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ABSTRACT OF THE DISSERTATION

Active-Set Methods for Quadratic Programming

by

Elizabeth Wong

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Philip E. Gill, Chair

Computational methods are considered for finding a point satisfying the second-order
necessary conditions for a general (possibly nonconvex) quadratic program (QP). A framework
for the formulation and analysis of feasible-point active-set methods is proposed for a generic
QP. This framework is defined by reformulating and extending an inertia-controlling method
for general QP that was first proposed by Fletcher and subsequently modified by Gould. This
reformulation defines a class of methods in which a primal-dual search pair is the solution of a
“KKT system” of equations associated with an equality-constrained QP subproblem defined in
terms of a “working set” of linearly independent constraints. It is shown that, under certain
circumstances, the solution of this KKT system may be updated using a simple recurrence rela-
tion, thereby giving a significant reduction in the number of systems that need to be solved. The
use of inertia control guarantees that the KKT systems remain nonsingular throughout, thereby
allowing the utilization of third-party linear algebra software.

The algorithm is suitable for indefinite problems, making it an ideal QP solver for stand-

alone applications and for use within a sequential quadratic programming method using exact

xi



second derivatives. The proposed framework is applied to primal and dual quadratic problems,
as well as to single-phase problems that combine the feasibility and optimality phases of the
active-set method, producing a range of formats that are suitable for a variety of applications.
The algorithm is implemented in the Fortran code icQP. Its performance is evaluated
using different symmetric and unsymmetric linear solvers on a set of convex and nonconvex
problems. Results are presented that compare the performance of icQP with the convex QP

solver SQOPT on a large set of convex problems.
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1 Introduction

1.1 Overview

Quadratic programming (QP) minimizes a quadratic objective function subject to linear
constraints on the variables. A general form of the problem may be written with mixed (equality

and inequality) constraints as
P T 1..T
mize = satH
minimiz o(x)=c'z+ 52 Ho
subject to Ax =b, £< Dz <u,

where ¢ is the quadratic objective function, H is the symmetric n x n Hessian matrix, ¢ € R"
is the constant objective vector, A is the m X n equality constraint matrix, D is the mp X n
inequality constraint matrix, and ¢ and w are vectors such that £ < u.

The difficulty of solving a QP depends on the convexity of the quadratic objective func-
tion. If the Hessian matrix H is positive semidefinite, then the QP is convex. In this case, a local
solution of the QP is also a global solution. However, when H is indefinite, the QP is nonconvex
and the problem is NP-hard—even for the calculation of a local minimizer [12, 32].

The majority of methods for solving quadratic programs can be categorized into either
active-set methods (which are discussed heavily in Section 2.2) or interior methods. Briefly,
active-set methods are iterative methods that solve a sequence of equality-constrained quadratic
subproblems. The goal of the method is to predict the active set, the set of constraints that are
satisfied with equality, at the solution of the problem. The conventional active-set method is
divided into two phases; the first focuses on feasibility, while the second focuses on optimality.
An advantage of active-set methods is that the methods are well-suited for “warm starts”, where
a good estimate of the optimal active set is used to start the algorithm. This is particularly useful
in applications where a sequence of quadratic programs is solved, e.g., in a sequential quadratic
programming method (discussed in the next section) or in an ODE- or PDE-constrained prob-
lem with mesh refinements (e.g., see SNCTRL [46], an optimal control interface for nonlinear
solver SNOPT). Other applications of quadratic programming include portfolio analysis, struc-
tural analysis, and optimal control. Some existing active-set quadratic programming solvers

include QPOPT [37], SQOPT [39], and QPA (part of the GALAHAD library) [51].



Interior-point methods compute iterates that lie in the interior of the feasible region,
rather than on the boundary of the feasible region. The method computes and follows a contin-
uous path to the optimal solution. In the simplest case, the path is parameterized by a positive
scalar that may be interpreted as a perturbation of the optimality conditions for the problem.
This parameter also serves as a regularization parameter of the linear equations that are solved
at each iteration.

Generally, interior methods require fewer iterations than active-set methods. However,
each iteration of interior-point methods is more expensive because the method must solve linear
systems involving all the variables of the problem whereas active-set methods solve systems
involving some subset of the variables. An advantage of having all variables in the equations
makes the dimension of the equations and the sparsity pattern of the matrix involved fixed
throughout. The path-following feature of interior-point methods also causes difficulties when
the problem is warm-started, as a warm-start point is typically far from the path and many
iterations are required to move onto the path. IPOPT [68] and LOQO [67] are two examples of
interior-point codes.

To simplify the exposition, inequality constraints with only lower bounds are considered
in this thesis, although the methods are easily extended to problems with lower and upper bounds.
The simplified mixed-constraint QP becomes

minimize o(z) =Tz + LaTHa a1
subject to Ax =10, Dx>f,
where f is a constant vector. If the inequality constraint matrix D is the identity matrix, and
the vector f of lower bounds is zero, then the problem said to be in standard-form, where the

constraints are linear equalities and simple bounds on the variables:

s T 1T
minimize r)=c'z+ sz Hx
reR™ (p( ) + 2 (1.2)
subject to Ax =b, x>0.
Every QP may be written in standard form. For example, consider a problem with a mixture of

general inequalities and simple bounds:

minimize o(z) = ¢z + %xTHx subject to Az >0, z>0.
zER™, s€R™

By introducing a set of nonnegative slack variables s, the all-inequality problem may be rewritten

as
s, ole) = et grlle (13)
subject to Ax—s=0, x>0, s>0.

The advantage of including slack variables is that the constraint matrix (A -1 ) trivially has

full row rank, which is an important assumption in the methods to be described. However, for
simplicity, we do not include slack variables explicitly our discussion, but consider only problems

of the form (1.1) or (1.2) with the assumption that the constraint matrix A has full row rank.



1.2 Contributions of this Thesis

Our work in quadratic programming is driven by our interest in nonlinear programming
(NLP), the minimization of nonlinear functions subject to nonlinear constraints. An important
algorithm for NLP is sequential quadratic programming (or SQP). The method solves a sequence
of quadratic subproblems whose objective function is a quadratic model of the nonlinear objective
subject to a linearization of the constraints.

The purpose of the work in this thesis is to address some of the difficulties that arise in
SQP methods. In general, it is difficult to implement SQP methods using exact second derivatives
because the QP subproblems can be nonconvex. The complexity of the QP subproblem has been a
major impediment to the formulation of second-derivative SQP methods (although methods based
on indefinite QP have been proposed by Fletcher and Leyffer [30, 31]). To avoid this difficulty,
algorithm developers refrain from using exact second derivatives and instead use a positive-
semidefinite approximation of the Hessian to define convex QP subproblems (see SNOPT [38]).
Another difficulty associated with conventional SQP methods is the reliance on customized linear
algebra software. This prevents algorithms from taking advantage of advanced linear algebra
solvers that can exploit developments in computer hardware and architecture. (For a detailed
review of SQP methods, see [44].) In addition, the presented algorithm will address some of the
deficiencies of the existing convex QP solver SQOPT [39]. The goal is for this work to complement
the capabilities of SQOPT, in order to cover a larger range of problems and applications.

A framework for the formulation and analysis of feasible-point active-set methods is
proposed for a generic QP. This framework is discussed in the context of two broad classes
of active-set method for quadratic programming: binding-direction methods and nonbinding-
direction methods. Broadly speaking, the working set for a binding-direction method consists of
a subset of the active constraints, whereas the working set for a nonbinding direction method
may involve constraints that need not be active (nor even feasible). A binding-direction method
for general QP, first proposed by Fletcher [29] and subsequently modified by Gould [49], is
recast as a nonbinding-direction method. This reformulation defines a class of methods in which
a primal-dual search pair is the solution of a “KKT system” of equations associated with an
equality-constrained QP subproblem defined in terms of a “working set” of linearly independent
constraints. It is shown that, under certain circumstances, the solution of this KKT system
may be updated using a simple recurrence relation, thereby giving a significant reduction in the
number of systems that need to be solved. This framework addresses the current difficulties of
QP methods, creating an algorithm that is suitable for indefinite problems and that is capable
of utilizing external linear algebra software.

In Chapter 2, we provide background information on active-set methods. Detailed de-
scriptions of the binding-direction and nonbinding-direction methods are also given for problems

in mixed-format, providing the framework for the methods discussed in subsequent chapters. In



Chapter 3, the nonbinding-direction method is defined for standard-form problems. It will be
shown that the standard-form version of the algorithm leads to a reduction in the dimension
of the KKT systems solved at each iteration. This form of the nonbinding-direction method is
implemented in the Fortran code icQP, and numerical results of this implementation are dis-
cussed in Chapter 8. Chapter 4 considers the application of the nonbinding-direction method
to the dual of a convex quadratic program. Many existing dual methods require the inverse of
the Hessian, limiting the methods to strictly convex problems. It will be shown that the method
presented is appropriate for problems that are not strictly convex. Chapter 5 addresses the issues
of computing an initial point for the algorithm. In Chapter 6, single-phase methods that com-
bine the feasibility and optimality phases of the active-set method are described. Two methods
involving variants of the augmented Lagrangian function are derived. Chapter 7 describes the
two methods for solving the linear equations involved in the QP method. The first approach
utilizes a symmetric transformation of the reduced Hessian matrix. The second approach uses
a symmetric indefinite factorization of a fixed KKT matrix with the factorization of a smaller

matrix that is updated at each iteration of the method.

1.3 Notation, Definitions, and Useful Results

The vector g(x) denotes ¢ + Hzx, the gradient of the objective ¢ evaluated at x. Occa-
sionally, the gradient will be referred to as simply g. The vector d? refers to the i-th row of the
constraint matrix D, so that the i-th inequality constraint is df z > f;. The i-th component of
a vector labeled with a subscript will be denoted by [-];, e.g., [uy]; is the i-th component of the
vector vy. Similarly, a subvector of components with indices in the index set S is denoted by
(+)s, e.g., (vy)s is the vector with components [vy]; for i € S. The symbol I is used to denote
an identity matrix with dimension determined by the context. The j-th column of I is denoted
by e;. The vector e will be used to denote the vector of all ones with length determined by the
context. The vector with components max{—z;,0} (i.e., the magnitude of the negative part of
x) is denoted by [x]_. Unless explicitly indicated otherwise, || - || denotes the vector two-norm
or its induced matrix norm. Given vectors a and b with the same dimension, the vector with i-th
component a;b; is denoted by a - b. For any set § and index s, the notation S + {s} is used to

7

denote the addition of s to the set S. Similar notation with the symbol “—” is used to denote
the removal of an index. Given vectors x, y and z, the long vector consisting of the elements of

x augmented by elements of y and z is denoted by (z,y, 2).

Definition 1.3.1 (Inertia of a matrix). Given a symmetric matriz A, its inertia, denoted by

In(A) is the integer triple (ay,a—, ag), giving the number of positive, negative and zero eigenvalues

of A.

Result 1.3.1 (Sylvester’s Law of Inertia). Given a symmetric matriz A and a nonsingular matric



S, then In(STAS) = In(A).

Theorem 1.3.1. Given an n X n symmetric matric H and an m x n matriz A, let r denote the

rank of A and let the columns of Z form a basis for the null space of A. If K is the matriz

H AT .
K = A o) then In(K) =In(Z"HZ) + (r,r,m —r).

Corollary 1.3.1. Given an n x n symmetric matric H and an m X n matriz A of rank m, let

the columns of Z form a basis for the null space of A. If K is the matrix

H AT
K= :
A 0

then In(K) = In(ZTHZ) + (m,m,0). If ZTHZ is positive definite, then In(K) = (n,m,0) and

we say that K has correct inertia.

Theorem 1.3.2. Let H be an n x n symmetric matriz, A be an m x n matriz and scalar > 0.

Define K as the matriz
H AT
K= .
A —ul

1
Then In(K) = In(H + ;ATA) +In(0,m,0).

Proof. Define the nonsingular matrix S
I 0
S = .
“w

H+ATA 0
0 —ul

By Sylvester’s Law of Inertia,
In(K) = In(STKS) =In <

1
=In(H + ;ATA) + (0,m,0).
O

Result 1.3.2 (Debreu’s Lemma). Given an m x n matriz A and an n x n symmetric matric H,
then T Hx > 0 for all nonzero x satisfying Az = 0 if and only if there is a finite i > 0 such
that H + ﬁATA is positive definite for all 0 < p < fi.

Result 1.3.3 (Schur complement). Given a symmetric matriz

M NT
N G



with M nonsingular, the Schur complement of M in K will be denoted by K/M, and is defined
as

K/M2G—-NM'NT.

Moreover, In(K) = In(K/M) + In(M). We sometimes refer simply to “the” Schur complement

when the relevant matrices are clear.

Result 1.3.4 (Symmetric indefinite factorization). Let K be an n X n symmetric matriz with
rank r. Then there exists a permutation matriz P, a unit upper-triangular matriz U, and a block

diagonal matriz D such that
PTKP=UTDU, with D = diag(D1,D2,...,Ds,0n_rn_r),

where each D; is nonsingular and has dimension 1 X 1 or 2 x 2. Moreover, each of the 2 x 2

blocks has one positive and one negative eigenvalue. The equivalent factorization
K =LDL", with L= (PU)T,
is known as the LDL" factorization.
Lemma 1.3.1. Let A be a m x n matriz of full row rank (rank(A) = m) and g be any n-vector.

(a) If g = ATy and there exists an index s such that ys < 0, then there exists a vector p such
that g*p < 0 and Ap > 0.

(b) g ¢ range(AT) if and only if there exists a vector p such that g*p < 0 and Ap = 0.

Result 1.3.5 (The interlacing eigenvalue property). Assume K is a symmetric n X n matriz

with eigenvalues \y > Ay > --- > \,. Suppose that K is partitioned so that

A B
K =
BT C
with A m x m. If the eigenvalues of A are py > pa > -+ > [, then

Ak—l—n—méuké)\ka k:1a27"'am'



2 Quadratic Programming

This chapter introduces the framework for the formulation and analysis of active-set
methods for quadratic programs. The framework is described for problems in mixed format,
which involve minimizing a quadratic objective function subject to linear equality and inequality
constraints. The problem is assumed to be of the form

minimize  ¢(z) = ¢’z + J2THz

TER™ (21)
subject to Ax =0, Dz > f,

where ¢(z) : R — R is the quadratic objective function, the Hessian matrix H is symmetric and
the constraint matrices A and D are m x n and m, X n, respectively. Without loss of generality,
A is assumed to have rank m. No assumptions are made about H other than symmetry, which
implies that the objective ¢ need not be convex. In the nonconvex case, however, convergence
will be to local minimizers only.

Section 2.1 provides information on the optimality conditions of mixed-constraint prob-
lems. Section 2.2 introduces a general class of methods for solving QPs known as active-set
methods. In Sections 2.2.1 and 2.2.2, two particular active-set method based on inertia control
are presented. The remaining sections extend the method to quadratic programs in different

formats, and discuss the relationship of the method to the simplex method for linear programs.

2.1 Background

The necessary and sufficient conditions for a local solution of the QP (2.1) involve the
existence of vectors m and z of Lagrange multipliers associated with the constraints Az = b and

Dx > f, respectively.

Definition 2.1.1 (First-order KKT point). A point x is a first-order KKT point for (2.1) if



there exists at least one pair of Lagrange multiplier vectors m and z such that

Axr=0b, Dz >f (feasibility)
g(x) = AT + D™z (stationarity)
z2>0 (nonnegativity)
z-(Dzx—f)=0 (complementarity).

Following conventional linear programming terminology, the x variables are referred to
as the primal variables and the Lagrange multipliers m and z are the dual variables. We may
refer to a first-order KKT point = together with its Lagrange multipliers as (z, 7, 2).

In addition to being a first-order KKT point, a point x must also satisfy certain second-
order conditions to be a local solution of the QP. The conditions are summarized by the following

result, which is stated without proof (see, e.g., Borwein [7], Contesse [12] and Majthay [55]).

Result 2.1.1 (QP optimality conditions). The point x* is a local minimizer of the quadratic

program (2.1) if and only if
(a) z* is a first-order KKT point, and

(b) pTHp > 0 for all nonzero p satisfying g(x)’p = 0, Ap = 0, and dIp > 0 for every i such
that dlz* = f,.

If H has at least one negative eigenvalue and (x,, 2) is a first-order KKT point with an
index i such that z; = 0 and d7z = f;, then x is known as a dead point. Verifying condition (b) at a
dead point requires finding the global minimizer of an indefinite quadratic form over a cone, which
is an NP-hard problem (see, e.g., Cottle, Habetler and Lemke [14], Pardalos and Schnitger [58],
and Pardalos and Vavasis [59]). This implies that the optimality of a candidate solution of a
general quadratic program can be verified only if more restrictive (but computationally tractable)
sufficient conditions are satisfied. A dead point is a point at which the sufficient conditions are
not satisfied, but certain necessary conditions for optimality hold. Computationally tractable

necessary conditions are based on the following result.

Result 2.1.2 (Necessary conditions for optimality). The point x* is a local minimizer of the QP
(2.1) only if
(a) z* is a first-order KKT point;

(b) it holds that pTHp > 0 for all nonzero p satisfying Ap = 0, and dip = 0 for each i such
that dlz* = f;.

Suitable sufficient conditions for optimality are given by (a)—(b) with (b) replaced by the
condition that pT’Hp > 0 for all p such that Ap = 0, and d}p = 0 for every i € A, (z*), where
A, (x*) is the index set A, (z*) = {i : dTz* = f; and z, > 0}.



These conditions may be expressed in terms of the constraints that are satisfied with
equality at 2*. Let « be any point satisfying the equality constraints Az = b. (The assumption
that A has rank m implies that there must exist at least one such z.) An inequality constraint
is active at x if it is satisfied with equality. The indices associated with the active constraints
comprise the active set, denoted by A(z). An active-constraint matriz A, (x) is a matrix with
rows consisting of the rows of A and the gradients of the active constraints. By convention, the

rows of A are listed first, giving the active-constraint matrix

Ay (z) = <D %) ,

where D, (z) comprises the rows of D with indices in A(x). Let m, denote the number of indices
in A(z), so that the number of rows in A, (z) is m + m,. The argument x is generally omitted
if it is clear where D, is defined.

With this definition of the active set, an equivalent statement of Result 2.1.2 is given.

Result 2.1.3 (Necessary conditions in active-set form). Let the columns of the matriz Z, form

a basis for the null space of A,. The point x* is a local minimizer of the QP (2.1) only if

(a) z* is a first-order KKT point, i.e., (i) Az* = b, Dx* > f; (ii) g(z*) lies in range(AT),
or equivalently, there exist vectors ™ and zi such that g(x*) = ATg* + DIz*; and (iii)

a~a’
*
2z >0,

(b) the reduced Hessian ZI HZ, is positive semidefinite.

2.2 Active-Set Methods for Mixed-Constraint Problems

Active-set methods are two-phase iterative methods that provide an estimate of the
active set at the solution. In the first phase (the feasibility phase or phase 1), the objective
is ignored while a feasible point is found for the constraints Az = b and Dx > f. In the
second phase (the optimality phase or phase 2), the objective is minimized while feasibility is
maintained. For efficiency, it is beneficial if the computations of both phases are performed by
the same underlying method. The two-phase nature of the algorithm is reflected by changing the
function being minimized from a function that reflects the degree of infeasibility to the quadratic
objective function. For this reason, it is helpful to consider methods for the optimality phase
first. Methods for the feasibility phase are considered in Chapter 5.

Given a feasible point xg, active-set methods compute a sequence of feasible iterates {x }
such that xpy1 = g + arpr and @(xkr1) < p(xg), where pi is a nonzero search direction and
«y is a nonnegative step length. Active-set methods are motivated by the main result of Farkas’

Lemma, which states that a feasible z must either satisfy the first-order optimality conditions or
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be the starting point of a feasible descent direction, i.e., a direction p such that
A,p>0 and g(x)p<o0. (2.2)

In most of the active-set methods considered here, the active set is approximated by a working set
W of row indices of D. The working set has the form W = {vy,va,...,vp,, }, where m,, is the
number of indices in W. Analogous to the active-constraint matrix A, , the (m+m,, ) xn working-
set matriz A, contains the gradients of the equality constraints and inequality constraints in

W. The structure of the working-set matrix is similar to that of the active-set matrix, i.e.,

where D,, is a matrix formed from the m,, rows of D with indices in W. The vector f,, denotes
the components of f with indices in W.

There are two important distinctions between the definitions of A and W.

(a) The indices of W must define a subset of the rows of D that are linearly independent of
the rows of A, i.e., the working set matrix A, has full row rank. It follows that m,, must

satisfy 0 < m,, < min{n —m,mp}.

(b) The active set A is uniquely defined at any feasible z, whereas there may be many choices
for W. The set W is determined by the properties of the particular active-set method being
employed.

Conventional active-set methods define the working set as a subset of the active set (as in the
method described in Section 2.2.1). However, in the considered method of Section 2.2.2; the
requirement is relaxed—a working-set constraint need not necessarily be active at x.

Given a working set W and an associated working-set matrix A,, at x, the notions of

stationarity and optimality with respect to VW are introduced.

Definition 2.2.1 (Subspace stationary point). Let W be a working set defined at x such that
Az =b. Then x is a subspace stationary point with respect to W (or, equivalently, with respect
to Ay ) if g(z) € range(AL), i.e., there ewists a vector y such that g(x) = AL y. Equivalently, ©
is a subspace stationary point with respect to the working set W if the reduced gradient ZY g(x)

is zero, where the columns of Z,, form a basis for the null space of Ay .

At a subspace stationary point, the components of y are the Lagrange multipliers associated with
a QP with equality constraints Ax = b and D, x = f,,. To be consistent with the optimality
conditions of Result 2.1.3, the first m components of y are denoted as 7 (the multipliers associated
with Az = b) and the last m,, components of y as z, (the multipliers associated with the
constraints in W). With this notation, the identity g(x) = ALy = ATz + DTz, holds at a

subspace stationary point.
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To classify subspace stationary points based on curvature information, we define the

terms second-order-consistent working set and subspace minimizer.

Definition 2.2.2 (Second-order-consistent working set). Let W be a working set associated with
x such that Ax = b, and let the columns of Z,, form a basis for the null space of A, . The

working set W is second-order consistent if the reduced Hessian ZLHZ,, is positive definite.

The inertia of the reduced Hessian is related to the inertia of the (n+m+my ) X (n+m+m,,)

H AT
KKT matrix K = ( “’) through the identity In(K) = In(ZLHZ,, )+ (m+my, , m+m,, ,0)

w
from Theorem 1.3.1. It follows that an equivalent characterization of a second-order-consistent

working set is that K has inertia (n,m+m,,,0), in which case, K is said to have correct inertia.

Definition 2.2.3 (Subspace minimizer). If x is a subspace stationary point with respect to a
second-order-consistent basis VW, then x is known as a subspace minimizer with respect to W.
If every constraint in the working set is active, then x is called a standard subspace minimizer;

otherwise x 1s called a nonstandard subspace minimizer.

A wvertex is a point at which rank(A,) = n and m, > n —m. If rank(A4,) = n, then the
null space of A, is trivial, so that a vertex such that g(z) € range(AZ) is a subspace minimizer.
A feasible z is said to be a degenerate point if g(z) lies in range(AL) and the rows of A, are
linearly dependent, i.e., rank(A,) < m + m,. If exactly n —m constraints of Dz > f are active
at a vertex, then the vertex is nondegenerate. If more than n — m are active, then the vertex
is degenerate. At a degenerate point there are infinitely many vectors y such that g(z) = ATy.
Moreover, at least one of these vectors has a zero component. Degeneracy can be a problem as it
can lead to dead points. Degenerate points can also lead to cycling, where the active-set method
does not move from the current iterate but returns to an earlier working set, causing an infinite
sequence where the same working sets are repeated.

In the following sections, two active-set methods for solving QPs are described, the
binding-direction method and the nonbinding-direction method. In the binding-direction method,
every direction lies in the null space of the working-set matrix, so that all working-set constraints
are active or binding. In the nonbinding-direction method, directions are nonbinding (inactive)
with respect to one of the constraints in the working set. Both methods produce the same se-
quence of iterates and differ only in the equations solved at each step. The binding-direction
method is tied to a specific method for modifying the factors of the working-set matrix. The
nonbinding-direction method is designed so that only nonsingular systems are solved at each step,
making the method more easily adapted for use with general-purpose solvers. Both methods are
inertia-controlling methods that limit the number of nonpositive eigenvalues in the KKT matrices.
In the binding-direction method, the reduced Hessians are limited to having at most one non-
positive eigenvalue, while the nonbinding-direction method computes only subspace minimizers

(e.g., working sets that define positive-definite reduced Hessians) at each iteration.
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2.2.1 Binding-direction method

The binding-direction produces a sequence of iterates that begins and ends at a subspace
minimizer but defines intermediate iterates that are not subspace minimizers. One iteration of
the method is described. The working-set matrix A,, at the k-th iteration will be denoted by A
to differentiate between the working sets at different iterates. Similar notation for other vectors
or matrices with working-set subscripts apply.

The method starts at a standard subspace minimizer x; with working set Wy, i.e.,
gr, = ATy, for a unique y;, and a reduced Hessian matrix ZHZ, that is positive definite. If
2k is non-optimal, then there exists an index vy € Wy such that [yk]m+s < 0. By part (i) of
Lemma 1.3.1, there exists a descent direction for ¢ such that gF'p < 0 and Agp = €,,45. Instead
of imposing the condition that Axp = e€,,+s, wWe increase the iteration counter to k + 1 and set
2 = xk—1. The new working set is defined as Wy, = Wi_1 — {vs}, and y; be the vector yr_1
with the (m + s)-th component removed. The removal of d?:sz > f,. means that zj is no longer

a subspace stationary point with respect to W since

g(xr) = glze—1) = AL yp 1 = ALy + [Wk—1lmasdy, With [ye_1]mis <0, (2.3)

and hence g(z)) ¢ range(A}). In this case, there exists a descent direction in the null space of
Ay, such that
gFp <0 and App =0, and dp>0. (2.4)

The direction p is a binding direction because the constraints in the working set remain active
for any step along p. The first two conditions of (2.4) are satisfied by part (ii) of Lemma 1.3.1.
For the last condition, first note that xp = zx_1, gr = gr_1 = A{ilykfl with [yk—1]m+s < 0
and the working-set matrix Ay is Agx_; with the constraint normal dfs removed. The identity

Axpr = 0 implies that p; must be orthogonal to every row of Ayx_1 except df Thus,
0> g5y = gi1Pr = Pk (Ak—1Yr—1)
T T T
= (dyspk)em+syk—1 = (duspk:)[yk—l}m-‘rs'
It follows that d,ipk > 0 and hence py, satisfies (2.4).
An obvious choice for p is the solution of the equality-constrained quadratic program

minimize ¢(xy +p) subject to Arp = 0. (2.5)
P

Assume for the moment that this problem has a bounded solution (i.e., that Z,?H Z,, is positive
definite). The optimality conditions for (2.5) imply the existence of vector g such that g(xy +
pe) = AT (yr + qr), i-e., g defines the step to the multipliers at the optimal solution xy, + pg.
This optimality condition combined with the feasibility condition imply that p; and ¢ satisfy

the KKT equations
H Al — AT
k Pk _ 9k Yk . (2.6)
Ak 0 —(qk 0
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The point xj + py is a subspace minimizer with respect to W, with appropriate multiplier vector
Yk + qi. If the KKT matrix is indefinite (but not singular), a direction is still computed from
(2.6), though zj + pi will not be a subspace minimizer and p; must be limited by some step
(discussed in the next subsection).

For any scalar «, the direction defined in (2.6) satisfies

g(@k + apr) = gi + aHpy = g + a(— (g5 — AL ) + A )
= (1—a)gk + oA} (yk + qr)
= (1 - a)(ALyg + Ymrsdo,) + AL (e + qi)
= (1 = a)ymisdo, + Af (yr + aqr), (2.7)
using the identity in (2.3).
If the KKT matrix of (2.6) is singular, or equivalently, the associated reduced Hessian

ZIHZ, is singular, the subproblem (2.5) is unbounded and the system (2.6) cannot be used to

define pg. In this situation, a direction is found such that
T T _ _
gk pk < 0, pkak = 0 and Ak-pk = 0

This vector, called a descent direction of zero curvature, is a descent direction such that Hpy = 0.

Since the KKT matrix is singular, it must have a null vector, and p; and ¢ may be computed

Cf f) (—Zk> ) @ | (28)

In this case, the directions p, and g satisfy

from the system

g(zi, + apr) — Af(ye + aqy) = g, — ALy, + o(Hpy, — Algy) = g1 — ALy, (2.9)

for every scalar a, so that the norm ||gy — Afy, | is unchanged by any step zj + apy.

Solving for the direction. Regardless of whether py is computed from (2.6) or (2.8), it must
be a descent direction, i.e., g,{pk < 0. There are three basic approaches to solving either equation
(2.6) or (2.8), each of which can utilize direct methods or iterative methods. A range-space

method requires H to be nonsingular and solves (2.6) by solving the equivalent equations
H™'Alq, = AyH ™ (g — Ajyy,) and Hp = —(gx — ALyy) + Al (2.10)

which require a solve with H and a factorization of the matrix A, H~'AT. Obviously, the need
for nonsingular H limits this method to strictly convex problems.

The equations (2.6) and (2.8) may also be solved by computing some matrix factorization,
e.g., a symmetric indefinite LDL” factorization of the KKT matrix (see Result 1.3.4). This full-
space method works directly with the KKT system, but is impractical in an active-set method as

the KKT matrix changes at every iteration.
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A more appropriate method for computing py is a null-space method, which computes

Pk as pp = Zypz. If ZFHZ, is positive definite, then p, is the unique solution of
T T T
ZyHZyp, = —Z1 (9 — Ak¥r),

which is an n X (n — m — my,) system. If the reduced Hessian is singular, then p, may be any
vector such that
ZIHZyp, =0 and giZ.p, <O.

The computation of an LDL” factorization of a symmetrically permuted reduced Hessian may be
used to detect singularity and compute p,. When the QP is strictly convex, H is positive definite
and at every iterate, the reduced Hessian is positive definite. The matrix can be factored such
that

ZTHZ, = RIR, and 4Q = (0 1), (2.11)

where Ry, and T} are upper triangular, and @, is an orthogonal matrix that forms an orthogonal
basis for the null space of Ag. These factors can then be used to solve the equations in the
null-space method above. In addition, the factors may be modified when constraints are added
or deleted from the working set. This amounts to significantly less work than it would take to
recompute the factorizations from scratch.

If ¢ is not strictly convex, then Z,?H Z,, can have an arbitrary number of nonpositive
eigenvalues. It is not possible to modify the factorizations in (2.11) in a way that is efficient
and numerically stable. At each iteration, it is necessary to decide which of the two systems
should be solved. If the relevant factorizations are computed from scratch at each iteration, then
the difficulties can be overcome, though the reliable numerical estimation of rank is a difficult
problem. If the factors are modified at each step, then it is much more difficult to compute factors
that provide a reliable estimate of the rank. Similar difficulties arise in full-space methods based
on direct factorization of the KKT matrix in (2.6) or (2.8).

Each of the three methods above may also utilize iterative methods to solve the linear
systems. In particular, when the matrix is positive definite, the conjugate-gradient method can
be applied. However, iterative methods may take many iterations to converge to a solution and

ill-conditioning may cause difficulties in constructing a preconditioner.

Computing a step length. Once a direction is found, an appropriate step o must be com-
puted. Since py is a descent direction, there must exist & > 0 such that ¢(zx + apr) < p(zk)
for all 0 < o < &. If ZI'HZ, is positive definite, py is defined by (2.6) and pLHp, > 0, so that ¢
has positive curvature along pj. In this case, there is a unique and computable local minimizer

ay of p(xk + apy) with respect to a. As . must be a stationary point, it must satisfy

d
—oelon+ap)|,_y = 9wk + 0up)'pr = gipi + 0wpiHpy = 0.

=0
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The unique step a, from zj to the local minimizer of ¢ along the descent direction py is given
by
. = —gi P/ Pi Hpy. (2.12)

However, the first equation of (2.6) implies that prpk = —ggpk, so that o, = 1.
If Z,CTH Z,, is indefinite or singular, then no minimizer exists and o, = 400. The direction

Py satisfies the identity
¢(zx +apr) = o(zx) + agi py, + 30°p Hpy,.

In particular, when py is a direction of zero curvature defined by (2.8), then (i + apg) =
o(xk) + aglp,, which implies that ¢ is linear along pj, and is unbounded below for o > 0. In
the indefinite case, ¢ is unbounded below for o > 0 since p} Hp, < 0 and g} p, < 0.

If x; + a.pg is infeasible or a, = 0o, then the mazimum feasible step from x; along py

is computed as

dlz — f,
. , ' ifdTp, <0,
ap =min~y;, with ~; = —dTp, (2.13)
400 otherwise,

where any constraint satisfying dX'p, < 0 is a decreasing constraint along pj. The decreasing
constraint with index r such that ap = ~, is called a blocking constraint. While there may be
several blocking constraints, the value of ag is unique. Once ap is computed, the next iterate
is defined as xp41 = ok + appr, where ap = min{a.,ar}. If ap = 400, then p; must be a
descent direction of zero or negative curvature along which there is no blocking constraint. This
means the QP is unbounded and the algorithm terminates. Otherwise, if a, < ap, we take
an unconstrained step and xj + pi is feasible and a subspace minimizer with respect to Ay. If
ar < au, then the working set is modified to include a blocking constraint that is active at
Tht1, €8 Wit1 = Wi + {r}. If multiple blocking constraints exist, only one is chosen to be
added. Lemma 1.3.1 implies that any decreasing constraint must be linearly independent of the
constraints in the working set.

If x is a degenerate point (a point where the active constraint normals are linearly
dependent), then there exists at least one active constraint not in the working set. If this active
constraint is decreasing along pg, then ap = 0. Consequently, the step aj will be zero and
Tp+1 = Xk, resulting in no change in the objective. However, the working set does change with

Wi+1 differing from Wy, by the addition of one blocking active constraint.

Constraint deletion and addition. The following results show the effects of deleting and
adding constraints on stationarity and the reduced Hessian. The first shows the effect of the
deletion of a constraint from Wy at a subspace minimizer. The second considers the effects of

adding a blocking constraint to the working set.
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Result 2.2.1 (Constraint deletion). Let xp_1 be a subspace minimizer with working set Wy_1.
Define xy, = x—1 and Wy, = Wy_1 — {vs}. For simplicity, assume that the working-set matriz
has the form

Then xy and Wy, satisfy the following:
(a) gr = Aly, +od,, for some vector yx and o < 0; and

(b) the reduced Hessian ZIHZ, has at most one nonpositive eigenvalue.

Proof. Part (a) holds from (2.3).

For part (b), let the columns of Zx_; form a basis for the null space of Ax_;. Then
ArZi_1 = 0 and Z;_, can be extended to form a basis for the null space of Ay, with Z, =
(Zk—l z) Then,

ZEHZkZ Z,Zj_lHZk_1 Z,CT_le .
THZ), 4 2THz

Let {\;} denote the eigenvalues of ZIHZ, with A\; < X;_;. Similarly, let {A; } denote the
cigenvalues of Z |HZ, | with A < X7 ;. The interlacing eigenvalue property (Result 1.3.5)
implies that

An*(m+mk+1) = )\;f(erm;le) 2 A

Since ZF' |HZ, _, is positive definite, A

n—(m+mg)*

n—(m+mp+1)
eigenvalue. O

> 0 and Z]HZ, has at most one nonpositive

Result 2.2.2 (Constraint addition). Suppose that d?x > fr is a blocking constraint at xi41 =
g + appr. Let Wip1 = Wi + {r} and assume that vs is the index of the most recently deleted
constraint. Define the matrixz Z;, such that its columns form a basis for null space for Ai. Then

Tr1 and Wi satisfy the following:
(a) gry1 = A£+1yk+l +od,, for some o <0;
b) the reduced Hessian Z¥, \HZ has at most one nonpositive eigenvalue; and
k+11 441

(c) the set Wit1 + {vs} is a second-order-consistent working set.

Proof. If py, is defined by (2.6), then (2.7) implies gr+1 = AL(yx + agr) + (1 — @) [yr]m+sdy, With
(1 = @)[yk]m+s < 0 since a < 1. Otherwise, py is defined by (2.8) and (2.9) holds. The desired
result follows by induction.

For part (b), let the columus of Z, form a null space for Ay and denote the KKT matrices

associated with Wy, and Wy as

H AT 4
H AT
K:( 0>andK+: A, 0 0

A
i ar 0 0
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Assume that K has eigenvalues {\;} with A\; > X\;_;. Similarly, KT has eigenvalues {)\;r} with

)\;r > )\;11. The eigenvalue interlacing property (Result 1.3.5) implies

)\+

n—1

Since Ay has full row rank, Corollary 1.3.1 implies that In(K) = In(ZFHZ,) + (m +
my, m~+my, 0). If ZFHZ, is positive definite, then In(K) = (n, m+my,0) and it must hold that
An > 0. The equation (2.14) implies that A} > 0, so that K+ has at least n positive eigenvalues
and at most m + my, + 1 nonpositive eigenvalues. Thus, since the inertia of KT satisfies the
relation In(K+) = In(ZL,,HZ,|) + (m +my, + 1,m 4+ my, + 1,0), then Z[', | HZ, | is positive
definite.

If Z,CTH Z,, has one nonpositive eigenvalue, then \,_; > 0 and Kt has at least n — 1
positive eigenvalues and at most m + my + 2 nonpositive eigenvalues. Thus, ZkTHH Zy, 41 has at

most one nonpositive eigenvalue. O

Thus far, we have only established that a subspace minimizer is reached when the reduced
Hessian is positive definite and an unconstrained step is taken. It remains to show that if a
subspace stationary point is reached by taking a blocking step and adding a constraint to the

working set, then that point is also a subspace minimizer.

Result 2.2.3 (Subspace minimizer with blocking constraint). Let Wy be a working set such that
ZIHZ, is nonsingular. Assume that the constraint with index vy is deleted from the working set
and py is defined by (2.6). Suppose that dix > f,. is a blocking constraint at xy + aypr, where
ap < 1. Let Wi41 = Wi + {r}.

(a) The point x+agpy is stationary with respect to Wy11 if and only if d,. is linearly dependent

on the rows of Ay and d,,.

(b) If x + aipr is a stationary point with respect to Wyy1, then xp + appr is a subspace

minimaizer with respect to We41.

Proof. Suppose that zp + appy is a stationary point with respect to Wy1. Then there exist a
vector v and nonzero scalar o such that g(z + axpr) = Alv + od,. However, (2.7) implies that

g(zr + arpr) = AL (yk + arar) + (1 — o) [Yk]m+sdy, . Eliminating g(xr + oxpr) yields
Af(yk +arqr — v) + (1 — o) [Wk]mysdv, = od,.

Since ay, < 1, d, is linearly dependent on the rows of Ay and d,,.
Now suppose that d, is linearly dependent on the rows of Ay and d,,, with d, = od,, +
ATy and o # 0. Then by (2.7),

g(z + arpr) = AL (yk + argr) + (1 — ar) = (d, — Afv)

Q|+

A~

1 1
= ;(1 — o) [Ykmrsdr + Az Yk + kqr — ;(1 — ) [Ykm+sv)-
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Zo — 1 — T2 — s Tk — Th+1
delete v, move, add move, add move
A Wo — W — Wo — e W — Wit
delete v, move, add move, add move, add
(B) Wy — W — Wy — e Wy — W41

Figure 2.1: This figure depicts the two types of sequence of consecutive iterates in the binding-
direction method. Each sequence starts and ends with subspace minimizers g and 1, with
intermediate iterates that are not subspace minimizers. The sequences differ in how the final point
is reached. In (A), an unconstrained step is taken (« = 1). In (B), a blocking step (ar < au)
is taken, and a blocking constraint is added to the working set that makes the reduced Hessian
positive definite and hence, makes x;11 a subspace minimizer.

Again, ap < 1, 0 # 0 and Y45 < 0, so that zp + api is a stationary point with respect to
Wit
For part (b), if 2 is in the null space of Ay, then Ayz = 0 and dXz = 0. However, by

part (a), d, must be linearly dependent on the rows of Ay and d,,. Therefore,

A
Since o # 0, dfsz = 0 and z lies in the null space of <d;> By part (c) of Result 2.2.2,

the reduced Hessian associated with this matrix is positive definite. Therefore, ZZHH Zyyq 18

positive definite and x, + oy py is a subspace minimizer with respect to Wi41. O

Algorithm Summary. Given an arbitrary feasible point xp, and an initial second-order-
consistent working set Wy, the procedure defined generates a sequence of points {xy} and associ-
ated working sets Wy, such that 11 = xx+agpy, where py is computed from either (2.6) or (2.8).
Because a constraint cannot be deleted until a subspace minimizer is found, the algorithm starts
by adding constraints to the working set until either an unconstrained step is taken (aj = 1) or
sufficiently many constraints are added to define a subspace minimizer (e.g., at a vertex, which is
trivially a subspace minimizer). Once the first subspace minimizer is found, the iterates occur in
groups of consecutive iterates where each group starts with a constraint deletion and ends with
a step to a subspace minimizer. Figure 2.1 illustrates the two ways that the algorithm arrives at
a subspace minimizer.

At every iteration, either x or the working set changes, giving a sequence of distinct
pairs {xp, Wi}, where zp1 # x or Wyp1 # Wy With a suitable nondegeneracy assumption,

the algorithm terminates in a finite number of iterations. Since the number of constraints is
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finite, the sequence {z}} must contain a subsequence {z;;} of subspace minimizers with respect
to their working sets {W;x}. If the Lagrange multipliers are nonnegative at any of these points,
the algorithm terminates with the desired solution. Otherwise, at least one multiplier must be
strictly negative, and hence the nondegeneracy assumption implies that ap > 0 at x;;. Thus,
o(zik) > o(ik + aikpix), since at each iteration, the direction is defined as a descent direction
with gZp < 0. The subsequence {z;;} must be finite because the number of subspace minimizers
is finite and the strict decrease in ¢(z) guarantees that no element of {z;;} is repeated. The
finiteness of the subsequence implies that the number of intermediate iterates must also be finite.
This follows because a constraint is added to the working set (possibly with a zero step) for every
intermediate iteration. Eventually, either a nonzero step will be taken, giving a strict decrease

in ¢, or enough constraints will be added to define a vertex (a trivial subspace minimizer).

Algorithm 2.1: Binding-direction method for general QP

Find z such that Ax =b, Dx > f; k=0;
Choose W C A(x) such that the working-set matrix has full row rank;
[m, Wo] = subspaceMin(z, H, A, D, W);
k=0; g=c+ Hxz;
repeat
while k£ > 0 and g # ATr + D> do
[ ,q] = descent_direction(Dy, A, H);
ap = maxStep(z,p, D, f);
if p"Hp >0 then o, =1 else o, = +00;
a = min{a., ap};
if o =+oco then stop; [the solution is unbounded]
if ar < o, then [add a blocking constraint]
Choose a blocking constraint index t; Wy11 < Wk + {t};
end;
r—x+ap;, g+ g+ aHp;
k+—k+1;
end do;

Solve g = (AT D]{) <W>; s = argmin,{z; };
z

if z; <0 then [delete a constraint]
Wk+1<—Wk—{l/s}; k+—k—+1;
end;

until z; > 0;
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The binding-direction algorithm is summarized in Algorithm 2.1. The subspaceMin
function computes an initial point and basis (see Section 5.2). The function maxStep simply
computes the maximum feasible step, while the direction p is computed by an appropriate “black

box” function descent_direction.

2.2.2 Nonbinding-direction method

A feature of the binding-direction method is that the reduced Hessian may have one
nonpositive eigenvalue, which precludes the use of the Cholesky factorization Z,fH Z, = RkTRk.
In this section, the nonbinding-direction method is introduced as an active-set method that keeps
the reduced Hessian positive definite (and hence keeps the KKT matrices nonsingular) allowing
for the efficient calculation of search directions.

As in the binding-direction method, the nonbinding-direction method starts at a standard
subspace minimizer z, i.e., g(z) = ALy = ATr + DT>, and In(K) = (n,m + m,,0). Let v be
an index in the working set such that [z, ]s < 0. To proceed, a descent direction is defined that
is feasible for the equality constraints and the constraints in the working set. Analogous to (2.2),

p is defined so that
g(x)"p <0 and Ayp = emis.

Unlike the binding-direction method, the direction p is computed without removing v
from the working set. As any nonzero step along p must increase the residual of the vg-th
constraint (thereby making it inactive or nonbinding), the working set is no longer a subset of

the active set. The direction is defined as the solution of the equality-constrained subproblem
minimize ¢(x +p) subject to Ay p = ems. (2.15)
P

The optimality conditions for this subproblem imply the existence of a vector ¢ such that g(x +
p) = AL(y + q); i.e., ¢ is the step to the multipliers associated with the optimal solution x + p.
This condition, along with the feasibility condition, implies that p and ¢ satisfy the equations

H A} P\ _ (—(o(z) - Aly)
A, O —q Em+s '

Important properties of the primal and dual vectors are summarized in the next result.

Result 2.2.4 (Properties of a nonbinding search direction). Let  be a subspace minimizer such

that g = ALy = ATr + DTz | with [z, ]s < 0. Then the vectors p and q satisfying the equations

wrw

(H A5>< p> _ <—<g(x>—A5y>> :< 0 ) (2.16)
Ay 0 —q €m+s Em+s

constitute the unique primal and dual solutions of the equality constrained problem defined by

minimizing @(x + p) subject to Ay p = emys. Moreover, p and q satisfy the identities

9P = Ymrs =[20]s and p"Hp = gumis = [qu]s, (2.17)
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where q,, denotes the vector of last m,, components of q.

Proof. The assumption that x is a subspace minimizer implies that the subproblem (2.15) has
a unique bounded minimizer. The optimality of p and ¢ follows from the equations in (2.16),
which represent the feasibility and optimality conditions for the minimization of p(x + p) on the

set {p: Ayp = emts}. The equation g = ATy and the definition of p from (2.16) give

ng = pT(Agy) = yTAwp = yTem+s = Ym+s = [Zw ]s-

Similarly, p"Hp = pT(ALq) = e£+sq = Qmts = [Quw |s- O

Once p and ¢ are known, a nonnegative step « is computed so that x + ap is feasible and
o(z+ap) < ¢(z). If pTHp > 0, the step that minimizes p(x + ap) as a function of « is given by
a, = —g'p/pTHp. The identities (2.17) give

a, = —g'p/p"Hp = —[20]s/[quw ]s- (2.18)

Since [z ]s < 0, if [qw ]s = pTHp > 0, the optimal step a is positive. Otherwise [g,, |s = pTHp <
0 and ¢ has no bounded minimizer along p and a, = +oc0.

The maximum feasible step is computed as in (2.13) to limit « in case the optimal step
is unbounded or infeasible. The step « is then min{a,, ar}. If & = +00, the QP has no bounded
solution and the algorithm terminates. In the discussion below, we assume that « is a bounded
step.

The primal and dual directions p and ¢ defined by (2.16) have the property that « + ap
remains a subspace minimizer with respect to A,, for any step «. This follows from the equations

(2.16), which imply that
g(z +ap) = g(z) + aHp = ALy + aAlqg = AL(y + aq), (2.19)

so that the gradient at z + ap is a linear combination of the columns of AL. The step = + ap
does not change the KKT matrix K associated with the subspace minimizer z, which implies
that z + ap is also a subspace minimizer with respect to A,,. This means that = + ap may be
interpreted as the solution of a problem in which the working-set constraint dfsas > fu, is shifted
to pass through x 4+ ap. The component [y + aq|m+s = [2w + aqw ]s is the Lagrange multiplier
associated with the shifted version of diz > fu,. This property is known as the parallel subspace
property of quadratic programming. It shows that if z is stationary with respect to a nonbinding
constraint, then it remains so for all subsequent iterates for which that constraint remains in the
working set.

Once a has been defined, the new iterate is £ = x + ap. The composition of the new

working set and multipliers depends on the definition of «.
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Case 1: a = «a, In this case, @ = ax = —[zy ]s/[qw |s minimizes ¢(x + ap) with respect to a,

giving the s-th element of z,, + aq, as
[Zw + Ay ]s = [Z'w ]s + [Qw ]s = 07

which implies that the Lagrange multiplier associated with the shifted constraint is zero at z.

The nature of the stationarity may be determined using the next result.

Result 2.2.5 (Constraint deletion). Let x be a subspace minimizer with respect to W. Assume
that [z, ]s < 0. Let T denote the point x+ap, where p is defined by (2.16) and o = «v, is bounded.

Then T is a subspace minimizer with respect to W =W — {v,}.

Proof. Let K and K denote the matrices

H AT _ (H AT
K= and K= _ ,
Ay A

where A,, and A, are the working-set matrices associated with W and W. It suffices to show
that K has the correct inertia, i.e., In(K) = (n,m +m,, — 1,0).
Consider the matrix M such that

M A ( K em-‘rn-‘rs)
T .
em+n+s

By assumption, z is a subspace minimizer with In(K) = (n,m 4+ my,0). In particular, K is

nonsingular and the Schur complement of K in M exists with

_ p
M/K = _eg+m+sK 1en+m+5 = _eZerJrs < > = [qw]S’
—q
It follows that
In(M) = In(M/K) + In(K) = In(gu]s) + (n,m + 1, ,0). (2.20)

Now consider a symmetrically permuted version of M:

0 1
— 1 0 dr
M = © (2.21)
d,, H Al

Ay

Inertia is unchanged by symmetric permutations, so In(M) = In(M). The 2 x 2 block in the
upper-left corner of M, denoted by E, has eigenvalues +1, so that In(E) = (1,1,0) with E~! = E.
The Schur complement of E in M is

. {0 d,. \[o 1\[0 o0 _
M/E=K — : - K, (2.22)
(0 0 ) (1 0) (di 0)



23
which implies that In(ﬁ) = IH(M/E) +In(E) = In(K) + (1,1,0). Combining this with (2.20)
yields

In(K) =In([qw]s) + (n,m 4+ my,,0) — (1,1,0)
=In((qu]s) + (n —1,m+m, —1,0).

Since & = @, [qw ]s must be positive. It follows that

In(K) = (1,0,0) + (n — 1,m + my —1,0) = (n,m + m,, — 1,0)
and the subspace stationary point T is a (standard) subspace minimizer with respect to the new
working set W =W — {v,}. O

Case 2: a = a, In this case, « is the step to the blocking constraint d’z > f,., which is
eligible to be added to the working set at « + ap. However, the definition of the new working set
depends on whether or not the blocking constraint is dependent on the constraints already in W.
If d, is linearly independent of the columns of AL then the index r is added to the working set.
Otherwise, we show in Result 2.2.7 below that a suitable working set is defined by exchanging
rows d,, and d, in A,,. The following result provides a computable test for the independence of

d, and the columns of AL,

Result 2.2.6 (Test for constraint dependency). Assume that x is a subspace minimizer with
respect to A, . Assume that dtx > f, is a blocking constraint at T = x + ap, where p satisfies

(2.16). Let vectors u and v be the solutions of the system
H Ag U d,
= , (2.23)
Ay —v 0

(a) the vector d, and the columns of AL are linearly independent if and only if u # 0;

then

(b) Vmas = —dlp >0, and if u # 0, then u'ld, > 0.

Proof. For part (a), equations (2.23) give Hu—AZv = d, and A, u = 0. If u = 0 then —ALv =d,,
and d,, must be dependent on the columns of AL. Conversely, if —AZv = d,., then the definition
of u gives uld, = —uTATv = 0, which implies that u"Hu = vT(Hu — ALv) = u'd, = 0. By
assumption, x is a subspace minimizer with respect to A,,, which is equivalent to the assumption
that H is positive definite for all v such that A, v = 0. Hence u"Hu = 0 can hold only if u is
Z€ero.

For part (b), we use equations (2.16) and (2.23) to show that

Umts = efwsv = pTAgv = pT(Hu —d,) = ¢ Ay u—pld, = —d?:p > 0,
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where the final inequality follows from the fact that dXp must be negative if 2z > f, is a blocking
constraint.

Equations (2.23) imply Hu — ALy = d, and A,, u = 0. Multiplying the first equation by
uT and applying the second equation gives u"Hu = u”d,. As z is a subspace minimizer and v is

nonzero with u € null(4,, ), it must hold that u"Hu = u’d, > 0, as required. O
The next result provides expressions for the updated multipliers.

Result 2.2.7 (Multiplier updates). Assume that x is a subspace minimizer with respect to Ay, .
Assume that dXx > f, is a blocking constraint at the next iterate T = x + ap, where the direction

p satisfies (2.16). Let u and v satisfy (2.23).

(a) Ifd, and the columns of AL are linearly independent, then the vector ij formed by appending
a zero to the vector y + aq satisfies g(¥) = ALy, where A,, denotes the matriz A, with

row dX added in the last position.

(b) If d, and the columns of AL are linearly dependent, then the vector i such that
J=y+aqg+ov, with o=—[y+ aqlmis/Vm+ts, (2.24)
satisfies g(Z) = ALy + od, with §,ymys =0 and o > 0.

Proof. For part (a), the identity (2.19) implies that g(z + ap) = g(%) = AL(y + aq). As d, and
the columns of AL are linearly independent, we may add the index r to W and define the new
working-set matrix AT = (Ag dr>. This allows us to write g(z) = ALy, with 7 given by y+ag
with an appended zero component.

Now assume that AL and d, are linearly dependent. From Result 2.2.6 it must hold that

u = 0 and there exists a unique v such that d, = —ALv. For any value of o, it holds that
9(7) = Ay(y + aq) = AL(y + aq + 0v) + od,.
If we choose 0 = —[y + aq|m+s/Vm+s and define the vector § = y + aq + ov, then
9(®) = ALy +od., with Gy = [y+ g+ ovlmis =0.

It follows that g(Z) is a linear combination of d, and every column of AL except d,,..

In order to show that o = —[y + aq]m+ts/Vm+s 1S positive, consider the linear function
n(a) = [y + aq]m+s, which satisfies 7(0) = ypmys < 0. If guis = pTHp > 0, then o, < oo and
n(«) is an increasing linear function of positive o with n(as) = 0. This implies that n(«) < 0
for any a < a, and n(ag) < 0. If gpuys < 0, then n(a) is a non-increasing linear function
of a so that n(a) < 0 for any positive a. Thus, [y + ag]m+s < 0 for any o < ax, and o =
—[y + @qlm+s/Vm+s > 0 from part (b) of Result 2.2.6. O
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Result 2.2.8. Let x be a subspace minimizer with respect to the working set W. Assume that

dXx > f. is a blocking constraint at T = x + ap, where p is defined by (2.16).

(a) If d, is linearly independent of the columns of AL, then Z is a subspace minimizer with

respect to the working set W =W + {r}.

(b) If d, is dependent on the columns of AL then & is a subspace minimizer with respect to the

working set W =W + {r} — {vs}.

Proof. Parts (a) and (b) of Result 2.2.7 imply that Z is a subspace stationary point with respect
to W. It remains to show that in each case, the KKT matrix for the new working set has correct
inertia.

For part (a), it suffices to show that the KKT matrix for the new working set W =
W + {r} has inertia (n,m + m, + 1,0). Assume that d, and the columns of AL are linearly
independent, so that the vector u of (2.23) is nonzero. Let K and K denote the KKT matrices

associated with the working sets W and W, i.e.,

H AT _ (H AT
K= and K= _ ,
Aw Aw

where A, is the matrix A,, with the row d added in the last position.
By assumption, z is a subspace minimizer and In(K) = (n,m + m,,,0). It follows that

K is nonsingular and the Schur complement of K in K exists with

K/K =~ (df 0) K™ (2) =~ (ar o) (_u> — —dTu <0,

where the last inequality follows from part (b) of Result 2.2.6. Then,
In(K) = In(K/K) + In(K) = In(—u"d,) + (n, m + my,,0)
=(0,1,0) + (n,m 4+ my,,0) = (n,m +m,, + 1,0).

For part (b), assume that d, and the columns of AL are linearly dependent and that
W =W + {r} — {vs}. By Result 2.2.7 and equation (2.23), it must hold that u = 0 and
—ATy = d,.. Let A, and A, be the working-set matrices associated with W and W. The

change in the working set replaces row s of D,, by d%, so that

A, = A, + em+s(dz— df) = Ay + emys(—vTA, — eﬁJrsAw)

= (I — emys(v+ em+s)T)Aw
= MAw )

where M = I — e;qs(v + em+s)T. The matrix M has m + m,, — 1 unit eigenvalues and one

eigenvalue equal to vy,4. From part (b) of Result 2.2.6, it holds that v,,1s > 0 and hence M is
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o — e Tp_1 — Tk — .’L'k;+1
move, add move, add move and delete v,

A) Wo  —5 o Wea Wy il Wit
move, add move, add move and swap

(B) Wo — cee Wk—l — Wk — Wk+1

Figure 2.2: Each sequence starts and ends with a standard subspace minimizer zy and zy1,
with intermediate iterates that are nonstandard subspace minimizers. In (A), zr41 is reached
by taking an optimal step and the vs-th constraint is removed from the working set. In (B),
a linearly dependent blocking constraint is swapped with the vs-th constraint making xx41 a
standard subspace minimizer.

nonsingular. The new KKT matrix for YW can be written as

() Ol )0 w)

By Sylvester’s Law of Inertia, the old and new KKT matrices have the same inertia, which implies

that & is a subspace minimizer with respect to W. O

The first part of this result shows that Z is a subspace minimizer both before and after
an independent constraint is added to the working set. This is crucial because it means that the
directions p and ¢ for the next iteration satisfy the KKT equations (2.16) with A,, in place of
A, - The second part shows that the working-set constraints can be linearly dependent only at a
standard subspace minimizer associated with a working set that does not include constraint v;.
This implies that it is appropriate to remove v from the working set. The constraint dg;m > fu.
plays a significant (and explicit) role in the definition of the search direction and is called the
nonbinding working-set constraint. The method generates sets of consecutive iterates that begin
and end with a standard subspace minimizer. The nonbinding working-set constraint dfsx > fu.
identified at the first point of the sequence is deleted from the working set at the last point (either
by deletion or replacement).

The proposed method is the basis for Algorithm 2.2 given below. Each iteration requires

the solution of two KKT systems:

H AT D 0

Full System 1 = (2.25a)
Ay, O —q Em+s
H AE u d,

Full System 2 = . (2.25b)
Ay 0 —v 0

However, for those iterations for which the number of constraints in the working set increases, it

is possible to update the vectors p and ¢, making it unnecessary to solve (2.25a).
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Algorithm 2.2: Nonbinding-direction method for general QP

Find z such that Ax =b, Dx > f; k=0;
Choose W, any full-rank subset of A(z);

Choose 7 and z, ;

[#,7, 2, W] = subspaceMin(z, 7, 2y, W); My = [W];
g=c+ Hz; s=argmin; [z ]
while [z, ]s <0 do
H AT DI D 0
Solve [ A 0 0 —ag- | =10];
D, 0 0 —Gw €s
ar = maxStep(z,p, D, f);
if [qw]s >0 then a. = —[zy]s/[qw]s €else a, = +o0;

a = min{o., ap};

if a = +oo then stop;
T4 T+Qp, T4 T+ QQr; 2w & 2w +0Qy;
if ar < o, then

Choose a blocking constraint index r;

[the solution is unbounded]

g+ g+ aHp;

[add constraint r to the working set]

H AT DI u d,
Solve | A 0 0 —Ur | = ;
D, 0 0 — Uy 0
if =0 then o= —[z,]s/[vy]s else o =0;

T A= T+ 0Un; 2y

Zw + OUy
)
o

W WH{rk my < my +1;

end;

if [z4]s =0 then
W W —{vs}; my < my —1;
for i =s:my do [zy]i < [2w |it1;
s = argmin; [z )i;

end;

k+—Ek+1;

end do

[delete constraint v, from the working set]
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Result 2.2.9. Let x be a subspace minimizer with respect to A,, . Assume the vectors p, q, u
and v are defined by (2.25). Let d, be the gradient of a blocking constraint at T = x 4+ ap such
that d,. is independent of the columns of AL. If p= —d p/dXu, then the vectors

+ pv
p=p+pu and f7=<q p)
P

are well-defined and satisfy
H AT p 0 _ Ay,
_ v P = , where A, = . (2.26)
Aw _Cj Em+s d?

Proof. Result 2.2.6 implies that u is nonzero and that u’d, > 0, so that p is well defined (and
strictly positive).
For any scalar p, (2.25a) and (2.25b) imply that

H AL 4, P+ pu 0
Ay _(q + p”) = €m+s
dy —p dfp + pdfu

If p is chosen so that dlp + pdu = 0, the last component of the right-hand side vanishes, and p
and ¢ satisfy (2.26) as required. O

2.2.3 Relation between the binding and nonbinding methods

Result 2.2.10 (Equivalence of binding and nonbinding directions). Suppose that x is a standard
subspace minimizer with respect to W, and let vectors m and z, satisfy g(z) = ATr + DTz,.
Assume that both the binding- and nonbinding-direction methods identify an index vs € W such
that [2,]s < 0. Define the set W =W — {v,}.

Let p be the nonbinding direction from (2.16). If the reduced Hessian ZLHZ is positive
definite, then p = au.p, where p is the binding direction from (2.6), and «. is the bounded non-
binding optimal step ax = —[2uw |s/qm+s- Otherwise, p = dp, where p is defined by (2.8) and ¢ is

a bounded positive scalar.

Proof. Because x is a stationary point, g(z) = ATr + DLz, = Alm + DLz, + [24]sdy,, where

Zp 18 z,, with the s-th component removed. This implies that
[20]sdy, = g(x) — ATn — DT 2. (2.27)

By definition, the nonbinding direction p satisfies the equations

e D))
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The second block of equations is A, p = epy,4s, which implies that Agp = 0 and dfsp = 1.

Similarly, the first block of equations gives
Hp — qu =Hp - Ag 4= Gm+sdy, =0, (2.28)

where g is the (m + my )-vector defined by removing the (m + s)-th component from g.
The definition of the binding direction depends on the inertia of the reduced Hessian
ZIHZ,. Suppose that it is nonsingular (either positive definite or indefinite). Then gy, 4s =

pTHp # 0 since p lies in the null space of Ay and the binding direction satisfies

H AT P\ _ g(x) — AT — DLz,
Ay 0 ) \—g) 0 '

The equations (2.27) and (2.28) imply that

a*(Hp - Ag Q) = Qxqm-+s dus = Lelm g (g($> — A'r — Dz

[Zw]s w W

) = ~(9(x) - A%x — DLz,

Therefore a,p and «.q satisfy

H AL ap) g(x) — ATr — DLz,
Ag 0 ) \—a.g 0 '

If ZLHZ, is singular, then p and ¢ satisfy (2.8)

b V)00

The first equation states that Hp — AL ¢ = 0, which means that Hp — AL ¢ = 0 since g4 s =
pT"Hp = 0 because p lies in the null space of Ag. The second equation implies that A, p =
(dZ B)ems. If § = 1/dL B, then

H AT op\ ([ 0
Aw 0 ) \=63) \emss)’

as required. O



3 Problems in Standard Form

Probably the most common form for expressing quadratic programs, often called standard
form, is

minimize o(z) = 'z + La"Hx subject to Az =b, z>0. (3.1)
reR™

This problem is a particular instance of the mixed constraints Az = b, Dz > f in which D is the
n-dimensional identity and f = 0. The constraints x > 0, called simple bounds or just bounds,
are the only inequality constraints in a standard-form problem. Any mixed-constraint problem
may be written in standard form. For example, the general inequality constraint d7x > f; can
be converted to a general equality dz — s; = f; by adding an extra (“slack”) variable s; that
is required to be nonnegative. However, QPs in standard form arise naturally in the theory of
duality (see Chapter 4).

In this chapter, we show that the application of the nonbinding-direction method to a
quadratic program in standard-form leads to an algorithm in which the two fundamental systems
(2.25a) and (2.25b) may be expressed in terms of a smaller “reduced” KKT system involving a

subset of the columns of A.

3.1 Introduction

A first-order KKT point for (3.1) is defined as a point x satisfying the following conditions

Az =0, x>0 (feasibility)
g(x) = ATn + 2 (stationarity)
z2>0 (nonnegativity)
x-2=0 (complementarity).

Since the only inequality constraints of (3.1) are simple bounds on z, the active set
at a point x is defined as A(zx) = {¢ : x; = 0}, with cardinality m,. The stationarity and
complementarity conditions above are equivalent to the condition g(z) = ATr 4+ P, 24, where

z = Pyzq and P, is the n x m, permutation matrix defined by A(z).

30
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The necessary optimality conditions of (3.1) in active-set format are given in the following

result:

Result 3.1.1 (Necessary optimality conditions for standard-form QP). If * is a local minimizer

of the quadratic program (3.1), then
(a) Az* =b, x > 0;

(b) there exist vectors ™ and zy such that g(x*) = ATn* + Pyz4, where zo > 0 and Py is

defined by A(z*); and

(b) it holds that p"Hp > 0 for all nonzero p satisfying Ap =0, and p; = 0 for each i € A(z*).

3.2 Nonbinding-Direction Method for Standard-Form QP

In standard-form, the working-set matrix D,, consists of rows of the identity matrix,
and each working-set index ¢ is associated with a variable z; that is implicitly fixed at its current
value. In this situation, as is customary for constraints in standard form, we refer to the working
set as the nonbasic set N, and denote its elements as {vy, va, ..., Uy} With ny = my,. The
complementary set B of ny; = n — ny indices that are not in the working set is known as the
basic set. The elements of the basic set are denoted by {81, Ba, ..., Bugp}-

If Py denotes the n X ny matrix of unit columns { e; } with ¢ € A/, then the working-set

Ay = .
Py

Similarly, if Py is the n x ny matrix with unit columns {e; } with ¢ € B, then P = (PB PN) is

matrix A,, may be written as:

a permutation matrix that permutes the columns of A4,, as

Ay (Pa PN)zAwP:<A>P:<AP>:<AB AN>’
Py PP Iy

where Ay and Ay are matrices with columns { ag, } and { a,, } respectively. If y is any n-vector,
ys (the basic components of y) denotes the ng-vector whose j-th component is component §;
of y, and yy (the nonbasic components of y) denotes the ny-vector whose j-th component is
component v; of y. The same convention is used for matrices, with the exception of I; and Iy,
which are reserved for the identity matrices of order n; and ny, respectively. With this notation,

the effect of P on the Hessian and working-set matrix may be written as
H, H A, A
PfHP={"" 7] and A,P=("" ""). (3.2)
HT H, I,

As in the mixed-constraint formulation, A, must have full row rank. This is equivalent to

requiring that Ay has full row rank since rank(A,, ) = ny + rank(4z).
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We will see that for standard-form problems, the nonbinding-direction method is char-
acterized by the basic set instead of the nonbasic (or working) set. Consequently, we redefine a
subspace stationary point with respect to a basic set and a second-order-consistent working set

as a second-order-consistent basis.

Result 3.2.1 (Stationary point and second-order consistent basis). Let x be a feasible point with

basic set B. Let the columns of Zg form a basis for the null space for Ag.

(a) If x is stationary point with respect to A, , then g = AL for some vector m, or equiva-
lently, the reduced gradient ZLg, = 0 and x is referred to as a subspace stationary point

with respect to B (or Ap).

(b) If B is a second-order-consistent basis for (3.1), then the reduced Hessian ZLH Z , is positive

H, AL
? B) has inertia (ng,m,0).

B

definite. FEquivalently, the KKT matric Ky = (

Proof. Definition 2.2.1 implies that there exists a vector y such that g(x) = ALy. Applying the

permutation P to the equation implies

9 _pry— prary— (42 ),
gn 'A]T\; Iy

so that g5 = AT T € range(AL), where the vector 7 is the first m components of the vector y.

For part (b), let the columns of Z define a basis for the null space of A,,. Applying the

PT7 = Zs .
Ly

o (As AN (7 ApZy+ Ay Zy
AyZ=A,PPTZ = = =0,
I, ) \Z, Zy

so that Z,y = 0. This implies that

permutation PT of (3.2) to Z gives

Then

H, H, (z
ZTHZ = ZTPPTHPPTZ = (zT zT) S I B =
PN \HY Hy) \Zy

Consequently, ZTHZ is positive definite if and only if ZLH_Z, is positive definite. Moreover,
In(ZTHZ)=In(ZIH,Z,).
By definition, since x is a subspace minimizer, ZTH Z is positive definite and has inertia
(n = (m+ny),0,0). By Corollary 1.3.1, the inertia of K, satisfies
In(Ky) =W(ZLHZ,) + (m,m,0) = n(ZTHZ) + (m,m,0)
=(n—(m+ny),0,0) + (m, m,0)

= (n—ny,m,0) = (ngz,m,0).
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As in linear programming, the components of the vector z = g(x) — A1 are called
the reduced costs. For constraints in standard form, the multipliers z,, associated inequality
constraints in the working set are denoted by z,, whose components are the nonbasic components

of the reduced-cost vector, i.e.,
zy = (g(a) — ATm) = g, — Ay

At a subspace stationary point, it holds that g, — AZw = 0, which implies that the basic
components of the reduced costs zy are zero.

The fundamental property of constraints in standard form is that the mixed-constraint
method may be formulated so that the number of variables involved in the equality-constraint
QP subproblem (2.15) is reduced from n to ny. Suppose that z,, < 0 for v; € N'. By applying
the permutation matrix P to the KKT system (2.25a), we have

Hy, Hp Ag Ps 0
HY Hy | AL 1 0 .
p —NlTN W Pl = , where p=P P and q= = (3.3)
AB AN —qr 0 P~ qn
IN —dn €s

These equations imply that py = es and py and ¢, satisfy the reduced KKT system

H, A'g s _ —Hpyp, _ (ho,)s (3.4)
Ay 0 —qr —Anpy Ay, - .

In practice, py is defined implicitly and only the components of p; and ¢, are computed explicitly.
Once py and ¢, are known, the increment ¢, for multipliers z5 associated with the constraints
pn = e, are given by ¢y = (Hp — ATq;) . The computed search directions satisfy the identities

in Result 2.2.4. In terms of the standard form variables, these identities imply

9'p = [2x]s and p"Hp = [qu]s, (3.5)

so that the optimal step a. = —[zx]s/[qn]s-
The solution of the second KKT system (2.25b) can be similarly computed from the

KKT equation
H, AL us\ _ fer , (3.6)
Ag —Ur 0

with uy = 0 and vy = (Hu — ATv,),,, where u = P b and v = U .
Uy Un

The KKT equations (3.4) and (3.6) allow the mixed-constraint algorithm to be formu-
lated in terms of the basic variables only, which implies that the algorithm is driven by variables

entering or leaving the basic set rather than constraints entering or leaving the working set. With
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this interpretation, changes to the KKT matrix are based on column-changes to Ay instead of
row-changes to A, .
For completeness Results 2.2.5—2.2.8 are summarized in terms of the quantities associ-

ated with constraints in standard form.

Result 3.2.2. Let x be a subspace minimizer with respect to the basic set B, with [zy]s < 0. Let

Z be the point such that Ty = xx + aes and Ty = x5 + apg, where py is defined as in (3.4).

(1) The step to the minimizer of p(xr + ap) is o = —2,_/[dn]s- If e is bounded and o = o,

then & is a subspace minimizer with respect to the basic set B = B+ {v,}.

(2) Alternatively, the largest feasible step is defined by the minimum ratio test:

ap = min~y;, where ;= Prli (3.7)

+o0o  otherwise.
Suppose o = ap and (x5 + apgls, =0 and let up and v, be defined by (3.6).

(a) e, and the columns of AL are linearly independent if and only if up # 0.

(b) [vn]s = —[pslr >0, and if ug # 0, then [ug], > 0.

(c) If e, and the columns of AL are linearly independent, then T is a subspace minimizer
with respect to B =B — {3, }. Moreover, g5(z) = AL7 and gx(z) = AL7 + 2., where
T =m+aq, and Zy is formed by appending a zero component to the vector zy + aqy.

(d) If e, and the columns of AL are linearly dependent, define o0 = —[zx + aqy]s/[Vn]s-
Then T is a subspace minimizer with respect to B = B— {3, } +{vs} with g5(z) = ALx
and gy (%) = ALT + zZy, where @ = © + aq, + ov, with o > 0, and zy is formed by

appending o to zy + aqy + oUy.

Proof. For part (1), we first show that & remains a stationary point for B. Since a = a, =
—[zn]s/[an]s, the multiplier of the vs-th constraint [zy + agy]s = 0 so that zz = 0.

Now let K and K5 denote the matrices associated with basic sets B and B. We must
show that Kz has the correct inertia. However, since inertia is unchanged by symmetric permu-

tations, we consider a permuted version of Kj5:

Kgz= QTKBQ = AB

(hl’s)z; a;,

Vs

ay

s

Hy AT | (h,)s

th’Vs

where () is a permutation matrix. Because Ky is associated with a subspace minimizer, Ky is
nonsingular with In(K,) = (ng,m,0). In particular, K 5/K, the Schur complement of K in

K 5 exists with

Kp/Ky=hy, ., — ((hys)g a,:fs) K;! <(h”s)’*> .
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It follows from equation (3.4) that

(2 (2)
—qr Ay,

Thus, the Schur complement can be written as

=hy, v, + (hus)ng - a:{ﬂw

= eZHNes + ezngB - BZA£Q71'
=elqy =lgn]s by (3.4) .

Then In(K;) = In(K 3) = In(K,) + In(K 3/K5) = In(K,) + In([gx]s)-

Since a, is bounded, [gy]s = p?Hp must be positive, so that In([gy]s) = (1,0,0). It
follows the KKT matrix associated with B has inertia (n; + 1, m,0) and the subspace stationary
point Z is a subspace minimizer with respect to B.

For part (2a), equation (3.6) implies that Hyup — ALv, = e, and Aguyz = 0. If uy =0,
then —AZv_ = e, so e, must be dependent on the rows of A,. Conversely, if —AZv_ = e,, then
the definition of u, gives ule, = —uL ATv_ = 0, which implies uL H u, = 0. By assumption,
z is a subspace minimizer with respect to B which is equivalent to the assumption that Hy is
positive definite for all u such that Azuy = 0. Thus, uL H, u, = 0 can hold only if u,; = 0.

Part (2b) follows directly from Result 2.2.6 since vy, s = [vx]s = —€f p = —[ps]r > 0
and u’es. = [up], > 0if uy # 0.

For part (2c), observe that (2.19) implies

g5(Z) = Ag(ﬂ +aq;) and gn(T) = A£(7r + aqr) + (z2xy + agy).

Since e, and the rows of Ay are linearly independent, the index /3, may be added to the nonbasic
set. The new basic and nonbasic sets are defined as B = B — {3,} and N' = N + {8,}. The
column of Ay corresponding to the ¢-th variable is removed from Az to form Az and is appended

to Ay to form the new nonbasic matrix Ay. Then
gs(%) = AL7 and gy(2) = AL7 + 2,

where z, is formed by appending a zero to the vector zy + aqy.
It suffices to show that for B = B — {3,}, Kz has inertia (ny — 1,m,0). Consider the

matrix
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By assumption, z is a subspace minimizer and In(Ky) = (ng,m,0). Thus, K, is nonsingular
and the Schur complement of K in M exists with

Up
T

M/K, = —elK e, = —eT< ) by (3.6)

= —[ug]r <O0.

—Ur

Then,
In(M) =In(M/Kp) + In(K;) = In(—[uz],) + (ns,m,0)
=(0,1,0) + (nz,m,0)
= (ng,m+1,0). (3.8)
Since B = B — {f3}, a permutation can be applied to K such that

Hs  (hg)s | A}

oo H, AT . .

"4 ~ | (hg)s  hs.p. | ag,
B

Ag aﬁr ‘ 0

Similarly, applying symmetric permutations to M gives
Hs  (hg)s AL |0

2 (KB er) | (e)E e ab |1
AB aBT O O

ho.p. 1| (kg )E af,

o

o
1>
2

0
(hg,)s O
0

The leading 2 x 2 block of M, denoted by E, has det(E) = —1 so In(F) = (1,1,0). The Schur

complement of F in M is

-1
—~ hs)s 0\ (R 1 hs )L af
M/E =K, — (hs.)s Pribr (hs.)s  ag,
ag, 0 1 0 0 0

_ K, - (hg)s 0) (0 1 (hs, )& af
ag,. 0 1 _hﬁ’l‘7ﬁ’r‘ 0 0

which implies that In(M) = In(M) = In(M/E) + In(E) = In(K3) + (1,1,0). Combining this
with (3.8) yields

In(Kz) =In(M) - (1,1,0) = (ng,m+1,0) — (1,1,0) = (np — 1,m,0),



37

so that K has correct inertia and Z is a subspace minimizer with respect to B.
For part (2d), assume that e, and the rows of A, are linearly dependent so that uz; =0
with —ATv_=e, and vy = —ATw, .

Let o be an arbitrary scalar. It follows that the basic components of the gradient satisfy

g5(Z) = Ag(w +agqr) = Ag(w + aqr + ovg) — c7A£v7r
= AL(1 + agx + ovs) + o€,

= AL7 + e,
where T = 7 + aq; + ov,. Similarly, for the nonbasic components, it follows that

gn (@) = AL (T + agx) + 2y + gy
= AL(T + aqr + ovz) + 25 + agqy — 0 AL v,

:A£ﬁ+zN, with Zy = zy + agy + ovy.

If o is defined as 0 = —[zy + aqy]s/[Vn]s, then [Zy]s = [2x + @gy — 0Vy]s = 0. This implies that
the next basic and nonbasic sets can be defined as B = B— {8, } +{vs} and N' = N+ {5} — {vs},
so that

g5(7) = ALT and gy(7) = AL7+ 7,

with @ = 7 4+ ag, + ov,; and zy formed by appending o to Zy.

To show that o > 0, notice that n(a) = [zy + agn]s is a nondecreasing linear function
of a such that 1(0) = [2x]s < 0 and n(a.) = 0. This implies that if a constraint is blocking,
then o < av, and [2x + agy]s < 0. Now o > 0 if [vy]s > 0. But [vy]s = el(-ATv,) = —alv, =
pL ALy = —ple. = —[ps]. > 0 since r is the index of a blocking constraint. Thus o > 0.

Let K, and K; denote the KKT matrices associated with B and B and denote the
intermediate basic set B— {3} as B. Since B is B with the r-th index replaced by vy, K5 differs
from Kg by a single row and column. Although it is very similar to the proofs in part (1) and

(2¢), a concise proof to show that K5 has correct inertia is provided for completeness.

Define the matrix M as

Hpy Ag (hus)s Cr

Ag 0 ay, 0
(th)z; a;lj—; hl/S7VS 0
eI 0| 0 o0
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The (1, 1)-block is K5, which is nonsingular, so that the Schur complement M /K is

hy v, O ho )T ol h, .
M/Ky = s:Vs _ ( ;)B Ay, K;l (hu,)s e
0 0 e, 0 a, 0

erp, 0
_ <[qN}S [%\r]s)
[Ps]r 0
Since [vn]s = —[ps]r > 0, M/Kjy has inertia (1,1,0). Thus, In(M) = (ng,m,0) + (1,1,0) =

(ny +1,m+1,0).

Now consider a permuted M such that

Hs AL (h)s | (hg)s O

Ap 0 ay, ag, 0

M= (hl’s)g a,:fs ho, v, 0 0
(hg,)§ a0 | hgp 1

0 0 0 1 0

Since the (1,1)-block of this matrix is a permuted version of K, it remains to show that this
block has correct inertia. Notice that the (2,2)-block of the above matrix (which we denote by E)
is nonsingular, so that the Schur complement must exist. By a simple calculation, M /E = K.

Therefore In(Kz) = In(M) — In(E) = (ng, m,0). O

As in the general mixed-constraint method, the direction pz and multiplier ¢, can be

updated in the linearly independent case.

Result 3.2.3. Let x be a subspace minimizer with respect to B. Assume the vectors pg, qr,
up and vy are defined by (3.4) and (3.6). Let 8, be the index of a linearly independent blocking
constraint at T, where Ty = x5 + aes and Ty = 5 + apy. Let p = —[pg|r/|us]r, and consider
the vectors py and G, where py is the vector py + pup with the r-th component omitted, and

Gr = qr + pUr. Then pp and Gr are well-defined and satisfy the KKT equations for the basic set
B =B- {ﬁr}

Proof. Since the blocking constraint is linearly independent, us # 0 and [ug], is nonzero by
part (2b) of Result 3.2.2, so that p is well-defined.
Let K be the matrix K with the -th components zeroed out, i.e., K = Ky — K., where

K — (HBeref+ er(Hpe )T — hﬁrﬁrereTT e,efAE) .

T
Aserer
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T — e Tp_1 —_— Tk — Tk+1
move, delete move, delete move, add vy

(A) BO — s Bk—l — Bk — Bk—i—l
move, delete move, delete move, swap v, & 3,

(B) By — - B — By, — Bk+1

Figure 3.1: This figure depicts the two types of sequence of consecutive iterates in the
nonbinding-direction method. Each sequence starts and ends with standard subspace minimizers
xg and xpy1. Intermediate iterates are nonstandard subspace minimizers. The sequences differ in
how the final point is reached. In (A), v is added to the basic set after an optimal step o = a.
In (B), S8, is the index of a linearly dependent blocking constraint and it is swapped with the
ve-th constraint after a blocking step (ap < ) is taken.

Then
K, ( Ds + pup ) _ ((hys)5> +p <€r> and K, < Ps + pUp ) _ (Per - [hus]rer> ’
_(QTr + pUTr) Ay, 0 _(qﬂ' — /)’Uﬂ) 0

so that
K < Pe + pus > _ ((hus)s - [hus}r&) '
_(QTr - pUTr) Ay,

If pp is the vector py + pup with the r-th component removed, then the above equation implies

that
KE Ds _ (hus)lé :
_(jﬂ' aus
where K is the KKT matrix associated with B. O

The standard-form version of the nonbinding-direction method computes sequences of
iterates that start and end with a standard subspace minimizer with intermediate iterates con-
sisting of nonstandard subspace minimizers. Figure 3.1 shows the two possible types of sequences.
In both sequences, intermediate iterates are reached by taking blocking steps where the blocking
constraint is linearly independent of the constraints in the current basic set. In the upper se-
quence (A), the final standard subspace minimizer is reached when an optimal step is taken and
vs is added to the basic set. In the lower sequence (B), we encounter a blocking constraint that
is linearly dependent of the basic set constraints. In this case, v, is added to the basic set and
the index S, of the blocking constraint is removed.

Algorithm 3.1 summarizes the nonbinding-direction method for quadratic programming.
Instead of using the vectors ¢y and v, to update z, the algorithm recomputes z from 7 using
z = g — ATw. Furthermore, the relation in part 2(b) of Result 3.2.2 is used to simplify the

computation of [vy]s.
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Algorithm 3.1: Nonbinding-direction method for a general QP in standard form

Find x¢ such that Azqg = b and zg > 0; k =0;
[z, 7, B,N| = subspaceMin(zy);

g=c+Hzx; z2=9g— ATm;

vs = argmin,{z };

while z,, <0 do

H, AT hy
SOlve < , B> ( pB) - <( S)B> ; pN - es; p - P <pB> ;
AB —qr aus PN

ar = minRatioTest(zs,ps);
if [gy]s >0 then a, = —z, /[qn]s €else a. = +oo;
a = min{a., ap};
if o =+oco then stop; [the solution is unbounded]
T x+ap;, g+ g+ aHp;
T T+ oagr; z=g— ATr;
if ap < o, then remove the r-th basic variable]
Find the blocking constraint index r;
() ()= 6)
Ap —VUr 0
if up =0 theno =z, /[ps], else o =0;
B<B—{f}; N<N+{b}
T T+ovy; z=g— ATm;
end;
if z,, =0 then [add the s-th nonbasic variable]
B+ B+{vs}; NN —{vs};
vs = argmin, {z; };
end;
k<+—k+1;
end do
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3.3 Linear Programs in Standard Form

If the problem is a linear program (i.e., H = 0), then the basic set B may be chosen
so that A is always nonsingular (i.e., it is square with rank m). In this case, we show that
Algorithm 3.1 simplifies to a variant of the primal simplex method in which the m-values and
reduced costs are updated by a two-term recurrence relation.

When H = 0, the equations (3.4) reduce to Azps = —a,, and ALq. =0, with py = e,
and gy = —ATq, . Since Ay is nonsingular, both ¢, and gy are zero, and the directions p
and p, are identical to those defined by the simplex method. In the case of (3.6), the basic
and nonbasic components of u satisfy Azuy = 0 and uy = 0. Similarly, vy = —AEUW, where
—ATy_ = e,. Again, as A, is nonsingular, uy = 0 and the linearly dependent case always
applies in Algorithm 3.1. This implies that the r-th basic and the s-th nonbasic variables are
always swapped, as in the primal simplex method. Every iterate for an LP is a standard subspace
minimizer.

As g, and gy are zero, the updates to the multiplier vectors 7 and z defined by part 2(d)
of Result 3.2.2 depend only on v,, vy and the scalar o = —[zy]s/[vy]s. The resulting updates
to the multipliers are:

Zy Fovuy
T4 T+ ov;, and zy < ,
o

which are used in many implementations of the simplex method.



4 Dual Quadratic Programming

In this chapter, we formulate a dual active-set method by applying the nonbinding-
direction method to the dual problem of the standard-form quadratic problem introduced in
Chapter 3. The original “primal” standard-form problem is restated here:

minimize ¢(z) = ¢’z + 1z"Hz subject to Az =b, z>0. (4.1)

z€R

The stationarity condition of the primal QP gives an explicit relation between the primal variables
x and the dual variable 7 and z. Based on this condition, a dual problem is formulated where
the roles of the primal and dual variables are reversed. Instead of minimizing over the primal
variables x, a dual QP minimizes over variables m and z that satisfy the stationarity and non-
negativity conditions of the primal QP. If the original primal problem is not convex, it may not
be possible to recover a primal solution from the dual. Therefore, the dual method is only applied
to convex primal problems, i.e., to problems with positive-semidefinite H.

The relationship between the primal and dual was first given by Dorn in [21]. A dual
active-set method for strictly convex problems was proposed by Goldfarb and Idnani [47]. This
method was extended by Powell [60] to deal with ill-conditioned problems, and reformulated
by Boland [5] to handle the general convex case. These methods require the factorization of a
matrix defined in terms of the inverse of H, and as such, they are unsuitable for large-scale QP.

In particular, the Goldfarb-Idnani method uses a range-space method to solve a KKT system of

o S0 -(0)

The solution is defined by the inverse of the Hessian and the Moore-Penrose pseudoinverse such

that

the form

Mt = (A, H AT 'A, H™Y and N = H YT — AT MT),

with p = Na; and ¢ = M Taj. The pseudoinverse M and matrix N are not computed explicitly,
but are stored in factored form as dense matrices. The difficulty of using the inverse of H and
dense factorizations was addressed by Bartlett and Biegler [2] in the code QPSchur, which is a
reformulation of the Goldfarb-Idnani method utilizing the Schur-complement method to solve

the linear systems (see Section 7.2 for a discussion of the Schur-complement method). However,

42
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QPSchur is only appropriate for strictly convex problems as strict convexity is required to ensure
a positive definite reduced Hessian at every iteration of the method.

In the next section, background information on dual problems is given and the dual
problem format is introduced. In Section 4.2, the dual version of the nonbinding algorithm is
described.

4.1 Background

A point x satisfying the constraints of the primal problem is called primal feasible.
Multipliers 7 and z satisfying the stationarity and non-negativity conditions (i.e., g(z) = ATn + 2

and z > 0) of (4.1) are called dual feasible. Given such primal-dual points, we have
0< 2y = (c+Hx — ATW)Tx =clr+ %xTHx + %xTHx —b"r,

which implies that ¢(z) > —(327Hz — b”r). Based on this inequality, we wish to determine 7
and z by maximizing —%xTH x + b1 or, equivalently, minimizing the dual quadratic objective
function ¢, (z,m) = 1aTHz — bTr over the set of dual feasible points.

The “dual” quadratic problem for (4.1) is written as

minimize ¢, (w, ) = fwTHw — b7
w,z€R™, TeR™ (42)

subject to Hw—ATn — 2= —c, 22>0.

The relationship between the primal and the dual problems is evident from the optimality condi-
tions for (4.2) provided by the following result. The stationarity conditions for the dual are the

feasibility conditions of the primal and vice versa.

Result 4.1.1 (Dual QP optimality conditions). The point (w*, 7, 2*) is a solution to the dual
QP (4.2) if and only if

(a) Hw* — ATn* — 2* = —c and 2* > 0;

(b) there exists a vector x* such that (i) Hw* = Hz*, (ii) Az* = b, (iii) «* > 0, and (iv)

¥ . 2z"=0.

Second-order conditions are unnecessary because H is positive semidefinite. If the so-
lution of the primal problem is unbounded, then the dual is infeasible. Similarly, if the dual
is unbounded, then the primal is infeasible. If the dual has a bounded solution, then part (b)
implies that z*, the Lagrange multiplier vector for the dual, is a KKT point for the primal, and
hence constitutes a primal solution. Moreover, if the dual has a bounded solution and H is
nonsingular, then w* = z*.

Methods that solve the dual are useful because the dual formulation does not require

feasibility with respect to the equality constraints Az = b. For example, in branch-and-cut
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methods for mixed-integer nonlinear programming (MINLP), introducing a new cut constraint
produces a new QP that is better solved by dual methods than primal methods. When a cut is
generated, then (i) a new row and new column are added to the constraint matrix A, (ii) a zero
element is added to the objective vector ¢, and (iii) the Hessian is extended to include a zero
row and column. These changes give a new QP with data ﬁ, 3, ¢ and H. The new column of

A corresponds to the unit vector associated with the new slack column. An obvious initial basis

~ Az 0
a 1

so the new basic solution T is the old solution x; augmented by the new slack, which is infeasible.

for the new problem is

The infeasible slack implies that it is necessary to go into phase 1 before solving the primal QP.
However, by solving the dual QP, then we have an initial feasible subspace minimizer for the dual
based on Z, such that A\BfB —band 2=¢+ HzZ — AT7. In this situation, the vector 7 may be
chosen as the old m augmented by a zero in the position of the new row of A. The new element
of Tz corresponds to the new slack, so the new elements of ¢ and row and column of H are zero.

This implies that Z is essentially z, and hence z > 0.

4.1.1 Regularized dual problem

The dual active-set method is formulated by applying the standard-form nonbinding
direction method to the dual problem (4.2). The method is suitable for QPs that are not strictly
convex (as in the primal case) and, as in the Bartlett-Biegler approach, the method may be
implemented without the need for customized linear algebra software. However, the method
cannot be applied directly to (4.2). If H is singular, then a bounded dual solution (w,,z) is

not unique because (w + ¢, 7, z) is also a solution for all ¢ € null(H). In addition, a working-set

H —-AT I
o o PT)’

where P is some submatrix of the identity matrix I,,. If H is singular, then the working-set matrix

matrix for (4.2) has the form

will be rank deficient, so that the dual has no subspace minimizers—i.e., the reduced Hessian is
positive semidefinite and singular at every subspace stationary point. These difficulties may be
overcome by including additional artificial equality constraints in the dual that do not alter the
optimal dual objective. Let Z be a matrix whose columns form a basis for the null space of H.

The regularized dual problem is defined as

SERRE, o) = gty = U (43)

subject to Hw—- ATt —2=—¢, ZTw=0, z>0.

The additional constraint Z7w = 0 forces w to lie in the range-space of H. The following result

shows that any solution of the regularized dual (4.3) is a solution of the original dual (4.2).
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Result 4.1.2 (Optimality of the regularized dual QP). A bounded solution (w*,7*,z*) of the
regularized dual QP (4.3) is a solution of the dual QP (4.2).

Proof. The regularized dual (4.3) is a convex problem in standard form. The optimality condi-

tions follow from part (a) of Result 3.1.1. If (w*, 7*, z*) is a bounded solution of the regularized

dual, then ZTw* = 0, Hw* — ATn* — 2* = —¢, 2z* > 0, and there exist vectors z*, y* and ¢* such
Hw* 7 H . 0
b |=|o -4 <q> +1o|, (4.4)
T
0 0o -1 y*

with y* > 0, and y* - z* = 0. The first block of equations in (4.4) gives H(w* —z*) = Z¢*, which
implies that Z¢* = 0 because Zg* lies in both the null space and range space of H. As the columns
of Z are linearly independent, it must hold that ¢* = 0. The second block of equations implies
Ax* = b, and the third implies y* = z*. Hence (w*,7*, z*) satisfies Hw* — ATr* — 2* = —¢, and
x* is such that Hw* = Ha*, Az* = b, with z* - 2* = 0 and z* > 0. It follows that (w*,n*, 2*)
and the dual “m-vector” x* satisfies the optimality conditions for the dual QP (4.2). O

The restriction that w € range(H) implies that the optimal w is the unique vector of

least two-norm that satisfies Hw — ATr — 2z = —¢. In many cases the null-space basis Z may be

determined by inspection. For example, consider a QP with H and A of the form

H:(Zf g) and A= (4 -1,), (4.5)

where H is an (n — m) x (n — m) positive-definite matrix. (This format arises when a strictly
convex QP with all-inequality constraints Ax > b is converted to standard form (see (1.3)). In
this case, Z is the (n +m) x m matrix consisting of a zero n x m block and the identity I,,.

Similarly if the QP is a linear program, then Z = I,, and w = 0.

4.2 A Dual Nonbinding-Direction Method

Consider a feasible point (w, 7, z, z) for the dual QP (4.3). To make the notation for the
dual algorithm consistent with the notation for the primal algorithm in Chapter 3, the working
(or basic) set B will be used to denote the np indices of inequality constraints in the working set

for the dual QP. The associated working-set matriz has the form
77
Ay, =| H —-AT —-I], (4.6)
Py
where Py is the n X ny matrix with unit columns {e; } such that ¢ € B. As in the primal

case, the working-set matrix must have full row rank. H being singular causes no complications
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because the additional constraints Z7w = 0 ensure that A,, will have full row rank. In the primal
standard-form algorithm, independence of the rows of A,, implies independence of the columns
of Ag. In the dual context, however, the independence of the columns of A, must be imposed
explicitly.

As the dual problem is convex (i.e., H is positive semidefinite), the reduced Hessian
ZTHZ, is always positive semidefinite, where the columns of Z, form a basis for the null space
of Agz. By Corollary 1.3.1, implies that the reduced KKT matrix K is nonsingular if and only
if ZUHZ,, is positive definite. Moreover, these conditions are equivalent to K having inertia
(ng,m,0). Therefore, for the remainder of this section, we discuss the nonsingularity of K
instead of its inertia. In the following result, we show that the full KKT matrix of the dual

problem is nonsingular if and only if the reduced KKT matrix

H, A]
Ky = (4.7)
A, 0

is nonsingular.
Result 4.2.1 (Nonsingularity of the dual KKT matrix). Let B be a basic set with an associated

working-set matriz. Then the full KKT matriz K of the dual problem (4.3) is nonsingular if and

only if the reduced KKT matriz K is nonsingular.

Proof. Let K, denote the reduced KKT matrix in (4.7) and assume that K is nonsingular. It
suffices to show that K has the trivial null space, i.e., if Ku = 0, then v = 0. Let K and u be

partitioned conformably as

H 0 0 |Z H 0 U
0 0 0 [0 —-A 0 Uz

K = 0 0 0 10 = P , and wu= s (4.8)
z' 0 0 |0 0 0 Uy
H —-AT 1|10 0 0 us
0 o PI'io o0 o ug

The first block of the system Ku = 0 yields u4 = 0 and Hu; = —Hus. Furthermore, the third
and sixth blocks imply that (u3); = 0 and (us)y = 0. Combining these identities with the fifth

block, Hus + ATuy 4+ u3 = 0 and partitioning the resulting vectors into their basic and nonbasic

HB A,}Z; (U5>B . O
A, 0 us ) \o)’

with the second block of this system coming from the second block of (4.8). Since the reduced

components, gives

KKT system is nonsingular by assumption, we have ug = 0 and us = 0. Moreover, since ug is a

linear combination of us and wus, it holds that uz = 0. The third block further implies ug = 0.
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Because us = 0, then Hu; = 0 and Z7u; = 0 from the first and fourth blocks of (4.8).
Then, u; lies in both the range space and null space, and u; = 0. Therefore, Ku = 0 implies
u = 0 and K is nonsingular.

Now assume that K is nonsingular, and that there exist vectors x5 and y such that

) C)

If 2 is defined such that # = Plx,, then Ax = Ayz, = 0. Also, let u; be the range-space
portion of z, in which case Hu; = Hx and ZTu; = 0. Also, define uz = —Hx — ATy.

Then,
H 0 0 Z H 0 Uy 0
0 0 0 0 —-A 0 Y 0
0 0 0 0 —-I Py us 0
zZT 0 0 0 0 O 0 B 0
H —-AT 110 0 0 x 0
0 0 PIlo 0 o0 T 0

As K is nonsingular by assumption, we must have that z; = 0 and y = 0. It follows that K

must also be nonsingular. O

The properties of a dual subspace stationary point and a dual second-order-consistent

basis are summarized in the following result.

Result 4.2.2 (Dual stationary point and dual subspace minimizer). Let (w, 7, z,x) be a dual-

feasible point with basic set B.

(a) If (w, 7, z,x) is a dual stationary point with respect to B, then Hw = Hx and Az = b with

zy = 0.

(b) Furthermore, if B is a dual second-order-consistent basis for the dual problem (4.3), then

the reduced KKT matriz
o (Ho AT
A, 0

Proof. For (w,7,z,x) to be a stationary point, the gradient of the objective at this point must

is nonsingular.

lie in the range space of the transpose of the working-set matrix (4.6). Thus, at a stationary

point, there must exist vectors ¢, x and y; such that

Hw Z H 0 q
Vo (w,m, z) = b |=]1]0 -4 0 x
0 0 —-I Pg Ys
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As in the proof of Result 4.1.2, ¢ = 0, so that Hw = Hx and Ax = b. The last block of the
system implies * = Ppyp so that zy = 0.

For B to be a second-order-consistent basis, the full KKT matrix of the dual must be
nonsingular (with restrictions on the sign of its eigenvalues being unnecessary, as explained

above), which implies that K is also nonsingular by Result 4.2.1. O

At a subspace stationary point, the variables x (the dual variables of the dual problem)
define a basic solution of the primal equality constraints. Moreover, the dual equality constraints
imply that z = Hw — ATn + ¢ = g(w) — ATt = g(z) — AT, which are the primal reduced-costs
corresponding to both w and xz. With the regularizing constraints Z7w = 0, the vectors w and
x differ by a vector in the null space of H. It will be shown below that if the QP gradient
g(w) = ¢+ Hw is known, the vector w need not be computed explicitly.

Let (w, 7, z) be a nonoptimal dual subspace minimizer. Since the point is not optimal,
there is at least one negative component of the dual multiplier vector x, say xzg, < 0. The
application of the nonbinding-direction method of Chapter 3 to the dual gives a search direction
(Aw, A, Az) that is feasible for the dual working-set constraints, and increases a designated

constraint with a negative multiplier. The direction satisfies
ZTAw =0, HAw— ATAm — Az =0, and PIAz=e,.

These equations are incorporated into the following system of equations that are the dual-

algorithm equivalent to System 1 (3.3):

H 0 0 |Z H 0 Aw 0
0 0 0 |0 —A 0 An 0
0 0 0 |0 —-I P, Az | | o 19)
ZT 0 0 [0 0 0 —Aq 0
H —-AT 1|0 0 0 Sy 0
0o o Pflo 0 0 —Ays er

The first block implies that HAw = ZAq + H Az, so that ZAq lies in the range space and null
space of H. It follows that ZAq = 0 and Aq = 0. Therefore, HAw = HAz. In addition, the
third block Ax = Py Ay implies that Azy = 0 and Azy = Ayy.

As in the primal standard-form case, the search direction may be computed from the

< B g) < zB) <6r>
= , (4.10)
A O —Am 0

with Azy =0, Az = e,, Azy = (HAz — ATA7)y and HAw = H Ax.

smaller system

Result 4.2.3 (Properties of a dual nonbinding search directions). Let Aw, Arn, Az and Ax
satisfy the KKT system (4.9). Then the following properties are satisfied
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(a) AzTHAzx = [Axy),;
(b) (Aw,AW,Az)TVgoD(w,w,z) = [z5],.
Proof. For part (a), since AAz = 0, we have

AxTH Az = Ax(H Az — AT A7)
= A2TAz = Al Az, = Azle, = [Az,),.

For part (b), we use the definition of the gradient of the dual problem to give

Hw
(Aw, Arr, A2) Vp, = (Aw, Am, A2)T | —b
0
= AwTHw — bTAx
= AwTHz — 2TATAn  (because Az = b and Hx = Hw)
= 2T(HAw — ATAnr)

=a2TAz = ale, (because x = 0)
= [zs]r
as required. O]
If the curvature AzTH Az is nonzero, the optimal step o = —[25],/[Ar], minimizes

the dual objective pp(w + aAw, ™ + aAr, 2z + aAz) with respect to «, and the r-th element of
Tpta.Axy is zero. If x are interpreted as estimates of the primal variables (i.e., variables of the
primal QP), then the step from z; to x5 + a,Ax increases the negative (and hence infeasible)
primal variable [x 5], until it reaches its bound of zero. If the step a = a, gives a feasible point for
the dual inequalities (i.e., z + a, Az > 0), then the next iterate is (w 4+ aAw, 7+ aAr, z + aAz).

Updates to the basic set in this case are given in the following result.

Result 4.2.4 (Constraint deletion). Let (w, 7, z,x) be a subspace minimizer with respect to B.
Assume that xg, < 0, and let (0,7, 2,%) = (w + cAw, 7 + aAr, z + aAz,x + aAzx), where
(Aw, A, Az, Azx) are defined by (4.10), and o = a is bounded. Then (w, 7, Z, &) is a subspace

minimizer with respect to B =B — {B,}.

Proof. By (4.10), AAz = 0, so that A(x + aAz) = b. Since HAw = HAz, we have H(w +
aAw) = H(z + aAzx). The definition of o = v, implies that [z + aAx]g. = 0, so that Ty =0,
where N = N + {3, }.

Now we show that B = B — {,} is a second-order-consistent basis by showing that K

is nonsingular. Consider the matrix
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By assumption, (w,m,z) is a subspace minimizer and K is nonsingular, so that the Schur

complement of K in M exists, with

Az
A > (from (4.10))

= —[Azp], #0 (because a, is bounded).

M/Ky = —elK e, = —€l <

Then In(M) = In(M/K;) + In(K) = In(—[Az;],) + In(Kp), and M is nonsingular because
both M/K; and K, are nonsingular.
Since B = B — {f3}, a permutation can be applied to K such that

Hy (hB'rr)B Ag

H, AT
Ky = ~ | (hs)E  hpe.p, | ab.

Ap
Ag aﬁr ‘ O

Similarly, applying symmetric permutations to M gives

Hy  (hg,)s A} |0

M é (KB 67‘) ~ (hﬁr),g h’ﬁr;ﬂr agr 1
er A as, 0 |0
0 1 0 [0
hs, s, 1| (hg)§ af
Ol L R S v
(hg,)s 0| Hp AL
CLﬁT 0 AB 0

The leading 2 x 2 block of M , denoted by E, has det(E) = —1 so the Schur complement of E in

—1
—~ hg)g O h 1 hg L r
N/E = Iy — (hg,)s Br\Br (hg.)s ag,
ag, 0 10 0 0

M is
g (s 0Y (01N ()E a,
ag, 0) \1 —hg g, 0 0
K

which implies that In(M) = In(M) = In(M/E) + In(E) = In(K ) + In(E).
Thus, In(K5) = In(M) — In(F), which implies K5 is nonsingular since M and E are
nonsingular. It follows that B is a second-order-consistent basis, and (w, 7, 2, ) is a subspace

minimizer with respect to B. O

If v, is unbounded, or steps to an infeasible point, then « is defined as the largest step
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such that z remains nonnegative, i.e., ap = minj<;<n, {7}, where

[ZN]i

if [Azyls
(A, if [Azy]; <0,

Yi =
+00 otherwise.

If ap < ay, then at least one of the dual residuals is zero at (w+aAw, 7+aAn, z4+a Az, x+aAzx),
and the index of one of these, say v, is moved to B.

The removal of 3, from B is determined by a constraint dependency test that is based on
the solution of a system that is analogous to System 2 of the mixed-constraint and standard-form

algorithms. Let u, ur, u,, ¢, v, and uy be the solution to the full KKT system

H 0 0|/Z H 0 u 0

0 0 010 —-A 0 U 0

0 0 010 —-I Py U _ | e . (4.11)
zT 0 010 O 0 —q 0

H —-AT" 110 0 0 —v

0 0 Prlo 0 0 —Up 0

Using Result 2.2.6, linear dependence occurs if and only if the vectors u, u, and u, are all zero.
However, it can be shown that it is unnecessary to solve the full KKT system or check all three

vectors in the dependency test.

Result 4.2.5 (Test for dual constraint dependency). Let u, ur, u,, q, v, and ug be the solution to
the full KKT system (4.11). Assume that (w,,z) is a subspace minimizer for the dual. Assume
that the vs-th dual inequality constraint is blocking at (0,7, 2) = (w, 7, z2)+a(Aw, Ar, Az), where
(Aw, A, Az) satisfies (4.10). Then

(a) w=0 if and only if ur =0 and u, = 0 if and only if Hv = 0, where v = Ppugs + €,,;

(b) the vectors up and u, satisfy the reduced KKT system

HB AT B hl/ B
) () o (e (4.12)
AB 0 —Ur Ay,
with v = Pyug +e,, and u, = Hv — ATy,

(c) the gradient of the vg-th dual constraint e, is linearly independent of the gradients of the
working-set constraints if and only if Hv = H(Pgug) + hy, # 0;

(d) [uglr = —[Az],, > 0; and if u # 0, then [u;],, > 0.

s

Proof. The last block of (4.11) implies (u,)s = 0. Notice that if u = 0, then u, = —ATu,, so
that 0 = —AZLu_. Since A7 has linearly independent columns, u, = 0 and u, = 0. If u, = 0 and

uy =0, then Hu =0 and Z7u = 0 and v = 0. Thus, v = 0 if and only if uy = u. = 0.
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If Hv = 0, then Hu = 0 and the fourth block of 4.11 implies Z7u = 0, so that u is in
both the null space and range space of H. Thus v = 0. If w =0, then Hu = Hv = 0.

For part (b), the first block implies ¢ = 0, and Hu = Hv and ZTu = 0. The third
block gives v = Pgug + e, . Combining these results implies Hu = H(Ppug) + hy,, and Av =
Apug + a,, = 0. By the fifth block, u, = Hu — ATu, = H(Pzuy) + h,,. Since the last block of

the system implies (u,); = 0, we have that

Hpup — A;‘Qu,r =—(hy,)p and Azup = —a,,,

so that uy and u, satisfy the reduced KKT system

H, AL us\ [ (s
A 0 — Uy ay, .
Hence part (c) follows by part (a) and Result 2.2.6.

For part (d),

[us], = elu, = Azlu, = ul (H,Aw, — AL Ar)

—(hw,)E Awp, + o A
= —(Aw'He,, — ArTAe,) = feVTs (HAw — ATAr)

—el Az =—[Az],, >0,

where the last inequality holds since z,, > 0 is a blocking constraint and [Az],, < 0.

Using the fact that e,, = v — Pyuy implies

= UZT(HU — Ppuy) = UTHuz since Pguz =0

= v (Hv — ATuy) = v"Hv > 0.

T
uy e

Vs

The last inequality follows since Av = 0 and H is positive definite in the null space of A at a

subspace minimizer. O

Once constraint dependency is determined, the basic set for the next iterate is updated

according to the following result.

Result 4.2.6 (Basic set updates). Let (w,m,z,x) be a subspace minimizer with respect to B.
Assume that the vs-th dual constraint is blocking at (0,7, Z, %) = (w, , z, x)+a(Aw, Ar, Az, Az),

where the search directions satisfy (4.10). Let ug, ux and v be defined by (4.12).

(a) If the vs-th constraint gradient is linearly independent of the working-set constraint gradients

(4.6), then (w,T,z,Z) is a subspace minimizer with respect to B = B+ {v}.

(b) If the vs-th constraint gradient is linearly dependent on the working-set constraint gradients
(4.6), then the scalar 0 = —[z + aAz]g, /[ug], is well defined. Moreover, (w0, 7,%,%) is a
subspace minimizer with respect to B = B+ {vs} — {B,}, and the associated multipliers &

are given by x + aAx + ov.
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Proof. Assume the constraint gradients are linearly independent. Stationarity holds trivially
since zy = 0 at a stationary point and (4.10) implies Azy = 0.

Now let K, and K5 denote the matrices associated with basic sets B and 5. We must
show that Kz is nonsingular.

Define K 5 as the permuted version of Kz such that

Hy AL | (h)s
Kg :QTKBQ: Ap Ay, s
(hlja),g CI'I,Z/—j5 hVS?”S

where @ is a permutation matrix. By assumption, the matrix K is nonsingular, so the Schur
complement of K in K 5 exists. Using Result 1.3.3, the matrix K 5 is nonsingular if and only if

Kg /K is nonsingular. We can see that

I?B/KB =hy, v, — ((hl/s)z; a?,;) K;1 <(hl’s)5>

ay

U
=hy, v, + ((hl,)g a,:fs) ( B) (from (4.12))
—u,
— GZSH%S + (hl,s)guB — ez; ATu7T

= e, (H(Ppuy) + hy, — Aluy) = € u,.

Result 4.2.5 implies that [u.],, > 0. Thus K3 is nonsingular with respect to B and the next

iterates remains a subspace minimizer.

For part (b), we begin by observing that Hv = 0 and u, = u, = 0. Let B =B+ {v,} —
{Br}. By definition, v = Pyug + e,,, so that v; = up. Because of the definition of o, it must
hold that [z + aAx + ov]s, = 0. Then the next iterate is a stationary point with respect to B.
It remains to show that Kz is nonsingular.

Let y denote the vector (u,0). Then since u, = 0, (4.12) implies

Koy ((hm) .

The updated condensed KKT matrix can be written in terms of the symmetric rank-one modifi-

cation to Kp:
Ks=Kp+ (Kpy— KBer)ef + e (Kpy — KBer)T + er((y — er)TKB(y — er))e;r
= (I +e-(y— eT)T)KB (I +(y — er)eTT).

Since [up]. # 0 by part (d) of Result 4.2.5, the matrix I + e,.(y — e,)T and its transpose are

nonsingular. Therefore, Kz is nonsingular if and only if K is nonsingular. O

Algorithm 4.1 summarizes the nonbinding-direction method for solving the dual of a

convex quadratic programming problem in standard form.
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Algorithm 4.1: Dual nonbinding-direction method for a convex QP in standard form

Find (z, 7, z) such that Az =b, 2 = c+ Hx — ATr and 2 > 0; k = 0;
[z, 7, B, N| = subspaceMin(z, 7, z);

g=c+ Huz;

By = argmin,{[x5]; };

while x5 <0 do

H,; AT Axg er
Solve = . Az =HAzx — ATAn;
Ag —Ar 0

o =minRatioTest(zy, Azy);

if [Azg], >0 then a, = —[xz],/[Azs], else a, = +o0;

a = minf{a,, ag};

if o = +oco then stop; [the primal is infeasible]
T+ x+alr; g<+ g+ aHAx;

T T+ aAm; z 4 2+ adz;

if ar < o, then [add the dual working-set constraint vg]

Find the blocking constraint index vg;

H, AT h,
Solve ( “ B) ( UB> = — <( S)B>, v= Pgup +e,_;
AB 0 —Ur Ay,

if Hv=0 then o = —[zz],/[us], else o =0;
B+ B+{vs}; N+ N —{vs};
T 4 T+ ov;

g+ g+oHv, z++ g— ATrm;

end;

if x5, =0 then [delete the dual working-set constraint S,
B+ B—{B}; N<N+{B}
Br = argmin{[zs]i};

end,;

k<+—k+1;
end do
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The definition of the updates to the search directions for the linearly independent con-

straint case are summarized in the following result.

Result 4.2.7 (Direction updates). Assume that (z,7,z) is a subspace minimizer with respect to
B, and that equations (4.10) and (4.12) hold. Then if the gradient of the blocking bound z,, > 0
at x + aAx is linearly independent of the working-set constraints (4.6) defined by B, then the
vectors Az + pup and Amw + puy such that p = —[Az],_/[u.],. are well-defined, and satisfy

Az + pup €r
K}; P = 0 )
— (AT + pur) 0

which is the KKT equation (4.10) for the basic set B = B+ {v;}.

Proof. Since the blocking constraint is linearly independent of the basic-set constraints, [u.],, # 0
by part (d) of Result 4.2.5, so that p is well-defined.
Let K be a permuted version of the KKT matrix for B such that

Hy, AL | (h.)s

Kz = AB 0 Ay,
(h’l’s)g az; th’/s

Then the following equations hold:

Hy Ag (hu,)s Az Er
Ag 0 ay, —Am = 0 (4.13)
(h)5 aZ | hu, 0 (hv,)} Az, — ol Ar
and
H, AT | (h.)s Pl 0
Ap 0 Gy, —pur | =p 0 . (4.14)
(h)E L | o, / o, + (b Sy — b,

If p is defined as p = —[Az],, /[uz]v., then notice that
[Az],, = e:":s (HAz — AT Arn) = (b, )E Az, — a:‘,rs Am,
and
[u.]u, =€), (Hv— AMu,) = hy, o, + ) H(Pyup) —ap, uy =y, + (ho,)fu, — ap, u,

which are the expressions in the right-hand-sides of (4.13) and (4.14). Summing the two equations

yields
Hy AL | (h,)s (Azp + pus) er
Ag 0 ay, — (A7 + puy) =1 0 |,
(hv,)s @), | T, p 0

which is System 1 (4.10) for B. O
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4.2.1 Dual linear programming

If H is zero, then the primal QP is a linear program. In this case we may choose Z as the
identity matrix for the regularized problem (4.3). It follows from Result 4.2.2 that (w, 7, z) is a
subspace minimizer if A is nonsingular—i.e., it is square with rank m. In this case, equations
(4.10) and (4.12) give

—A;‘QAW =e., ApAxz;=0, Aguﬂ =0, and Agzup = —a,,,

with u, = —ATu,. A, being nonsingular implies Az, = 0 so Az = 0 and u, = 0, so that
u, = 0. By part (a) of Result 4.2.5, Hv = 0, so that the linearly dependent case always applies
and the index , is replaced by v in B, as in the dual simplex method. The update for the dual
multiplier « defined by part (b) of Result 4.2.6 is given by & = = + ov, where 0 = —[z ], /[us]r,

and v = Pgug + €,,.

4.2.2 Degeneracy of the dual QP

Suppose that (w,n, z) is a feasible point for the regularized dual QP (4.3) such that r
of the z-variables are at their bounds. If (w,, 2) is degenerate for the dual constraints, it must
hold that » must be greater than the difference between the number of variables and equality

constraints. It follows that if (w, 7, z) is degenerate, then
r>m+n+m)—(n+n,) =n+m—n, =rank(H)+ m,

where n, is the number of columns in the null-space basis Z. If H is nonsingular, then Z = 0 and
a degenerate (w, 7, z) would require more than n + m of the n z-variables to be on their bounds,
which is clearly impossible. It follows that if the primal QP is strictly convex, then there are no
degenerate points for the dual.

In the general case, if m 4 rank(H) > n for the dual (4.2), then there are no degenerate
points. In this situation, Algorithm 4.1 cannot cycle, and will either terminate with an optimal
solution or declare the dual problem to be unbounded. Observe that this nondegeneracy property
does not hold for a dual linear program, but it does hold for strictly convex problems, and for
any QP with H and A given by (4.5).



5 Finding an Initial Point

Thus far, discussions have been focused on the optimality phase of the active-set method.
In this chapter, methods for finding the initial point for our algorithms are discussed. Section 5.1
reviews phase 1 methods for finding a feasible point such that Az = b and x > 0. Then, the
process of moving to a stationary point is explained in Section 5.3. Lastly, Section 5.2 describes

methods for finding a second-order-consistent basis.

5.1 Getting Feasible

The process of finding a feasible point for the constraints Az = b and x > 0 during phase 1
of the active-set methods is described in this section. There are generally two approaches. The
first, common in linear programming, is to find an x that satisfies Az = b, and then iterate (if
necessary) to satisfy the bounds x > 0. The second method defines a nonnegative z and then
iterates to satisfy Az = b. We use the former approach and assume that the initial iterate xq
satisfies Ax = b (such an zy must exist because A has full row rank by assumption).

Suppose that the bounds z > 0 are written in the equivalent form x = v —v, u > 0
and v = 0. The idea is to relax the equality constraint v = 0 by minimizing some norm of v.
Choosing the one-norm gives the following piecewise-linear program for a feasible point:

minimize |[v||y subject to Az =0b, z=u—wv, u>0.
r,u,veR”

YUy

By adding the restriction that v > 0, the one-norm objective may be replaced by e’v, giving the

conventional linear program

minimize efv subject to Az =0b, z=u—v, u>0, v>0. (5.1)
z,u,veER™

The vectors u and v are referred to as elastic variables. At the optimal solution, v and v are the
magnitudes of the positive and negative parts of the vector z that is closest in one-norm to the
positive orthant and satisfies Az = b. If the constraints are feasible, then v = 0 and z (= u) > 0.

At an initial zq satisfying Axg = b, the v; corresponding to feasible components of x
may be fixed at zero, so that the number of infeasibilities cannot increase during subsequent

iterations. In this case, if the constraints are infeasible, the optimal solution minimizes the sum

57
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of the violations of those bounds that are violated at xg subject to Ax = b. Similarly, once a
component x; becomes feasible, its corresponding violation v; can be permanently fixed at zero.
However, if the sum of the violations is to be minimized when there is no feasible point, it is
necessary to allow every element of v to move.

This minimum one-norm problem is equivalent to the standard method for minimizing
the sum of infeasibilities that has been used in QP and LP packages for many years. In practice,
the variables u and v need not be stored explicitly, and the LP (5.1) may be solved using a variant
of the simplex method in which the basis has the same dimension as that of a conventional LP
with constraints Az = b and = > 0. During the solution of the LP, the search is restricted to
pairs (u,v) with components satisfying u; > 0, v; > 0, and w;v; = 0. A feasible pair (u,v)
is reconstructed from any z such that Az = b. In particular, (u;,v;) = (24,0) if z; > 0, and
(ui,v;) = (0,—x;) if z; < 0. It follows that an infeasible x; must be kept basic because it
corresponds to (u;,v;) = (0, —x;), with an (implicit) positive elastic variable v;. This technique
is often called elastic programming in the linear and nonlinear programming literature (see, e.g.,
Brown and Graves [8], and Gill, Murray and Saunders [38]).

The same technique can be used to find a feasible point (w, 7, z) for the dual constraints

Hw— ATnr — 2= —cand z > 0.

5.2 Second-Order-Consistent Basis

The nonbinding-direction methods described in Chapters 3 and 4 have the property
that if the initial iterate xg is a subspace minimizer, then all subsequent iterates are subspace
minimizers. Methods for finding an initial subspace minimizer utilize an initial estimate z, of
the QP solution, together with matrices Ay and Ay associated with an estimate of the optimal
basic and nonbasic sets. These estimates are often available from the known solution of a related
QP—e.g., from the solution of the previous QP subproblem in the SQP context. The initial point
x; may or may not be feasible, and the associated matrix A, may or may not have rank m.

The definition of a second-order-consistent basis requires that the matrix Az has rank
m, so it is necessary to identify a set of linearly independent basic columns of A. One algorithm
for doing this has been proposed by Gill, Murray and Saunders [38], who use a sparse LU
factorization of AZ to identify a square nonsingular subset of the columns of A,. If necessary,
a “basis repair” scheme is used to define additional unit columns that make Ay have full rank.
The nonsingular matrix B obtained as a by-product of this process may be expressed in terms

of A using a column permutation P such that
AP = (AB AN) = (B S AN) ) (52)

where B is m x m and nonsingular, S is m x (nz —m), and Ay is the m X ny matrix consisting

of the nonbasic columns of A.
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The nonsingular matrix B can be used to compute a feasible point from the (possibly

infeasible) initial point z,. Given x;, a point x satisfying Az = b may be computed as

Dy
zo=x2;+P| 0|, where Bp,=—(Ax;—0D).

0

The basic set B is second-order-consistent if the reduced KKT matrix

H, AT
Ky = (AB > (5.3)

has correct inertia, i.e., ny positive eigenvalues and m negative eigenvalues. A KKT matrix with
incorrect inertia will have too many negative or zero eigenvalues. In this case, an appropriate
K may be obtained by imposing temporary constraints that are deleted during the course of
subsequent iterations. For example, if n — m variables are temporarily fixed at their current
values, then Ay is a square nonsingular matrix, and K necessarily has exactly m negative
eigenvalues. The form of the temporary constraints depends on the method used to solve the

reduced KKT equations (see Chapter 7).

5.2.1 Variable-reduction method

In the variable reduction method a dense Cholesky factor of the reduced Hessian Z7HZ
is updated to reflect changes in the basic set (see Section 7.1). At the initial 2 a partial Cholesky
factorization with interchanges is used to find an upper-triangular matrix R that is the factor
of the largest positive-definite leading submatrix of ZTHZ. The use of interchanges tends to
maximize the dimension of R. Let Z denote the columns of Z corresponding to R, and let Z be
partitioned as Z = (Z r LA ) A nonbasic set for which Z, defines an appropriate null space can
be obtained by fixing the variables corresponding to the columns of Z, at their current values.
As described above, minimization of ¢(z) then proceeds within the subspace defined by Z5. If a
variable is removed from the basic set, a row and column is removed from the reduced Hessian

and an appropriate update is made to the Cholesky factor.

5.2.2 Schur-complement and block-LU method

If Schur-complement block-LU method is used, the procedure for finding a second-order-

consistent basis is given as follows.

e Factor the reduced KKT matrix (5.3) in the form K, = LDL” | where L is a row-permuted
unit lower-triangular matrix and D is block diagonal with 1 x 1 and 2 x 2 blocks (see
Result 1.3.4). The inertia is determined by counting the number of positive and negative

eigenvalues of D. If the inertia of K is correct, then we are done.
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e If the inertia is incorrect, factor
H,=H,+pALA, =L ,D, L,
where p is a modest positive penalty parameter. As the inertia of K is not correct, D,

will have some negative eigenvalues for all positive p.

The factorization of H, may be written in the form
H,=L,UAUTLY =vAVT,
where UAUT is the spectral decomposition of D, and V = L,U. The block-diagonal

structure of D, implies that U is a block-diagonal orthonormal matrix.

Assume that H, has r nonpositive eigenvalues. The inertia of A is the same as the iner-
tia of H,, and there exists a positive-semidefinite diagonal matrix FE such that A 4+ F is
positive definite. Since there are r nonpositive eigenvalues, E can be written in the form
E = P.E P’ where E, is an 7 x r diagonal matrix with positive elements and P, is a

permutation matrix such that P.PT projects the diagonals of E,. into an n, x n, matrix.

If H, denotes the positive-definite matrix V(A + E)V7, then
H,=H,+VEV'=H,+VPEP'VT.

1
Define V5 as the r X ny matrix V; = #Eﬁ P;‘FVT7 so that

H,=H,+pVIV,=H,+p(ALA, +VIV,).

Suppose p = v + p for some positive value of . Then, for any nonzero vector z,

e"(Hy +p(ALA, + V]V,))z
=al(Hy + p(ALA, + VIV,))z +vaT(ALA, + VIV,)z
The first term of the above expression is positive since H , is positive definite and the second

term is nonnegative. Therefore, the matrix Hy + p(ALA, + VI'V,) is positive definite for

any p > p. It follows from Debreu’s Lemma 1.3.2 that the reduced Hessian ZLHZ,, is
A

positive definite, where the columns of Z; form a basis for the null space of (VB>' By
B

Theorem 1.3.1, the augmented KKT matrix

H, AL VI
Az O 0
Ve 0 0

has “correct” inertia (nz,m + r,0).



61

The minimization of ¢(z) proceeds subject to the original constraints and the (general)
temporary constraints V.lz, = VI(x,),, where zg is the initial point.

The efficiency of this scheme will depend on the number of surplus negative and zero
eigenvalues in H,. In practice, if the number of negative eigenvalues exceeds a preassigned
threshold, then a temporary vertex is defined by fixing the variables associated with the columns
of S in (5.2) (see Chapter 8).

5.3 Stationarity

Primal case. In the primal (standard-form) setting, a feasible x achieves stationarity if g5 (z) =
ATr for some second-order-consistent basic set B.

Suppose xg is feasible but not stationary, and B is second-order-consistent. Then xy can
be used as the initial point for a sequence of Newton-type iterations in which ¢(x) is minimized

with the nonbasic components of z fixed at their current values. Consider the equations

<HB A£> < p3> - <gB —A£W>
Ag —Qr B 0 .
These equations are the KKT equations of the equality-constrained problem

Hli;lé]%}}ze o(zp +p) subject to Ap=0, py=0. (5.4)
Let p be the solution of (5.4). If py is zero (which may occur when ny = m), z is a subspace
stationary point (with respect to Az) at which K has correct inertia. Otherwise, two situations
are possible. If x5 + pp is infeasible, then feasibility is retained by determining the maximum
nonnegative step o < 1 such that x;+apy is feasible. A variable on its bound at x5 +app is then
removed from the basic set and the iteration is repeated. The removal of a basic variable cannot
increase the number of negative eigenvalues of Ky, since the removal reduces the dimension of
the null space matrix Z; by one and does not affect the positive definiteness of the reduced
Hessian. Since there are a finite number of basic variables, a subspace stationary point must
be determined in a finite number of steps (trivially, when enough basic variables are removed to
define a vertex). If x5 + pj is feasible, then pz is the step to the minimizer of p(x) with respect
to the basic variables and it must hold that g (zs + ps) = AL (7 + ¢r), so that the point is a

stationary point.

Dual case. Assume B is second-order-consistent, and that xg is a dual-feasible point such that
Hzxg — ATng — 29 = —c with 25 > 0. Then, to reach a stationary point, a dual-feasible direction

is required such that

2o+ Az =0 and A(xg+ Az) =b, with Azy =0. (5.5)
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Such a direction can be computed as the solution of the system:

H o o |z H o Aw 0
0 0 0 |0 —A4 o0 A Azo —b
0 0 0 |0 —-I P, Az || Pa(ao)s
ZT 0 0 |0 0 0 A | 0
H —AT —1lo 0 o0 — Az 0
0o o Prlo 0 o0 — Ay, 0

This direction satisfies ZTAw = 0 and HAw — ATAn — Az = 0, so that the direction remains
feasible with respect to the equality constraints of the dual problem (4.3). In addition, the third
block of the system implies Ax = Pz Ayz — Py(z0)y, so that Azxy = —(z0)y. It follows that
(xo)n + Azy = 0. The second block implies A(xg + Ax) = b. This means the direction satisfies
the conditions (5.5) required for a direction to a dual stationary point.

The defined direction can be computed from the smaller system:

H, A? Azg\ [ —Hp(wo)n
A, ~Ar ) \UAp(zo)s —b)

with Azy = —(2¢)n, A2z =0 and Azy = (HAz — ATAT) .

If z + Az is feasible, then a stationary point has been reached. If z + Az is not feasible,
then a maximum feasible step ap is computed, and the blocking constraint at z + apAz > 0
is removed from B. Again, the removal of a basic variable does not affect the second-order-

consistency of B, and a stationary point will be determined in a finite number of steps.



6 Single-Phase Methods

In this chapter, the focus turns to single-phase methods, methods that combine the

feasibility and optimality stages of the active-set method for standard-form problems

miileiRrglnize o(z) = 'z + La"Hx subject to Az =b, z>0. (6.1)
Generally, single-phase methods solve the original QP by solving a sequence of subproblems whose
solutions converge to the solution of the original problem. These methods have an inner/outer
iteration structure, with the outer iterations handling the updates to parameters necessary for
the formulation of the subproblem, and the inner iterations being those of the method used to
solve the subproblem.

Section 6.1 begins with an overview of the penalty-function method, leading to the deriva-
tion of two augmented Lagrangian methods. In Section 6.2, a more generalized approach to the
augmented Lagrangian method is given from a regularization standpoint. Sections 6.3.1 and
6.3.2 consider the application of the nonbinding-direction method to the subproblems of the

inner iterations, while the outer iterations are discussed in Section 6.4.

6.1 Penalty-Function Methods

Penalty-function methods are a class of methods for solving constrained problems that
are not necessarily quadratic. Many choices exist for the penalty function. However, since we are
interested in continuously differentiable quadratic problems, we consider the quadratic penalty
function defined as

1
P(x;p) = o(z) + ﬂllAw - 0|3,

where p is the positive penalty parameter. In the “classical” penalty-function method, the smooth
function P(x; u) is minimized subject to = > 0 for a sequence of decreasing values of p. Under

certain assumptions (see [28]), it can be shown that for a given sequence {uy},

lim z(pg) = ¥,
k—o00

where 2 (p) is the minimizer of P(z; ) subject to 2 > 0, and z* is the optimal solution of (6.1). In

practice, a finite sequence of the bound-constrained subproblems is solved, with the approximate
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minimizer of P(z; uy) being used as the initial estimate of the minimizer of P(z; pg41)-
Unfortunately, it is necessary for 4 — 0 to achieve a good approximation of the QP
solution. As pu decreases, the Hessian of the penalty function V2P = H + %ATA becomes
increasingly ill-conditioned, so that the subproblems become increasingly difficult to solve. To
circumvent this difficulty, the equality constraints of the problem are shifted to produce a new
problem that can exploit the smoothness of the quadratic penalty function and avoid the need

for u to go to zero. The shifted problem is
minimize ¢(z) subject to Az —s=0b, x>0,
x

where the constant vector s defines the shifts for the equality constraints. The shifted problem

is then solved by applying the penalty-function method, which leads to
1
Pless. ) = (o) + 5l Az s — b3
() — - s7( Az — ) + o | Az — bl + 5 sl
=p(x) — —s'(Ax — — || Az — —|s]l5-
I 20 2o

As s and p are fixed parameters, the last term is irrelevant to the minimization and can be

dropped. The penalty subproblem is therefore

1 1
miélei%}lize P(x;s, 1) = p(z) — ﬁsT(A:c —b)+ ZHAI —b||2 subject to = >0,

with the gradient and Hessian of P given by
VP(z;s, 1) = g(x) + lAT(A:U ~b—s5) and V*P=H+ lATA.
1 t

The best choice for the shift s should make the solution of the penalty subproblem a
solution of the original standard-form problem for the current value of p. If x(u) is equal to z*,
then it is necessary that Ax(u) — b = 0, and that g(z*) — ATr* = VP(z;s, ). Combined with

the above expression for the gradient, these equations imply that

1 1
7t =——(Az(p) —b—s) = —s.
u( () )=

Thus, the optimal shift is s = pn*. Obviously, because the optimal multipliers are unknown,
the optimal shift cannot be used to define the penalty subproblem. Therefore, s is defined as
s = ume, where m, is a vector that estimates the multipliers of Ax = b. With this definition, the

penalty function becomes the augmented Lagrangian function
Mi(wsmes ) = (@) = Az =) + 5 | 4z = bl (62)
The subproblem is then
mi&ig}}ze My (x5 70, 1) = @(x) — L (Ax — b) + i”Aw —b||3 subject to x>0, (6.3)

which is the subproblem for the conventional augmented Lagrangian method.
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The same approach can be applied to the bound constraints rather than the equality
constraints of (6.1). As in Section 5.1, z > 0 can be rewritten as ¢ = u — v, u > 0, and v = 0.
Instead of shifting the equality constraints Ax = b, the constraints v = 0 are shifted such that
v — pze = 0, where 2. is an estimate of the optimal multipliers for v = 0. This leads to the
subproblem

1
minimize Mo (z,v; 2, ) = ©(x) — 25 v + — ||v||3
2,0 ER 2 (6.4)

subject to Az =0, z—u+v=0, u>0.

Since the objective of (6.4) is a variant of the augmented Lagrangian function derived by
shifting the variables v, we refer to Mo (x,v; 2, u) as the variable-shifted augmented Lagrangian.
For consistency, M (z; 7., p) is the constraint-shifted augmented Lagrangian. The methods for
solving the corresponding subproblems related to these functions are named accordingly. Also,
when the values of 7. and p are obvious from the context, they are not included as explicit

arguments of the augmented Lagrangian functions, e.g., M1 (z) = My (z; 7, 1).

6.2 QP Regularization

Thus far, the QP methods described have relied on the assumption that each basis
matrix A, has rank m. In an active-set method this condition is guaranteed (at least in exact
arithmetic) by the active-set strategy if the initial basis has rank m. For methods that solve the
KKT system by factoring a subset of m columns of Ay (see Section 7.1), special techniques can be
used to select a linearly independent set of m columns from A. These procedures depend on the
method used to factor the basis—for example, the SQP code SNOPT employs a combination of
LU factorization and basis repair to determine a full-rank basis. If a factorization reveals that the
square submatrix is rank deficient, suspected dependent columns are discarded and replaced by
the columns associated with slack variables. However, for methods that solve the KKT system by
direct factorization, such as the Schur complement method of Section 7.2, basis repair is not an
option because the factor routine may be a “black-box” that does not incorporate rank-detection.
Unfortunately, over the course of many hundreds of iterations, performed with KKT matrices
of varying degrees of conditioning, an SQP method can place even the most robust symmetric
indefinite solver under considerable stress. (Even a relatively small collection of difficult problems
can test the reliability of a solver. Gould, Scott, and Hu [52] report that none of the 9 symmetric
indefinite solvers tested was able to solve all of the 61 systems in their test collection.) In
this situation it is necessary to use a regularized method, where equations are guaranteed to be
solvable without the luxury of basis repair.

To illustrate how a problem may be regularized, we start by considering a QP with
equality constraints, i.e.,

miniRmize clx + %xTHQ: subject to Az = b. (6.5)
me n
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Assume for the moment that this subproblem has a feasible primal-dual solution (z*,7*). Given
an estimate m, of the QP multipliers 7*, a positive p and arbitrary v, consider the generalized

augmented Lagrangian
1 v
M (2,57, p,v) = () — 7 (Az —b) + ZIIASU —blf + ZIIASU —b—p(re —m[3  (6.6)

(see Gill and Robinson [43] for methods involving this function). The function M3 involves n+m
variables and has gradient vector
g(x) — ATn + (1 +v)AT (1 — ()
VM(z, 7 e, p, v) = ( ) : (6.7)
vu(r — 7 (z))
where m(z) = 7, — (Az — b)/p. If 7* is known and 7, is defined as m, = 7*, then simple
substitution in (6.7) shows that (z*,7*) is a stationary point of M3 for all v and all positive u.
The Hessian of M3 is given by
, H+ (H2)ATA vAT
VM s(x, w5 e, pyv) = . , (6.8)
VA vul
which is independent of 7. If we make the additional assumptions that v is nonnegative and the
reduced Hessian of the QP subproblem is positive definite, then V2M3 is positive semidefinite
for all u sufficiently small. Under these assumptions, if 7. = 7* it follows that (z*,7*) is the
unique minimizer of the unconstrained problem

Jninimize Ms(, 737, 1, V). (6.9)

This result implies that if 7. is an approximate multiplier vector (e.g., from the previous QP
subproblem in the SQP context), then the minimizer of M3 (x, 7; 7., 1, v) will approximate the
minimizer of (6.5). In order to distinguish between a solution of (6.5) and a minimizer of (6.9)
for an arbitrary m., we use (2., 7.) to denote a minimizer of Mjz(x, 7; 7e, i, v). Observe that
stationarity of VM3 at (z., ) implies that 7, = w(x,) = 7. — (Az. —b)/p. The components of
m(x,) are the so-called first-order multipliers associated with a minimizer of (6.9).

Particular values of the parameter v give some well-known functions that have appeared
in literature (although, as noted above, each function defines a problem with the common solution

(4, my)). If v =0, then M3 is independent of 7, with
1
M (2576, 1, 0) = p(z) — (Az — b)T'm, + EHA% —b||3 = My (z; 7, ). (6.10)

This is the conventional Hestenes-Powell augmented Lagrangian (6.2) introduced in Section 6.1

applied to (6.5). If v =1 in (6.6), M3 is the primal-dual augmented Lagrangian

1 1
— (Az — )T — || Az — b||3 + —||Az — b — — |3 A1
() — (Az —b) ”€+2u” x b”2+2u” z—b—p(re — |2 (6.11)
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Methods for the primal-dual Lagrangian are considered in [61, 43]. If v = —1, then M35 is the

proximal-point Lagrangian
p(x) = (A = )77 = Lljm |3

As v is negative in this case, V?M3 is indefinite and M3 has an unbounded minimizer. Never-
theless, a unique minimizer of M3 for v > 0 is a saddle-point for an M3 defined with a negative

v. Moreover, for v = —1, (z*,7*) solves the min-max problem
minmax ¢(z) — (Az — b)Tr — g||7r — 2
x s

In what follows, we use M3(v) to denote M3 as a function of the primal-dual variables
v = (x,7) for given values of 7., p and v. Given the initial point vy = (¢, 7p), the stationary
point of M3(v) is vsx = vg + Av, where Av = (p,q) with V2M3(vg)Av = —VM3(vg). It can be

shown that Av satisfies the equivalent system

(H AT) ( p) :_< g(x0) — ATmg ) (6.12)
A —ul) \—q Azg — b — pu(me — o)

which is independent of the value of v [43]. If v # 0, the primal-dual direction is unique. If v = 0

(i.e., M3 is the conventional augmented Lagrangian (6.2)), Av satisfies the equations

) e
A —ul) \—q Azg — b — p(me — )

for an arbitrary vector 7. In this case, p is unique but ¢ depends on the choice of 7. In particular,
if we define the equations (6.13) with m = 7, then we obtain directions identical to those of (6.12).
Clearly, it must hold that p is independent of the choice of v in (6.6).
The point (2., m«) = (xo + p, o + q) is the primal-dual solution of the perturbed QP
mi;lei%}}ze 'z + La"Ha subject to Az — p(me —m,) =0,

where the perturbation shifts each constraint of (6.5) by an amount that depends on the cor-
responding component of m, — m.. Observe that the constraint shift depends on the solution,
so it cannot be defined a priori. The effect of the shift is to regularize the KKT equations by
introducing the nonzero (2,2) block —ul. In the regularized case it is not necessary for A to
have full row rank for the KKT equations to be nonsingular. A full-rank assumption is required

if the (2,2) block is zero. In particular, if we choose 7, = 7, the system (6.12) is:

R
A —ul) \—q Axg—b

These equations define a regularized version of the Newton equations and also form the basis
for the primal-dual formulations of the quadratic penalty method considered in [48] (for related

methods, see Murray [57],Biggs [3] and Tapia [66]).
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The price paid for the regularized equations is an approzimate solution of the original
problem. However, once (z.,m.) has been found, 7. can be redefined as m, and the process
repeated—with a smaller value of u if necessary. There is more discussion of the choice of
below. However, before turning to the inequality constraint case, we summarize the regularization

for equality constraints.

e The primal-dual solution (z*,7*) of the equality constraint problem (6.5) is approximated

by the solution of the perturbed KKT system (6.12).

e The resulting approximation (&, m.) = (xg + p, o + ¢q) is a stationary point of the function
M3 (6.6) regardless of the choice of v. If > 0 and v > 0 then (z,,m,) is a minimizer of
M for all p sufficiently small.

As the solution of the regularized problem is independent of v, there is little reason to use nonzero
values of v in the equality-constraint case. However, the picture changes when there are inequality
constraints and an approximate solution of the QP problem is required, as is often the case in

the SQP context.

The method defined above can be extended to the inequality constraint problem (6.1)
by solving the bound-constrained subproblem

minimize M (x;me, ) subject to x>0, (6.15)

z€R™

which is identical to (6.3) derived via the shifted penalty-function method. This technique has
been proposed for general nonlinear programming (see, e.g., Conn, Gould and Toint [9, 10, 11],
Friedlander [33], and Friedlander and Saunders [35]), and to quadratic programming (see, e.g.,
Dostal, Friedlander and Santos [22, 23, 24], Delbos and Gilbert [19], Friedlander and Leyffer [34]),
and Maes [54]).

As in the equality-constraint case, the dual variables may be updated as 711 = m;+a;q;.

The dual iterates 7; will converge to the multipliers m, of the perturbed QP:
mininrélize cTr + %xTHx subject to Az — p(me —m) =0, x>0.
reR™

At an optimal solution (., 7.) of (6.15) the vector z, = g(x,)— AT 7, provides an estimate of the
optimal reduced costs z*. As in the equality-constraint case, the vector of first-order multipliers
m(xy) = me — (Az, — b)/p is identical to 7.

The algorithms defined above are dual regularization methods in the sense that the
regularization has the effect of bounding the Lagrange multipliers. For convex QP certain primal
regularization schemes may be used to bound the primal variables (see, e.g., Gill et al. [36],
Saunders [63], Saunders and Tomlin [65, 64], Altman and Gondzio [1], and Maes [54]). The

variable-shifted problem (6.4) is an example of primal regularization.
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6.3 Inner Iterations

All of the methods considered above have an inner/outer iteration structure, with the
outer iterations handling the updates to parameters necessary for the formulation of the sub-
problem, and the inner iterations being those of the method used to solve the subproblem. Next

we focus on methods for solving each of the subproblems.

6.3.1 Constraint-shifted approach

If * and 7* satisfy the second-order sufficient conditions for the standard-form QP (6.1),
then there exists a @ such that for all 4 < fi, z* is a solution to the constraint-shifted quadratic
program (6.16) with m, = 7*. This result suggests that a solution for (6.1) may be found by

solving a finite sequence of problems of the form (6.3), restated here
rER™

1
minimize M (x; 7, 1) = p(x) — T (Ax — b) + 2—||Ax —b||? subject to x >0, (6.16)
W

where 7. is an estimate of the optimal multipliers for the equality constraints Ax = b. The

optimality conditions are given in terms of the gradient of My,
1
VM (e ) = 9(a) — AT (e — - (Ar — b)) = g(a) ~ A ()

with 7(z) defined as the vector 7(z) = m.— % (Az—b), and the Hessian of M1, V2M; = H—&-%ATA.
Result 6.3.1 (Optimality conditions). If x* is a local minimizer of the QP (6.16), then

(a) x* > 0;

(b) there exists a vector z* such that VM y(x*; e, ) = z* with z* > 0;

(¢) * - z* =0; and

(d) pTV2M1p > 0 for all p such that p; > 0 if 2} = 0.

The first-order optimality conditions for (6.16) may be written equivalently in active-set
form. Let PI denote the active-set matrix at z*. Conditions (b) and (c) of Result 6.3.1 are
equivalent to

VM (z*) = P, z,, where z* = P,z, with z, >0.

a~a?

Result 6.3.2. If * satisfies the second-order sufficient conditions of (6.1) with strict comple-
mentarity, then there exists a i such that x* is a solution to (6.16) for all u such that 0 < p < fi.

Proof. Let PT denote the active-set matrix at z*. The first-order sufficient conditions for (6.1)
imply Az* = b, 2* > 0, and g(z*) = ATr* + P, 2, with z, > 0. Thus, the feasibility condition
for (6.16) is satisfied because x > 0.
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Let m, = w*. Then
VM, (z*) = g(2*) — A" (7. — %(Am* )
=g(z*) — A'r, (since Ax™ =b)
= Py 24,

so that the stationarity condition for (6.16) is satisfied.
The second-order sufficient conditions for (6.1) imply that there exists an w > 0 such

that
T 2 A
p Hp > w|p|l; for all p € null .
Py
By Debreu’s Lemma 1.3.2, this condition holds if and only if there exists a g > 0 such that

H+ ﬁATA is positive definite for all 0 < g < . Thus, the sufficient conditions for (6.16) are

satisfied and z* is a solution of (6.16) with 7. = 7*. O

Application of the nonbinding-direction method to the constraint-shifted approach re-
sembles the standard-form version of the method. The working set is the nonbasic set A/, with
corresponding working-set matrix P composed of unit columns {e;} with i € N'. The comple-
mentary basic set B defines the matrix P!. Unlike the other algorithms described, no assumption

on the rank of A is required.
Result 6.3.3 (Subspace minimizer). Let B be the basic set for a point x > 0. Then
(a) If z is a subspace stationary point with respect to B, then g;(z) = ALw(z).

(b) If B is a second-order-consistent basis for the problem (6.16), then the KKT matriz
H, AL
oo (6.17)
A —ul

Proof. By definition, a stationary point is a point where the gradient of the objective lies in the

has inertia (ng,m,0).

range space of the transpose of the working-set matrix. Thus, there exists a vector z, such that
VM (x;7e, 1) = Pyzy. This implies that zy = gy(2) — AL7(x) and 0 = g, (z) — AL7(2).

A second-order-consistent basis for subproblem (6.16) implies that the KKT matrix

VM, Py
PT 0

has inertia (n,ny,0), or equivalently, that Z7 VM, Z is positive definite, where the columns of
Z form a basis for the null space of PI. However, since PL is a permutation matrix, Z can be
defined as Z = P;. Thus

ZT'V*M,Z = PE(H + lATA)PB = Hy + lA?;AB.
H H
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Then by Theorem 1.3.2, the shifted KKT-matrix (6.17) has inertia (nz,m,0). O

Once a negative multiplier z,, = [zy]s is identified, the search direction is defined as the

- -
Pg 0 —qnN €s

If we define the auxiliary vector ¢, = —ﬁAp, the first block of this system becomes

solution of

1
0= (H+ ;ATA)p_PNQN = Hp—ATQﬂ — I'ngnN-

The KKT system can be rewritten to include the components of ¢, as unknowns, giving the

equivalent system

H AT P, P 0
A —pul —q: | =10
Pzz; —q4n €s

If this system is reduced to its basic components as in Chapter 3, the solution of (6.18) can be

H, AT pe\ _  ((hw)s (6.19)
A —pl —qr Ay, 7 .

with py = es and gy = (Hp — A%q;),. Apart from the —ul term in the KKT matrix, these

computed from

equations are identical to System 1 of the standard-form nonbinding-direction method (3.4).

A simple calculation gives the identities
VM{p = pTPJ?;ZN = [ZN]S and pTV2M1p = pTPNqN = [QN]87

from which the optimal step may be calculated as a. = —[zy]s/[gn]s- The feasible step is identical
to that defined in (3.7), since the standard-form problem has the same inequality bounds x > 0.

If the optimal step is taken, then v; can be added to B. Otherwise, if the problem is
bounded, there must be a blocking constraint xg_ > 0 at  + ap. In this case, the second KKT

system for the constraint-shifted problem is given by

H, AL up\ e
(o 8- 6) o

which may be derived in the same way as (6.19) above. If uy = 0, then the second block of
equations in (6.20) implies that v, = 0. However, this implies a contradiction because the right-
hand side of the first block of equations of (6.20) is nonzero. Thus, us cannot be zero and a
blocking constraint can be removed from B (and added to N') immediately by parts (2a) and (2c)
of Result 3.2.2. Since it is always permissible to add a blocking constraint, there is no need to
solve (6.20). This result may also be inferred from the fact that the working-set matrix consists

of rows of the identity, and any blocking constraint is linearly independent of the rows of PZ.



72

The following result summarizes the updates to the basic set. Proofs are omitted as they

are almost identical to those found in Chapter 3.

Result 6.3.4 (Basic set updates). Let x be a subspace minimizer with respect to B and let p and

q be defined by (6.19). Define T = x + ap.
(a) If a = au., then T is a subspace minimizer with respect to B = B + {v,}.

(b) If x5, > 0 is a blocking constraint at T, then Z is a subspace minimizer with respect to

B:B_{Br}

There are two obvious benefits to the constraint-shifted method. First, there is no need
to find an initial point such that Ax = b. Second, it is necessary to solve only one KKT system at
each iteration, which implies that there is no advantage to updating p and ¢ as in the conventional
nonbinding direction method.

Algorithm 6.1 summarizes the method. As before, minRatioTest computes the max-
imum feasible step, and subspaceMin returns a subspace minimizer. In Algorithm 6.1, the

multiplier z is computed explicitly at each iteration rather than being updated.

6.3.2 Variable-shifted approach

The subproblem of the variable-shifted method is

1
inimi Ma(2,v; 2e, 1) = —z 3 vllz
I?}Egélﬂl{%e Q(ZC Vi Ze ,LL) 90(1‘) Ze U + QMHUHZ (621)

subject to Ax=b, x—u+v=0, u>0,

where p is the positive penalty parameter and z. is a constant estimate of the multiplier vector

for the constraints v = 0. The gradient and Hessian of the objective function are given by

g(z) H 0 0

VMo (2, v; ze, 1) = 0 ,and VMo =10 0 0
Ly — 2 0 0 i1

w I

The first-order stationarity condition for this problem implies that there exist vectors m, z and

2, such that

g(z) AT T 0
T
0 = —I ( )—i— z |,
Lo — 2z 1 Y 0
n

with non-negativity and complementarity conditions z > 0 and z - u = 0. Together, these

conditions imply that

1
gx)=ATn+2, 220, z-u=0, and z=-0v—z.
n
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Algorithm 6.1: Constraint-shifted algorithm

Find zg such that zg > 0; k =0;

[, B] = subspaceMin(zg);

T e — o (Ax —b); 2 c+ Hr — A'm;
vs = argmin,{z};

while z,, <0 do

H AT h,
Solve [ 7 °F pe) _ _ ((hw)s . p=pP (P, av = (Hp — ATqr)
Ay —pl —dr Ay, s

ap = minRatioTest(xp,pp);

if [gy]s >0 then a, = —z, /[qn]s €else a. = +oo;

a = min{ay,, ap};

if o =+oco then stop; [the solution is unbounded]

rix+ap;, TTHags; z+—c+Hr— ATr,

if ap < o, then [remove r-th basic variable]
Find the blocking constraint index r;
B B— {8}

else [add s-th nonbasic variable]
B« B+ {vs};
vs = argmin,{z;};

end;

k+—k+1;

end while

The working-set indices of u are denoted by N'. The working-set matrix A,, is defined as

A 0 0
Ay =1 -1 1], (6.22)
o PT o

where Pl is defined by N. As usual, the basic set B is the complementary set of indices such
that BUN = {1,...,n}.
In the next result, we derive the properties of a subspace stationary point and a second-

order-consistent basis in terms relevant to the variable-shifted algorithm. In particular, the

matrix
H AT| P,
K= A 0 0 ,
P 0 | —ul

which appears in the equations solved in the algorithm, is shown to have a specific inertia.



74

Result 6.3.5 (Subspace minimizer). Let (x,u,v) be a feasible point with basic and nonbasic sets

B and N.

(a) If (z,u,v) is a subspace stationary point with respect to B, then gz(x) = ALx, and zy =

(%v — Ze)w-

(b) If B is a second-order-consistent basis for (6.21), then the matriz

H A"| p,
K=| 4 0] o (6.23)
Pr 0 |-l

has inertia (n,m +ny,0).
Proof. By definition, VMa(z, v; 2., 1) lies in the range-space of the transpose of the working-set
matrix (6.22). Thus, there exist vectors 7, y and zy such that
g(x) AT 1 0 ™
0 =10 -1 Py
0 I 0 Zn

1
-V —Z
n e

This implies that g(z) = ATr + Pyzy and Pyzy = ﬁv — 2. Therefore, at a subspace stationary
point, it holds that
gs(r) = ALr, with 2, =0 and 2y = (—v — 2¢)n-
7
For part (b), we use Theorem 1.3.2 to relate the inertia of K to the inertia of the reduced

Hessian matrix Z7(H + iPNPJZ‘)Z , where the columns of Z form a basis for the null space of A.

H AT
If “H” is the matrix < ) and “A” is (Pg; O) in Theorem 1.3.2, then the theorem states
0

that

(3 )3 (5) 9o

H+1ip PT AT
—In< 11‘4 NTN +(0,TLN,O)

1
=In(Z"(H + ;PNPE)Z) + (m,m,0) + (0,ny,0),

where the last equality holds from Corollary 1.3.1. Therefore, it is sufficient to show that the

(n—m) x (n —m) reduced Hessian ZT(H + iPNPE)Z is positive definite, and hence has inertia

(n —m,0,0).

Define @ such that
7 0

Q=| pr,PTz P,
-pP.PTZ P,



(0]

This matrix has linearly independent columns. For any vector u in the null space of @, it must

hold that
Z 0

Uy
O - Qu = PBPgZ PB < ) )
U2
-P,PTZ P,

which implies that Zu; = 0 and Pzus = 0, and hence u = 0. Also, since A,, Q = 0, the columns
of @ form a basis for the null space for A, (6.22). By definition of a second-order-consistent
basis, the matrix Q7V2M,@Q must be positive definite. If the terms of @ and the Hessian are
expanded, then

@TMa0 - (ZTHZ S e ;ZTPNPEPB)
— L PIP P{Z 1PIP,
_ (ZTHZ+ 1ZTPPTZ 0 )
0 %IB
_ (ZT(HJr 1P, PIZ 0 )
0 iIB

Since the leading principal submatrix of a symmetric positive-definite matrix is positive definite,

ZT(H + iPNPg)Z is also positive definite. Therefore, K has inertia (n,m + ny,0). O

If z,, <0, a search direction is computed by solving the system:

H 0 AT 1 0 P 0
0 0 0] 0 —I Py Pu 0
0 0 i[ 0 I 0 po| _ |0 (6.24)
A 0 010 0 0 —r 0
I —-I 10 0 0 —y 0
o P 0] o0 0 0 —qn es

The second and third blocks of these equations indicate that y = ﬁpv = Pyqy, so that ﬁ(pv)N =
g~ and (py)s = 0. The sixth block implies (p, )y = es. Combined with the fifth block, p, — p, +
Py = 0, we get that

(Pz)x = €s — (po)x = €s — pgy and (po)p = (Pu)p-
The remaining equations imply
Hp, — ATgr — Pygn =0, Ap, =0, Pyp, = (pu)x = €5 — pn,
which can be combined to form the variable-shifted version of System 1:

H AT P, .\ [0
A 0 0 || o], (6.25)
PE; 0 *,U,I —qgnN €s
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with p, = uPyqy and py, = px + po.

Based on previous experience, it may seem possible to reduce (6.25) further by decom-
posing it into its basic and nonbasic components. However, the —ul term in the (3, 3) block does
not allow for this possibility and the algorithm must solve the system with a KKT matrix that
includes the entire Hessian H and constraint matrix A.

If p is partitioned as (pg, pu, Pv), it must hold that
1
p"V°Msp = pl Hp, + ;pfpv = (es — pan) " qw + 14k ay = [anls,
because of the equations in System 1 (6.25). Moreover,
T T 1 T
VMQP =g pz+ (ﬁv _Ze) Pov

= g"ps + 2% (po) w (by the stationarity condition and the identity (p,)s = 0)

=(9—A"t)"p, + 2L (py)y  (since Ap, = 0)

2y (Pe)n + 23 (es — (pa)n)  (since zp = 0)

= [zn]s-
Therefore, the optimal step for the variable-shifted problem is defined as o, = —[2y]s/[qn]s. The
feasible step is computed as in (3.7), except that x is replaced by w (since the bounds of (6.21)

are u > 0).

Once the step and direction are known, the updates to the variables and multipliers are
T+ apy, u+ap,, v+ap, and, 7+ agr and z+ aPyqy.

If @ = a, then the next working set is B+ {vs}. Otherwise, if @« = ap, a blocking constraint 3,

is removed from the basic set, B — {3,} and a second system

H 0 AT T 0 Uy 0
0 0 0|0 -1 Py Uy es,
0 0 11| o I 0 Uy 0
iz = (6.26)
A 0 010 0 0 —U, 0
I —-I T1]0 0 0 —y 0
o P o]0 0 0 —Uy 0

is solved to determine constraint dependency in the working-set matrix. By Result 2.2.6, the
blocking constraint is linearly dependent on the working-set constraints if and only if v, = u,, =
u, = 0. However, the second and third blocks of (6.26) imply that u, = u(eg, + Pyvy), so that
(uy)s = per # 0. Thus, a blocking constraint is always linearly independent of the working-set
constraints. This can also be seen in the structure of the working-set matrix (6.22). Since A is

assumed to have rank m and rank(A4,, ) = rank(A) +n+ny. the working-set matrix trivially has
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full-rank. For completeness, however, we note that System 2 for the variable-shifted method is

H AT P, Uy €s,
A O 0 —Ur 01, (6.27)
P 0 —pI —Uy 0

with w, = p(Pyoy +eg,.) and u, = Uy + Uy
It only remains to show that the updated variables and basic sets define a subspace

minimizer.

Result 6.3.6. Let (x,u,v) be a subspace minimizer with respect to B. Assume the solution of
(6.25) has been computed and let (T,u,0) = (z,u,v) + &Py, Pu,Pv), T = T+ Qqr, and Z =
z+ aPyqy.

(a) If a = au, then (Z,1,0) is a subspace minimizer with respect to B = B+ {v,}.

.

(b) If a = ap, then (Z,4,v) is a subspace minimizer with respect to B = B —{B,}, where (3, is

a blocking constraint at «.

Proof. We show that the parallel subspace property holds.
9(7) — A7 = g(x) — ATt + a(Hp, — ATqr) = 2+ aPyqy = .

Thus, zz = 0. Also because p, = uPyqy, it holds that zy = (%t(v + D) — Ze)n- Since this
identity applies for any scalar «, (Z, a1, ¥) remains a subspace stationary point in both cases.
The proof for part (a) is almost identical to the analogous proof in Result 2.2.5. The
only difference is the existence of —pu in the (1, 1) position of M defined in (2.21), but this causes
no difficulties and (2.22) still holds. The remainder of the proof follows “as is”.
For part (b), the permuted KKT matrix for B is

H AT PN €s,

_ A 0 0 0
K =
PL 0 —puI 0
T
eg, O 0 ‘ —
The Schur complement matrix is given by K/K = —u — e} K~ 'ey = —(u+ ef u,). The

following argument may be used to verify that egrum > 0. Using System 2 (6.27), we have

ufeﬁr = ul(Hu, — ATv, — Pyvy) = ul Hu, — ul P v,
1 1
=ulHu, + ~ul P ,Pru, = u(H + ~P,Pl)u,.
Iz 1
As Au, = 0, and the matrix H + iPNPg; is positive definite on the null space of A by part (b)

of Result 6.3.5, it follows that egrux > 0. Thus, K/K < 0 and In(K) = In(K) + (0,1,0) =
(n,m + ny +1,0), as required. O
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Algorithm 6.2: Variable-shifted algorithm

Find z such that Az =b; k= 0;

Define u and v such that u; = max{z;,0} and v; = min{v;,0};
[, z, B] = subspaceMin(x);

ve = argmin,{z};

while z,, <0 do

H AT P, Pa 0
Solve | A 0 0 gz | =10 Po=pPnqn; Du=DpPz+ Do
PE; 0 _,LLI _qN es

ar = minRatioTest(ug, (Pu)s);

if [gy]s > 0 then a, = —z,_ /[qn]s else a. = +oo;

a = min{a,, ap};

if o =+oco then stop; [the solution is unbounded]

T THap, T T+Hoqr; 24 2+ ogy;

if ap < a, then [add 7-th basic variable]
Find the blocking constraint index r;
B B— {8}

else [remove s-th nonbasic variable]
B+ B+ {vs};
vy = argmin, {z; };

end;

k+—k+1;

end while

It is noted that the solution of a generic KKT system of the form

H AT p, T a
A 0 O yl=10b|,
P 0 0 z c

can be computed from the smaller system

H—i—iPNPJ{ AT\ (=« B a—i—ﬁPNc
A 0 Y b 7

with z = L(PXz — ¢). However, within a QP algorithm, the latter KKT matrix is difficult to

1
"
maintain since the (1,1) block is in terms of the matrix Py, which changes at every iteration.
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6.4 Outer Iterations

In order to get a solution for the standard-form QP (6.1) using a single-phase methods
described in the previous section, a sequence of constraint-shifted (6.16) or the variable-shifted
(6.21) subproblems needs to be solved with decreasing values of p. In this section, the updates
to the penalty parameter and the multiplier estimates that occur in the outer iterations are
addressed. However, the discussion is limited to describing an algorithm for the single-phase
method involving the constraint-shifted subproblem (6.16). The discussion can be extended to
methods using the variable-shifted subproblem (6.21).

If the QP is a “one-off” problem, then established techniques associated with the bound-
constrained augmented Lagrangian method can be used to update m, and p (see, e.g., Conn,
Gould and Toint [10], Dostdl, Friedlander and Santos [22, 23, 24], Delbos and Gilbert [19],
Friedlander and Leyffer [34], and Maes [54]). These rules are designed to update 7. and p without
the need to find the exact solution of (6.16). In the SQP context, it may be more appropriate to
find an approximate solution of (6.16) for a fized value of 7., which is then updated in the outer
iteration. Moreover, as u is being used principally for regularization, it is given a smaller value
than is typical in a conventional augmented Lagrangian method.

For the constraint-shifted problem (6.16), we apply the bound-constrained Lagrangian
(BCL) method considered in Friedlander [33], where global convergence results can be found. The
algorithm is given in Algorithm 6.3. The multiplier estimates . are denoted by 7y, where k is the
outer iteration count. Other quantities are also given a subscript k& to denote their values at the
k-th iteration. Updates to the multiplier estimates and the penalty parameter p are determined
by the solution of the subproblem, denoted by x; with multipliers z;. If || Az} —b|| > max{ng, 7.}
for some convergence tolerances 7 and 7., then the multiplier estimates are not updated, and
the penalty parameter is decreased. Otherwise, the value of 7 is updated, and the penalty
parameter is unchanged. Furthermore, if the subproblem solution is deemed optimal for the
original standard-form QP, then the algorithm terminates.

The BCL algorithm can solve the bound-constrained subproblem of the inner iterations
inexactly, without impeding convergence. The first-order optimality conditions in Result 6.3.1 of

(6.16) are relaxed to give approximate conditions

x>0, (6.282)
z > —wge, (6.28b)
z = VM (z; 7, p), (6.28c¢)
x -z < wge, (6.28d)

where wy, > 0 is the k-th optimality tolerance. These conditions are used as a stopping criteria
for solving the subproblems. Similar stopping criteria are given for the BCL algorithm. A point

(z,7, z) is deemed optimal for (6.1), if it satisfies the relaxed first-order optimality conditions of



(6.1), given as

= VMl(Z‘;T(,p),
[ Az = bl| < .

T - 2 < wye,
where 7, and w, are the feasibility and optimality tolerances, respectively.

Algorithm 6.3: Bound-constrained Lagrangian algorithm
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Set k = 0 and set initial penalty parameters: po < 1, 7 < 1;
Choose convergence tolerances wiy, 7, < 1;
Set constants a, > 0 with o < 1;
converged <« false;
Let my = m;
while not converged do
Choose wy, > w, such that limg_, oo Wi = w.
Solve (6.16) to obtain solution (z}, z;) satisfying (6.28);
if ||Az} —bl| < max{nk,n.} then
Thir = Th; 2kl = 255 M1 = Tk — - (Azg = b);
if (Tgy1,7re1, 2K41) satisfies condition (6.29) then

converged < true;

end if

Br4+1 = M3

M1 = Moy M
else

BEk+1 = THE;

Te+1 = Tk, Rk4+1 = 2k Tk41 = Tk,

[keep puk]
[decrease 7]

[decrease pix]

Mk+1 = 154170 increase or decrease 7]

end if
k<+—k+1;

end while




7 Solving the KKT Systems

At each iteration of the quadratic programming methods, it is necessary to solve one
or two KKT systems. In this chapter, two alternative approaches for solving the systems are
considered. The first approach involves the symmetric transformation of the reduced Hessian
matrix. The second approach uses a symmetric indefinite factorization of a fixed KKT matrix in

conjunction with the factorization of a smaller matrix that is updated at each iteration.

7.1 Variable-Reduction Method

The variable-reduction method involves transforming a KKT equation to block-triangular
form using a nonsingular block-diagonal matrix. Instead of solving the reduced KKT system
normally associated with the standard-form algorithm, the variable-reduction method focuses on
solving the full KKT system. Therefore, in this section, we consider a generic full KKT system

of the form

H AT p, y h
A wi | =1 /fi]- (7.1)
Pg; Wa fa

First consider a column permutation P such that AP = (B S N ), with B an m x m
nonsingular matrix and S an m X ng matrix with ng = nz —m. The matrix P is a version of the
permutation (PB PN) of (3.2) that also arranges the columns of Ay in the form A, = (B S).
The ng variables associated with S are called the superbasic variables. Given P, consider the

nonsingular n x n matrix ) such that

-B71S I, 0

81
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The columns of @ may be partitioned so that Q = (Z Y W), where

~-B71S I, 0

The columns of the n X ng matrix Z form a basis for the null-space of A,, with

A 0 B N
was (oo 1)
PI 0 0 Iy

Multiplying the KKT matrix in (7.1) by the diagonal-block matrix diag(@, I,,,) leads to

ZTHz ZTHY ZTHW Yz hy,

YTHZ YTHY YTHW BT Uy hy
WTHzZ WTHY WTHW NT 1, v | =1 hw | (7.2)

B N w fi

Iy () fo

with h, = ZTh, hy = YTh, and h,, = W7h. Then the vector y may be computed as y =
Yy, + Zy, + Wy, . Additionally,

Yyw = fo,
Byy = fi = N, Yn = Yyy + Wyw,
Z'HZy, = Z"(h— Hyz),  yr = Zys, Y = Yr + Y,
B'w, = Y'(h — Hy), wy = WI(h — Hy) — NTw;.

These equations may be solved using a Cholesky factorization of Z7H Z and an LU factorization
of B. The factors of B allow efficient calculation of matrix-vector products Z7v or Zv without

the need to form the inverse of B.

7.1.1 Equations for the standard-form algorithm

The equations simply considerably when the appropriate right-hand sides from the
standard-form nonbinding-direction method are substituted into the above equations. For Sys-

tem 1 (3.3), the substitutions are

y=>n w1 = —qnr, W2 = —(n, h:flzoa and f2:eS7
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leading to the equations

Py
Bpy = —a,,, pr=P| 0|,
€s
T T (7.3)
Z'HZp, = —=Z"Hpr,  pr = Zpz, P = pr+Pr,
dr
BTqﬂ = (Hp)BBa dn = (HP*AT 7r)./\/’5 q = ( ) .
dn
Similarly for System 2, it holds that uy = 0, uy =0, uyr = 0 and
ZTHZu, = ZTeﬁT7 U = Ly,
T T VU (7.4)
B'v, = (Hu — eg,)ss, vy = (Hu— A'vg) v = .
Un

The subscript BB refers to the indices forming B in Ay (a subset of the basic set B). These
equations allow us to specialize part 2(a) of Result 3.2.2, which gives the conditions for the linear

independence of the matrix Aj.

Result 7.1.1. Let x be a subspace minimizer with respect to B. Assume that p and q are defined
by (7.3), and that xg, is the incoming nonbasic variable at the next iterate. Let vectors uy and
vy be defined by (7.4).

(a) If zp,. is superbasic, then e, and the rows of Ag are linearly independent.

(b) If zp, is not superbasic, then e, and the rows of Ay are linearly independent if and only if

STz #+0, where z is the solution of BTz = e,.

Proof. From (7.4), u = Zu,, which implies that up is nonzero if and only if u, is nonzero.
Similarly, the nonsingularity of Z7HZ implies that u, is nonzero if and only if Z%eg, is nonzero.
Now

Zles, = (~STBT I, 0)er.

If » > m, then x5, will change from being superbasic to nonbasic, and Z%e, = ep_m # 0.
However, if 7 < m, then
Z%es, = —STB e, = 572,

where 2z is the solution of BTz = e,.. O

Variable-reduction is most efficient when the size of the reduced Hessian (ng = n—m—ny)
is small, i.e., when many constraints are active. This method is used in the current versions of

SQOPT [39] and SNOPT [38].
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7.2 Schur-Complement and Block-LU Method

In this section, we consider a method for solving the reduced KKT system of the form

5960
Ap  —ul w f

where i and f are constant vectors defined by the algorithm implemented.

Solving a single linear system can be done very effectively using sparse matrix factoriza-
tion techniques. However, within a QP algorithm, many closely related systems must be solved
where the KKT matrix differs by a single row and column. Instead of reformulating the matrix
at each iteration, the matrix may be “bordered” in a way that reflects the changes to the basic

and nonbasic sets (see Bisschop and Meeraus [4], and Gill et al. [42]).

7.2.1 Augmenting the KKT matrix

Let By and Ny denote the initial basic and nonbasic sets that define the KKT system in

(7.5). There are four cases to consider:
(1) a nonbasic variable moves to the basic set and is not in By,
(2) a basic variable in By becomes nonbasic,
(3) a basic variable not in By becomes nonbasic, and
(4) a nonbasic variable moves to the basic set and is in By.

For case (1), let vs be the nonbasic variable that has become basic. The next KKT

matrix can be written as

Hy AT 1 (hy,)s,

Ag —ul Qy,
(hl’s )go U‘ZS ‘ hl/s Vs

Suppose that at the next stage, another nonbasic variable v,. becomes basic. The KKT matrix is

augmented in a similar fashion, i.e.,

HB A£ (th)B(J (h’l/r)Bo

Ag —pul ay, ay,
T T
(o, )BO ay, by, v, hu, v,

T T
(th )BO Qy,. hy, v, hy, v,
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Now consider case (2) and let 8, € By become nonbasic. The change to the basic set is reflected

in the new KKT matrix

Hy Ag (hVS)BO (hur)zso Cr

AB _/’I’I a’Vs a‘V'r'

(h’l’s)go ag-; hl’sy’/s hVS7Vr
(hw )3;0 azj;,. by, v, hy, v,

el 0 0 0

o o O O

The unit row and column augmenting the matrix has the effect of zeroing out the components
corresponding to the removed basic variable.

In case (3), the basic variable must have been added to the basic set at a previous stage
as in case (1). Thus, removing it from the basic set can be done by removing the row and column
in the augmented part of the KKT matrix corresponding to its addition to the basic set. For

example, if v, is the basic to be removed, then the new KKT matrix is given by

HB AT (th )Bo Er

B

AB _MI Qy,. 0
(hyr)go G’ZT hVT,DT 0
el 0 0 0

For case (4), a nonbasic variable in By implies that at some previous stage, the variable
was removed from By as in case (2). The new KKT matrix can be formed by removing the unit
row and column in the augmented part of the KKT matrix corresponding to the removal the

variable from the basic set. In this example, the new KKT matrix becomes

HB A;g (th )30
Ap —ul a,

-

(hl’r):lz;o a,, ho, v,

Vr

After k iterations, the KKT system is maintained as a symmetric augmented system of

(e ) ()= () v (2 )
= with K = , (7.6)
VT B n f AB

where B is of dimension at most 2k.

the form

7.2.2 Factoring the matrices

Although the augmented system (in general) increases in dimension by one at every

iteration, the (1,1)-block K is fixed and defined by the initial set of basic variables. The Schur
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complement method assumes that factorizations for K and the Schur complement C = B —

VTK =1V exist. Then the solution of (7.6) can be determined by solving the equations
Kt=b, Cn=f-V% Kr=b—Vn.

The work required is dominated by two solves with the fixed matrix K and one solve with the
Schur complement C'. If the number of changes to the basic set is small enough, dense factors of
C may be maintained.

The Schur complement method can be extended to a block-LU method by storing the

augmented matrix in block factors such that

(5)-(5 ) (0

where K = LU, LY =V, UTZ =V, and C = B — Z'Y is the Schur-complement matrix.
The solution of (7.6) with factors (7.7) can be computed by forming the block factors

and by solving the equations
Lt=b, Cn=f—-2Z% and Ur=t-Yn.

This method requires a solve with L and U each, one multiply with Y and Z7, and one solve
with the Schur complement C. For more details, see Gill et al. [40], Eldersveld and Saunders [27],
and Huynh [53].

As the iterations of the QP algorithm proceed, the size of C' increases and the work
required to solve with C increases. It may be necessary to restart the process by discarding the

existing factors and re-forming K based on the current set of basic variables.

Using the LDL” factorization Since K is a symmetric indefinite matrix, K can be factored
using an LDL” factorization rather than an LU factorization (see Result 1.3.4). Given such a

factorization, the augmented matrix can be stored in the form

(50 -(5 ) () o

In this case, less storage is required because only the LDLT factors, the Schur complement and

Y are stored. The solution of (7.6) is computed from the equations
Lt=b, Cn=f-Y"% Dy=t, and LIr=v—Yn,

requiring a solve with each of the matrices L, D, LT and C and a multiply with Y and its

transpose.
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7.2.3 Updating the factors

Suppose the current KKT matrix is bordered by the vectors v and w, and the scalar o

K V |w
VT B |w
o7 wl | o

The block-LU factors Y and Z, and the Schur complement C' in (7.7) are updated every time
the system is bordered. The number of columns in matrices Y and Z and the dimension of the

Schur complement increase by one. The updates y, 2z, ¢ and v are defined by the equations
Ly = v, Uty = v,
c=w—-2"% =w—-Y"z, v =0-2",

so that the new block-LU factors satisfy

K V |o L UlY y
vl B lw |=| 27 |1I c ¢ |- (7.9)
ol wT ‘ o 2T ‘ 1 ‘ cl'

As demonstrated previously, it is also possible to border the KKT matrix with two rows
and columns in one iteration (e.g., a swap involving the removal of an original basic variable
(case (2) in Section 7.2.1) and the addition of a new nonbasic variable (case (1)). The above

updates still apply but with appropriate expansions of the vectors and scalars in the equations.



8 Numerical Results

In this chapter, numerical results are presented for the Fortran package icQP [45], which
is an implementation of the nonbinding-direction method for QPs in standard-form. The results
are compared with those of the convex QP solver SQOPT [39].

Problems were taken from the CUTEr problem collection [6, 50], and the Maros and
Mészdros convex quadratic programming set [56]. A total of 171 quadratic problems in the
CUTETr set were identified based on the classification code, while 138 convex quadratic programs
were taken from the Maros and Mészaros test set. Only 126 of the 171 CUTEr problems were
included in the icQP test set. 45 of the problems (those with names prefixed by A0, A2 and
A5) were deemed too expensive to include. In over twelve hours, icQP solved only 13 of the 45
problems. In the Maros and Mészdros set, problems BOYD1 and BOYD2 were also excluded for the
same reason.

The number of constraints m and variables n for the CUTEr and Maros and Mészaros sets
are given in Tables A.1 and A.2. The superscript ¢ denotes a nonconvex problem. The CUTEr
problems are written in Standard Input Format (SIF), while the Maros and Mészédros problems
are written in QPS format, a subset of the SIF format. The CUTEr testing environment [50],
which includes the SIF decoder SifDec, was used to pass the problem data into icQP.

Results were obtained on an iMac with a 2.8 GHz Intel Core i7 processor and 16GB of
RAM. All software was compiled using gfortran 4.6.0 with code optimization flag -03.

8.1 Implementation

icQP is a Fortran 2003 implementation of the standard-form version of the nonbinding-
direction algorithm presented in Section 3.2. The problem is assumed to be of the form
zEeR™

x
minimize ¢(z) subject to £ < (A ) < u,
x

where ¢(x) is a linear or quadratic objective function, ¢ and u are constant lower and upper

bounds, and A is an m x n matrix. The objective function has the form

p(x) = o+ c'w + 32" Hu,

88
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where g is a scalar constant that does not affect the optimization. Internally, the problem is
converted to standard-form by introducing slack variables s such that

T
minimize ¢(x) subject to Az —s=10, (< ( ) < .
zeR™ seR™ S

An initial feasible point is found via a phase 1 LP using an experimental Fortran 90
version of SNOPT. This process also produces an initial basis. If this basis is not second-order-
consistent, then the number of non-positive eigenvalues of the KKT matrix is greater than m, and
the estimated number of temporary constraints e, is defined as the difference of these numbers.
If the estimate satisfies

eq > max{1(n; —m), 10}, (8.1)

then a vertex is defined at the current point by temporarily fixing variables at their current
values. Otherwise, the method described in Section 5.2.2 is used to define temporary constraints
that define a second-order-consistent basis.

Three linear solvers have been incorporated into icQP to store the block-LU (or block-
LDLT) factors of the KKT matrix. These are LUSOL [41], HSL_MAS57 [25], and UMFPACK [15,
16, 17, 18]. The Schur complement matrix is maintained by the dense matrix factorization code
LUMOD [62]. LUMOD was updated to Fortran 90 by Huynh [53] for the QP code QPBLU, which
also utilizes a block-LU scheme. Modifications were made to the Fortran 90 version of LUMOD
to incorporate it into icQP.

The algorithm for computing temporary constraints for a second-order-consistent basis
requires a solver that computes an LDLT factorization and provides access to the matrix L.
Only HSL_MA57 is a symmetric indefinite solver, but it does not provide access to L by default.
However, a subroutine returning L was provided by Iain Duff [26], and so HSL_MA57 is the only
solver capable of defining temporary constraints using the method of Section 5.2.2. For all other
solvers, a vertex is defined if the initial basis is not second-order-consistent.

Table 8.1 lists the problems for which the phase 1 LP did not provide a second-order-
consistent basis when running icQP with HSL_.MA57. Based on whether or not (8.1) holds,
either variables were temporarily fixed at their current values to create a vertex, or temporary
constraints were computed to create an initial second-order-consistent basis. The superscript v
denotes the former case. The column labeled “nTmp” gives the number of temporary constraints
or temporarily fixed variables. Column “Dense” gives the density of Hy + pALA,. Column
“Time” gives the time taken to compute the temporary constraints and factor the resulting KKT
matrix. The column “nFix” of Tables 8.7 and 8.8 list the number of fixed variables needed to
define a temporary vertex.

The condition for a blocking variable to give a linearly dependent basis is u = 0, where

u satisfies the equations (3.6). The test used in icQP is

[uslleo <7,
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Table 8.1: Number of temporary constraints for icQP with HSL_MA57

Name nTmp Dense Time | Name nTmp Dense Time
BLOCKQP1 5007” 0.00 0.38 | NCVXQP2 446" 0.00 0.10
BLOCKQP2 1 49.97 101.44 | NCVXQP3 155 0.54 0.23
BLOCKQP3  5007” 0.00 0.38 | NCVXQP4 731V  0.00 0.03
BLOCKQP4 1 49.97 101.53 | NCVXQP5 731V  0.00 0.03
BLOCKQP5 5003” 0.00 0.37 | NCVXQP6 221 0.47 0.09
BLOWEYA 1 12.55 27.25 | NCVXQP7 199" 0.00 0.29
BLOWEYB 1 12.55 27.25 | NCVXQP8 199 0.00 0.33
BLOWEYC 1 12.55 27.26 | NCVXQP9 199 0.00 0.29
GMNCASE1 1 22.03 0.07 | STATIC3 58 0.95 0.00
HATFLDH 1 31.25 0.00 | STNQP1 348 0.07 2.32
HS44NEW 3 28.00 0.00 | STNQP2 769 0.12 3.84
NCVXQP1 446"  0.00 0.10

where 7 is a scaled tolerance that is initialized at 7 = (max(||Al|1, [|H|]1) + 1) x 9 x 10712, and
increased, if necessary, subject to the fixed maximum value 5 x 10~7. The condition for increasing
7 is based on the norm of uz. If ||ug||eo is close to 7, specifically, if ||uz||c satisfies

0 < lslle =7 12,
T

then the tolerance is increased from 7 to 127.

The KKT matrix is refactored when the dimension of the Schur complement becomes
greater than min(1000, %(nB + m)), or when the estimated condition number of the Schur com-
plement is greater than 108. The maximum dimension of the Schur complement was determined
empirically, and was based on the overall time required to solve the problems with large num-
bers of degrees of freedom (see Figures 8.5-8.6). Ideally, this limit should be chosen to balance
the time required to factor the KKT matrix and cumulative time needed to update the Schur
complement.

After the KKT matrix is factorized, the current x and 7 are updated using one step of

iterative refinement based on increments p; and ¢, found by solving the additional system

Hy Ag DB _ gB—AEW
Ag —dqr 0 .

8.2 Performance Profiles

Performance profiles were created to analyze the results of the numerical experiments on
icQP. The merits of using performance profiles to benchmark optimization software are discussed
in [20]. The idea of a performance profile is to provide an “at-a-glance” comparison of the

performance of a set S of n, solvers applied to a test set P of n, problems. For each solver s € S
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and problem p € P in a profile, the number #,, is the time (or some other measure, e.g., number
of iterations) needed to solve problem p with solver s. To compare the performance of a problem
p over the different solvers, the performance ratio for each successfully solved problem and solver

is defined as
tps
min{t,s : s € S}

Tps =
If r,,s denotes the maximum time needed over all problems that were solved successfully, then
the performance ratio for problems that failed is defined as some value greater than 7.

Given the set of performance ratios, a function Ps(o) is defined for each solver such that

1
Ps(o) = TTHPEP:TPS <o}l
P

where o € [1,7,5]. The value P;(o) is the fraction of problems for solver s that were solved
within o of the best time. Ps(1) is the fraction of problems for which s was the fastest solver.
Note that the summation of P,(1) for all s does not necessarily equal one, because there may be
ties in the times (e.g., a “07” is recorded if a problem is solved in less than 1072 seconds). The
value Py(r;,s) gives the fraction of problems solved successfully by solver s.

The presented performance profiles are log-scaled, with 7 = log,(c) on the z-axis and

the function

1
Py(7) = TTHP eP: 10g2(Tp8) <7},
P

on the y-axis for each solver. The y-axis can be interpreted as the fraction of problems that were
solved within 27 of the best time. Because the y-axis is the fraction of problems solved, and the
r-axis is the factor of time needed to solve a problem, the “best” solver should have a function
P,(7) that lies towards the upper-left of the graph.

Performance profiles in this chapter were produced using a MATLAB m-file adapted from
one given in [13]. If a problem is solved in 0.00 seconds, then that value is replaced by 0.001 to

prevent division by zero in the calculation of the performance ratios.

8.3 Results for the Nonbinding-Direction Method

Results were gathered from running the convex QP package SQOPT and four versions of

icQP on the CUTEr and Maros and Mészaros test sets. The versions of icQP are:
(1) icQP with LUSOL,
(2) icQP with HSL_MAS57,
(3) icQP with UMFPACK, and

(4) icQP with HSL_MA57 starting at a vertex (referred to as HSL_MA57v).
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Each version is referred to as icQP-[solver] in the following sections. It must be emphasized
that icQP with LUSOL, UMFPACK and HSL_MA57v start with a vertex, while icQP-HSL_MA57
starts with any basic set that defines a subspace minimizer. In particular, icQP—HSL_MA57 is
the only version capable of using temporary constraints to define a second-order-consistent basis
(see Section 5.2.2).

Default parameter settings were used throughout, including the third-party linear algebra

solvers. The only exception was matrix scaling, which was turned off for all the solvers.

8.3.1 Results on icQP with different linear solvers

In this section, we compare the performance of icQP for each of the linear solvers LUSOL,
HSL_MA57, UMFPACK, and HSL_MA57v. The performance of a given solver depends greatly on
the Fortran interface to icQP. Each solvers requires a different matrix input format (e.g., in
symmetric/unsymmetric coordinate form, or sparse-by-column format), and the timing often
depends on the efficiency of the implementation. In the case of HSL_MA57, performance was

inhibited by the fact that the solver was not designed to be called repeatedly within an iterative

0.8 - f

0.7 j’j
0.6 —H

scheme.

% of problems solved within 27 of best time

0.5 H
0.4 H
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0.3 - mab7
umfpack
0.2 -
mab7v
0.1}
0 Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14

Figure 8.1: Performance profile of solve times for icQP on the CUTEr QP test set.

The performance profile for icQP on the CUTETr test set is given in Figure 8.1. Although
icQP-LUSOL solves the most problems in the best time, it solved fewer problems than the other
versions of icQP. No version of icQP was able to solve the CUTEr problems CVXQP1, CVXQP3 and
CONT5-QP in the CUTEr set. In addition, icQP-LUSOL was unable to solve the problems KSIP,
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QPCBLEND, QPCSTAIR, QPNBLEND, and QPNSTAIR

Broadly speaking, the results on the Maros and Mészaros test set mirrored those for
the CUTEr test set, although the times for icQP-UMFPACK had a slight edge over those for
icQP-HSL_MA57 and icQP-HSL_MA57v. The performance profile is given in Figure 8.2.

1

0.9

0.8

0.7

0.6

% of problems solved within 27 of best time

0.3 F lusol
ma57
0.2
umfpack
0.1} mab7v
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9
T

Figure 8.2: Performance profile of solve times for icQP on the Maros and Mészdros QP test set.

For the Maros and Mészaros set, no version of icQP was able to solve QPILOTNO, CVXQP1_L,
and cvXQP3_L. The versions icQP-HSL_MA57 and icQP-HSL_MA57v also failed to solve Q25FV47.
icQP-LUSOL failed to solve CVXQP2_L, HUESTIS, KSIP, MOSARQP1, MOSARQP2, Q25FV47, QPCBLEND,
QPILOTNO, and UBH1. The larger number of failures in the Maros and Mészéaros set may be caused
by the limitations of QPS format, which specifies only 12 characters for a numeric field, thus
limiting the precision of the data. In fact, on inspection of the QPS files, many problems had far
fewer than 12 digits of precision.

Table 8.2 illustrates the potential benefit of icQP-HSL_MA57, which uses the method of
Section 5.2.2 to define an initial second-order consistent basis. Observe that icQP-HSL_MA57v,
which is forced start at a temporary vertex, requires substantially more iterations in all cases.
The improvement is most evident in problems AUG2DC, AUG3DC, and GRIDNETB, which are started

at an optimal solution and therefore require no iterations in icQP-HSL_MA57.

8.3.2 Results on icQP and SQOPT

Since SQOPT is a convex QP solver, only convex problems were chosen for the comparison

with icQP. Nonconvex problems are denoted by a superscript i in Table A.1. The 90 convex
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Table 8.2: Results on a subset of problems from the CUTEr set for icQP-HSL_MA57 and icQP—
HSL_MA57v

icQP-HSL_MA57 icQP-HSL_MA57v
Name Objective Itn Time Objective Itn Time
AUG2D 1.6874E+06 396 3.28 1.6874E+06 10193 86.56
AUG2DC 1.8184E+06 1 0.86 1.8184E+06 10201 86.58
AUG3DC 2.7654E+04 1 1.78 2.7654E+04 19544 224.60
DTOC3 2.3526E+02 3 0.48 2.3526E+02 4806 189.00
GRIDNETA | 3.0498E+02 224 1.03 3.0498E+02 22565 11.58
GRIDNETB | 1.4332E+02 1 0.39 1.4332E+02 6561 43.13
HUES-MOD | 3.4824E+07 559 1.74 || 3.4830E+07 9304 24.53
HUESTIS 3.4824E+11 559 1.74 || 3.4830E+11 9304 24.50

CUTEr problems were divided into two sets. The first set contains 35 problems with number

of degrees of freedom (or number of superbasic variables), denoted by nS, greater than 1000 or
1
2
contains only convex problems, so all of those problems were included in the comparison. The

(m + n). The second set contains the remaining 55 problems. The Maros and Mészdros set

small/large nS partition of Maros and Mésziros problems resulted in a “small nS” set of 115

problems and a “large nS” set with 21 problems.

SQOPT. SQOPT uses a reduced-Hessian active-set method implemented as a reduced-gradient
method. The solver partitions the equality constraints Az — s = 0 into the form Bxz + Szs +
Nz, = 0, where the basis matriz B is nonsingular and m x m, and S and N are the remaining
columns of the matrix (A -1 ) The vectors x5, s and x, are the basic, superbasic, and
nonbasic components of (z,s). Given this partition, a matrix Z with columns spanning the null

space of the active constraints can be defined as

-B~1S

0

where P is the permutation matrix that permutes (A —I) into (B S N) (for more details, see
Section 7.1). A suitable direction is computed from an equation involving the reduced Hessian
and reduced gradient

ZTHZps = - 7279, (8.2)

a system with ng equations. If the number of superbasics is large, then solving (8.2) becomes
expensive. By default, SQOPT switches to a conjugate-gradient method to solve for a direction,
when ng is greater than 2000. Therefore, it is expected that SQOPT will provide superior
performance when there are few superbasics.

Tables 8.3 and 8.4 list the results for SQOPT and the different versions of icQP on the

CUTEr and Maros and Mészaros problems. The column “Objective” gives the final objective
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value, column “Itn” is the total number of iterations, and the column “Time” lists the total
amount of time in seconds. Superscripts on the objective value denote an exit condition. If no
superscript is present, then the problem was solved to optimality. Otherwise, a “1” indicates
that a problem was declared to be unbounded, “2” implies that a problem was declared to be

W

infeasible, a “¢” implies that the problem was declared to be nonconvex, and a *

‘n” indicates
that an algorithm exceeded its iteration limit. The superscript “ f” indicates that difficulties
were encountered when factorizing a KKT matrix; either the matrix was deemed to be singular
by the linear solver, or the matrix had incorrect inertia. Failures of this kind were usually caused
by poor scaling. Tables 8.5 and 8.6 give the final number of superbasics and the total number of

factorizations of the KKT matrix needed for each problem.

Analysis. On CUTEr problems with a small value of nS, as expected, SQOPT performed sig-
nificantly better than every version of icQP. SQOPT has the fastest solve time for over 95% of the
problems in this set. The performance profile of the solve times is given in Figure 8.3. Similar
performance was observed for the Maros and Mészaros problems with a small value of nS. How-
ever, SQOPT failed to solve 27 of the 115 problems, while the worst version of icQP was unable
to solve 6. This behavior could, again, be attributed to the limitations of QPS format, and also
to the lack of scaling in the solvers.

The performance of icQP relative to SQOPT improves for problems with a large number
of superbasics. The performance profile for the 35 convex CUTEr problems with large nS is given
in Figure 8.5. For this set, icQP-HSL_MA57 appears to have the best performance, with 60%
of the best times. No version of icQP was able to solve cVXQP1. In addition, icQP-LUSOL was
unable to solve HUESTIS, MOSARQP1, and UBH1. SQOPT failed to solve only UBH1.

The icQP’s improvement is more dramatic on the Maros and Mészaros set, with the
profile of icQP-HSL_MA57 residing securely in the top-left corner of the graph in Figure 8.6.
icQP-HSL_MAS57 gives the best time on the same number of problems as SQOPT, but also solves
most of the problems within a factor of 12 of the best time.

These results are combined in the performance profile in Figure 8.7, which graphs the
performance of SQOPT and icQP-HSL_-MA57 on the convex CUTEr and Maros and Mészaros
problems with a large number of superbasics. SQOPT is more robust, but icQP-HSL_MAS57 solves

almost 70% of the problems in a faster time.
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Figure 8.3: Performance profile of solve times for SQOPT and icQP on 55 convex CUTEr QPs
with a small number of degrees of freedom.
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Figure 8.4: Performance profile of solve times for SQOPT and icQP on 115 Maros and Mészéros
QPs with a small number of degrees of freedom.
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Figure 8.5: Performance profile of solve times for SQOPT and icQP on 35 convex CUTEr QPs
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Figure 8.7: Performance profile of solve times for SQOPT and icQP-HSL_MA57 on 56 convex
CUTEr and Maros and Mészaros QPs with a large number of degrees of freedom.
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Table 8.5: Number of superbasics and factorizations for CUTEr

problems
nS nFac
Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
ALLINQP 1964 1964 1964 1964 1964 4 2 4 4
AUG2D 10192 10196 10192 | 10192 | 10192 11 1 11 11
AUG2DC 10200 10200 10200 | 10200 | 10200 11 1 11 11
AUG2DCQP 9994 9994 9994 9994 9994 18 18 18 18
AUG2DQP 9801 9801 9801 9801 9801 18 18 17 18
AUG3D 16909 16908 16909 | 16909 | 16909 17 3 17 17
AUG3DC 19543 19543 19543 | 19543 | 19543 20 1 20 20
AUG3DCQP | 17665 17665 17665 | 17665 | 17665 25 25 25 25
AUG3DQP 13712 13712 13712 | 13712 | 13713 21 21 21 21
AVGASA 3 3 3 3 1 1 1 1
AVGASB 3 3 3 3 3 1 1 1 1
BIGGSC4 1 1 1 1 1 2 2 2 2
BLOCKQP1 9 9 9 9 2 1 2 1 1
BLOCKQP2 9 9 9 9 2002 1110 8 1110 1110
BLOCKQP3 9 9 9 9 2 1 2 1 1
BLOCKQP4 9 9 9 9 2002 1024 12 1024 1024
BLOCKQP5 9 9 9 9 0 1 2 1 1
BLOWEYA 0 2000 0 0 0 1 3 1 1
BLOWEYB 0 2000 0 0 0 1 3 1 1
BLOWEYC 0 2000 0 0 0 1 3 1 1
CONT5-QP 2 0 2 1 97 3 3 4 6
CVXQP1 0 675 0 0 1275 1 6 378 2
CVXQP2 2210 2210 2210 2210 2210 437 93 423 440
CVXQP3 0 1758 0 0 436 1 2 5 2
DEGENQP 0 0 0 0 0 1 1 1 1
DTOC3 4803 4999 4803 4803 4803 5 1 5 5
DUAL1 62 62 62 62 62 14 14 14 14
DUAL2 91 91 91 91 91 15 15 15 15
DUAL3 96 96 96 96 96 15 15 15 15
DUAL4 61 61 61 61 61 13 13 13 13
DUALC1 2 2 2 2 2 1 1 1 1
DUALC2 2 2 2 2 2 1 1 1 1
DUALC5 4 4 4 4 4 1 1 1 1
DUALCS8 2 2 2 2 2 1 1 1 1
FERRISDC 0 206 0 0 0 1 1 1 1
GENHS28 2 2 2 2 2 1 1 1 1
GMNCASE1 51 95 51 51 51 1 2 1 1
GMNCASE2 46 94 46 46 46 3 1 3 3
GMNCASE3 48 93 48 48 48 3 7 3 3
GMNCASE4 0 0 0 0 0 1 1 1 1
GOULDQP2 0 0 0 0 0 1 1 1 1
GOULDQP3 4988 4988 4988 4988 4988 6 6 6 6




Table 8.5: Number of superbasics and factorizations for CUTEr

problems (continued)

ns nFac

Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
GRIDNETA 2183 2218 2183 2183 2183 3 1 3 3
GRIDNETB 6560 6561 6560 6560 6561 7 1 7 7
GRIDNETC 4533 4533 4533 4533 4533 5 3 5 5
HATFLDH 0 0 0 0 0 1 2 1 1
HS118 0 0 0 0 0 2 1 2 2
HS21 1 1 1 1 1 3 2 3 3
HS268 4 5 5 5 5 2 1 2 2
HS35 2 2 2 2 2 6 2 6 6
HS351 2 2 2 2 2 6 2 6 6
HS35M0D 1 2 1 1 1 3 1 3 3
HS44 0 0 0 0 0 1 1 1 1
HS44NEW 0 1 0 0 0 1 1 1 1
HS51 2 2 2 2 2 1 1 1 1
HS52 2 2 2 2 2 1 1 1 1
HS53 2 2 2 2 2 1 1 1 1
HS76 2 2 2 2 2 2 1 2 2
HS761 2 2 2 2 2 2 1 2 2
HUES-MOD 8321 9444 8321 8321 8323 27 1 27 27
HUESTIS 3 9444 8321 8321 9138 4 1 27 27
KSIP 1 18 18 18 16 121 112 1279 1279
LINCONT 0 0 4 4 4 4
LISWET1 2 2 2 2 2 2 1 2 2
LISWET10 14 17 14 17 15 12 3 12 12
LISWET11 31 36 31 31 31 8 7 8 8
LISWET12 5 6 5 5 5 10 7 10 10
LISWET2 4 4 4 4 16 2 3 2 2
LISWET3 261 261 261 261 282 11

LISWET4 269 269 269 269 284 13

LISWET5 254 254 254 254 265 11

LISWET6 222 222 222 231 239 10 15 10 21
LISWET7 2 2 2 2 2 1

LISWET8 13 14 13 13 15 6 3 6 6
LISWET9 4 5 4 4 4 10 5 10 11
LOTSCHD 0 0 0 0 0 1 1 1 1
MOSARQP1 909 1021 1021 1021 1021 2 147 144
MOSARQP2 1640 1640 1640 1640 1640 1 3 3
NASH 0 0 0 0 0 2 2 2
NCVXQP1 0 0 0 0 0 92 91 92 90
NCVXQP2 0 0 0 0 0 148 217 156 216
NCVXQP3 19 14 19 17 4 228 293 237 215
NCVXQP4 0 0 0 11 15 11 14
NCVXQP5 0 0 0 0 0 6 7 6 6
NCVXQP6 53 50 53 53 3 11 133 10 13
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Table 8.5: Number of superbasics and factorizations for CUTEr
problems (continued)

ns nFac

Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
NCVXQP7 0 0 0 0 0 129 127 155 126
NCVXQP8 0 0 0 0 0 167 188 169 187
NCVXQP9 6 6 6 6 1 196 225 197 224
PORTSNQP 80 80 80 80 80 13 14 13 13
PORTSQP 99 99 99 99 99 17 14 17 17
POWELL20 1 1 1 1 1 10 6 10 10
PRIMAL1 133 262 133 130 131 4 1 4 4
PRIMAL2 302 557 302 302 300 5 1 5 5
PRIMAL3 572 648 572 572 570 5 1 5 5
PRIMAL4 1140 1427 1140 1140 1140 7 1 7 7
PRIMALC1 14 14 14 14 14 3 2 3 3
PRIMALC2 1 1 1 1 1 1 1 1 1
PRIMALCS 5 5 5 5 5 2 1 2 2
PRIMALC8 17 17 17 17 17 4 2 4 4
QPBAND 39 39 39 39 39 21 21 21 21
QPCBLEND 0 2 2 2 2 8 23 23 23
QPCBOEI1 111 111 111 111 108 106 107 108 107
QPCBOEI2 37 37 37 37 37 27 30 31 30
QPCSTAIR 0 33 34 33 27 19 42 42 42
QPNBAND 1 1 1 1 0 11 11 11 11
QPNBLEND 0 3 3 3 1 8 21 21 21
QPNBOEI1 93 93 93 93 22 74 76 66 76
QPNBOEI2 31 31 31 31 12 20 22 22 22
QPNSTAIR 0 31 31 31 25 41 66 68 66
5268 4 5 5 5 5 2 1 2 2
sS0sQpP1 0 9999 0 0 0 1 1

s0sQP2 4976 4985 4976 4976 4979 10 15 10 10
STATIC3 1 198 1 1 4 1 2 1 1
STCQP1 5707 5717 5707 5707 5707 6 1 6 6
STCQP2 3970 3970 3970 3970 3970 4 1 4 4
STEENBRA 11 11 11 11 11 1 1 1 1
STNQP1 5277 5277 5277 5277 0 6 56 6 6
STNQP2 2640 2640 2640 2640 0 3 381 3 3
TAME 1 1 1 1 1 3 3 3 3
UBH1 31 5997 5997 5997 471 47 6 1872 2092
WALL10 0 1056 0 0 0 2 0 2 2
WALL100 0 | 105074 0 0 0 2 0 2 2
WALL20 0 4214 0 0 0 2 0 2 2
WALL50 0 26286 0 0 0 2 0 2 2
YAO 1 1 1 1 1 1 1 1 1
ZECEVIC2 1 1 1 1 1 4 4 4 4
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Table 8.6: Number of superbasics and factorizations for Maros

and Mészaros problems

nS nFac

Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
ADAT1 1 1 1 1 1 1 1 1 1
ADAT2 6 6 6 6 6 2 2 2 2
ADAT3 6 6 6 6 6 2 1 2 2
AUG2D 10192 | 10196 10192 | 10192 | 10192 11 1 11 11
AUG2DC 10200 | 10200 10200 | 10200 | 10200 11 1 11 11
AUG2DCQP 9994 9994 9994 9994 9994 18 18 18 18
AUG2DQP 9801 9801 9801 9801 9801 18 18 17 18
AUG3D 2158 2158 2158 2158 2161 3 1 3 3
AUG3DC 2873 2873 2873 2873 2873 3 1 3 3
AUG3DCQP 2333 2333 2333 2333 2333 3 3 3 3
AUG3DQP 1455 1455 1455 1455 1455 2 2 2 2
CONT-050 195 195 195 195 195 1 1 1 1
CONT-100 395 395 395 395 395 3 3 3 3
CONT-101 97 97 97 97 97 1 1 1 1
CONT-200 795 795 795 795 795 1 1 1 1
CONT-201 197 197 197 197 197 1 1 1 1
CONT-300 297 297 297 297 297 7 1 7 1
CVXQP1_L 0 0 0 0 1275 1 3 272 3
CVXQP1M 118 118 118 118 118 73 76 72 76
CVXQP1_S 14 14 14 14 14 1 1 1 1
CVXQP2_L 615 2210 2210 2210 2210 129 280 264 280
CVXQP2_M 217 217 217 217 217 10

CVXQP2_S 21 21 21 21 21 2

CVXQP3_L 0 0 1 0 434 3 3 663

CVXQP3_M 41 41 41 41 41 93 91 81 91
CVXQP3_S 3 3 3 3 3 1 1 1 1
DPKLO1 56 56 56 56 56 1 1 1 1
DTOC3 4803 4999 4803 4803 4803 5 1 5 5
DUAL1 62 62 62 62 62 14 14 14 14
DUAL2 91 91 91 91 91 15 15 15 15
DUAL3 96 96 96 96 96 15 15 15 15
DUAL4 61 61 61 61 61 13 13 13 13
DUALC1 2 2 2 2 1 1 1 1
DUALC2 1 1 1 1
DUALC5 4 4 4 4 1 1 1 1
DUALC8 2 2 1 1 1 1
EXDATA 421 421 421 421 421 4 3 4 4
GENHS28 2 2 2 2 2 1 1 1 1
GOULDQP2 306 306 306 306 305 1 1 1 1
GOULDQP3 174 174 174 174 174 1 1 1 1
HS118 0 0 0 0 0 1 1 1 1
HS21 0 1 0 0 0 2 2 2 2
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Table 8.6: Number of superbasics and factorizations for Maros

and Mészéros problems (continued)
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ns nFac

Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
HS268 5 5 5 5 5 2 1 2 2
HS35 2 2 2 2 2 6 6 6 6
HS35M0OD 2 2 2 2 2 4 4 4 4
HS51 2 2 2 2 2 1 1 1 1
HS52 2 2 2 2 2 1 1 1 1
HS53 2 2 2 2 2 1 1 1 1
HS76 2 2 2 2 2 2 2 2 2
HUES-MOD 8322 8322 8322 8322 8324 27 27 27 27
HUESTIS 3 8322 8322 8322 9146 4 27 27 27
KSIP 1 18 18 18 18 236 304 303 306
LASER 70 70 70 70 70 1 1 1 1
LISWET1 2 2 2 2 2 2 1 2 2
LISWET10 14 17 14 17 15 12 3 12 12
LISWET11 31 36 31 31 31 8 7 8 8
LISWET12 5 6 5 5 5 10 7 10 10
LISWET2 4 4 4 4 13 3

LISWET3 261 261 261 261 283 11

LISWET4 269 269 269 269 284 13

LISWET5 254 254 254 254 268 10 6
LISWET6 222 222 222 231 238 10 15 10 21
LISWET7 2 2 2 2 2 2 1 2 2
LISWET8 13 14 13 13 15 6 3 6 6
LISWET9 4 5 4 4 4 10 5 10 11
LOTSCHD 0 0 0 0 0 1 1 1 1
MOSARQP1 897 1012 1012 1012 1012 47 | 1716 1670 1716
MOSARQP2 273 568 568 568 568 23 29 29 29
POWELL20 1 1 1 1 1 10 6 10 10
PRIMAL1 133 262 133 130 131 4 1 4 4
PRIMAL2 302 557 302 302 300 5 1 5 5
PRIMAL3 572 648 572 572 570 5 1 5 5
PRIMAL4 1140 1427 1140 1140 1140 7 1 7 7
PRIMALC1 14 14 14 14 14 3 2 3 3
PRIMALC2 1 1 1 1 1 1 1 1 1
PRIMALCS 5 5 5 5 2 1 2 2
PRIMALC8 17 17 17 17 17 4 2 4 4
Q25FV47 1 2 37 2 38 672 876 1058 876
QADLITTL 6 6 6 6 6 8 8 8 8
QAFIRO 1 1 1 1 1 1 1 1 1
QBANDM 2 2 2 2 2 18 18 18 18
QBEACONF 0 0 0 0 0 1 1 1 1
QBORE3D 0 0 0 0 0 1 1 1 1
QBRANDY 5 5 5 5 5 16 16 16 16
QCAPRI 0 0 0 0 0 19 24 19 24




Table 8.6: Number of superbasics and factorizations for Maros

and Mészéros problems (continued)

ns nFac

Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
QE226 37 37 37 37 27 43 23 43 23
QETAMACR 81 81 81 81 81 54 53 48 53
QFFFFF80 50 50 50 50 35 1 1 1 1
QFORPLAN 10 10 10 10 10 19 24 19 24
QGFRDXPN 5 5 5 5 4 62 64 62 64
QGROW15 1 1 1 1 1 12 11 10 11
QGROW22 9 9 9 9 1 91 131 138 131
QGROW7 1 1 1 1 1 16 8 16
QISRAEL 4 4 4 4 1 5 4 5
QPCBLEND 0 2 2 2 2 23 23 23
QPCBOEI1 111 111 111 111 111 93 94 93 94
QPCBOEI2 37 37 37 37 37 17 17 17 17
QPCSTAIR 35 33 34 33 31 49 53 52 53
QPILOTNO 1 0 2 0 2 58 2 325 2
QPTEST 1 1 1 1 1 1 1 1 1
QRECIPE 0 0 0 0 0 1 1 1 1
Qsc205 1 1 1 1 1 1 1 1 1
QSCAGR25 4 4 4 4 1 18 18 18 18
QSCAGR7 1 1 1 1 1 1 1 1 1
QSCFXM1 20 20 20 20 20 13 13 13 13
QSCFXM2 20 20 20 20 19 8 8 8 8
QSCFXM3 22 22 22 22 22 12 12 12 12
QSCORPIO 0 0 0 2 2 2 2
QSCRS8 0 0 ? 1 1 1 1
Qscsp1 0 4

QSCsSDé 4 4 1 7 5

QsSCsSD8 16 17 16 17 4 36 25 51 25
QSCTAP1 0 0 0 0 0 1 1 1 1
QSCTAP2 5 5 5 5 5 7 7 7 7
QSCTAP3 11 11 11 11 4 14 8 8 8
QSEBA 13 13 13 13 14 1 1 1 1
QSHARE1B 10 10 10 10 8 1 1 1 1
QSHARE2B 0 0 0 0 0 1 1 1 1
QSHELL 62 62 62 62 18 1 1 1 1
QSHIPO4L 3 3 3 2 2 2 2
QSHIP04S 3 3 3 1 1 1 1
QSHIPOSL 19 19 19 19 9 5 5 5 5
QSHIPO8S 15 15 15 15 6 6 6 6 6
QSHIP12L 43 43 43 43 4 19 20 19 20
QSHIP12S 44 44 44 44 17 2 2 2 2
QSIERRA 16 16 16 16 13 1 1 1 1
QSTAIR 1 1 1 1 1 19 12 19 12
QSTANDAT 18 18 18 18 18 1 1 1 1
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Table 8.6: Number of superbasics and factorizations for Maros
and Mészéros problems (continued)
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ns nFac
Name lusol mab7 | umfpack | mab7v | sqopt lusol | mab7 | umfpack | mab7v
5268 5 5 5 5 5 2 1 2 2
STCQP1 225 2812 225 225 225 1 1 1 1
STCQP2 658 1940 658 658 658 1 1 1 1
TAME 1 1 1 1 1 3 3 3 3
UBH1 31 5997 5997 5997 471 47 6 1872 2092
VALUES 23 23 23 23 23 16 16 16 16
YAO 1 1 1 1 1 1 1 1 1
ZECEVIC2 1 1 1 1 1 4 4 4 4
Table 8.7: Number of temporarily fixed variables for a vertex for
CUTETr problems
Name nFix | Name nFix | Name nFix | Name nFix
ALLINQP 1428 | DUAL4 0 | HS76I 4 | NCVXQP9 199
AUG2D 10200 | DUALC1 0 | HUES-MOD 9995 | PORTSNQP 1
AUG2DC 10200 | DUALC2 0 | HUESTIS 9995 | PORTSQP 2
AUG2DCQP 0 | DUALCS5 0 | KSIP 20 | POWELL20 4998
AUG2DQP 0 | DUALC8 0 | LINCONT 0 | PRIMAL1 323
AUG3D 19543 | FERRISDC 1 | LISWET1 2 | PRIMAL2 647
AUG3DC 19543 | GENHS28 2 | LISWET10 2 | PRIMAL3 743
AUG3DCQP 0 | GMNCASE1 111 | LISWET11 2 | PRIMAL4 1487
AUG3DQP 0 | GMNCASE2 121 | LISWET12 2 | PRIMALC1 14
AVGASA 1 | GMNCASE3 99 | LISWET2 2 | PRIMALC2 1
AVGASB 1 | GMNCASE4 0 | LISWET3 2 | PRIMALCS 8
BIGGSC4 0 | GOULDQP2 0 | LISWET4 2 | PRIMALCS 16
BLOCKQP1 5007 | GOULDQP3 0 | LISWET5 2 | QPBAND 0
BLOCKQP2 5007 | GRIDNETA 2081 | LISWET6 2 | QPCBLEND 0
BLOCKQP3 5007 | GRIDNETB 6561 | LISWET7 2 | QPCBOEI1 0
BLOCKQP4 5007 | GRIDNETC 2187 | LISWET8 2 | QPCBOEI2 0
BLOCKQP5 5003 | HATFLDH 1 LISWET9 2 QPCSTAIR 0
BLOWEYA 2001 | HS118 14 | LOTSCHD 0 | QPNBAND 0
BLOWEYB 2001 | HS21 1 | MOSARQP1 2487 | QPNBLEND 0
BLOWEYC 2001 | HS268 3 | MOSARQP2 2487 | QPNBOEI1 0
CONT5-QP 795 | HS35 3 | NASH 0 | QPNBOEI2 0
CVXQP1 4366 | HS35I 3 | NCVXQP1 446 | QPNSTAIR 0
CVXQP2 7325 | HS35MOD 2 | NCVXQP2 446 | 5268 3
CVXQP3 2006 | HS44 0 | NCVXQP3 446 | So0sQpP1 10000
DEGENQP 0 | HS44NEW 4 | NCVXQP4 731 | S0SQP2 5008
DTOC3 4999 | HS51 2 | NCVXQP5 731 | STATIC3 266
DUAL1 0 | HS52 2 | NCVXQP6é 731 STCQP1 6422
DUAL2 0 | HS53 2 | NCVXQP7 199 | STCQP2 4098
DUAL3 0 | HS76 4 | NCVXQP8 199 | STEENBRA 0




Table 8.7: Number of temporarily fixed variables for a vertex for
CUTETr problems (continued)

Name nFix | Name nFix | Name nFix | Name nFix
STNQP1 6422 | UBH1 8340 | WALL20 4214 | ZECEVIC2 1
STNQP2 4098 | WALL10 1056 | WALL50 26286
TAME 0 | WALL100 105074 | YAO 0

Table 8.8: Number of temporarily fixed variables for a vertex for

Maros and Mészaros problems

Name nFix | Name nFix | Name nFix | Name nFix
ADAT1 3 | DUALC2 0 | POWELL20 4998 | QSCAGR7 0
ADAT2 3 | DUALCS5 0 | PRIMAL1 323 | QSCFXM1 0
ADAT3 3 | DUALC8 0 | PRIMAL2 647 | QSCFXM2 0
AUG2D 10200 | EXDATA 1499 | PRIMAL3 743 | QSCFXM3 0
AUG2DC 10200 | GENHS28 2 | PRIMAL4 1487 | QSCORPIO 0
AUG2DCQP 0 | GOULDQP2 0 | PRIMALC1 14 | QSCRS8 0
AUG2DQP 0 | GOULDQP3 0 | PRIMALC2 1 | QscsD1 0
AUG3D 2873 | HS118 0 | PRIMALCS 8 | QSCsSD6 0
AUG3DC 2873 | HS21 1 | PRIMALC8 16 | QSCSD8 0
AUG3DCQP 0 | HS268 4 | Q25FVv47 0 | QSCTAP1 0
AUG3DQP 0 | HS35 0 | QADLITTL 0 | QSCTAP2 0
BOYD1 ? | HS35MOD 0 | QAFIRO 0 | QSCTAP3 0
BOYD2 7 | HS51 2 | QBANDM 0 | QSEBA 0
CONT-050 0 | HS52 2 | QBEACONF 0 | QSHARE1B 0
CONT-100 0 | HS53 2 | QBORE3D 0 | QSHARE2B 0
CONT-101 0 | HS76 0 | QBRANDY 0 | QSHELL 0
CONT-200 0 | HUES-MOD 0 | QCAPRI 0 | QSHIPO4L 0
CONT-201 0 | HUESTIS 0 | QE226 0 | QSHIPO4S 0
CONT-300 0 | KSIP 18 | QETAMACR 0 | QSHIPOSL 0
CVXQP1_L 0 | LASER 2 | QFFFFF80 0 | QSHIPO8S 0
CVXQP1_M 0 | LISWET1 2 | QFORPLAN 0 | QSHIP12L 0
CVXQP1_S 0 | LISWET10 2 | QGFRDXPN 0 | QSHIP12S 0
CVXQP2_L 0 | LISWET11 2 | QGROW15 0 | QSIERRA 0
CVXQP2_M 0 | LISWET12 2 | QGROW22 0 | QSTAIR 0
CVXQP2_S 0 | LISWET2 2 | QGROW7 0 | QSTANDAT 0
CVXQP3_L 0 | LISWET3 2 | QISRAEL 0 | 5268 4
CVXQP3_M 0 | LISWET4 2 | QPCBLEND 0 | STCQP1 3158
CVXQP3_S 0 | LISWET5 2 | QPCBOEI1 0 | STCQP2 2045
DPKLO1 56 | LISWET6 2 | QPCBOEI2 0 | TAME 0
DTOC3 4999 | LISWET7 2 | QPCSTAIR 0 | UBH1 8340
DUAL1 0 | LISWET8 2 | QPILOTNO 0 | VALUES 0
DUAL2 0 | LISWET9 2 | QPTEST 0 | YAO 0
DUAL3 0 | LOTSCHD 0 | QRECIPE 0 | ZECEVIC2 0
DUAL4 0 | MOSARQP1 0 | QSC205 0

DUALC1 0 | MOSARQP2 0 | QSCAGR25 0
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A Test Problem Data

Table A.1: Problem

sizes for CUTEr QPs

Name m n | Name m n | Name m n
ALLINQP 5000 10000 | DUAL3 1 111 | HS53 3 5
AUG2D 10000 20200 | DUAL4 1 75 | HS76 3 4
AUG2DC 10000 20200 | DUALC1 215 9 | HS76I 3 4
AUG2DCQP 10000 20200 | DUALC2 229 7 | HUES-MOD 2 10000
AUG2DQP 10000 20200 | DUALCS 278 8 | HUESTIS 2 10000
AUG3D 8000 27543 | DUALCS 503 8 | KSIP 1001 20
AUG3DC 8000 27543 | FERRISDC' 320 6300 | LINCONT' 419 1257
AUG3DCQP 8000 27543 | GENHS28 8 10 | LISWET1 10000 10002
AUG3DQP 8000 27543 | GMNCASE1® 300 175 | LISWET10 10000 10002
AVGASA 10 8 | GMNCASE2 1050 175 | LISWET11 10000 10002
AVGASB 10 8 | GMNCASE3 1050 175 | LISWET12 10000 10002
BIGGSC4 7 4 | GMNCASE4 350 175 | LISWET2 10000 10002
BLOCKQP1® 5001 10010 | GOULDQP2 9999 19999 | LISWET3 10000 10002
BLOCKQP2’ 5001 10010 | GOULDQP3 9999 19999 | LISWET4 10000 10002
BLOCKQP3’ 5001 10010 | GRIDNETA 6724 13284 | LISWETS 10000 10002
BLOCKQP4’ 5001 10010 | GRIDNETB 6724 13284 | LISWET6 10000 10002
BLOCKQP5’ 5001 10010 | GRIDNETC 6724 13284 | LISWET7 10000 10002
BLOWEYA® 2002 4002 | HATFLDH' 7 4 | LISWET8 10000 10002
BLOWEYB® 2002 4002 | HS118 17 16 | LISWET9 10000 10002
BLOWEYC' 2002 4002 | HS21 1 2 | LOTSCHD 7 12
CONT5-QP 40200 40601 | HS268 5 5 | MOSARQP1 700 2500
CVXQP1 5000 10000 | HS35 1 3 | MOSARQP2 700 2500
CVXQP2 2500 10000 | HS35I 1 3 | NASH' 24 72
CVXQP3 7500 10000 | HS35MOD 1 3 | NcvxQP1' 500 1000
DEGENQP 8010 20 | HS44' 6 4 | NCvVXQP2°! 500 1000
DTOC3 9998 14999 | HS44NEW’ 6 4 | NCvxQP3’ 500 1000
DUAL1 1 85 | HS51 3 5 | NCVXQP4' 250 1000
DUAL2 1 96 | HS52 3 5 | NCVXQP5' 250 1000
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Table A.1: Problem sizes for CUTEr QPs (continued)

Name m n | Name m n | Name m n
NCVXQP6' 250 1000 | PRIMALC8 8 520 | STATIC3' 96 434
NCVXQPT* 750 1000 | QPBAND 5000 10000 | STCQP1 4095 8193
NcvxqQps! 750 1000 | QPCBLEND 74 83 | STCQP2 4095 8193
NCVXQP9’ 750 1000 | QPCBOEI1 351 384 | STEENBRA 108 432
PORTSNQP? 2 10000 | QPCBOEIZ2 166 143 | STNQP1° 4095 8193
PORTSQP 1 10000 | QPCSTAIR 356 467 STNQPQi 4095 8193
POWELL20 10000 10000 QPNBANDi 5000 10000 | TAME 1 2
PRIMAL1 85 325 QPNBLENDi 74 83 | UBH1 12000 18009
PRIMAL2 96 649 | QPNBOEI 1 351 384 | WALL10 1 1461
PRIMAL3 111 745 | QPNBOEI2' 166 143 | WALL20 1 5924
PRIMAL4 75 1489 | QPNSTAIR' 356 467 | WALL50 1 37311
PRIMALC1 9 230 | S268 5 5 | WALL100 1 149624
PRIMALC2 231 | sosqpi’ 10001 20000 | YAD 2000 2002
PRIMALCS 8 287 | sosQP2’ 10001 20000 | ZECEVIC2 2 2
Table A.2: Problem sizes for Maros and Mészaros QPs
Name m n | Name m n | Name m n
AUG2D 10000 20200 | CVXQP2M 250 1000 | HS21 1 2
AUG2DC 10000 20200 | CVXQP2_S 25 100 | HS268 5 5
AUG2DCQP 10000 20200 | CVXQP3_L 7500 10000 | HS35 1 3
AUG2DQP 10000 20200 | CVXQP3M 750 1000 | HS35MOD 1 3
AUG3D 1000 3873 | CVXQP3_S 75 100 | HS51 3 5
AUG3DC 1000 3873 | DPKLO1 7 133 | HS52 3 5
AUG3DCQP 1000 3873 | DTOC3 9998 14999 | HS53 3 5
AUG3DQP 1000 3873 | DUAL1 1 85 | HS76 3 4
BOYD1 18 93261 | DUAL2 1 96 | HUES-MOD 2 10000
BOYD2 186531 93263 | DUAL3 1 111 | HUESTIS 2 10000
CONT-050 2401 2597 | DUAL4 1 75 | KSIP 1001 20
CONT-100 9801 10197 | DUALC1 215 9 | LASER 1000 1002
CONT-101 10098 10197 | DUALC2 229 7 | LISWET1 10000 10002
CONT-200 39601 40397 | DUALCS 278 8 | LISWET10 10000 10002
CONT-201 40198 40397 | DUALC8 503 8 | LISWET11 10000 10002
CONT-300 90298 90597 | EXDATA 3001 3000 | LISWET12 10000 10002
CVXQP1_L 5000 10000 | GENHS28 8 10 | LISWET2 10000 10002
CVXQP1_M 500 1000 | GOULDQP2 349 699 | LISWET3 10000 10002
CVXQP1_S 50 100 | GOULDQP3 349 699 | LISWET4 10000 10002
CVXQP2_L 2500 10000 | HS118 17 156 | LISWET5 10000 10002
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Table A.2: Problem sizes for Maros and Mészdros QPs (contin-

ued)
Name m n | Name m n | Name m n
LISWET6 10000 10002 | QFFFFF80 524 854 | QSCTAP2 1090 1880
LISWET7 10000 10002 | QFORPLAN 161 421 | QSCTAP3 1480 2480
LISWET8 10000 10002 | QGFRDXPN 616 1092 | QSEBA 515 1028
LISWET9 10000 10002 | QGROW15 300 645 | QSHARE1B 117 225
LOTSCHD 7 12 | QGROW22 440 946 | QSHARE2B 96 79
MOSARQP1 700 2500 | QGROW7 140 301 | QSHELL 536 1775
MOSARQP2 600 900 | QISRAEL 174 142 | QSHIPO4L 402 2118
POWELL20 10000 10000 | QPCBLEND 74 83 | QSHIPO4S 402 1458
PRIMAL1 85 325 | QPCBOEI1 351 384 | QSHIPOSL 778 4283
PRIMAL2 96 649 | QPCBOEI2 166 143 | QSHIPO8S 778 2387
PRIMAL3 111 745 | QPCSTAIR 356 467 | QSHIP12L 1151 5427
PRIMAL4 75 1489 | QPILOTNO 975 2172 | QSHIP12S 1151 2763
PRIMALC1 9 230 | QPTEST 2 2 | QSIERRA 1227 2036
PRIMALC2 7 231 | QRECIPE 91 180 | QSTAIR 356 467
PRIMALCS 8 287 | QSC205 205 203 | QSTANDAT 359 1075
PRIMALCS 8 520 | QSCAGR25 471 500 | 5268 5 5
Q25FV47 820 15671 | QSCAGR7 129 140 | STADAT1 3999 2001
QADLITTL 56 97 | QSCFXM1 330 457 | STADAT2 3999 2001
QAFIRO 27 32 | QSCFXM2 660 914 | STADAT3 7999 4001
QBANDM 305 472 | QSCFXM3 990 1371 | STCQP1 2052 4097
QBEACONF 173 262 | QSCORPIO 388 358 | STCQP2 2052 4097
QBORE3D 233 315 | QSCRS8 490 1169 | TAME 1 2
QBRANDY 220 249 | QSCsD1 77 760 | UBH1 12000 18009
QCAPRI 271 353 | QSCSD6 147 1350 | VALUES 1 202
QE226 223 282 | QSCSD8 397 2750 | YAO 2000 2002
QETAMACR 400 688 | QSCTAP1 300 480 | ZECEVIC2 2 2
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