
9
6

0
.
0
3

8
.
1
4
8
3
E
+
0
7

2
9
8

0
.
0
2

Q
S
H
A
R
E
1
B

7
.
2
0
0
8
E
+
0
5

4
0
7

0
.
0
2

7
.
2
0
0
8
E
+
0
5

4
0
7

0
.
0
3

7
.
2
0
0
8
E
+
0
5

4
0
7

0
.
0
2

7
.
2
0
0
8
E
+
0
5

4
0
7

0
.
0
3

7
.
5
3
0
4
E
+
0
5
i

2
3
1

0
.
0
0

Q
S
H
A
R
E
2
B

1
.
1
7
0
4
E
+
0
4

1
1
3

0
.
0
0

1
.
1
7
0
4
E
+
0
4

1
1
3

0
.
0
0

1
.
1
7
0
4
E
+
0
4

1
1
3

0
.
0
0

1
.
1
7
0
4
E
+
0
4

1
1
3

0
.
0
0

1
.
1
7
0
4
E
+
0
4

1
0
9

0
.
0
0

Q
S
H
E
L
L

1
.
5
7
2
6
E
+
1
2

5
1
7

0
.
3
4

1
.
5
7
2
6
E
+
1
2

5
0
4

0
.
3
7

1
.
5
7
2
6
E
+
1
2

5
3
8

0
.
3
8

1
.
5
7
2
6
E
+
1
2

5
0
4

0
.
3
7

1
.
5
9
2
5
E
+
1
2
i

3
3
9

0
.
0
5

Q
S
H
I
P
0
4
L

2
.
4
2
0
0
E
+
0
6

2
5
8

0
.
1
5

2
.
4
2
0
0
E
+
0
6

2
6
0

0
.
1
6

2
.
4
2
0
0
E
+
0
6

2
5
8

0
.
1
6

2
.
4
2
0
0
E
+
0
6

2
6
0

0
.
1
6

2
.
4
2
2
7
E
+
0
6
i

2
5
2

0
.
0
1

Q
S
H
I
P
0
4
S

2
.
4
2
5
0
E
+
0
6

1
7
1

0
.
0
7

2
.
4
2
5
0
E
+
0
6

1
7
1

0
.
0
7

2
.
4
2
5
0
E
+
0
6

1
7
1

0
.
0
7

2
.
4
2
5
0
E
+
0
6

1
7
1

0
.
0
7

2
.
4
2
5
0
E
+
0
6

1
8
9

0
.
0
1

Q
S
H
I
P
0
8
L

2
.
3
7
6
0
E
+
0
6

4
2
0

0
.
3
6

2
.
3
7
6
0
E
+
0
6

4
1
9

0
.
5
9

2
.
3
7
6
0
E
+
0
6

4
2
0

0
.
3
8

2
.
3
7
6
0
E
+
0
6

4
1
9

0
.
6
0

2
.
3
7
6
4
E
+
0
6
i

4
2
6

0
.
1
2

Q
S
H
I
P
0
8
S

2
.
3
8
5
7
E
+
0
6

2
4
5

0
.
1
1

2
.
3
8
5
7
E
+
0
6

2
4
4

0
.
2
3

2
.
3
8
5
7
E
+
0
6

2
4
8

0
.
1
2

2
.
3
8
5
7
E
+
0
6

2
4
4

0
.
2
3

2
.
4
1
0
5
E
+
0
6
i

1
7
0

0
.
0
2

Q
S
H
I
P
1
2
L

3
.
0
1
8
9
E
+
0
6

8
3
8

2
.
8
5

3
.
0
1
8
9
E
+
0
6

8
4
1

3
.
6
3

3
.
0
1
8
9
E
+
0
6

8
3
3

2
.
7
6

3
.
0
1
8
9
E
+
0
6

8
4
1

3
.
6
4

3
.
0
3
3
6
E
+
0
6
i

6
0
6

0
.
2
8

Q
S
H
I
P
1
2
S

3
.
0
5
7
0
E
+
0
6

4
3
5

0
.
8
0

3
.
0
5
7
0
E
+
0
6

4
3
3

1
.
0
5

3
.
0
5
7
0
E
+
0
6

4
3
5

0
.
8
3

3
.
0
5
7
0
E
+
0
6

4
3
3

1
.
0
5

3
.
0
5
9
5
E
+
0
6
i

3
6
3

0
.
0
7

Q
S
I
E
R
R
A

2
.
3
7
5
3
E
+
0
7

5
9
0

0
.
2
8

2
.
3
7
5
3
E
+
0
7

5
8
8

0
.
4
2

2
.
3
7
5
3
E
+
0
7

5
9
0

0
.
3
1

2
.
3
7
5
3
E
+
0
7

5
8
8

0
.
4
2

2
.
4
0
6
2
E
+
0
7
i

5
5
2

0
.
0
4

Q
S
T
A
I
R

7
.
9
8
5
5
E
+
0
6

3
5
5

0
.
0
5

7
.
9
8
5
5
E
+
0
6

3
4
9

0
.
0
8

7
.
9
8
5
5
E
+
0
6

3
5
5

0
.
0
7

7
.
9
8
5
5
E
+
0
6

3
4
9

0
.
0
8

7
.
9
8
5
5
E
+
0
6

4
7
2

0
.
0
4

Q
S
T
A
N
D
A
T

6
.
4
1
1
8
E
+
0
3

1
8
8

0
.
0
1

6
.
4
1
1
8
E
+
0
3

1
9
0

0
.
0
3

6
.
4
1
1
8
E
+
0
3

1
8
6

0
.
0
2

6
.
4
1
1
8
E
+
0
3

1
9
0

0
.
0
3

6
.
4
6
2
8
E
+
0
3
i

1
6
2

0
.
0
1

S
2
6
8

-
9
.
0
9
4
9
E
-
1
2

7
0
.
0
0

-
5
.
4
5
7
0
E
-
1
2

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

7
0
.
0
0

-
1
.
6
3
7
1
E
-
1
1

7
0
.
0
0

5
.
4
5
7
0
E
-
1
2

9
0
.
0
0

S
T
C
Q
P
1

1
.
5
5
1
4
E
+
0
5

1
0
4
2

0
.
3
7

1
.
5
5
1
4
E
+
0
5

7
7
9

1
.
4
9

1
.
5
5
1
4
E
+
0
5

1
0
4
2

0
.
4
2

1
.
5
5
1
4
E
+
0
5

1
0
4
2

1
.
2
2

1
.
5
5
1
4
E
+
0
5

1
0
4
6

0
.
2
8

S
T
C
Q
P
2

2
.
2
3
2
7
E
+
0
4

2
3
8
4

1
.
2
3

2
.
2
3
2
7
E
+
0
4

1
6
4
5

0
.
5
4

2
.
2
3
2
7
E
+
0
4

2
3
8
4

1
.
3
0

2
.
2
3
2
7
E
+
0
4

2
3
8
8

2
.
6
7

2
.
2
3
2
7
E
+
0
4

2
4
0
1

0
.
5
1

T
A
M
E

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

0
.
0
0
0
0
E
+
0
0

2
0
.
0
0

3
.
0
8
1
5
E
-
3
3

1
0
.
0
0

U
B
H
1

N
a
N
2

7
8
4

1
.
1
0

1
.
1
1
6
0
E
+
0
0

7
7
6
5

1
2
9
.
4
4

1
.
1
1
6
0
E
+
0
0

9
8
9
3

1
4
6
.
4
6

1
.
1
1
6
0
E
+
0
0

1
0
3
1
6

1
6
1
.
4
8

3
.
3
4
8
2
E
+
0
1
i

1
8
5
2

2
.
1
0

V
A
L
U
E
S

-
1
.
3
9
6
6
E
+
0
0

7
9

0
.
0
0

-
1
.
3
9
6
6
E
+
0
0

7
9

0
.
0
0

-
1
.
3
9
6
6
E
+
0
0

7
9

0
.
0
1

-
1
.
3
9
6
6
E
+
0
0

7
9

0
.
0
0

-
1
.
3
9
6
6
E
+
0
0

7
9

0
.
0
0

Y
A
O

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

3
0
.
0
2

1
.
9
7
7
0
E
+
0
2

1
2

0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

109

T
a
b

le
8
.4

:
R

es
u

lt
s

fo
r

M
a
ro

s
a
n

d
M

és
zá

ro
s
Q
P

s
(c

o
n
ti

n
u

ed
)

L
U
S
O
L

M
A
5
7

U
M
F
P
A
C
K

M
A
5
7
v

S
Q
O
P
T

N
a
m
e

O
b
j
e
c
t
i
v
e

n
I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

O
b
j
e
c
t
i
v
e

I
t
n

T
i
m
e

Z
E
C
E
V
I
C
2

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

5
0
.
0
0

-
4
.
1
2
5
0
E
+
0
0

4
0
.
0
0

1
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

u
n
b
o
u
n
d
e
d
,

2
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
f
e
a
s
i
b
l
e
,

i
=

p
r
o
b
l
e
m

d
e
c
l
a
r
e
d

i
n
d
e
f
i
n
i
t
e
,

f
=

f
a
i
l
e
d
,

n
=

h
i
t

i
t
e
r
a
t
i
o
n

l
i
m
i
t

110

Table 8.5: Number of superbasics and factorizations for CUTEr

problems

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

ALLINQP 1964 1964 1964 1964 1964 4 2 4 4

AUG2D 10192 10196 10192 10192 10192 11 1 11 11

AUG2DC 10200 10200 10200 10200 10200 11 1 11 11

AUG2DCQP 9994 9994 9994 9994 9994 18 18 18 18

AUG2DQP 9801 9801 9801 9801 9801 18 18 17 18

AUG3D 16909 16908 16909 16909 16909 17 3 17 17

AUG3DC 19543 19543 19543 19543 19543 20 1 20 20

AUG3DCQP 17665 17665 17665 17665 17665 25 25 25 25

AUG3DQP 13712 13712 13712 13712 13713 21 21 21 21

AVGASA 3 3 3 3 3 1 1 1 1

AVGASB 3 3 3 3 3 1 1 1 1

BIGGSC4 1 1 1 1 1 2 2 2 2

BLOCKQP1 9 9 9 9 2 1 2 1 1

BLOCKQP2 9 9 9 9 2002 1110 8 1110 1110

BLOCKQP3 9 9 9 9 2 1 2 1 1

BLOCKQP4 9 9 9 9 2002 1024 12 1024 1024

BLOCKQP5 9 9 9 9 0 1 2 1 1

BLOWEYA 0 2000 0 0 0 1 3 1 1

BLOWEYB 0 2000 0 0 0 1 3 1 1

BLOWEYC 0 2000 0 0 0 1 3 1 1

CONT5-QP 2 0 2 1 97 3 3 4 6

CVXQP1 0 675 0 0 1275 1 6 378 2

CVXQP2 2210 2210 2210 2210 2210 437 93 423 440

CVXQP3 0 1758 0 0 436 1 2 5 2

DEGENQP 0 0 0 0 0 1 1 1 1

DTOC3 4803 4999 4803 4803 4803 5 1 5 5

DUAL1 62 62 62 62 62 14 14 14 14

DUAL2 91 91 91 91 91 15 15 15 15

DUAL3 96 96 96 96 96 15 15 15 15

DUAL4 61 61 61 61 61 13 13 13 13

DUALC1 2 2 2 2 2 1 1 1 1

DUALC2 2 2 2 2 2 1 1 1 1

DUALC5 4 4 4 4 4 1 1 1 1

DUALC8 2 2 2 2 2 1 1 1 1

FERRISDC 0 206 0 0 0 1 1 1 1

GENHS28 2 2 2 2 2 1 1 1 1

GMNCASE1 51 95 51 51 51 1 2 1 1

GMNCASE2 46 94 46 46 46 3 1 3 3

GMNCASE3 48 93 48 48 48 3 7 3 3

GMNCASE4 0 0 0 0 0 1 1 1 1

GOULDQP2 0 0 0 0 0 1 1 1 1

GOULDQP3 4988 4988 4988 4988 4988 6 6 6 6

111

Table 8.5: Number of superbasics and factorizations for CUTEr

problems (continued)

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

GRIDNETA 2183 2218 2183 2183 2183 3 1 3 3

GRIDNETB 6560 6561 6560 6560 6561 7 1 7 7

GRIDNETC 4533 4533 4533 4533 4533 5 3 5 5

HATFLDH 0 0 0 0 0 1 2 1 1

HS118 0 0 0 0 0 2 1 2 2

HS21 1 1 1 1 1 3 2 3 3

HS268 4 5 5 5 5 2 1 2 2

HS35 2 2 2 2 2 6 2 6 6

HS35I 2 2 2 2 2 6 2 6 6

HS35MOD 1 2 1 1 1 3 1 3 3

HS44 0 0 0 0 0 1 1 1 1

HS44NEW 0 1 0 0 0 1 1 1 1

HS51 2 2 2 2 2 1 1 1 1

HS52 2 2 2 2 2 1 1 1 1

HS53 2 2 2 2 2 1 1 1 1

HS76 2 2 2 2 2 2 1 2 2

HS76I 2 2 2 2 2 2 1 2 2

HUES-MOD 8321 9444 8321 8321 8323 27 1 27 27

HUESTIS 3 9444 8321 8321 9138 4 1 27 27

KSIP 1 18 18 18 16 121 112 1279 1279

LINCONT 0 0 0 0 0 4 4 4 4

LISWET1 2 2 2 2 2 2 1 2 2

LISWET10 14 17 14 17 15 12 3 12 12

LISWET11 31 36 31 31 31 8 7 8 8

LISWET12 5 6 5 5 5 10 7 10 10

LISWET2 4 4 4 4 16 2 3 2 2

LISWET3 261 261 261 261 282 7 11 7 8

LISWET4 269 269 269 269 284 8 13 8 7

LISWET5 254 254 254 254 265 7 11 7 8

LISWET6 222 222 222 231 239 10 15 10 21

LISWET7 2 2 2 2 2 2 1 2 2

LISWET8 13 14 13 13 15 6 3 6 6

LISWET9 4 5 4 4 4 10 5 10 11

LOTSCHD 0 0 0 0 0 1 1 1 1

MOSARQP1 909 1021 1021 1021 1021 7 2 147 144

MOSARQP2 1640 1640 1640 1640 1640 3 1 3 3

NASH 0 0 0 0 0 2 2 2 2

NCVXQP1 0 0 0 0 0 92 91 92 90

NCVXQP2 0 0 0 0 0 148 217 156 216

NCVXQP3 19 14 19 17 4 228 293 237 215

NCVXQP4 0 0 0 0 0 11 15 11 14

NCVXQP5 0 0 0 0 0 6 7 6 6

NCVXQP6 53 50 53 53 3 11 133 10 13

112

Table 8.5: Number of superbasics and factorizations for CUTEr

problems (continued)

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

NCVXQP7 0 0 0 0 0 129 127 155 126

NCVXQP8 0 0 0 0 0 167 188 169 187

NCVXQP9 6 6 6 6 1 196 225 197 224

PORTSNQP 80 80 80 80 80 13 14 13 13

PORTSQP 99 99 99 99 99 17 14 17 17

POWELL20 1 1 1 1 1 10 6 10 10

PRIMAL1 133 262 133 130 131 4 1 4 4

PRIMAL2 302 557 302 302 300 5 1 5 5

PRIMAL3 572 648 572 572 570 5 1 5 5

PRIMAL4 1140 1427 1140 1140 1140 7 1 7 7

PRIMALC1 14 14 14 14 14 3 2 3 3

PRIMALC2 1 1 1 1 1 1 1 1 1

PRIMALC5 5 5 5 5 5 2 1 2 2

PRIMALC8 17 17 17 17 17 4 2 4 4

QPBAND 39 39 39 39 39 21 21 21 21

QPCBLEND 0 2 2 2 2 8 23 23 23

QPCBOEI1 111 111 111 111 108 106 107 108 107

QPCBOEI2 37 37 37 37 37 27 30 31 30

QPCSTAIR 0 33 34 33 27 19 42 42 42

QPNBAND 1 1 1 1 0 11 11 11 11

QPNBLEND 0 3 3 3 1 8 21 21 21

QPNBOEI1 93 93 93 93 22 74 76 66 76

QPNBOEI2 31 31 31 31 12 20 22 22 22

QPNSTAIR 0 31 31 31 25 41 66 68 66

S268 4 5 5 5 5 2 1 2 2

SOSQP1 0 9999 0 0 0 1 1 1 1

SOSQP2 4976 4985 4976 4976 4979 10 15 10 10

STATIC3 1 198 1 1 4 1 2 1 1

STCQP1 5707 5717 5707 5707 5707 6 1 6 6

STCQP2 3970 3970 3970 3970 3970 4 1 4 4

STEENBRA 11 11 11 11 11 1 1 1 1

STNQP1 5277 5277 5277 5277 0 6 56 6 6

STNQP2 2640 2640 2640 2640 0 3 381 3 3

TAME 1 1 1 1 1 3 3 3 3

UBH1 31 5997 5997 5997 471 47 6 1872 2092

WALL10 0 1056 0 0 0 2 0 2 2

WALL100 0 105074 0 0 0 2 0 2 2

WALL20 0 4214 0 0 0 2 0 2 2

WALL50 0 26286 0 0 0 2 0 2 2

YAO 1 1 1 1 1 1 1 1 1

ZECEVIC2 1 1 1 1 1 4 4 4 4

113

Table 8.6: Number of superbasics and factorizations for Maros

and Mészáros problems

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

ADAT1 1 1 1 1 1 1 1 1 1

ADAT2 6 6 6 6 6 2 2 2 2

ADAT3 6 6 6 6 6 2 1 2 2

AUG2D 10192 10196 10192 10192 10192 11 1 11 11

AUG2DC 10200 10200 10200 10200 10200 11 1 11 11

AUG2DCQP 9994 9994 9994 9994 9994 18 18 18 18

AUG2DQP 9801 9801 9801 9801 9801 18 18 17 18

AUG3D 2158 2158 2158 2158 2161 3 1 3 3

AUG3DC 2873 2873 2873 2873 2873 3 1 3 3

AUG3DCQP 2333 2333 2333 2333 2333 3 3 3 3

AUG3DQP 1455 1455 1455 1455 1455 2 2 2 2

CONT-050 195 195 195 195 195 1 1 1 1

CONT-100 395 395 395 395 395 3 3 3 3

CONT-101 97 97 97 97 97 1 1 1 1

CONT-200 795 795 795 795 795 1 1 1 1

CONT-201 197 197 197 197 197 1 1 1 1

CONT-300 297 297 297 297 297 7 1 7 1

CVXQP1 L 0 0 0 0 1275 1 3 272 3

CVXQP1 M 118 118 118 118 118 73 76 72 76

CVXQP1 S 14 14 14 14 14 1 1 1 1

CVXQP2 L 615 2210 2210 2210 2210 129 280 264 280

CVXQP2 M 217 217 217 217 217 9 9 10 9

CVXQP2 S 21 21 21 21 21 2 2 2 2

CVXQP3 L 0 0 1 0 434 3 3 663 3

CVXQP3 M 41 41 41 41 41 93 91 81 91

CVXQP3 S 3 3 3 3 3 1 1 1 1

DPKLO1 56 56 56 56 56 1 1 1 1

DTOC3 4803 4999 4803 4803 4803 5 1 5 5

DUAL1 62 62 62 62 62 14 14 14 14

DUAL2 91 91 91 91 91 15 15 15 15

DUAL3 96 96 96 96 96 15 15 15 15

DUAL4 61 61 61 61 61 13 13 13 13

DUALC1 2 2 2 2 2 1 1 1 1

DUALC2 2 2 2 2 2 1 1 1 1

DUALC5 4 4 4 4 4 1 1 1 1

DUALC8 2 2 2 2 2 1 1 1 1

EXDATA 421 421 421 421 421 4 3 4 4

GENHS28 2 2 2 2 2 1 1 1 1

GOULDQP2 306 306 306 306 305 1 1 1 1

GOULDQP3 174 174 174 174 174 1 1 1 1

HS118 0 0 0 0 0 1 1 1 1

HS21 0 1 0 0 0 2 2 2 2

114

Table 8.6: Number of superbasics and factorizations for Maros

and Mészáros problems (continued)

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

HS268 5 5 5 5 5 2 1 2 2

HS35 2 2 2 2 2 6 6 6 6

HS35MOD 2 2 2 2 2 4 4 4 4

HS51 2 2 2 2 2 1 1 1 1

HS52 2 2 2 2 2 1 1 1 1

HS53 2 2 2 2 2 1 1 1 1

HS76 2 2 2 2 2 2 2 2 2

HUES-MOD 8322 8322 8322 8322 8324 27 27 27 27

HUESTIS 3 8322 8322 8322 9146 4 27 27 27

KSIP 1 18 18 18 18 236 304 303 306

LASER 70 70 70 70 70 1 1 1 1

LISWET1 2 2 2 2 2 2 1 2 2

LISWET10 14 17 14 17 15 12 3 12 12

LISWET11 31 36 31 31 31 8 7 8 8

LISWET12 5 6 5 5 5 10 7 10 10

LISWET2 4 4 4 4 13 2 3 2 2

LISWET3 261 261 261 261 283 7 11 7 8

LISWET4 269 269 269 269 284 8 13 8 7

LISWET5 254 254 254 254 268 6 10 6 6

LISWET6 222 222 222 231 238 10 15 10 21

LISWET7 2 2 2 2 2 2 1 2 2

LISWET8 13 14 13 13 15 6 3 6 6

LISWET9 4 5 4 4 4 10 5 10 11

LOTSCHD 0 0 0 0 0 1 1 1 1

MOSARQP1 897 1012 1012 1012 1012 47 1716 1670 1716

MOSARQP2 273 568 568 568 568 23 29 29 29

POWELL20 1 1 1 1 1 10 6 10 10

PRIMAL1 133 262 133 130 131 4 1 4 4

PRIMAL2 302 557 302 302 300 5 1 5 5

PRIMAL3 572 648 572 572 570 5 1 5 5

PRIMAL4 1140 1427 1140 1140 1140 7 1 7 7

PRIMALC1 14 14 14 14 14 3 2 3 3

PRIMALC2 1 1 1 1 1 1 1 1 1

PRIMALC5 5 5 5 5 5 2 1 2 2

PRIMALC8 17 17 17 17 17 4 2 4 4

Q25FV47 1 2 37 2 38 672 876 1058 876

QADLITTL 6 6 6 6 6 8 8 8 8

QAFIRO 1 1 1 1 1 1 1 1 1

QBANDM 2 2 2 2 2 18 18 18 18

QBEACONF 0 0 0 0 0 1 1 1 1

QBORE3D 0 0 0 0 0 1 1 1 1

QBRANDY 5 5 5 5 5 16 16 16 16

QCAPRI 0 0 0 0 0 19 24 19 24

115

Table 8.6: Number of superbasics and factorizations for Maros

and Mészáros problems (continued)

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

QE226 37 37 37 37 27 43 23 43 23

QETAMACR 81 81 81 81 81 54 53 48 53

QFFFFF80 50 50 50 50 35 1 1 1 1

QFORPLAN 10 10 10 10 10 19 24 19 24

QGFRDXPN 5 5 5 5 4 62 64 62 64

QGROW15 1 1 1 1 1 12 11 10 11

QGROW22 9 9 9 9 1 91 131 138 131

QGROW7 1 1 1 1 1 8 16 8 16

QISRAEL 4 4 4 4 1 4 5 4 5

QPCBLEND 0 2 2 2 2 8 23 23 23

QPCBOEI1 111 111 111 111 111 93 94 93 94

QPCBOEI2 37 37 37 37 37 17 17 17 17

QPCSTAIR 35 33 34 33 31 49 53 52 53

QPILOTNO 1 0 2 0 2 58 2 325 2

QPTEST 1 1 1 1 1 1 1 1 1

QRECIPE 0 0 0 0 0 1 1 1 1

QSC205 1 1 1 1 1 1 1 1 1

QSCAGR25 4 4 4 4 1 18 18 18 18

QSCAGR7 1 1 1 1 1 1 1 1 1

QSCFXM1 20 20 20 20 20 13 13 13 13

QSCFXM2 20 20 20 20 19 8 8 8 8

QSCFXM3 22 22 22 22 22 12 12 12 12

QSCORPIO 0 0 0 0 0 2 2 2 2

QSCRS8 0 0 0 0 ? 1 1 1 1

QSCSD1 0 0 0 0 0 3 3 4 3

QSCSD6 4 4 4 4 1 4 7 5 7

QSCSD8 16 17 16 17 4 36 25 51 25

QSCTAP1 0 0 0 0 0 1 1 1 1

QSCTAP2 5 5 5 5 5 7 7 7 7

QSCTAP3 11 11 11 11 4 14 8 8 8

QSEBA 13 13 13 13 14 1 1 1 1

QSHARE1B 10 10 10 10 8 1 1 1 1

QSHARE2B 0 0 0 0 0 1 1 1 1

QSHELL 62 62 62 62 18 1 1 1 1

QSHIP04L 3 3 3 3 3 2 2 2 2

QSHIP04S 3 3 3 3 3 1 1 1 1

QSHIP08L 19 19 19 19 9 5 5 5 5

QSHIP08S 15 15 15 15 6 6 6 6 6

QSHIP12L 43 43 43 43 4 19 20 19 20

QSHIP12S 44 44 44 44 17 2 2 2 2

QSIERRA 16 16 16 16 13 1 1 1 1

QSTAIR 1 1 1 1 1 19 12 19 12

QSTANDAT 18 18 18 18 18 1 1 1 1

116

Table 8.6: Number of superbasics and factorizations for Maros

and Mészáros problems (continued)

nS nFac

Name lusol ma57 umfpack ma57v sqopt lusol ma57 umfpack ma57v

S268 5 5 5 5 5 2 1 2 2

STCQP1 225 2812 225 225 225 1 1 1 1

STCQP2 658 1940 658 658 658 1 1 1 1

TAME 1 1 1 1 1 3 3 3 3

UBH1 31 5997 5997 5997 471 47 6 1872 2092

VALUES 23 23 23 23 23 16 16 16 16

YAO 1 1 1 1 1 1 1 1 1

ZECEVIC2 1 1 1 1 1 4 4 4 4

Table 8.7: Number of temporarily fixed variables for a vertex for

CUTEr problems

Name nFix Name nFix Name nFix Name nFix

ALLINQP 1428 DUAL4 0 HS76I 4 NCVXQP9 199

AUG2D 10200 DUALC1 0 HUES-MOD 9995 PORTSNQP 1

AUG2DC 10200 DUALC2 0 HUESTIS 9995 PORTSQP 2

AUG2DCQP 0 DUALC5 0 KSIP 20 POWELL20 4998

AUG2DQP 0 DUALC8 0 LINCONT 0 PRIMAL1 323

AUG3D 19543 FERRISDC 1 LISWET1 2 PRIMAL2 647

AUG3DC 19543 GENHS28 2 LISWET10 2 PRIMAL3 743

AUG3DCQP 0 GMNCASE1 111 LISWET11 2 PRIMAL4 1487

AUG3DQP 0 GMNCASE2 121 LISWET12 2 PRIMALC1 14

AVGASA 1 GMNCASE3 99 LISWET2 2 PRIMALC2 1

AVGASB 1 GMNCASE4 0 LISWET3 2 PRIMALC5 8

BIGGSC4 0 GOULDQP2 0 LISWET4 2 PRIMALC8 16

BLOCKQP1 5007 GOULDQP3 0 LISWET5 2 QPBAND 0

BLOCKQP2 5007 GRIDNETA 2081 LISWET6 2 QPCBLEND 0

BLOCKQP3 5007 GRIDNETB 6561 LISWET7 2 QPCBOEI1 0

BLOCKQP4 5007 GRIDNETC 2187 LISWET8 2 QPCBOEI2 0

BLOCKQP5 5003 HATFLDH 1 LISWET9 2 QPCSTAIR 0

BLOWEYA 2001 HS118 14 LOTSCHD 0 QPNBAND 0

BLOWEYB 2001 HS21 1 MOSARQP1 2487 QPNBLEND 0

BLOWEYC 2001 HS268 3 MOSARQP2 2487 QPNBOEI1 0

CONT5-QP 795 HS35 3 NASH 0 QPNBOEI2 0

CVXQP1 4366 HS35I 3 NCVXQP1 446 QPNSTAIR 0

CVXQP2 7325 HS35MOD 2 NCVXQP2 446 S268 3

CVXQP3 2006 HS44 0 NCVXQP3 446 SOSQP1 10000

DEGENQP 0 HS44NEW 4 NCVXQP4 731 SOSQP2 5008

DTOC3 4999 HS51 2 NCVXQP5 731 STATIC3 266

DUAL1 0 HS52 2 NCVXQP6 731 STCQP1 6422

DUAL2 0 HS53 2 NCVXQP7 199 STCQP2 4098

DUAL3 0 HS76 4 NCVXQP8 199 STEENBRA 0

117

Table 8.7: Number of temporarily fixed variables for a vertex for

CUTEr problems (continued)

Name nFix Name nFix Name nFix Name nFix

STNQP1 6422 UBH1 8340 WALL20 4214 ZECEVIC2 1

STNQP2 4098 WALL10 1056 WALL50 26286

TAME 0 WALL100 105074 YAO 0

Table 8.8: Number of temporarily fixed variables for a vertex for

Maros and Mészáros problems

Name nFix Name nFix Name nFix Name nFix

ADAT1 3 DUALC2 0 POWELL20 4998 QSCAGR7 0

ADAT2 3 DUALC5 0 PRIMAL1 323 QSCFXM1 0

ADAT3 3 DUALC8 0 PRIMAL2 647 QSCFXM2 0

AUG2D 10200 EXDATA 1499 PRIMAL3 743 QSCFXM3 0

AUG2DC 10200 GENHS28 2 PRIMAL4 1487 QSCORPIO 0

AUG2DCQP 0 GOULDQP2 0 PRIMALC1 14 QSCRS8 0

AUG2DQP 0 GOULDQP3 0 PRIMALC2 1 QSCSD1 0

AUG3D 2873 HS118 0 PRIMALC5 8 QSCSD6 0

AUG3DC 2873 HS21 1 PRIMALC8 16 QSCSD8 0

AUG3DCQP 0 HS268 4 Q25FV47 0 QSCTAP1 0

AUG3DQP 0 HS35 0 QADLITTL 0 QSCTAP2 0

BOYD1 ? HS35MOD 0 QAFIRO 0 QSCTAP3 0

BOYD2 ? HS51 2 QBANDM 0 QSEBA 0

CONT-050 0 HS52 2 QBEACONF 0 QSHARE1B 0

CONT-100 0 HS53 2 QBORE3D 0 QSHARE2B 0

CONT-101 0 HS76 0 QBRANDY 0 QSHELL 0

CONT-200 0 HUES-MOD 0 QCAPRI 0 QSHIP04L 0

CONT-201 0 HUESTIS 0 QE226 0 QSHIP04S 0

CONT-300 0 KSIP 18 QETAMACR 0 QSHIP08L 0

CVXQP1 L 0 LASER 2 QFFFFF80 0 QSHIP08S 0

CVXQP1 M 0 LISWET1 2 QFORPLAN 0 QSHIP12L 0

CVXQP1 S 0 LISWET10 2 QGFRDXPN 0 QSHIP12S 0

CVXQP2 L 0 LISWET11 2 QGROW15 0 QSIERRA 0

CVXQP2 M 0 LISWET12 2 QGROW22 0 QSTAIR 0

CVXQP2 S 0 LISWET2 2 QGROW7 0 QSTANDAT 0

CVXQP3 L 0 LISWET3 2 QISRAEL 0 S268 4

CVXQP3 M 0 LISWET4 2 QPCBLEND 0 STCQP1 3158

CVXQP3 S 0 LISWET5 2 QPCBOEI1 0 STCQP2 2045

DPKLO1 56 LISWET6 2 QPCBOEI2 0 TAME 0

DTOC3 4999 LISWET7 2 QPCSTAIR 0 UBH1 8340

DUAL1 0 LISWET8 2 QPILOTNO 0 VALUES 0

DUAL2 0 LISWET9 2 QPTEST 0 YAO 0

DUAL3 0 LOTSCHD 0 QRECIPE 0 ZECEVIC2 0

DUAL4 0 MOSARQP1 0 QSC205 0

DUALC1 0 MOSARQP2 0 QSCAGR25 0

A Test Problem Data

Table A.1: Problem sizes for CUTEr QPs

Name m n Name m n Name m n

ALLINQP 5000 10000 DUAL3 1 111 HS53 3 5

AUG2D 10000 20200 DUAL4 1 75 HS76 3 4

AUG2DC 10000 20200 DUALC1 215 9 HS76I 3 4

AUG2DCQP 10000 20200 DUALC2 229 7 HUES-MOD 2 10000

AUG2DQP 10000 20200 DUALC5 278 8 HUESTIS 2 10000

AUG3D 8000 27543 DUALC8 503 8 KSIP 1001 20

AUG3DC 8000 27543 FERRISDCi 320 6300 LINCONTi 419 1257

AUG3DCQP 8000 27543 GENHS28 8 10 LISWET1 10000 10002

AUG3DQP 8000 27543 GMNCASE1i 300 175 LISWET10 10000 10002

AVGASA 10 8 GMNCASE2 1050 175 LISWET11 10000 10002

AVGASB 10 8 GMNCASE3 1050 175 LISWET12 10000 10002

BIGGSC4i 7 4 GMNCASE4 350 175 LISWET2 10000 10002

BLOCKQP1i 5001 10010 GOULDQP2 9999 19999 LISWET3 10000 10002

BLOCKQP2i 5001 10010 GOULDQP3 9999 19999 LISWET4 10000 10002

BLOCKQP3i 5001 10010 GRIDNETA 6724 13284 LISWET5 10000 10002

BLOCKQP4i 5001 10010 GRIDNETB 6724 13284 LISWET6 10000 10002

BLOCKQP5i 5001 10010 GRIDNETC 6724 13284 LISWET7 10000 10002

BLOWEYAi 2002 4002 HATFLDHi 7 4 LISWET8 10000 10002

BLOWEYBi 2002 4002 HS118 17 15 LISWET9 10000 10002

BLOWEYCi 2002 4002 HS21 1 2 LOTSCHD 7 12

CONT5-QP 40200 40601 HS268 5 5 MOSARQP1 700 2500

CVXQP1 5000 10000 HS35 1 3 MOSARQP2 700 2500

CVXQP2 2500 10000 HS35I 1 3 NASHi 24 72

CVXQP3 7500 10000 HS35MOD 1 3 NCVXQP1i 500 1000

DEGENQP 8010 20 HS44i 6 4 NCVXQP2i 500 1000

DTOC3 9998 14999 HS44NEWi 6 4 NCVXQP3i 500 1000

DUAL1 1 85 HS51 3 5 NCVXQP4i 250 1000

DUAL2 1 96 HS52 3 5 NCVXQP5i 250 1000

118

119

Table A.1: Problem sizes for CUTEr QPs (continued)

Name m n Name m n Name m n

NCVXQP6i 250 1000 PRIMALC8 8 520 STATIC3i 96 434

NCVXQP7i 750 1000 QPBAND 5000 10000 STCQP1 4095 8193

NCVXQP8i 750 1000 QPCBLEND 74 83 STCQP2 4095 8193

NCVXQP9i 750 1000 QPCBOEI1 351 384 STEENBRA 108 432

PORTSNQPi 2 10000 QPCBOEI2 166 143 STNQP1i 4095 8193

PORTSQP 1 10000 QPCSTAIR 356 467 STNQP2i 4095 8193

POWELL20 10000 10000 QPNBANDi 5000 10000 TAME 1 2

PRIMAL1 85 325 QPNBLENDi 74 83 UBH1 12000 18009

PRIMAL2 96 649 QPNBOEI1i 351 384 WALL10 1 1461

PRIMAL3 111 745 QPNBOEI2i 166 143 WALL20 1 5924

PRIMAL4 75 1489 QPNSTAIRi 356 467 WALL50 1 37311

PRIMALC1 9 230 S268 5 5 WALL100 1 149624

PRIMALC2 7 231 SOSQP1i 10001 20000 YAO 2000 2002

PRIMALC5 8 287 SOSQP2i 10001 20000 ZECEVIC2 2 2

Table A.2: Problem sizes for Maros and Mészáros QPs

Name m n Name m n Name m n

AUG2D 10000 20200 CVXQP2 M 250 1000 HS21 1 2

AUG2DC 10000 20200 CVXQP2 S 25 100 HS268 5 5

AUG2DCQP 10000 20200 CVXQP3 L 7500 10000 HS35 1 3

AUG2DQP 10000 20200 CVXQP3 M 750 1000 HS35MOD 1 3

AUG3D 1000 3873 CVXQP3 S 75 100 HS51 3 5

AUG3DC 1000 3873 DPKLO1 77 133 HS52 3 5

AUG3DCQP 1000 3873 DTOC3 9998 14999 HS53 3 5

AUG3DQP 1000 3873 DUAL1 1 85 HS76 3 4

BOYD1 18 93261 DUAL2 1 96 HUES-MOD 2 10000

BOYD2 186531 93263 DUAL3 1 111 HUESTIS 2 10000

CONT-050 2401 2597 DUAL4 1 75 KSIP 1001 20

CONT-100 9801 10197 DUALC1 215 9 LASER 1000 1002

CONT-101 10098 10197 DUALC2 229 7 LISWET1 10000 10002

CONT-200 39601 40397 DUALC5 278 8 LISWET10 10000 10002

CONT-201 40198 40397 DUALC8 503 8 LISWET11 10000 10002

CONT-300 90298 90597 EXDATA 3001 3000 LISWET12 10000 10002

CVXQP1 L 5000 10000 GENHS28 8 10 LISWET2 10000 10002

CVXQP1 M 500 1000 GOULDQP2 349 699 LISWET3 10000 10002

CVXQP1 S 50 100 GOULDQP3 349 699 LISWET4 10000 10002

CVXQP2 L 2500 10000 HS118 17 15 LISWET5 10000 10002

120

Table A.2: Problem sizes for Maros and Mészáros QPs (contin-

ued)

Name m n Name m n Name m n

LISWET6 10000 10002 QFFFFF80 524 854 QSCTAP2 1090 1880

LISWET7 10000 10002 QFORPLAN 161 421 QSCTAP3 1480 2480

LISWET8 10000 10002 QGFRDXPN 616 1092 QSEBA 515 1028

LISWET9 10000 10002 QGROW15 300 645 QSHARE1B 117 225

LOTSCHD 7 12 QGROW22 440 946 QSHARE2B 96 79

MOSARQP1 700 2500 QGROW7 140 301 QSHELL 536 1775

MOSARQP2 600 900 QISRAEL 174 142 QSHIP04L 402 2118

POWELL20 10000 10000 QPCBLEND 74 83 QSHIP04S 402 1458

PRIMAL1 85 325 QPCBOEI1 351 384 QSHIP08L 778 4283

PRIMAL2 96 649 QPCBOEI2 166 143 QSHIP08S 778 2387

PRIMAL3 111 745 QPCSTAIR 356 467 QSHIP12L 1151 5427

PRIMAL4 75 1489 QPILOTNO 975 2172 QSHIP12S 1151 2763

PRIMALC1 9 230 QPTEST 2 2 QSIERRA 1227 2036

PRIMALC2 7 231 QRECIPE 91 180 QSTAIR 356 467

PRIMALC5 8 287 QSC205 205 203 QSTANDAT 359 1075

PRIMALC8 8 520 QSCAGR25 471 500 S268 5 5

Q25FV47 820 1571 QSCAGR7 129 140 STADAT1 3999 2001

QADLITTL 56 97 QSCFXM1 330 457 STADAT2 3999 2001

QAFIRO 27 32 QSCFXM2 660 914 STADAT3 7999 4001

QBANDM 305 472 QSCFXM3 990 1371 STCQP1 2052 4097

QBEACONF 173 262 QSCORPIO 388 358 STCQP2 2052 4097

QBORE3D 233 315 QSCRS8 490 1169 TAME 1 2

QBRANDY 220 249 QSCSD1 77 760 UBH1 12000 18009

QCAPRI 271 353 QSCSD6 147 1350 VALUES 1 202

QE226 223 282 QSCSD8 397 2750 YAO 2000 2002

QETAMACR 400 688 QSCTAP1 300 480 ZECEVIC2 2 2

Bibliography

[1] A. Altman and J. Gondzio. Regularized symmetric indefinite systems in interior point
methods for linear and quadratic optimization. Optim. Methods Softw., 11/12(1-4):275–302,
1999.

[2] R. A. Bartlett and L. T. Biegler. QPSchur: a dual, active-set, Schur-complement method
for large-scale and structured convex quadratic programming. Optim. Eng., 7(1):5–32, 2006.

[3] M. C. Biggs. Constrained minimization using recursive equality quadratic programming.
In F. A. Lootsma, editor, Numerical Methods for Nonlinear Optimization, pages 411–428.
Academic Press, London and New York, 1972.

[4] J. Bisschop and A. Meeraus. Matrix augmentation and partitioning in the updating of the
basis inverse. Math. Program., 13:241–254, 1977.

[5] N. L. Boland. A dual-active-set algorithm for positive semi-definite quadratic programming.
Math. Programming, 78(1, Ser. A):1–27, 1997.

[6] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint. CUTE: Constrained and uncon-
strained testing environment. ACM Trans. Math. Software, 21(1):123–160, 1995.

[7] J. M. Borwein. Necessary and sufficient conditions for quadratic minimality. Numer. Funct.
Anal. and Optimiz., 5:127–140, 1982.

[8] G. G. Brown and G. W. Graves. Elastic programming: A new approach to large-scale
mixed-integer optimization, November 1975. Presented at the presented at ORSA/TIMS
meeting, Las Vegas, NV.

[9] A. R. Conn, N. I. M. Gould, and P. L. Toint. Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numer. Anal., 25:433–460, 1988.

[10] A. R. Conn, N. I. M. Gould, and P. L. Toint. A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM J. Numer.
Anal., 28:545–572, 1991.

[11] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: a Fortran package for large-
scale nonlinear optimization (Release A). Lecture Notes in Computation Mathematics 17.
Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.

[12] L. B. Contesse. Une caractérisation complète des minima locaux en programmation quadra-
tique. Numer. Math., 34:315–332, 1980.

[13] COPS. Constrained optimization problem set. http://www.mcs.anl.gov/~more/cops.

[14] R. W. Cottle, G. J. Habetler, and C. E. Lemke. On classes of copositive matrices. Linear
Algebra Appl., 3:295–310, 1970.

121

http://www.mcs.anl.gov/~more/cops

122

[15] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Software, 30(2):196–199, 2004.

[16] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Software, 30(2):167–195, 2004.

[17] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU
factorization. SIAM J. Matrix Anal. Appl., 18(1):140–158, 1997.

[18] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Software, 25(1):1–20, 1999.

[19] F. Delbos and J. C. Gilbert. Global linear convergence of an augmented Lagrangian al-
gorithm to solve convex quadratic optimization problems. J. Convex Anal., 12(1):45–69,
2005.

[20] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2, Ser. A):201–213, 2002.

[21] W. S. Dorn. Duality in quadratic programming. Quart. Appl. Math., 18:155–162, 1960/1961.

[22] Z. Dostál, A. Friedlander, and S. A. Santos. Adaptive precision control in quadratic program-
ming with simple bounds and/or equalities. In High performance algorithms and software
in nonlinear optimization (Ischia, 1997), volume 24 of Appl. Optim., pages 161–173. Kluwer
Acad. Publ., Dordrecht, 1998.

[23] Z. Dostál, A. Friedlander, and S. A. Santos. Augmented Lagrangians with adaptive preci-
sion control for quadratic programming with equality constraints. Comput. Optim. Appl.,
14(1):37–53, 1999.

[24] Z. Dostál, A. Friedlander, and S. A. Santos. Augmented Lagrangians with adaptive precision
control for quadratic programming with simple bounds and equality constraints. SIAM J.
Optim., 13(4):1120–1140 (electronic), 2003.

[25] I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software, 30(2):118–144, 2004.

[26] I. S. Duff. Subroutine ma57lfd.f, October 2010. Private communication.

[27] S. K. Eldersveld and M. A. Saunders. A block-LU update for large-scale linear programming.
SIAM J. Matrix Anal. Appl., 13:191–201, 1992.

[28] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley and Sons, Inc., New York-London-Sydney, 1968.

[29] R. Fletcher. A general quadratic programming algorithm. J. Inst. Math. Applics., 7:76–91,
1971.

[30] R. Fletcher. An `1 penalty method for nonlinear constraints. In P. T. Boggs, R. H. Byrd,
and R. B. Schnabel, editors, Numerical Optimization 1984, pages 26–40, Philadelphia, 1985.

[31] R. Fletcher and S. Leyffer. User manual for filterSQP. Technical Report NA/181, Dept. of
Mathematics, University of Dundee, Scotland, 1998.

[32] A. Forsgren, P. E. Gill, and W. Murray. On the identification of local minimizers in inertia-
controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl., 12:730–746,
1991.

123

[33] M. P. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for Non-
linear Optimization. PhD thesis, Department of Operations Research, Stanford University,
Stanford, CA, 2002.

[34] M. P. Friedlander and S. Leyffer. Global and finite termination of a two-phase augmented
Lagrangian filter method for general quadratic programs. SIAM J. Sci. Comput., 30(4):1706–
1729, 2008.

[35] M. P. Friedlander and M. A. Saunders. A globally convergent linearly constrained Lagrangian
method for nonlinear optimization. SIAM J. Optim., 15(3):863–897, 2005.

[36] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Solving reduced KKT systems
in barrier methods for linear programming. In G. A. Watson and D. Griffiths, editors,
Numerical Analysis 1993 (Dundee, 1993), volume 303 of Pitman Res. Notes Math. Ser.,
pages 89–104. Longman Sci. Tech., Harlow, UK, 1994.

[37] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for QPOPT 1.0: a Fortran package
for quadratic programming. Report SOL 95-4, Department of Operations Research, Stanford
University, Stanford, CA, 1995.

[38] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Rev., 47:99–131, 2005.

[39] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SQOPT Version 7: Software for
large-scale linear and quadratic programming. Numerical Analysis Report 06-1, Department
of Mathematics, University of California, San Diego, La Jolla, CA, 2006.

[40] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Sparse matrix methods in
optimization. SIAM J. Sci. Statist. Comput., 5(3):562–589, 1984.

[41] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Maintaining LU factors of a
general sparse matrix. Linear Algebra Appl., 88/89:239–270, 1987.

[42] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method
for sparse quadratic programming. In M. G. Cox and S. J. Hammarling, editors, Reliable
Numerical Computation, pages 113–138. Oxford University Press, 1990.

[43] P. E. Gill and D. P. Robinson. A primal-dual augmented Lagrangian. Computational
Optimization and Applications, pages 1–25, 2010.

[44] P. E. Gill and E. Wong. Methods for convex and general quadratic programming. Numerical
Analysis Report 11-1, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 2011.

[45] P. E. Gill and E. Wong. User’s guide for icQP. Numerical Analysis Report 11-3, Department
of Mathematics, University of California, San Diego, La Jolla, CA, 2011.

[46] P. E. Gill and E. Wong. User’s guide for SNCTRL, an interface for SNOPT 7. Numerical
Analysis Report 11-1, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 2011.

[47] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex
quadratic programs. Math. Programming, 27(1):1–33, 1983.

[48] N. I. M. Gould. On the accurate determination of search directions for simple differentiable
penalty functions. IMA J. Numer. Anal., 6:357–372, 1986.

124

[49] N. I. M. Gould. An algorithm for large-scale quadratic programming. IMA J. Numer. Anal.,
11(3):299–324, 1991.

[50] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr and SifDec: A constrained and un-
constrained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–394,
2003.

[51] N. I. M. Gould, D. Orban, and P. L. Toint. GALAHAD , a library of thread-safe Fortran 90
packages for large-scale nonlinear optimization. ACM Trans. Math. Software, 29(4):353–372,
Dec 2003.

[52] N. I. M. Gould, J. A. Scott, and Y. Hu. A numerical evaluation of sparse direct solvers
for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math.
Software, 33(2):Art. 10, 32, 2007.

[53] H. M. Huynh. A Large-Scale Quadratic Programming Solver Based on Block-LU Updates
of the KKT System. PhD thesis, Program in Scientific Computing and Computational
Mathematics, Stanford University, Stanford, CA, 2008.

[54] C. M. Maes. A Regularized Active-Set Method for Sparse Convex Quadratic Programming.
PhD thesis, Institute for Computational and Mathematical Engineering, Stanford University,
Stanford, CA, August 2010.

[55] A. Majthay. Optimality conditions for quadratic programming. Math. Programming, 1:359–
365, 1971.

[56] I. Maros and C. Mészáros. A repository of convex quadratic programming problems. Optim.
Methods Softw., 11/12(1-4):671–681, 1999. Interior point methods.

[57] W. Murray. An algorithm for constrained minimization. In Optimization (Sympos., Univ.
Keele, Keele, 1968), pages 247–258. Academic Press, London, 1969.

[58] P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic pro-
gramming is NP-hard. Oper. Res. Lett., 7(1):33–35, 1988.

[59] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue is
NP-hard. J. Global Optim., 1(1):15–22, 1991.

[60] M. J. D. Powell. On the quadratic programming algorithm of Goldfarb and Idnani. Math.
Programming Stud., (25):46–61, 1985.

[61] D. P. Robinson. Primal-Dual Methods for Nonlinear Optimization. PhD thesis, Department
of Mathematics, University of California, San Diego, September 2007.

[62] M. A. Saunders. LUMOD: Updating a dense square factorization LC = U. http://www.

stanford.edu/group/SOL/software/lumod.html.

[63] M. A. Saunders. Cholesky-based methods for sparse least squares: The benefits of reg-
ularization. In L. Adams and J. L. Nazareth, editors, Linear and Nonlinear Conjugate
Gradient-Related Methods, pages 92–100. SIAM Publications, Philadelphia, 1996. Proceed-
ings of AMS-IMS-SIAM Joint Summer Research Conference, University of Washington,
Seattle, WA (July 9–13, 1995).

[64] M. A. Saunders and J. A. Tomlin. Solving regularized linear programs using barrier methods
and KKT systems. Report SOL 96-4, Dept of EESOR, Stanford University, 1996.

http://www.stanford.edu/group/SOL/software/lumod.html
http://www.stanford.edu/group/SOL/software/lumod.html

125

[65] M. A. Saunders and J. A. Tomlin. Stable reduction to KKT systems in barrier methods for
linear and quadratic programming. Report SOL 96-3, Dept of EESOR, Stanford University,
1996.

[66] R. A. Tapia. Diagonalized multiplier methods and quasi-Newton methods for constrained
optimization. J. Optim. Theory Appl., 22:135–194, 1977.

[67] R. J. Vanderbei. LOQO: an interior-point code for quadratic programming. Optimization
Methods and Software, 11(1–4):451–484, 1999.

[68] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program., 106(1, Ser. A):25–57,
2006.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Overview
	Contributions of this Thesis
	Notation, Definitions, and Useful Results

	Quadratic Programming
	Background
	Active-Set Methods for Mixed-Constraint Problems
	Binding-direction method
	Nonbinding-direction method
	Relation between the binding and nonbinding methods

	Problems in Standard Form
	Introduction
	Nonbinding-Direction Method for Standard-Form QP
	Linear Programs in Standard Form

	Dual Quadratic Programming
	Background
	Regularized dual problem

	A Dual Nonbinding-Direction Method
	Dual linear programming
	Degeneracy of the dual QP

	Finding an Initial Point
	Getting Feasible
	Second-Order-Consistent Basis
	Variable-reduction method
	Schur-complement and block-LU method

	Stationarity

	Single-Phase Methods
	Penalty-Function Methods
	QP Regularization
	Inner Iterations
	Constraint-shifted approach
	Variable-shifted approach

	Outer Iterations

	Solving the KKT Systems
	Variable-Reduction Method
	Equations for the standard-form algorithm

	Schur-Complement and Block-LU Method
	Augmenting the KKT matrix
	Factoring the matrices
	Updating the factors

	Numerical Results
	Implementation
	Performance Profiles
	Results for the Nonbinding-Direction Method
	Results on icQP with different linear solvers
	Results on icQP and SQOPT

	Test Problem Data
	Bibliography

