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Abstract. Sequential quadratic programming (SQP) methods have proved highly effective for solv-
ing constrained optimization problems with smooth nonlinear functions in the objective
and constraints. Here we consider problems with general inequality constraints (linear and
nonlinear). We assume that first derivatives are available and that the constraint gradients
are sparse. Second derivatives are assumed to be unavailable or too expensive to calculate.

We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit func-
tion and makes explicit provision for infeasibility in the original problem and the QP
subproblems. The Hessian of the Lagrangian is approximated using a limited-memory
quasi-Newton method.

SNOPT is a particular implementation that uses a reduced-Hessian semidefinite QP
solver (SQOPT) for the QP subproblems. It is designed for problems with many thousands
of constraints and variables but is best suited for problems with a moderate number of
degrees of freedom (say, up to 2000). Numerical results are given for most of the CUTEr
and COPS test collections (about 1020 examples of all sizes up to 40000 constraints and
variables, and up to 20000 degrees of freedom).
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1. Introduction. The algorithm to be described applies to constrained optimiza-
tion problems of the form

(NP) minimize
x∈Rn

f(x)

subject to l ≤

 x
c(x)
Ax

 ≤ u,
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where f(x) is a linear or nonlinear objective function, c(x) is a vector of nonlinear
constraint functions ci(x) with sparse derivatives, A is a sparse matrix, and l and
u are vectors of lower and upper bounds. We assume that the nonlinear functions
are smooth and that their first derivatives are available (and possibly expensive to
evaluate).
The idea of sequential quadratic programming (SQP) methods is to solve the

nonlinearly constrained problem using a sequence of quadratic programming (QP)
subproblems. The constraints of each QP subproblem are linearizations of the con-
straints in the original problem, and the objective function of the subproblem is a
quadratic approximation to the Lagrangian function.

SNOPT (Sparse Nonlinear OPTimizer) [55] is the implementation of a particular
SQP algorithm that exploits sparsity in the constraint Jacobian and maintains a
limited-memory quasi-Newton approximation Hk to the Hessian of the Lagrangian.
A new method is used to update Hk in the presence of negative curvature. The QP
subproblems are solved using an inertia-controlling reduced-Hessian active-set method
(SQOPT) that allows for variables appearing linearly in the objective and constraint
functions. (The limited-memory Hessian is then semidefinite.) Other features include
the treatment of infeasible nonlinear constraints using elastic programming, use of a
well-conditioned nonorthogonal basis for the null-space of the QP working set (assisted
by sparse rank-revealing LU factors), early termination of the QP subproblems, and
finite-difference estimates of missing gradients.
The method used by the QP solver SQOPT is based on solving a sequence of linear

systems involving the reduced Hessian ZTHkZ, where Z is defined implicitly using
the sparse LU factorization. Reduced-Hessian methods are best suited to problems
with few degrees of freedom, i.e., problems for which many constraints are active.
However, the implementation allows for problems with an arbitrary number of degrees
of freedom.

1.1. Infeasible Constraints. SNOPT deals with infeasibility using 
1 penalty
functions. First, infeasible linear constraints are detected by solving a problem of
the form

(FLP) minimize
x,v,w

eT (v + w)

subject to l ≤
(

x
Ax− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones and v and w are handled implicitly. This is equivalent
to minimizing the one-norm of the general linear constraint violations subject to the
simple bounds—often called elastic programming in the linear programming literature
[15]. Elastic programming has long been a feature of the XS system of Brown and
Graves [16]. Other algorithms based on minimizing one-norms of infeasibilities are
given by Conn [26] and Bartels [4].
If the linear constraints are infeasible (v �= 0 or w �= 0), SNOPT terminates

without computing the nonlinear functions. Otherwise, all subsequent iterates satisfy
the linear constraints. (Sometimes this feature helps ensure that the functions and
gradients are well defined; see section 6.2.)

SNOPT then proceeds to solve (NP) as given, using QP subproblems based on
linearizations of the nonlinear constraints. If a QP subproblem proves to be infeasible
or unbounded (or if the Lagrange multiplier estimates for the nonlinear constraints
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become large), SNOPT enters nonlinear elastic mode and solves the problem

(NP(γ)) minimize
x,v,w

f(x) + γeT (v + w)

subject to l ≤

 x
c(x)− v + w

Ax

 ≤ u, v ≥ 0, w ≥ 0,
where f(x)+ γeT (v+w) is called a composite objective, and the penalty parameter γ
(γ ≥ 0) may take a finite sequence of increasing values. If (NP) has a feasible solution
and γ is sufficiently large, the solutions to (NP) and (NP(γ)) are identical. If (NP)
has no feasible solution, (NP(γ)) will tend to determine a “good” infeasible point if
γ is again sufficiently large. (If γ were infinite, the nonlinear constraint violations
would be minimized subject to the linear constraints and bounds.)
A similar 
1 formulation of (NP) is used in the SQP method of Tone [98] and

is fundamental to the S
1QP algorithm of Fletcher [38]. See also Conn [25] and
Spellucci [94]. An attractive feature is that only linear terms are added to (NP),
giving no increase in the expected degrees of freedom at each QP solution.

1.2. The SQP Approach. An SQP method was first suggested by Wilson [102]
for the special case of convex optimization. The approach was popularized mainly
by Biggs [7], Han [66], and Powell [85, 87] for general nonlinear constraints. Further
history of SQP methods and extensive bibliographies are given in [61, 39, 73, 78, 28].
For a survey of recent results, see Gould and Toint [65].
Several general-purpose SQP solvers have proved reliable and efficient during the

last 20 years. For example, under mild conditions the solvers NLPQL [92], NPSOL [57,
60], and DONLP [95] typically find a (local) optimum from an arbitrary starting point,
and they require relatively few evaluations of the problem functions and gradients
compared to traditional solvers such as MINOS [75, 76, 77] and CONOPT [34, 2].
SQP methods have been particularly successful in solving the optimization prob-

lems arising in optimal trajectory calculations. For many years, the optimal trajec-
tory system OTIS (Hargraves and Paris [67]) has been applied successfully within
the aerospace industry, using NPSOL to solve the associated optimization problems.
NPSOL is a transformed Hessian method that treats the Jacobian of the general con-
straints as a dense matrix and updates an explicit quasi-Newton approximation to
QTkHkQk, the transformed Hessian of the Lagrangian, where Qk is orthogonal. The
QP subproblem is solved using a linearly constrained linear least-squares method that
exploits the properties of the transformed Hessian.
Although NPSOL has solved OTIS examples with as many as two thousand con-

straints and over a thousand variables, the need to handle increasingly large models
has provided strong motivation for the development of new sparse SQP algorithms.
Our aim is to describe a new SQP method that has the favorable theoretical properties
of the NPSOL algorithm but is suitable for a broad class of large problems, including
those arising in trajectory optimization.
There has been considerable interest in extending SQP methods to the large-

scale case (sometimes using exact second derivatives). Some of this work has focused
on problems with nonlinear equality constraints. The method of Lalee, Nocedal,
and Plantenga [69], related to the trust-region method of Byrd [19] and Omojokun
[79], uses either the exact Lagrangian Hessian or a limited-memory quasi-Newton
approximation defined by the method of Zhu et al. [103]. The method of Biegler,
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Nocedal, and Schmid [6] is in the class of reduced-Hessian methods, which maintain a
dense approximation to the reduced Hessian, using quasi-Newton updates.
For large problems with general inequality constraints as in problem (NP), SQP

methods have been proposed by Eldersveld [36], Tjoa and Biegler [97], Fletcher and
Leyffer [40, 41], and Betts and Frank [5]. The first three approaches are also reduced-
Hessian methods. Eldersveld forms a full Hessian approximation from the reduced
Hessian, and his implementation LSSQP solves the same class of problems as SNOPT.
In Tjoa and Biegler’s method, the QP subproblems are solved by eliminating variables
using the (linearized) equality constraints, and the remaining variables are optimized
using a dense QP solver. As bounds on the eliminated variables become dense con-
straints in the reduced QP, the method is best suited to problems with many nonlin-
ear equality constraints but few bounds on the variables. The filter-SQP method of
Fletcher and Leyffer uses a reduced-Hessian QP solver in conjunction with an exact
Lagrangian Hessian. This method is also best suited for problems with few degrees
of freedom. In contrast, the method of Betts and Frank employs an exact or finite-
difference Lagrangian Hessian and a QP solver based on sparse KKT factorizations
(see section 8). It is therefore applicable to problems with many degrees of freedom.
Several large-scale methods solve the QP subproblems by an interior method.

They typically require an exact or finite-difference Lagrangian Hessian but can ac-
commodate many degrees of freedom. Examples are Boggs, Kearsley, and Tolle [8, 9]
and Sargent and Ding [91].

1.3. Other Large-Scale Methods. MINOS and versions 1 and 2 of CONOPT are
reduced-Hessian methods for general large-scale optimization. Like SNOPT, they use
first derivatives and were originally designed for large problems with few degrees of
freedom (up to 2000, say). For nonlinear constraints, MINOS uses a linearly con-
strained Lagrangian method, whose subproblems require frequent evaluation of the
problem functions. CONOPT uses a generalized reduced gradient method, which has
the advantage of maintaining near-feasibility with respect to the nonlinear constraints,
but again at the expense of many function evaluations. SNOPT is likely to outper-
formMINOS and CONOPT when the functions (and their derivatives) are expensive to
evaluate. Relative to MINOS, an added advantage is SNOPT’s rigorous control of the
augmented Lagrangian merit function to ensure global convergence, and explicit pro-
vision for infeasible subproblems. This is especially important when the constraints
are highly nonlinear.
A stabilized form of MINOS named Knossos has recently been developed [47] (it

makes use of MINOS or SNOPT as subproblem solvers), and CONOPT version 3 [2] is
now able to use second derivatives.

LANCELOT [27, 64] is another widely used package for large-scale constrained
optimization. It uses a bound constrained augmented Lagrangian method, is effective
with either first or second derivatives, and is suitable for large problems with many
degrees of freedom. It complements SNOPT and the other methods discussed above.
A comparison between LANCELOT and MINOS has been made in [12, 13].

LOQO [100], KNITRO [21, 20], and IPOPT [101] are examples of large-scale opti-
mization packages that treat inequality constraints by a primal-dual interior method.
They require second derivatives but can accommodate many degrees of freedom.
All of the solvers mentioned are well suited to algebraic modeling environments

such as GAMS [48] and AMPL [1] because the functions and derivatives are then
available cheaply and to high precision.
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1.4. Notation. Some important quantities follow:

(x, π, s) primal, dual, and slack variables for problem (GNP) (section 2.1),
(x∗, π∗, s∗) optimal variables for problem (GNP),
(xk, πk, sk) the kth estimate of (x∗, π∗, s∗),
fk, gk, ck, Jk functions and gradients evaluated at xk,
(x̂k, π̂k, ŝk) optimal variables for QP subproblem (GQPk) (section 2.4).

2. The SQP Iteration. Here we discuss the main features of an SQP method for
solving a generic nonlinear program. All features are readily specialized to the more
general constraints in problem (NP).

2.1. The Generic Problem. In this section we take the problem to be

(GNP) minimize
x

f(x)

subject to c(x) ≥ 0,

where x ∈ Rn, c ∈ Rm, and the functions f(x) and ci(x) have continuous second
derivatives. The gradient of f is denoted by the vector g(x), and the gradients of each
element of c form the rows of the Jacobian matrix J(x).
We assume that a KKT point (x∗, π∗) exists for (GNP), satisfying the first-order

optimality conditions:

(2.1) c(x∗) ≥ 0, π∗ ≥ 0, c(x∗)Tπ∗ = 0, J(x∗)Tπ∗ = g(x∗).

2.2. Structure of the SQP Method. An SQP method obtains search directions
from a sequence of QP subproblems. Each QP subproblem minimizes a quadratic
model of a certain Lagrangian function subject to linearized constraints. Some merit
function is reduced along each search direction to ensure convergence from any starting
point.
The basic structure of an SQP method involves major and minor iterations. The

major iterations generate a sequence of iterates (xk, πk) that converge to (x∗, π∗). At
each iterate a QP subproblem is used to generate a search direction towards the next
iterate (xk+1, πk+1). Solving such a subproblem is itself an iterative procedure, with
the minor iterations of an SQP method being the iterations of the QP method.

2.3. The Modified Lagrangian. Let xk and πk be estimates of x∗ and π∗. For
several reasons, our SQP algorithm is based on the modified Lagrangian associated
with (GNP), namely,

(2.2) L(x, xk, πk) = f(x)− πTk dL(x, xk),

which is defined in terms of the constraint linearization and the departure from lin-
earity :

cL(x, xk) = ck + Jk(x− xk),
dL(x, xk) = c(x)− cL(x, xk);

see Robinson [90] and Van der Hoek [99]. The first and second derivatives of the
modified Lagrangian with respect to x are

∇L(x, xk, πk) = g(x)− (J(x)− Jk)Tπk,

∇2L(x, xk, πk) = ∇2f(x)−
∑
i

(πk)i∇2ci(x).
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Observe that ∇2L is independent of xk (and is the same as the Hessian of the con-
ventional Lagrangian). At x = xk, the modified Lagrangian has the same function
and gradient values as the objective: L(xk, xk, πk) = fk, ∇L(xk, xk, πk) = gk.

2.4. The QP Subproblem. Let the quadratic approximation to L at xk be

Lq(x, xk, πk) = fk + gTk(x− xk) + 1
2 (x− xk)

T∇2L(xk, xk, πk)(x− xk).

If (xk, πk) = (x∗, π∗), optimality conditions for the quadratic program

(GQP∗) minimize
x

Lq(x, xk, πk)
subject to linearized constraints cL(x, xk) ≥ 0

are identical to those for the original problem (GNP). This suggests that if Hk is
an approximation to ∇2L at the point (xk, πk), an improved estimate of the solution
may be found from (x̂k, π̂k), the solution of the following QP subproblem:

(GQPk) minimize
x

fk + gTk (x− xk) + 1
2 (x− xk)THk(x− xk)

subject to ck + Jk(x− xk) ≥ 0.

Optimality conditions for (GQPk) may be written as

ck + Jk(x̂k − xk) = ŝk, π̂k ≥ 0, ŝk ≥ 0,
gk +Hk(x̂k − xk) = JTk π̂k, π̂Tk ŝk = 0,

where ŝk is a vector of slack variables for the linearized constraints. In this form,
(x̂k, π̂k, ŝk) may be regarded as estimates of (x∗, π∗, s∗), where the slack variables s∗
satisfy c(x∗) − s∗ = 0, s∗ ≥ 0. The vector ŝk is needed explicitly for the line search
(section 2.7).

2.5. The Working-Set Matrix Wk. The working set is an important quantity
for both the major and the minor iterations. It is the current estimate of the set of
constraints that are binding at a solution. More precisely, suppose that (GQPk) has
just been solved. Although we try to regard the QP solver as a “black box,” we expect
it to return an independent set of constraints that are active at the QP solution (even
if the QP constraints are degenerate). This is an optimal working set for subproblem
(GQPk).
The same constraint indices define a working set for (GNP) and for subproblem

(GQPk+1). The corresponding gradients form the rows of the working-set matrix Wk,
an nY × n full-rank submatrix of the Jacobian Jk.

2.6. TheNull-SpaceMatrixZk. Let Zk be an n×nZ full-rank matrix that spans
the null space of Wk. (Thus, nZ = n− nY , and WkZk = 0.) The QP solver will often
return Zk as part of some matrix factorization. For example, in NPSOL it is part of
an orthogonal factorization of Wk, while in LSSQP [36] (and in the current SNOPT)
it is defined implicitly from a sparse LU factorization of part of Wk. In any event,
Zk is useful for theoretical discussions, and its column dimension has strong practical
implications. Important quantities are the reduced Hessian ZTkHkZk and the reduced
gradient ZTkgk.
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2.7. The Merit Function and Line Search. Once the QP solution (x̂k, π̂k, ŝk)
has been determined, new estimates of the (GNP) solution are computed using a line
search from the current solution (xk, πk, sk) toward the QP solution. The line search
must achieve a sufficient decrease in the augmented Lagrangian merit function

(2.3) Mρ(x, π, s) = f(x)− πT
(
c(x)− s

)
+ 1

2

m∑
i=1

ρi
(
ci(x)− si

)2
,

where ρ is a vector of penalty parameters. For step lengths α ∈ (0, 1], let v(α) be
points along the line, and let ϕρ(α) denoteMρ as a univariate function of α:

v(α) =

xkπk
sk

+ α
x̂k − xkπ̂k − πk
ŝk − sk

 , ϕρ(α) =Mρ(v(α)).

Also let ϕ′ρ(0) denote the directional derivative of the merit function at the base point
α = 0 for a given vector ρ.
The default initial value for the penalty parameters is ρ = 0 (for k = 0). Before

each line search, some elements of ρ may need to be changed to ensure that the
directional derivative ϕ′ρ(0) is sufficiently negative [60]. First we find the vector ρ

∗
that solves the linearly constrained least-squares problem

(LSPρ) minimize
ρ

‖ρ‖22
subject to ϕ′ρ(0) = − 1

2p
T
kHkpk, ρ ≥ 0,

where pk ≡ x̂k − xk. The solution of (LSPρ) can be obtained analytically, and it can
be shown that ϕ′ρ(0) ≤ − 1

2p
T
kHkpk for any ρ ≥ ρ∗ [36, 57, 60].

It is important to allow the penalty parameters to decrease during the early major
iterations. However, to guarantee convergence, this must be done in such a way that
the penalty parameters cannot oscillate indefinitely. The reduction scheme involves a
damping factor ∆ρ ≥ 1. Let ρ denote the vector of penalty parameters at the start
of iteration k. The idea is to define the new parameter ρ̄i as the geometric mean of
ρi and a damped value of ρ∗i as long as this mean is sufficiently positive and not too
close to ρi:

(2.4) ρ̄i = max{ρ∗i , ρ̂i}, where ρ̂i =
{
ρi if ρi < 4(ρ∗i +∆ρ),(
ρi(ρ∗i +∆ρ)

)1/2 otherwise.

Initially ∆ρ = 1 (for k = 0). Thereafter it is increased by a factor of two whenever
‖ρ‖2 increases after a consecutive sequence of iterations in which the penalty norm
decreased, or, alternatively, ‖ρ‖2 decreases after a consecutive sequence of iterations
in which the penalty norm increased. This choice of ∆ρ ensures that the penalty
parameters can oscillate only a finite number of times.
With ρ ← ρ̄ in the merit function (2.3), a safeguarded line search is used to

find a step length αk+1 that reducesMρ to give the next solution estimate v(αk+1) =
(xk+1, πk+1, sk+1). As in NPSOL, sk+1 is then redefined to minimize the merit function
as a function of s prior to the solution of (GQPk+1) [57, 36].

2.8. Bounding the Constraint Violation. In the line search, the following con-
dition is enforced for some vector b > 0:

(2.5) c(xk + αkpk) ≥ −b (pk ≡ x̂k − xk).
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We use bi = τV max{1,−ci(x0)}, where τV is a specified constant, e.g., τV = 10.
This defines a region in which the objective is expected to be defined and bounded
below. (A similar condition is used in [93].) Murray and Prieto [74] show that under
certain conditions, convergence can be assured if the line search enforces (2.5). If the
objective is bounded below in Rn, then b may be any large positive vector.
If αk is essentially zero (because ‖pk‖ is very large), the objective is considered

“unbounded” in the expanded region. Elastic mode is entered (or continued) as
described in section 4.7.

2.9. The Approximate Hessian. As suggested by Powell [86], we maintain a
positive-definite approximate Hessian Hk. On completion of the line search, let the
change in x and the gradient of the modified Lagrangian be

δk = xk+1 − xk and yk = ∇L(xk+1, xk, π)−∇L(xk, xk, π)

for some vector π. An estimate of the curvature of the modified Lagrangian along δk
is incorporated using the BFGS quasi-Newton update,

Hk+1 = Hk + θkyky
T
k − φkqkqTk,

where qk = Hkδk, θk = 1/yTkδk, and φk = 1/q
T
kδk. When Hk is positive definite, Hk+1

is positive definite if and only if the approximate curvature yTkδk is positive. The
consequences of a negative or small value of yTkδk are discussed in the next section.
There are several choices for π, including the QP multipliers π̂k and least-squares

multipliers λk (see, e.g., [52]). Here we use the updated multipliers πk+1 from the line
search, because they are responsive to short steps in the search and are available at
no cost. The definition of L from (2.2) yields

yk = ∇L(xk+1, xk, πk+1)−∇L(xk, xk, πk+1)
= gk+1 − gk − (Jk+1 − Jk)Tπk+1.

2.10. Maintaining Positive-Definiteness. Since the Hessian of the modified La-
grangian need not be positive definite at a local minimizer, the approximate curvature
yTkδk can be negative or very small at points arbitrarily close to (x

∗, π∗). The curvature
is considered not sufficiently positive if

(2.6) yTkδk < σk, σk = αk(1− η)pTkHkpk,

where η is a preassigned constant (0 < η < 1) and pk is the search direction x̂k − xk
defined by the QP subproblem. In such cases, if there are nonlinear constraints, two
attempts are made to modify the update: the first modifying δk and yk, the second
modifying only yk. If neither modification provides sufficiently positive approximate
curvature, no update is made.

First Modification. The purpose of this modification is to exploit the properties
of the reduced Hessian at a local minimizer of (GNP). We define a new point zk and
evaluate the nonlinear functions there to obtain new values for δk and yk:

δk = xk+1 − zk, yk = ∇L(xk+1, xk, πk+1)−∇L(zk, xk, πk+1).

We choose zk by recording x̄k, the first feasible iterate found for problem (GQPk)
(see section 4). The search direction may be regarded as

pk = (x̄k − xk) + (x̂k − x̄k) ≡ pR + pN .
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We set zk = xk + αkpR, giving δk = αkpN and

yTkδk = αky
T
kpN ≈ α2

kp
T
N∇2L(xk, xk, πk)pN ,

so that yTkδk approximates the curvature along pN . If Wk, the final working set of
problem (GQPk), is also the working set at x̄k, then WkpN = 0, and it follows that
yTkδk approximates the curvature for the reduced Hessian, which must be positive
semidefinite at a minimizer of (GNP).
The assumption that the QP working set does not change once zk is known is

always justified for problems with equality constraints. (See Byrd and Nocedal [23]
for a similar scheme in this context.) With inequality constraints, we observe that
WkpN ≈ 0, particularly during later major iterations, when the working set has settled
down.
This modification exploits the fact that SNOPT maintains feasibility with respect

to any linear constraints in (GNP). Although an additional function evaluation is
required at zk, we have observed that even when the Hessian of the Lagrangian has
negative eigenvalues at a solution, the modification is rarely needed more than a few
times if used in conjunction with the augmented Lagrangian modification discussed
next.

Second Modification. If (xk, πk) is not close to (x∗, π∗), the modified approxi-
mate curvature yTkδk may not be sufficiently positive, and a second modification may
be necessary. We choose ∆yk so that (yk+∆yk)Tδk = σk (if possible) and redefine yk
as yk + ∆yk. This approach was suggested by Powell [87], who proposed redefining
yk as a linear combination of yk and Hkδk.
To obtain ∆yk, we consider the augmented modified Lagrangian [76]:

(2.7) LA(x, xk, πk) = f(x)− πTk dL(x, xk) + 1
2dL(x, xk)

TΩdL(x, xk),

where Ω is a matrix of parameters to be determined: Ω = diag(ωi), ωi ≥ 0, i = 1 :m.
The perturbation

∆yk = (Jk+1 − Jk)TΩdL(xk+1, xk)

is equivalent to redefining the gradient difference as

(2.8) yk = ∇LA(xk+1, xk, πk+1)−∇LA(xk, xk, πk+1).

We choose the smallest (minimum two-norm) ωi’s that increase yTkδk to σk (see (2.6)).
They are determined by the linearly constrained least-squares problem

(LSPω) minimize
ω

‖ω‖22
subject to aTω = β, ω ≥ 0,

where β = σk − yTkδk and ai = viwi (i = 1 :m), with v = (Jk+1 − Jk)δk and w =
dL(xk+1, xk). If no solution exists, or if ‖ω‖ is very large, no update is made.
The approach just described is related to the idea of updating an approximation

of the Hessian of the augmented Lagrangian, as suggested by Han [66] and Tapia
[96]. However, we emphasize that the second modification is not required in the
neighborhood of a solution, because as x→ x∗, ∇2LA converges to ∇2L, and the first
modification will already have been successful.
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2.11. Convergence Tests. A point (x, π) is regarded as a satisfactory solution
if it satisfies the first-order optimality conditions (2.1) to within certain tolerances.
Let τP and τD be specified small positive constants, and define τx = τP (1 + ‖x‖∞),
τπ = τD(1 + ‖π‖∞). The SQP algorithm terminates if

(2.9) ci(x) ≥ −τx, πi ≥ −τπ, ci(x)πi ≤ τπ, |dj | ≤ τπ,

where d = g(x)− J(x)Tπ. These conditions cannot be satisfied if (GNP) is infeasible,
but in that case the SQP algorithm will eventually enter elastic mode and satisfy
analogous tests for a series of problems

(GNP(γ)) minimize
x,v

f(x) + γeTv

subject to c(x) + v ≥ 0, v ≥ 0,

with γ taking an increasing set of values {γ�} up to some maximum. The optimality
conditions for (GNP(γ)) include

0 ≤ πi ≤ γ, (ci(x) + vi)πi = 0, vi(γ − πi) = 0.

The fact that ‖π∗‖∞ ≤ γ at a solution of (GNP(γ)) leads us to initiate elastic mode
if ‖πk‖∞ exceeds some value γ1 (or if (GQPk) is infeasible). We use

(2.10) γ1 ≡ γ0‖g(xk1)‖∞, γ� = 10�(�−1)/2γ1 (
 = 2, 3, . . . ),

where γ0 is a parameter (104 in our numerical results) and xk1 is the iterate at which
γ is first needed.

3. Large-Scale Hessians. In the large-scale case, we cannot treat Hk as an n×n
dense matrix. Nor can we maintain dense triangular factors of a transformed Hessian
QTHkQ = RTR as in NPSOL. We discuss the alternatives implemented in SNOPT.

3.1. Linear Variables. If only some of the variables occur nonlinearly in the
objective and constraint functions, the Hessian of the Lagrangian has structure that
can be exploited during the optimization. We assume that the nonlinear variables are
the first n̄ components of x. By induction, if H0 is zero in its last n − n̄ rows and
columns, the last n− n̄ components of the BFGS update vectors yk and Hkδk are zero
for all k, and every Hk has the form

(3.1) Hk =
(
H̄k 0
0 0

)
,

where H̄k is n̄× n̄. Simple modifications of the methods of section 2.10 can be used
to keep H̄k positive definite. A QP subproblem with a Hessian of this form is either
unbounded or has at least n− n̄ constraints in the final working set. This implies that
the reduced Hessian need never have dimension greater than n̄.
Under the assumption that the objective function is bounded below in some ex-

panded feasible region c(x) ≥ −b (see (2.5)), a sequence of positive-definite matrices
H̄k with uniformly bounded condition numbers is sufficient for the SQP convergence
theory to hold. (This case is analogous to converting inequality constraints to equal-
ities by adding slack variables—the Hessian is singular only in the space of the slack
variables.) However, in order to treat semidefinite Hessians such as (3.1), the QP
solver must include an inertia-controlling working-set strategy, which ensures that
the reduced Hessian has at most one zero eigenvalue. See sections 4.6–4.7.
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3.2. Dense Hessians. The Hessian approximations H̄k are matrices of order n̄,
the number of nonlinear variables. If n̄ is not too large, it is efficient to treat each H̄k

as a dense matrix and apply the BFGS updates explicitly. The storage requirement
is fixed, and the number of major iterations should prove to be moderate. (We can
expect one-step Q-superlinear convergence.)

3.3. Limited-MemoryHessians. To treat problems where the number of nonlin-
ear variables n̄ is very large, we use a limited-memory procedure to update an initial
Hessian approximation Hr a limited number of times. The present implementation
is quite simple and has an advantage in the SQP context when the constraints are
linear: the reduced Hessian for the QP subproblem can be updated between major
iterations (see section 6.4).
Initially, suppose n̄ = n. Let 
 be preassigned (say 
 = 10), and let r and k denote

two major iterations such that r ≤ k ≤ r + 
. At iteration k the BFGS approximate
Hessian may be expressed in terms of 
 updates to a positive-definite Hr:

(3.2) Hk = Hr +
k−1∑
j=r

(
θjyjy

T
j − φjqjqTj

)
,

where qj = Hjδj , θj = 1/yTj δj , and φj = 1/q
T
j δj . It is better numerically to write Hk

in the form Hk = GTkGk, where Gk is the product of elementary matrices

(3.3) Gk = H1/2
r (I + δrv

T
r )(I + δr+1v

T
r+1) · · · (I + δk−1v

T
k−1),

with vj = ±(θjφj)1/2yj−φjqj [14]. (The sign may be chosen to minimize the rounding
error in computing vj .) The quantities (δj , vj) are stored for each j. During major
iteration k, the QP solver accesses Hk by requesting products of the form Hku. These
are computed with work proportional to k − r using the recurrence relations:

u ← u+ (vTju)δj , j = k − 1 : r; u ← H
1/2
r u;

w ← H
1/2
r u; w ← w + (δTjw)vj , j = r : k − 1.

Note that products of the form uTHu are easily and safely computed as ‖z‖22 with
z = Gku.
A separate calculation is used to update the diagonals of Hk from (3.2). On

completion of iteration k = r + 
, these diagonals form the next positive-definite Hr
(with r = k+1). Storage is then “reset” by discarding the previous updates. (Similar
schemes are described by Buckley and LeNir [17, 18] and Gilbert and Lemaréchal
[49]. More elaborate schemes are given by Liu and Nocedal [70], Byrd, Nocedal, and
Schnabel [24], and Gill and Leonard [51], and some have been evaluated by Morales
[71]. However, as already indicated, these schemes would require refactorization of
the reduced Hessian in the linearly constrained case.)
An alternative approach is to store the quantities (yj , qj , θj , φj) for each j and

compute the product Hku as

Hkv = Hrv +
k−1∑
j=r

(
θj(yTj v)yj − φj(qTj v)qj

)
.

This form requires the same amount of work to compute the product, and may be
appropriate for certain types of QP solver (see section 8.3).
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If n̄ < n, Hk has the form (3.1), and the same procedure is applied to H̄k. Note
that the vectors δj and vj (and yj and qj) have length n̄—a benefit when n̄� n. The
modified Lagrangian LA from (2.7) retains this property for the modified yk in (2.8).

4. The QP Solver SQOPT. Since SNOPT solves nonlinear programs of the form
(NP), it requires solution of QP subproblems of the same form, with f(x) replaced
by a convex quadratic function, and c(x) replaced by its current linearization:

(QPk) minimize
x

fk + gTk (x− xk) + 1
2 (x− xk)THk(x− xk)

subject to l ≤

 x
ck + Jk(x− xk)

Ax

 ≤ u.
At present, (QPk) is solved by the package SQOPT [53], which employs a two-phase
active-set algorithm and implements elastic programming implicitly when necessary.
The Hessian Hk may be positive semidefinite and is defined by a routine for forming
products Hkv.

4.1. Elastic Bounds. SQOPT can treat any of the bounds in (QPk) as elastic.
Let xj refer to the jth variable or slack. For each j, an input array specifies which
of the bounds lj , uj is elastic (either, neither, or both). A parallel array maintains
the current state of each xj . If the variable or slack is currently outside its bounds
by more than the Minor feasibility tolerance, it is given a linear penalty term
γ × infeasibility in the objective function. This is a much-simplified but useful form
of piecewise linear programming (Fourer [42, 43, 44]).

SNOPT uses elastic bounds in three different ways:
• to solve problem (FLP) (section 1.1) if the linear constraints are infeasible;
• to solve problem (PP1) (section 6.1);
• to solve the QP subproblems associated with problem (NP(γ)) after nonlinear
elastic mode is initiated.

4.2. QP SearchDirections. At each minor iteration, active-set methods for solv-
ing (QPk) should obtain a search direction d satisfying the so-called KKT system

(4.1)
(
Hk WT

W

)(
d
y

)
= −

(
gq
0

)
,

where W is the current working-set matrix and gq is the QP objective gradient.
SQOPT implements several null-space methods, as described in the next three sections.

4.3. The Null-Space Approach. One way to obtain d in (4.1) is to solve the
reduced-Hessian system

(4.2) ZTHkZdZ = −ZTgq, d = ZdZ ,

where Z is a null-space matrix forW . SQOPTmaintains Z in “reduced-gradient” form
as in MINOS, using sparse LU factors of a square matrix B whose columns change as
the working set W changes:

(4.3) W =
(
B S N

I

)
P, Z = PT

−B−1S
I
0

 ,
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where P is a permutation such that B is nonsingular. Variables associated with B
and S are called basic and superbasic; the remainder are called nonbasic. The number
of degrees of freedom is the number of superbasic variables nZ (the column dimension
of S and Z). Products of the form Zv and ZTg are obtained by solving with B or BT.
If nZ is small enough, SQOPT uses a dense Cholesky factorization:

(4.4) ZTHkZ = RTR.

Normally, R is computed from (4.4) when the nonelastic constraints are first satisfied.
It is then updated as the QP working set changes. For efficiency, the dimension of
R should not be excessive (say, nZ ≤ 2000). This is guaranteed if the number of
nonlinear variables is moderate (because nZ ≤ n̄ at a solution), but it is often true
even if n̄ = n.

4.4. Approximate ReducedHessians. As the major iterations converge, the QP
subproblems require fewer changes to their working set, and with warm starts they
eventually solve in one minor iteration. Hence, the work required by SQOPT becomes
dominated by the computation of the reduced Hessian ZTHkZ and its factor R from
(4.4), especially if there are many degrees of freedom.
For this reason, SQOPT can optionally maintain a quasi-Newton approximation

ZTHkZ ≈ RTR as in MINOS [75]. It also allows R to be input from a previous
problem of the same dimensions (a “hot start” feature of special benefit in the SQP
context).
Note that the SQP updates to Hk could be applied to R between major iterations

as for the linear-constraint case (section 6.4). However, the quasi-Newton updates
during the first few minor iterations of each QP should achieve a similar effect.

4.5. CG Methods. By construction, the QP Hessians Hk are positive definite or
positive semidefinite. Hence, the conjugate-gradient (CG) method is a natural tool for
very large systems. SQOPT includes a CG option for finding approximate solutions
to

(4.5) (ZTHkZ + δ2I)dZ = −ZTgq,

where δ ≈ 10−3 is a small regularization parameter to allow for singular ZTHkZ.
When Z has many columns, the main concern is that many CG iterations may be
needed to obtain a useful approximation to dZ . Normally CG methods require some
sort of problem-dependent preconditioner, but unexpectedly good results have been
obtained on many large problems without preconditioning. This can be largely ex-
plained by the diagonal-plus-low-rank structure of both Hk and ZTZ (with both
diagonal parts being close to I, especially if there are few general constraints).
For problems with many degrees of freedom, SQOPT optionally maintains a

reduced-Hessian approximation in the form

(4.6) R =
(
Rr 0

D

)
,

where Rr is a dense triangle of specified size and D is a positive diagonal. This
structure partitions the superbasic variables into two sets and allows the cost per
minor iteration to be controlled. The only unpredictable quantity is the total number
of minor iterations.
In MINOS, this structure is used to generate search directions directly. After

a few minor iterations involving all superbasics (with quasi-Newton updates to Rr
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and D), the variables associated with D are temporarily frozen. Iterations proceed
with updates to Rr only, and superlinear convergence can be expected within that
subspace. A frozen superbasic variable is then interchanged with one from Rr, and
the process is repeated.
In SQOPT, our aim has been to use R in (4.6) as a preconditioner for (4.5) [61,

pp. 151–153], [72]. To date, this has produced mixed results, but fortunately the CG
option without preconditioning has performed well, as already mentioned.

4.6. Inertia Control. If (NP) contains linear variables, Hk in (3.1) is positive
semidefinite. In SQOPT, only the last diagonal of R in (4.4) is allowed to be zero. (See
[59] for discussion of a similar strategy for indefinite QP.) If the initial R is singular,
enough temporary constraints are added to the working set to give a nonsingular R.
Thereafter, R can become singular only when a constraint is deleted from the working
set (in which case no further constraints are deleted until R becomes nonsingular).
When R is singular at a nonoptimal point, it is used to define a direction dZ such that

(4.7) ZTHkZdZ = 0 and gTqZdZ < 0,

where gq = gk + Hk(x − xk) is the gradient of the quadratic objective. The vector
d = ZdZ is a direction of unbounded descent for the QP in the sense that the QP
objective is linear and decreases without bound along d. Normally, a step along d
reaches a new constraint, which is then added to the working set for the next iteration.

4.7. Unbounded QP Subproblems. If the QP objective is unbounded along d,
subproblem (QPk) terminates. The final QP search direction d = ZdZ is also a
direction of unbounded descent for the objective of (NP). To show this, we observe
from (4.7) that

Hkd = 0 and gTkd < 0.

The imposed nonsingularity of H̄k (see (3.1)) implies that the nonlinear components
of d are zero, and so the nonlinear terms of the objective and constraint functions
are unaltered by steps of the form xk + αd. Since gTkd < 0, the objective of (NP)
is unbounded along d, because it must include a term in the linear variables that
decreases without bound along d.
In short, (NP) behaves like an unbounded linear program (LP) along d, with the

nonlinear variables (and functions) frozen at their current values. Thus if xk is feasible
for (NP), unboundedness in (QPk) implies that the objective f(x) is unbounded for
feasible points, and the problem is declared unbounded.
If xk is infeasible, unboundedness in (QPk) implies that f(x) is unbounded for

some expanded feasible region c(x) ≥ −b (see (2.5)). We enter or continue elastic mode
(with an increased value of γ if it has not already reached its maximum permitted
value). Eventually the QP subproblem will be bounded, or xk will become feasible,
or the iterations will converge to a point that approximately minimizes the one-norm
of the constraint violations.

5. Basis Handling in SQOPT. The null-space methods in sections 4.3–4.5 require
frequent solution of systems involving B and BT. SQOPT uses the package LUSOL
[58] for four purposes:

• to obtain sparse LU factors of a given basis B;
• to replace certain columns of B when it appears singular or ill-conditioned;
• to find a better-conditioned B by reordering the columns of a given set (B S);
• to update the LU factors when a column of B is replaced by a column of S.

The next sections discuss each function in turn.
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5.1. Threshold Pivoting in LUSOL. Stability in the LU factorization of a square
or rectangular matrix A is achieved by bounding the off-diagonal elements of L and/or
U . There are many ways to do this, especially in the sparse case. In LUSOL [58], L
has unit diagonals. Each elimination step chooses 
 and uT, the next column of L
and row of U , and then updates the remaining rows and columns of A according to
A← A− 
uT (creating an empty row and column). Let

τL = the factor tolerance such that |Lij | ≤ τL (1 < τL ≤ 100 say),
Al = the remaining matrix to be factored after l steps.

For most factorizations, LUSOL uses a threshold partial pivoting (TPP) strategy
similar to that in LA05 [88] and MA28 [35]. A classical Markowitz criterion is used
to choose an entry apq from a sparse row and column of Al to become the next pivot
element (the next diagonal of U). To be acceptable, apq must be sufficiently large
compared to other nonzeros in its own column: |apq| ≥ maxi |aiq|/τL.
With τL ∈ [2, 100], TPP usually performs well in terms of balancing stability

and sparsity, but it cannot be classed as a rank-revealing LU (RRLU) factorization
method, because it is not especially good at revealing near-singularity and its cause.
For example, any triangular matrix A gives L = I and U = A for all values of τL (a
perfect L with maximum sparsity but little hint of possible ill-conditioning).
For greater reliability, LUSOL includes two RRLU factorizations as follows:
• Threshold rook pivoting (TRP), in which apq must be sufficiently large com-
pared to other nonzeros in its own column and its own row :

|apq| ≥ maxi |aiq|/τL and |apq| ≥ maxj |apj |/τL.
• Threshold complete pivoting (TCP), in which apq must be sufficiently large
compared to all nonzeros in Al:

|apq| ≥ maxi,j |aij |/τL.
The TCP option was implemented first [81] and has proved valuable for rank-detection
during the optimization of Markov decision chains [80] and within SNOPT [54]. In
some cases its strict pivot test leads to rather dense LU factors. The TRP option is
typically more efficient [82] and in practice its rank-revealing properties are essentially
as good as for TCP. (Note that all options can fail to detect near-singularity in certain
matrices with regular structure. A classic example is a triangular matrix with 1s on
the diagonal and −1s above the diagonal.)
In general, SQOPT uses TPP with tolerance τL < 4.0 for all basis factorizations.

If tests suggest instability for a certain basis B (large ‖b − Bx‖∞ or ‖x‖∞ or ‖π‖∞
following solution of Bx = b or BTπ = c), the factorization is repeated as often as
necessary with a decreasing sequence of tolerances. In the current version of SQOPT,
the sequence is τL = 3.99, 2.00, 1.41, 1.19, 1.09, 1.02, 1.01 (powers of

√
3.99). If

necessary, a switch is made to TRP with the same decreasing sequence of τL values,
and then TCP is used with the same values. If all three sequences are exhausted,
SQOPT terminates with a “numerical error” condition. However, certain basis repairs
may be invoked beforehand, as described next.

5.2. Basis Repair (Square or Singular Case). Whenever a basis is factored,
LUSOL signals “singularity” if any diagonals of U are judged small, and indicates
which unit vectors (corresponding to slack variables) should replace the associated
columns of B. The modified B is then factored.
The process may need to be repeated if the factors of B are not sufficiently rank-

revealing. Behavior of this kind is exhibited by one of the CUTEr problems (section
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B = = LU , PLPT =
(
L1
L2 L3

)
, PUQ =

(
U1 U2

. . .

)
LUSOL options: TRP or TCP, τL ≤ 2.5, discard factors

Fig. 1 BR factorization (rank detection for square B).

7.2) if we use only the TPP pivoting option in LUSOL when the first basis is factored.
Problem drcavty2 is a large square system of nonlinear equations (10000 constraints
and variables, 140000 Jacobian nonzeros). The first TPP factorization with τL = 3.99
indicated 249 singularities. After slacks were inserted, the next factorization with
τL = 2.0 indicated 88 additional singularities, then a further (39, 16, 8, 7, 4) as τL
decreased from 1.41 to 1.02, and then (7, 7, 7, 5, 1) with τL = 1.01 before the basis
was regarded as suitably nonsingular (a total of 13 TPP factorizations and 438 slacks
replacing rejected columns of B). Since L and U each had about a million nonzeros
in all factorizations, the repeated failures were rather expensive.
In contrast, a single TRP factorization with τL = 2.5 indicated 102 singularities,

after which the modified B proved to be very well-conditioned. The factors were of
similar sparsity, and the optimization proceeded significantly more quickly.
For such reasons, SQOPT includes a special “BR factorization” for estimating the

rank of a given B, using the LUSOL options shown in Figure 1. P and Q are the
row and column permutations that make L unit triangular and U upper triangular,
with small elements in the bottom right if B is close to singular. To save storage, the
factors are discarded as they are computed. A normal “B factorization” then follows.
BR factorization is the primary recourse when B seems singular or when unex-

pected growth occurs in ‖x‖ or ‖π‖. It has proved valuable for some other CUTEr
problems arising from partial differential equations (bratu2d , bratu3d , porous1 , and
porous2 ). A regular “marching pattern” is sometimes present in B, particularly in the
first triangular basis following a cold start. With TPP, the factors display no small
diagonals in U , yet the BR factors reveal a large number of dependent columns. Thus,
although condition estimators are known that could tell us “this B is ill-conditioned”
(e.g., [68]), LUSOL’s RRLU options are more useful in telling us which columns are
causing the poor condition, and which slacks should replace them.

5.3. Basis Repair (Rectangular Case). When superbasic variables are present,
the permutation P in (4.3) clearly affects the condition of B and Z. SQOPT therefore
applies an occasional rectangular “BS factorization” to choose a new P , using the
options shown in Figure 2.
For simplicity we assume that there are no nonbasic columns in W . A basis

partition is given by

PWT ≡
(
BT

ST

)
=
(
L1
L2

)
U1Q

T ,

and the required null-space matrix satisfying WZ = 0 is

(5.1) Z ≡ PT
(
−B−1S
I

)
= PT

(
−L−T1 LT2

I

)
.
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WT = = LU , PLPT =
(
L1
L2 I

)
, PUQ =

(
U1
0

)
LUSOL options: TPP or TRP, τL ≤ 2.5, discard factors

Fig. 2 BS factorization (basis detection for rectangular W ).

With τL ≤ 2.5, L and L1 are likely to be well-conditioned, and ζ ≡ ‖L−T1 LT2 ‖ is
unlikely to be large. (It can be bounded by a polynomial function of τL.) The
extreme singular values of Z are σmin ≥ 1 and σmax ≈ 1+ ζ. It follows that Z should
be well-conditioned regardless of the condition of W .

SQOPT applies this basis repair at the beginning of a warm start (when a potential
B-S ordering is known). To prevent basis repair at every warm start—i.e., every
major iteration of SNOPT—a normal B = LU factorization is computed first with
the current (usually larger) tolerance τL. If U appears to be more ill-conditioned than
after the last repair, a new repair is invoked. The relevant test on the diagonals of U
is tightened gradually to ensure that basis repair occurs periodically (even during a
single major iteration if a QP subproblem requires many iterations).
Although the rectangular factors are discarded, we see from (5.1) that a nor-

mal factorization of B allows iterations to proceed with an equivalent Z. (A BR
factorization may be needed to repair B first if W happens to be singular.)

5.4. Basis Updates. When a QP iteration requires replacement of a column of B,
the LU factors must be updated in a stable way. LUSOL uses the approach suggested
by Bartels and Golub [3]. The sparse implementation is analogous to that of Reid
[88, 89].

6. SQP Algorithm Details. A practical SQP algorithm requires many features
to achieve reliability and efficiency. We discuss some more of them here before sum-
marizing the main algorithmic steps.

6.1. The Initial Point. To take advantage of a good starting point x0, we apply
SQOPT to one of the “proximal-point” problems

(PP1) minimize
x

‖x̄− x̄0‖1
subject to the linear constraints and bounds

or

(PP2) minimize
x

‖x̄− x̄0‖22
subject to the linear constraints and bounds,

where x̄ and x̄0 correspond to the nonlinear variables in x and x0. The solution defines
a new starting point x0 for the SQP iteration. The nonlinear functions are evaluated
at this point, and a “crash” procedure is executed to find a working set W0 for the
linearized constraints.
In practice we prefer problem (PP1), as it is linear and can use SQOPT’s implicit

elastic bounds. (We temporarily set the bounds on the nonlinear variables to be
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x̄0 ≤ x̄ ≤ x̄0.) Note that problem (PP2) may be “more nonlinear” than the original
problem (NP), in the sense that its exact solution may lie on fewer constraints (even
though it is nonlinear in the same subset of variables, x̄). To prevent the reduced
Hessian from becoming excessively large with this option, we terminate SQOPT early
by specifying a loose optimality tolerance.

6.2. Undefined Functions. If the constraints in (PP1) or (PP2) prove to be
infeasible, SNOPT solves problem (FLP) (see section 1.1) and terminates without
computing the nonlinear functions. The problem was probably formulated incorrectly.
Otherwise, the linear constraints and bounds define a certain “linear feasible

region” RL, and all iterates satisfy xk ∈ RL to within a feasibility tolerance (as with
NPSOL). Although SQP algorithms might converge more rapidly sometimes if all
constraints were treated equally, the aim is to help prevent function evaluations at
obvious singularities.
In practice, the functions may not be defined everywhere within RL, and it may

be an unbounded region. Hence, the function routines are permitted to return an
“undefined function” signal. If the signal is received from the first function call
(before any line search takes place), SNOPT terminates. Otherwise, the line search
backtracks and tries again.

6.3. Early Termination of QP Subproblems. SQP theory usually assumes that
the QP subproblems are solved to optimality. For large problems with a poor starting
point and H0 = I, many thousands of iterations may be needed for the first QP, build-
ing up many degrees of freedom (superbasic variables) that are promptly eliminated
by more thousands of iterations in the second QP.
In general, it seems wasteful to expend much effort on any QP before updating

Hk and the constraint linearization. Murray and Prieto [74] suggest one approach to
terminating the QP solutions early, requiring that at least one QP stationary point
be reached. The associated theory implies that any subsequent point x̂k generated
by a QP solver is suitable, provided that ‖x̂k − xk‖ is nonzero. In SNOPT we have
implemented a method within this framework that has proved effective on many
problems. Conceptually we could perform the following steps:

• Fix many variables at their current value.
• Perform one SQP major iteration on the reduced problem (solving a smaller
QP to get a search direction for the nonfixed variables).
• Free the fixed variables, and complete the major iteration with a “full” search
direction that happens to leave many variables unaltered.
• Repeat.

Normal merit-function theory should guarantee progress at each stage on the associ-
ated reduced nonlinear problem. We are simply suboptimizing.
In practice, we are not sure which variables to fix at each stage, the reduced QP

could be infeasible, and degeneracy could produce a zero search direction. Instead,
the choice of which variables to fix is made within the QP solver. The following steps
are performed:

• Perform QP iterations on the full problem until a feasible point is found or
elastic mode is entered.
• Continue iterating until certain limits are reached and not all steps have been
degenerate.
• Freeze nonbasic variables that have not yet moved.
• Solve the reduced QP to optimality.



SNOPT: A LARGE-SCALE SQP ALGORITHM 117

Rather arbitrary limits may be employed and perhaps combined. We have imple-
mented the following as user options:

• Minor iterations limit (default 500) suggests termination if a reasonable
number of QP iterations have been performed (beyond the first feasible point).
• New superbasics limit (default 99) suggests termination if the number of
free variables has increased significantly (since the first feasible point).
• Minor optimality tolerance (default 10−6) specifies an optimality toler-
ance for the final QPs.

Internally, SNOPT sets a loose but decreasing optimality tolerance for the early QPs
(somewhat smaller than a measure of the current primal-dual infeasibility for (NP)).
This “loose tolerance” strategy provides a dynamic balance between major and minor
iterations in the manner of inexact Newton methods [29].

6.4. Linearly Constrained Problems. For problems with linear constraints only,
the maximum step length is not necessarily one. Instead, it is the maximum feasible
step along the search direction. If the line search is not restricted by the maximum
step, the line search ensures that the approximate curvature is sufficiently positive
and the BFGS update can always be applied. Otherwise, the update is skipped if the
approximate curvature is not sufficiently positive.
For linear constraints, the working-set matrix Wk does not change at the new

major iterate xk+1, and the basis B need not be refactorized. If B is constant, then
so is Z, and the only change to the reduced Hessian between major iterations comes
from the rank-two BFGS update. This implies that the reduced Hessian need not be
refactorized if the BFGS update is applied explicitly to the reduced Hessian. This
obviates factorizing the reduced Hessian at the start of each QP, saving considerable
computation.
Given any nonsingular matrix Q, the BFGS update to Hk implies the following

update to QTHkQ:

(6.1) H̄Q = HQ + θkyQy
T
Q − φkqQqTQ ,

where H̄Q = QTHk+1Q, HQ = QTHkQ, yQ = QTyk, δQ = Q−1δk, qQ = HQδQ,
θk = 1/yTQδQ, and φk = 1/q

T
QδQ. If Q is of the form ( Z Y ) for some matrix Y , the

reduced Hessian is the leading principal submatrix of HQ.
The Cholesky factor R of the reduced Hessian is simply the upper-left corner of

the n̄× n upper-trapezoidal matrix RQ such that HQ = RTQRQ. The update for R is
derived from the rank-one update to RQ implied by (6.1). Given δk and yk, if we had
all of the Cholesky factor RQ, it could be updated directly as

RQ + uvT, w = RQδQ, u = w/‖w‖2, v =
√
θkyQ −RTQu

(see Goldfarb [62] and Dennis and Schnabel [30]). This rank-one modification of
RQ could be restored to upper-triangular form by applying two sequences of plane
rotations from the left [50].
The same sequences of rotations can be generated even though not all of RQ is

present. Let vZ be the first nZ elements of v. The following algorithm determines the
Cholesky factor R̄ of the first nZ rows and columns of H̄Q from (6.1):

1. Compute qk = Hkδk and t = ZTqk.
2. Define µ = φ1/2

k = 1/‖w‖2 = 1/(δTkHkδk)1/2 = 1/(qTkδk)1/2.
3. Solve RTwZ = t.
4. Define uZ = µwZ and σ = (1− ‖uZ‖22)1/2.
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5. Apply a backward sweep of nZ rotations P1 in the planes (nZ+1, i), i = nZ : 1,
to give a triangular R̂ and a “row spike” rT :

P1

(
R uZ

σ

)
=
(
R̂ 0
rT 1

)
.

6. Apply a forward sweep of nZ rotations P2 in the planes (i, nZ+1), i = 1 :nZ+1,
to restore the upper-triangular form:

P2

(
R̂

rT + vTZ

)
=
(
R̄
0

)
.

6.5. Summary of the SQP Algorithm. The main steps of the SNOPT algorithm
follow. We assume that a starting point (x0, π0) is available and that the reduced-
Hessian QP solver SQOPT is being used. We describe elastic mode qualitatively.
Specific values for γ are given in section 2.11.

0. Apply the QP solver to problem (PP1) or (PP2) to find a point close to
x0 satisfying the linear constraints. If the PP problem is infeasible, declare
problem (NP) infeasible. Otherwise, a working-set matrix W0 is returned.
Set k = 0, evaluate functions and gradients at x0, and initialize penalty
parameters ρi = 0.

1. Factorize Wk.
2. Define sk to minimize the merit function as a function of the slacks s.
3. Find x̄k, a feasible point for the QP subproblem. (This is an intermediate
point for the QP solver, which also provides a working-set matrix W̄ k and its
null-space matrix Z̄k.) If no feasible point exists, initiate elastic mode and
restart the QP.

4. Form the reduced Hessian Z̄TkHkZ̄k, and compute its Cholesky factor.
5. Continue solving the QP subproblem to find (x̂k, π̂k), an optimal QP solution.
(This provides a working-set matrix Ŵk and its null-space matrix Ẑk.)
If elastic mode has not been initiated but ‖π̂k‖∞ is “large,” enter elastic mode
and restart the QP.
If the QP is unbounded and xk satisfies the nonlinear constraints, declare the
problem unbounded (f is unbounded below in the feasible region). Otherwise
(if the QP is unbounded), go to step 7 (f is unbounded below in the feasible
region if a feasible point exists).

6. If (xk, πk) satisfies the convergence tests for (NP) analogous to (2.9), declare
the solution optimal. If similar convergence tests are satisfied for (NP(γ)),
go to step 7. Otherwise, go to step 8.

7. If elastic mode has not been initiated, enter elastic mode and repeat step 5.
Otherwise, if γ has not reached its maximum value, increase γ and repeat
step 5. Otherwise, declare the problem infeasible.

8. Update the penalty parameters as in (2.4).
9. Find a step length αk that gives a sufficient reduction in the merit function
(2.3). Set xk+1 = xk + αk(x̂k − xk), and πk+1 = πk + αk(π̂k − πk). In the
process, evaluate functions and gradients at xk+1.

10. Define δk = xk+1 − xk and yk = ∇L(xk+1, xk, πk+1) − ∇L(xk, xk, πk+1). If
yTkδk < σk (2.6), recompute δk and yk, with xk redefined as xk+αk(x̄k−xk).
(This requires an extra evaluation of the problem derivatives.) If necessary,
increase yTkδk (if possible) by adding an augmented Lagrangian term to yk.
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Table 1 Notation in tables of results.

nZ The number of degrees of freedom at a solution (columns in Z).
Mnr The number of QP minor iterations.
Mjr The number of major iterations required by the optimizer.
Fcn The number of function and gradient evaluations.
cpu The number of cpu seconds.
Obj The final objective value (to help classify local solutions).
Con The final constraint violation norm (to identify infeasible problems).
e Essentially optimal (i.e., optimal if τP or τD were increased by a factor of 10).
c Final nonoptimal point could not be improved.
h The number of Hessian-vector products required by the QP solver.

11. If yTkδk ≥ σk, apply the BFGS update to Hk, using the pair (Hkδk, yk).
12. Define Wk+1 from Ŵk, set k ← k + 1, and repeat from step 1.

Apart from the function and gradient evaluations, most of the computational effort
lies in steps 1 and 4. Steps 3 and 5 may also involve significant work if the QP
subproblem requires many minor iterations. Typically this will happen only during
the early major iterations.

7. Numerical Results. SNOPT and SQOPT implement all of the techniques de-
scribed in sections 2–6. The Fortran 77 coding is compatible with Fortran 90 and 95
compilers and permits recursive calls, or re-entrant calls in a multithreaded environ-
ment, as well as translation into C via f 2c [37] (though these features are not used
here).
We give the results of applying SNOPT 7.1 of January 2005 to problems in the

CUTEr and COPS 3.0 test collections [11, 10, 31, 33]. Function and gradient values
were used throughout (but not second derivatives). All runs were made on a Linux
PC with 2GB of RAM and two 3.06GHz Xeon processors (only one being used for
each problem solution). The g77 compiler was used with -O option specifying full
code optimization. The floating-point precision was 2.22× 10−16. Table 1 defines the
notation used in the tables of results.

7.1. Options for SNOPT. Figure 3 gives the SNOPT run-time options used, most
of which are default values. Linear constraints and variables are scaled (Scale option
1), and the first basis is essentially triangular (Crash option 3).

Elastic weight sets γ0 = 104 in (2.10).
For the Hessian approximations Hk, if the number of nonlinear variables is small

enough (n̄ ≤ 75), a full dense BFGS Hessian is used. Otherwise, a limited-memory
BFGS Hessian is used, with Hessian updates specifying that Hk should be reset to
the current Hessian diagonal every 
 = 5 major iterations (see section 3.3).
The Major feasibility and optimality tolerances set τP and τD in section 2.11

for problem (NP). The Minor tolerances are analogous options for SQOPT as it solves
(QPk). The Minor feasibility tolerance incidentally applies to the bound and
linear constraints in (NP) as well as (QPk).

Penalty parameter initializes the penalty parameters ρi for the merit function.
Reduced Hessian dimension specifies the maximum size of the dense reduced

Hessian available for SQOPT. If the number of superbasics exceeds this value during
the QP solution, SQOPT solves (4.5) using the CG-type solver SYMMLQ [83].

Violation limit sets τV in section 2.7 to define an expanded feasible region in
which the objective is expected to be bounded below.
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BEGIN SNOPT Problem
Minimize
Crash option 3
Derivative level 3
Elastic weight 1.0E+4
Hessian updates 5
Iterations 90000
Major iterations 2000
Minor iterations 500
LU partial pivoting
Major feasibility tolerance 1.0E-6
Major optimality tolerance 2.0E-6
Minor feasibility tolerance 1.0E-6
Minor optimality tolerance 1.0E-6
New superbasics 99
Line search tolerance 0.9
Penalty parameter 0.0
Proximal point method 1
Reduced Hessian dimension 750
Scale option 1
Step limit 2.0
Unbounded objective 1.0E+15
Verify level -1
Violation limit 1.0E+6

END SNOPT Problem

Fig. 3 The SNOPT options file.

Table 2 The 1020 CUTEr problems listed by type and frequency.

Frequency Type Characteristics

24 LP Linear obj, linear constraints
167 QP Quadratic obj, linear constraints
160 UC Nonlinear obj, no constraints
129 BC Nonlinear obj, bound constraints
70 LC Nonlinear obj, linear constraints

380 NC Nonlinear obj, nonlinear constraints
90 FP No objective

7.2. Results on the CUTEr Test Set. The CUTEr distribution of December 20,
2004, contains 1020 problems in standard interface format (SIF). A list of the CUTEr
problem types and their frequencies is given in Table 2. Although many problems
allow for the number of variables and constraints to be adjusted in the SIF file, our
tests used the dimensions set in the CUTEr distribution. This gave problems ranging
in size from hs1 (two variables and no constraints) to cont5-qp (40601 variables and
40201 constraints) and portsnqp (100000 variables and 3 constraints).
From the complete set of 1020 problems, 13 were omitted as follows:
• 4 nonsmooth problems (bigbank , gridgena, hs87 , and net4 );
• 4 problems with undefined variables or floating-point exceptions in the SIF
file (lhaifam, recipe, s365 , and s365mod);

• 5 problems too large for the SIF decoder (chardis0, chardis1 , harkerp2 ,
yatp1sq , and yatp2sq).

Some of the CUTEr problems have many degrees of freedom at the solution. Of
the 1007 problems attempted, 183 have more than 2000 degrees of freedom, with the
largest nonlinearly constrained problem (jannson3 ) having almost 20000 superbasic
variables at the solution. SNOPT was applied to these problems using the options
listed in Figure 3. The 824 problems with fewer than 2000 degrees of freedom were
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Table 3 Summary: SNOPT on the smooth CUTEr problems.

nZ ≤ 2000 nZ > 2000

Problems attempted 824 183

Optimal 735 115
Unbounded 3 1
Infeasible 16 0

Optimal, low accuracy 12 17
Cannot be improved 9 3
False infeasibility 17 0
Terminated 32 47

solved with the option Reduced Hessian dimension 2000, which allows the dimen-
sion of R in (4.4) to grow to 2000, thereby preventing use of the CG solver. In all
the runs, no special information was used in the case of QP and FP problems—i.e.,
each problem was assumed to have a general nonlinear objective. The results are
summarized in Table 3.

Discussion. Problems a2nndnil , a5nndnil , arglale, arglble, arglcle, flosp2hh,
flosp2hl , flosp2hm, ktmodel , lincont , model , nash, sawpath, and woodsne have in-
feasible linear constraints, but were included anyway. The objectives for fletchbv ,
indef , mesh, and static3 are unbounded below in the feasible region. SNOPT cor-
rectly diagnosed the special features of these problems.
The declaration of optimality by SNOPT means that the final point satisfies the

first-order optimality conditions (2.9) for the default feasibility and optimality toler-
ances τ

P
= 10−6 and τ

D
= 2 × 10−6. We emphasize that this point may not be a

constrained local minimizer for the problem. For example, the final “optimal” point
for the problem hs13 is not a constrained local minimizer because the constraint quali-
fication does not hold there. Similarly, the final point for the problem optmass satisfies
the first-order but not second-order conditions for optimality. Verifying second-order
conditions requires second derivatives.

PerformanceonProblemswith FewSuperbasics. A total of 12 problems (cheby-
qad, cresc132 , cresc50 , djtl , hues-mod , lakes, liswet4 , mancino, marine, ncb20b,
ncvxbqp3 , and pfit4 ) were terminated at a point that is essentially optimal; i.e., a
point that would be considered optimal if the feasibility or the optimality tolerance
were ten times the default. The AMPL implementation of marine was solved success-
fully as part of the COPS 3.0 collection (see section 7.3).

SNOPT reported 19 problems (argauss, arwdhne, cont6-qq , drcavty3 , eigenb,
eigenc, eigmaxb, fletcher , flosp2th, growth, himmelbd , hs90 , junkturn, lewispol , loots-
ma, lubrifc, nystrom5 , optcdeg3 , and vanderm3 ) with infeasible nonlinear constraints.
Since SNOPT is not assured of finding a global minimizer of the sum of infeasibilities,
failure to find a feasible point does not imply that none exists. Of these 19 problems,
all but 2 cases must be counted as failures because they are known to have feasible
points. The two exceptions, flosp2th and junkturn, have no known feasible points. To
gain further assurance that these problems are indeed infeasible, they were re-solved
using SNOPT’s Feasible Point option, in which the true objective is ignored but
elastic mode is invoked (as usual) if the constraint linearizations prove to be infeasi-
ble (i.e., f(x) = 0 and γ = 1 in problem (NP(γ)) of section 1.1). In both cases, the
final sum of constraint violations was comparable to that obtained with the composite
objective. We conjecture that these problems are infeasible.
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Problems fletcher and lootsma have feasible solutions, but their initial points are
infeasible and stationary for the sum of infeasibilities, and thus SNOPT terminated
immediately. These problems are also listed as failures.

SNOPT was unable to solve 32 cases within the allotted 2000 major iterations
(a4x12 , allinqp, bqpgauss, catena, catenary , discs, dixon3dq , eigenals, eigenbls, eigen-
cls, extrosnb, glider , heart6 , heart6ls, hydc20ls, lubrif , msqrtals, msqrtbls, nonmsqrt ,
nuffield , optctrl3 , optctrl6 , palmer5e, palmer7e, pfit3 , qr3dls, reading4 , robotarm,
sinrosnb, ubh1 , vanderm1 , and vanderm2 ). AMPL implementations of glider and
robotarm were solved successfully (see section 7.3).
Another 9 problems could not be improved at a nonoptimal point: arglinb, arglinc,

bleachng , brownbs, meyer3 , penalty3 , semicn2u, ubh5 , and vanderm4 . SNOPT essen-
tially found the solution of the badly scaled problems brownbs and meyer3 but was
unable to declare optimality. The problems ubh1 and ubh5 appear to have singular
Jacobians near the solution. SNOPT was unable to find a well-conditioned null-space
basis at the final (nonoptimal) iterate of ubh5 .

Performance on Problems with Many Superbasics. The 183 problems with
more than 2000 degrees of freedom at the solution provide a substantial test of the
CG solver in SQOPT. In this situation, once the QP working set settles down, the
efficiency of SNOPT depends largely on whether or not the limited-memory method
is able to adequately represent the Lagrangian Hessian.
A total of 17 problems (biggsb1 , clplatea, clplateb, fminsurf , jimack , lukvle1 ,

lukvle4 , lukvle6 , lukvle17 , lukvle18 , lukvli13 , lukvli16 , lukvli17 , minsurfo, odc, orth-
regc, and orthregf ) were terminated at a point that would be considered optimal if
the feasibility or the optimality tolerance were ten times the default.
The 3 problems lukvle15 , powellsq , and qrtquad could not be improved at a nonop-

timal point. SNOPT was unable to solve 47 problems within the assigned number
of 2000 major iterations (bratu1d , chainwoo, chenhark , clplatec, coshfun, curly10 ,
curly20 , curly30 , drcav1lq , drcav2lq , drcav3lq , fletcbv3 , fletchcr , genhumps, hanging ,
jnlbrngb, lch, lminsurf , lukvle9 , lukvle11 , lukvle16 , lukvli1 , lukvli9 , lukvli10 , lukvli11 ,
lukvli12 , lukvli15 , lukvli18 , modbeale, nlmsurf , noncvxu2 , noncvxun, odnamur , orth-
rgds, powellsg , raybendl , raybends, sbrybnd , scond1ls, scosine, scurly10 , scurly20 ,
scurly30 , sinquad , sparsine, testquad , and tquartic). Many of these problems have
no constraints or only simple bounds, and in these cases, the large number of major
iterations is consistent with results obtained by other limited-memory quasi-Newton
methods (see, e.g., [22, 51]).
If the infeasible LC problems, the unbounded problems, and the 2 (conjectured)

infeasible problems are counted as successes, SNOPT solved a grand total of 870 of
the 1007 problems attempted. In another 29 cases, SNOPT found a point that was
within a factor 10 of satisfying the convergence test.
Given the size and diversity of the test set, these results provide good evidence of

the robustness of first-derivative SQP methods when implemented with an augmented
Lagrangian merit function and an elastic variable strategy for treating infeasibility of
the original problem and the QP subproblems.

7.3. Results on the COPS 3.0 Test Set. Next we describe tests on the 22 prob-
lems in the COPS 3.0 test collection [10, 31, 32] implemented in the AMPL modeling
language [45, 46, 1]. The dimension of a particular instance of a COPS problem
is determined by one or more parameters assigned in its AMPL data file. For each
of the 22 COPS problems, [33] gives the results of several optimization algorithms on a
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Table 4 Dimensions of the AMPL versions of the COPS problems.

No. Problem Type Variables Constraints

Linear Nonlinear Total

1 bearing QP 5000 0 0 0
2 camshape NC 1200 1200 1201 2401
3 catmix NC 2401 1 1600 1601
4 chain NC 800 401 1 402
5 channel FP 6398 3198 3200 6398
6 dirichlet FP 8981 1 41 42
7 elec NC 600 1 200 201
8 gasoil NC 4001 799 3200 3999
9 glider NC 1999 1 1600 1601
10 henon NC 10801 1 81 82
11 lane emden NC 19240 1 81 82
12 marine NC 6415 3193 3200 6415
13 methanol NC 4802 1198 3600 4798
14 minsurf BC 5000 0 0 0
15 pinene NC 8000 1996 6000 7996
16 polygon NC 398 199 19900 20099
17 robot NC 7198 1 4800 4801
18 rocket NC 6401 1 4800 4801
19 steering NC 3999 1 3200 3201
20 tetra NC 2895 193 8409 8602
21 torsion QP 5000 0 0 0
22 triangle NC 3578 243 3726 3969

range of cases obtained by varying only one of the model parameters. In all but one of
the models we consider the largest problem from each set of cases (see Table 4). The
exception was the model dirichlet , where the second largest size was used. (For this
problem, the Hessian of the Lagrangian is increasingly ill-conditioned as the problem
dimension grows and the limited-memory algorithm was unable to solve the largest
case, regardless of the number of limited-memory updates used.) Problems bearing
and torsion are quadratic programs with only bound constraints. In the case of a QP,
the AMPL interface to SNOPT calls SQOPT directly.
Table 5 gives the results of SNOPT on the 22 COPS problems. The default AMPL

options (including problem preprocessing) were used in each case. With the exception
of triangle, the default options of Figure 3 were used. For triangle the option Penalty
parameter initialized the penalty parameters to 105 to prevent the objective becoming
unbounded.

Discussion. It is not clear why the AMPL formulations of glider and robot (prob-
lem robotarm in the CUTEr set) can be solved relatively easily, but not the CUTEr
versions. Reruns with AMPL option presolve 0 did not need significantly more cpu
time, which implies that preprocessing is not the reason for the performance difference.
The COPS problems were also used to investigate the effect of the number 
 of

limited-memory updates (section 3.3) on the performance of SNOPT. Tables 6 and 7
give times and major iterations for different choices for 
.
The results are typical of the performance of SNOPT in practical situations.
• Small values of 
 can give low computation times but may adversely affect
robustness on more challenging problems. For example, 
 = 5 gave the one
run in which the AMPL formulations of pinene and polygon could not be
solved to full accuracy.
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Table 5 SNOPT on the COPS 3.0 problems.

No. Problem Mnr Mjr Fcn Obj Con nZ cpu

1 bearing 3352 – 4106h 1.550420E-01 0.0E+00 3350 50.3
2 camshape 4908 10 20 4.234466E+00 1.5E-07 0 5.8
3 catmix 2949 37 39 -4.805546E-02 1.8E-07 618 39.0
4 chain 1667 48 73 5.068532E+00 1.2E-07 799 9.0
5 channel 3999 5 7 1.000000E+00 3.3E-05 0 29.8
6 dirichlet 5902 82 108 1.714656E-02 8.0E-07 5355 279.4
7 elec 893 490 550 1.843916E+04 5.4E-13 400 38.6
8 gasoil 2589 18 21 5.236596E-03 3.1E-07 3 12.9
9 glider 17834 79 164 1.247974E+03 6.4E-12 359 47.8
10 henon 11002 239 283 1.179065E+02 5.4E-10 9410 893.3
11 lane emden 5795 152 179 9.284899E+00 4.2E-09 5414 296.7
12 marine 3375 47 62 1.974651E+07 7.3E-12 22 30.9
13 methanol 3990 104 183 9.022290E-03 6.1E-12 4 53.2
14 minsurf 159809 1298 1421 2.506950E+00 0.0E+00 4782 1672.1
15 pinenee 4907 38 107 1.987217E+01 5.8E-13 5 82.8
16 polygone 7649 2000 2191 7.853051E-01 2.7E-08 197 1265.8
17 robot 10268 16 33 9.140942E+00 3.3E-08 0 105.5
18 rocket 3884 11 25 1.005380E+00 7.1E-10 332 27.5
19 steering 1911 72 95 5.545713E-01 2.8E-07 799 25.7
20 tetra 2959 50 55 1.049511E+04 0.0E+00 799 47.3
21 torsion 3504 – 4258h -4.182392E-01 0.0E+00 3450 71.4
22 triangle 5526 153 171 4.215232E+03 0.0E+00 3578 35.3

• As 
 is increased, the number of major iterations tends to decrease. However,
the numerical performance remains relatively stable. (For example, the same
local solution was always found for the highly nonlinear problem polygon.)
• The value 
 = 5 often gives the lowest computation time—particularly for
problems with large numbers of superbasic variables. As 
 is increased, the
solution time often decreases initially, but then increases as the cost of the
products Hkv increases. This would be more closely reflected in the total
computation time for Table 6 if it were not for polygon, whose time improves
dramatically because of a better Hessian approximation.

The choice of default value 
 = 5 is intended to provide efficiency on problems
with many superbasics without a significant loss of robustness.

8. Alternative QP Solvers. Where possible, we have defined the SQP algorithm
to be independent of the QP solver. Of course, SQOPT’s implicit elastic bounds and
warm start features are highly desirable.
Here we discuss future possibilities for solving the KKT system (4.1) within the

QP solver, allowing for many degrees of freedom (when W has many more columns
than rows). Note that the limited-memory Hessians (3.2)–(3.3) have the form

Hk = H0 + UUT− V V T = GTkGk,(8.1)

Gk = H
1/2
0
∏
j(I + ujv

T
j )(8.2)

for certain quantities U , V , uj , vj .

8.1. Range-Space Methods. If all variables appear nonlinearly, Hk is positive
definite. A “range-space” approach could then be used to solve systems (4.1) as
W changes. This amounts to maintaining factors of the Schur complement matrix
S = WH−1

k WT = RTkRk, where Rk comes from a QR factorization of Tk satisfying
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Table 6 COPS problems: cpu time for increasing numbers of limited-memory updates.

Problem Limited-memory updates

5 10 15 20 25 30

bearing 50.3 48.7 47.4 51.5 49.4 49.6
camshape 5.8 6.1 6.0 5.8 5.9 5.8
catmix 39.0 96.3 99.7 83.9 164.1 97.3
chain 9.0 9.0 8.8 9.4 10.5 10.6
channel 29.8 29.6 30.1 30.2 30.4 32.1
dirichlet 279.4 287.0 396.8 539.6 749.4 848.4
elec 38.6 38.1 24.4 40.2 45.3 43.5
gasoil 12.9 12.9 12.9 13.1 13.8 13.1
glider 47.8 54.8 78.1 73.9 78.4 90.5
henon 893.3 888.1 1023.5 1206.3 2077.7 2793.8
lane emden 296.7 461.6 731.6 891.6 1333.6 1734.0
marine 30.9 32.7e 34.7e 33.7 36.4 38.0
methanol 53.2 42.5 43.0 45.0 46.1 42.0
minsurf 1672.1 1626.7 1170.5 1525.1 2232.3 2494.7
pinene 82.8e 78.0 74.4e 74.4e 72.8e 71.3e

polygon 1265.8e 645.3 358.2 393.4 404.1 221.3
robot 105.5 83.0 88.2 91.8 95.9 96.7
rocket 27.5 27.6 27.5 29.0 29.0 29.3
steering 25.7 30.5 33.1 43.1 50.5 52.8
tetra 47.3 51.3 56.4 59.3 67.0 73.1
torsion 71.4 73.9 71.7 76.7 81.0 78.4
triangle 35.3 40.2 46.0 48.9 53.6 60.0

Total cpu 5120.1 4663.9 4463.0 5365.9 7727.2 8976.3

Table 7 COPS problems: major iterations for increasing numbers of limited-memory updates.

Problem Limited-memory updates

5 10 15 20 25 30

camshape 10 10 10 10 10 10
catmix 37 106 97 64 131 63
chain 48 47 35 45 55 57
channel 5 5 5 5 5 5
dirichlet 82 64 52 57 55 60
elec 490 446 270 372 392 392
gasoil 18 16 16 16 16 16
glider 79 73 112 172 224 227
henon 239 155 158 145 100 114
lane emden 152 134 114 127 119 99
marine 47 42 49 43 46 50
methanol 104 63 59 79 90 59
minsurf 1298 915 510 506 513 468
pinene 38 34 28 28 26 26
polygon 2000 958 465 484 495 218
robot 16 20 22 26 26 26
rocket 11 11 11 11 11 11
steering 72 82 84 92 88 92
tetra 50 47 48 45 47 48
triangle 153 152 163 150 146 152

Total 4949 3380 2308 2477 2595 2193
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GTk Tk = W . It would be efficient for problems with only a few hundred general
constraints, so that Tk and Rk could be treated as a dense matrices.

8.2. Least-Squares CG Formulation. With gq = gk +Hk(x− xk), system (4.5)
is equivalent to the least-squares problem

(8.3) min
dZ

∥∥∥∥(GkZδI
)
dZ +

(
t
r/δ

)∥∥∥∥2

2
, t = Gk(x− xk), r = ZTgk,

where t and r both become small as the SQP method converges. This formulation
would allow the use of the CG-type solver LSQR [84], which has effective stopping
rules to control the accuracy of dZ .

8.3. Schur-Complement Updates. For limited-memory Hessians of the form
Hk = H0 + UUT − V V T (8.1), system (4.1) is equivalent to

H0 WT U V
W
UT I
V T −I



p
q
r
s

 =

g
0
0
0

 .
Following [56, section 3.6.2], if we define

K0 =
(
H0 WT

W

)
, S =

(
I
−I

)
−
(
UT

V T

)
K−1

0

(
U V

)
,

it would be efficient to work with a sparse factorization of K0 and dense factors of
its Schur complement S. (For a given QP subproblem, U and V are constant, but
changes to W would be handled by appropriate updates to S.)
This approach has been explored by Betts and Frank [5, section 5] withH0 = I (or

possibly a sparse finite-difference Hessian approximation). Schur-complement updates
have also been implemented in the GALAHAD QP solver QPA [64].
As part of an SQP algorithm, practical success depends greatly on the definition

of H0 and on the BFGS updates that define U and V . Our experience with SNOPT
emphasizes the importance of updating Hk even in the presence of negative curvature;
hence the precautions of section 2.10.

8.4. Schur-Complement Updates II. For a limited-memory Hessian of the form
H1 = (I + vuT )H0(I + uvT ), system (4.1) is equivalent to

H0 WT ū v
W
ūT γ −1
vT −1



p
q
r
s

 =

g
0
0
0

 , ū = H0u, γ = uTH0u.

It remains to be seen whether this will permit multiple product-form updates required
by (3.3).

9. Summary and Conclusions. We have presented theoretical and practical de-
tails about an SQP algorithm for solving nonlinear programs with large numbers of
constraints and variables, where the nonlinear functions are smooth and first deriva-
tives are available. The algorithm minimizes a sequence of augmented Lagrangian
functions, using a QP subproblem at each stage to predict the set of active con-
straints and to generate a search direction in both the primal and the dual variables.
Convergence is assured from arbitrary starting points.
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The constraints in the QP subproblems are linearizations of the original con-
straints (requiring only first derivatives), but the QP objective must approximate the
Lagrangian more closely. As with interior-point methods, the most promising way
to achieve efficiency would be to work with sparse second derivatives (i.e., an exact
Hessian of the Lagrangian, or a sparse finite-difference approximation). However, in-
definite QP subproblems raise many practical questions, and alternatives are needed
when second derivatives are not available.
The present implementation, SNOPT, uses a positive-semidefinite quasi-Newton

Hessian approximation Hk. If the number of nonlinear variables is moderate, Hk is
stored as a dense matrix. Otherwise, limited-memory BFGS updates are employed,
with resets to the current diagonal at a specified frequency (typically every 5 or 10
major iterations).
The QP solver, SQOPT, works with a sequence of reduced-Hessian systems of the

form ZTHkZd = −ZTg, where Z is a rectangular matrix operator with nZ columns
(the number of degrees of freedom). SQOPT can deal with the reduced-Hessian sys-
tems in various ways, depending on the size of nZ . If many constraints are cur-
rently active in the QP, nZ is not excessively large and it is efficient to use the dense
Cholesky factorization ZTHkZ = RTR. Alternatively, SQOPT can maintain a dense
quasi-Newton approximation ZTHkZ ≈ RTR to avoid the cost of forming and factor-
izing the reduced Hessian. Another option is to use the CG method. The structure of
the reduced Hessian often makes this the most effective method for solving problems
with many degrees of freedom (with no preconditioning for the CG method). Finally,
SQOPT has the option of using a dense quasi-Newton approximation to part of the
reduced Hessian as a preconditioner for the CG solver.
The numerical results in section 7 show that the current version of SNOPT is

effective on most of the problems in the CUTEr and COPS 3.0 test sets, including
examples with up to 40000 constraints and variables, and some with 20000 degrees of
freedom. Earlier comparisons with MINOS have shown greater reliability as a result of
methodical treatment of the merit function parameters and of infeasibility (via “elastic
variables”), and much greater efficiency when function and gradient evaluations are
expensive. Reliability has also improved relative to NPSOL, and the sparse-matrix
techniques have permitted production runs on increasingly large trajectory problems.
Future work must take into account the fact that second derivatives are increas-

ingly available. The QP solver should allow for indefinite QP Hessians, and additional
techniques are needed to handle even more degrees of freedom.
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