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ABSTRACT

This paper presents a fast algorithm for restoring video sequences.
The proposed algorithm, as opposed to existing methods, does not
consider video restoration as a sequence of image restoration prob-
lems. Rather, it treats a video sequence as a space-time volume
and poses a space-time total variation regularization to enhance the
smoothness of the solution. The optimization problem is solved by
transforming the original unconstrained minimization problem to an
equivalent constrained minimization problem. An augmented La-
grangian method is used to handle the constraints, and an alternat-
ing direction method (ADM) is used to iteratively find solutions of
the subproblems. The proposed algorithm has a wide range of ap-
plications, including video deblurring and denoising, disparity map
refinement, and reducing hot-air turbulence effects.

Index Terms— video, augmented Lagrangian method, alternat-
ing direction method, space-time, deconvolution.

1. INTRODUCTION

Solving a video problem is not the same as solving a sequence of
image problems. A few unique features about video problems are:

1. Motion information:
Trajectories of objects/camera in a scene are crucial for mo-
tion deblurring. Although estimating trajectories from a sin-
gle image is possible (e.g., [1]), the methods are limited to
camera motion only, or at most one to two objects in a scene.
Additionally, these methods rely heavily on object segmen-
tation algorithms - any error in object segmentation will be
amplified in the deblurring step. Compared to single images,
estimating motion from videos are much easier.

2. Spatial variance versus spatial invariance:
The motion blur problem is spatially variant if it is considered
as a single image problem. A simple example is a scene con-
sisting of a fast moving car and some background buildings.
The background is sharp because it is stationary, but the car
is motion-blurred because it is moving. There are at least two
different blur kernels for this particular problem, and which
kernel to use depends on which pixel we are considering.
However, if we consider motion blur as a video problem, it
becomes spatially invariant. It can be shown that a motion
blur kernel for a video is a lowpass filter in time [2], i.e., inde-
pendent of the pixel locations. This makes the problem much
easier to solve, because invariant blur kernels can be handled
efficiently using Fourier Transforms.
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3. Temporal consistency:
Consistency from frame to frame is not guaranteed by per-
forming single image restorations on each frame. As an
example, we can create a video sequence by repeating an
image many times, with the average intensity of each frame
being increased randomly. For this video, there is no notice-
able problem if we only look at one frame. However, when
it is played, the random fluctuation in average intensity will
cause the perception of flickering.

The objective of this paper is to extend a commonly used single
image restoration technique to video problems, namely the ADM
for total variation minimization problems. We will show that by
considering the video as a space-time volume (instead of individual
images) [2], the three above mentioned problems can be handled. We
will demonstrate practical applications in de-weathering and stereo
video processing.

The organization of the paper is as follows. First in Section 2,
the problem statement, notation and background are presented. Then
in Section 3, the proposed algorithm will be discussed in detail. Sec-
tion 4 presents three applications of the algorithm. The algorithm’s
limitation will be mentioned in Section 5.

2. PROBLEM STATEMENT

2.1. Notation and background

A video signal is represented by f(x, y, t), where (x, y) is the
spatial coordinate and t is the temporal coordinate. Discrete sam-
ples of f(x, y, t) for x = 0, . . . ,M − 1, y = 0, . . . , N − 1, and
t = 0, . . . ,K − 1 form a three-dimensional tensor of M rows, N
columns and K frames. This tensor is known as the space-time
volume [2].

For the purpose of discussing numerical algorithms, we use ma-
trices and vectors. To this end, we stack the entries of f(x, y, t) into
a column vector of dimension MNK×1, according to lexicographic
order. We use the bold letter f to represent the vectorized version
of the space-time volume f(x, y, t). That is, f = vec[f(x, y, t)],
where vec[·] denotes the vectorization operator.

Similar image restoration problems, we need a blur kernel to
model the blurring operation. The blur kernel in this paper is rep-
resented by h(x, y, t). Associated with h(x, y, t) is the convolution
matrix H, whose operation on f is given by Hf = vec[h(x, y, t) ∗
f(x, y, t)], where ∗ denotes convolution. If h(x, y, t) is spatially and
temporally invariant, then H is a triple block-circulant matrix (anal-
ogous to block-circulant-with-circulant-block matrices (BCCB) [3]
for image problems). In this case, H can be diagonalized using
the three-dimensional discrete Fourier Transform (3D-DFT) matrix



F = FM ⊗ FN ⊗ FK , where FN is the N × N one-dimensional
DFT matrix [4] and ⊗ denotes the Kronecker product.

2.2. Main problem

We consider the following least-squares minimization with total
variation regularization:

minimize
f

μ
2
‖Hf − g‖2 + ‖Df‖2 , (1)

where the constant μ is the regularization parameter that puts relative
emphasis on the objective function and the regularization term. The
vector f is the optimization variable of size MNK×1; g is a vector
denoting the observed (blurry and noisy) video. H is the MNK ×
MNK convolution matrix 1. The norm ‖ · ‖2 is the square of the
vector Euclidean norm, and ‖ · ‖2 is defined by (2). The operator D
is the three-dimensional forward finite difference operator, given by
D =

[
DT

x DT
y DT

t

]T
, where

Dxf = vec[f(x + 1, y, t)− f(x, y, t)],

Dyf = vec[f(x, y + 1, t)− f(x, y, t)],

Dtf = vec[f(x, y, t+ 1)− f(x, y, t)],

with circular boundary conditions. In order to have greater flexibility
in controlling the regularization terms, we introduce three scaling
factors to the forward difference operators as follows. We define
the scalars βx, βy and βt and multiply them with Dx, Dy and Dt,
respectively so that D =

[
βxD

T
x βyD

T
y βtD

T
t

]T
.

In this paper, ‖Df‖2 is defined as

‖Df‖2 =
∑
i

√
β2
x [Dxf ]

2
i + β2

y [Dyf ]
2
i + β2

t [Dtf ]
2
i , (2)

where [f ]i is the i-th element of f . When βx = βy = 1 and βt =

0, then ‖Df‖2 =
∑

i

√
[Dxf ]

2
i + [Dyf ]

2
i is the two-dimensional

total variation of f (in space). When βx = βy = 0 and βt = 1,
then ‖Df‖2 = ‖Dtf‖1 is the one-dimensional total variation of f
(in time). By adjusting the relative weights βx, βy and βt, we can
control the relative emphasis put on the individual terms Dxf , Dyf
and Dtf .

3. PROPOSED ALGORITHM

The proposed algorithm is an extension of the augmented La-
grangian method described in [5], [6]. Therefore, instead of re-
peating them here, we focus on the changes made to the three-
dimensional case. Also, due to limited space, our discussion is
focused on Problem (1), which is known as the TV/L2 problem. The
same idea can be extended to the TV/L1 problem,

minimize
f

μ ‖Hf − g‖1 + ‖Df‖2,

by introducing additional intermediate variables r = Hf − g and
Lagrange multipliers z associated with the constraints r = Hf − g.

1H is never constructed explicitly, but considered as an operator.

3.1. Overall algorithm

To solve Problem (1), we first introduce intermediate variables u and
transform Problem (1) into an equivalent constrained problem

minimize
f,u

μ
2
‖Hf − g‖2 + ‖u‖2

subject to u = Df .
(3)

The augmented Lagrangian function of Problem (3) is

L(f ,u,y) =
μ

2
‖Hf−g‖2+‖u‖2−yT (u−Df)+

ρr
2
‖u−Df‖2,

(4)
where ρr is a regularization parameter associated with the quadratic
penalty term ‖u−Df‖2, and y are the Lagrange multipliers associ-
ated with the constraints u = Df . In Equation (4), the intermediate
variables u and the Lagrange multipliers y can be partitioned as

u =
[
uT
x uT

y uT
t

]T
, and y =

[
yT
x yT

y yT
t

]T
, (5)

respectively, and ‖u‖2 =
∑

i

√
[ux]2i + [uy ]2i + [ut]2i .

The idea of the augmented Lagrangian method is to find a sad-
dle point of the augmented Lagrangian function L(f ,u,y). To this
end, we use the alternating direction method (ADM) to solve the
following sub-problems iteratively:

fk+1 = argmin
f

μ

2
‖Hf − g‖2 + yT

k Df +
ρr
2
‖uk −Df‖2,

uk+1 = argmin
u

‖u‖2 − yT
k u+

ρr
2
‖u−Dfk+1‖2,

yk+1 = yk − ρr(uk+1 −Dfk+1).

We now consider these sub-problems individually.

3.2. f -subproblem

The f -subproblem can be expressed as

minimize
f

μ

2
‖Hf − g‖2 + yTDf +

ρr
2
‖u−Df‖2,

where its solution can be found by considering the normal equation

(μHTH+ ρrD
TD)f = μHTg+ ρrD

Tu−DTy. (6)

Since the convolution matrix H is a triple block-circulant matrix,
it is diagonalizable using the 3D-DFT matrix. Hence, the matrix
μHTH+ ρrD

TD can be diagonalized as

F
(
μHTH+ ρrD

TD
)
FH

= μ|ΛH|2 + ρr(β
2
x|ΛDx |2 + β2

y |ΛDy |2 + β2
t |ΛDt |2), (7)

where ΛH, ΛDx , ΛDy , ΛDt are eigenvalue matrices of H, Dx, Dy

and Dt, respectively. Here, |·| denotes the component-wise complex
modulus. With the diagonalization (7), the normal equation (6) can
be solved in three steps:

1. Apply three-dimensional discrete Fourier Transform to the
right hand side of (6);

2. Multiply the result of Step 1 by(
μ|ΛH|2 + ρr(β

2
x|ΛDx |2 + β2

y |ΛDy |2 + β2
t |ΛDt |2)

)−1
,

which is a component-wise division;

3. Apply an inverse three-dimensional discrete Fourier Trans-
form to the result of Step 2.

Note that the diagonal matrices ΛH, ΛDx , ΛDy , ΛDt can be pre-
calculated outside the main loop.



3.3. u-subproblem

The u sub-problem min
u

‖u‖2 − yTu + ρr
2
‖u − Df‖2 can be

solved using the well-known shrinkage formula [7]. Letting vx =
βxDxf +

1
ρr

yx, vy = βyDyf +
1
ρr

yy, vt = βtDtf +
1
ρr

yt, and

let v =
√|vx|2 + |vy|2 + |vt|2, u can be found as

ux = max {v − 1/ρr, 0} · vx/v,

uy = max {v − 1/ρr, 0} · vy/v, (8)

ut = max {v − 1/ρr, 0} · vt/v,

where the multiplications and divisions are component-wise opera-
tions.

3.4. Parameters

The regularization parameter ρr associated with the quadratic
penalty ‖u − Df‖2 is updated according to the relative change
between the previous constraint violation and the current constraint
violation. Specifically, given an initial ρr (typically ρr = 2), ρr is
updated by

ρr =

{
2ρr, if ‖uk+1 −Dfk+1‖2 ≥ αr‖uk −Dfk‖2,
ρr, otherwise.

(9)

Empirically, αr = 0.7 is an appropriate choice for most of the prob-
lems.

A few remarks for choosing the parameter μ and (βx, βy , βt):

• Regularization parameter μ
The range of μ is from 1 to 106, where smaller values of μ
will produce smoother solutions.

• Relative weights (βx, βy , βt)
For gray-scaled/ color image restoration, (βx, βy , βt) =
(1, 1, 0). For general video deblurring and denoising,
(βx, βy , βt) = (1, 1, 2.5). For removing serious flicker-
ing in video, (βx, βy, βt) = (1, 1, 10).

3.5. Convergence and Run Time

The convergence proof for conventional ADM can be found in [8, 6],
in which the parameter ρr is fixed throughout the iterations. When
the automatic parameter update scheme (9) is used, the algorithm
converges at a faster rate of convergence. The complexity of the
algorithm has the bottleneck in solving the normal equation (6),
which requires O(n log n) operations for the three-dimensional dis-
crete Fourier Transforms, with n being the number of elements of
the space-time volume f(x, y, t).

The run time of the proposed algorithm is approximately 2 sec-
onds per frame per color channel on Intel Qual Core 2.8GHz/ 4GB
RAM/ MATLAB/ Windows 7, for a 300 × 400 video. Therefore,
some low frame-rate applications (5-10 frames per second) can be
supported when the algorithm is ported to CPU or GPU.

3.6. User Interface

The proposed algorithm (deconvtv) has been implemented in
MATLAB/ Windows 7. The name and the interface are de-
signed to match MATLAB’s standard deconvolution tools, namely
deconvwnr, deconvwnr and deconvreg. The i/o format of
deconvtv in MATLAB is

out = deconvtv(g, H, mu, opts);

where g, H and mu are the required fields, and opts is an optional
field that controls the parameters.

4. APPLICATIONS

We illustrate a few applications of the algorithm in this section.
Due to the limited space, more results can be found at http://
videoprocessing.ucsd.edu/˜stanleychan/deconvtv.

4.1. Video Deblurring

Our first example is video deblurring. As mentioned in [2], motion
blur can be considered as the convolution of the space-time volume
f(x, y, t) with the three-dimensional blur kernel h(x, y, t), where
h(x, y, t) is defined as h(x, y, t) = 1/T for 0 < t < T , x = y =
0, and h(x, y, t) = 0 otherwise. Consequently, given an observed
video g(x, y, t) and the blur kernel h(x, y, t), we solve the following
minimization problem

minimize
f

μ

2
‖Hf − g‖2 + ‖Df‖2.

To illustrate the performance of the proposed method, we tested
a number of video sequences. The video sequences are blurred by a
point spread function h(t) = 1/4 for t = 0, 1, 2, 3, and h(t) = 0
otherwise. All frames are corrupted with Gaussian noise so that the
blur signal to noise ratio (BSNR) is 30dB. Some results are shown
in Fig. 1. For more sequences, PSNR values, total variation values
in space and time, please visit our website.

frame no. →

Fig. 1. Motion blur experiment for “salesman” sequence. Top: orig-
inal video sequence. Middle: motion blurred by h(t) = 1/4 for
t = 0, 1, 2, 3. Bottom: video recovered by deconvtv. Parameters
for deconvtv are μ = 1000, (βx, βy, βt) = (1, 1, 2.5).

4.2. Disparity Refinement

Our second example deals with the refinement of the disparity maps
estimated from a stereo video. Disparity is the reciprocal of the dis-
tance between the camera and the object (i.e., the depth). Dispar-
ity estimation is the first step to all stereo video processing applica-
tions, such as object detection in three-dimensional space, saliency
for stereo videos, stereo coding etc. However, most of the existing
methods [9] are only applicable to images, not videos. The temporal
consistency of the results generated by those methods is usually very
poor.

Given a stereo video, we first perform initial disparity map esti-
mation in a frame-by-frame basis using a modified version of loopy



belief propagation [10]. Then we consider the initial disparity maps
as a space-time volume g and solve the following minimization
problem

minimize
f

μ ‖f − g‖1 + ‖Df‖2.
The goal of this denoising problem is to reduce the temporal and spa-
tial noise in the disparity, while keeping the edges sharp. The choice
of l1-norm over the l2-norm in the objective function is based on two
reasons. First, the noise in the initial disparities is impulsive, which
is more suitable for using TV/L1, as TV/L1 minimization enforces
sparsity of f − g, which in turn suppresses impulsive noise. Second,
disparity maps consist of only a few discrete levels. So the solution f
is a piece-wise step function, which also makes TV/L1 minimization
more suitable than TV/L2 minimization.

Fig. 2 shows zoom-in results of the sequence “Old Timers”.
More sequences and plots can be found on our website.

Fig. 2. Disparity map estimation result of “Old Timers” sequence.
Top row: stereo video input (left view). Middle row: initial map
estimation using loopy belief propagation [10]. Bottom row: result
of applying deconvtv to the middle row. Parameters are μ = 1,
(βx, βy, βt) = (1, 1, 2.5).

4.3. Hot-air Turbulence

Our third example is to remove hot-air turbulence effects. In the
presence of hot-air turbulence, the refractive index along the trans-
mission path of the light ray is changing [11] and so the path differ-
ences and hence the phases are varying. Consequently, the observed
image is distorted by geometric warping, motion blur and sometimes
out-of-focus blur.

The objective of using deconvtv is to reduce the turbulence
effects, and deblur the video. To do so, we consider the video as
a space-time volume. For a particular pixel in space, pixel inten-
sity fluctuates rapidly in time if it is distortion by hot-air turbulence.
Therefore, by setting βt large, the variation of pixel intensity in time
will be suppressed, and hence the turbulence effects will be reduced.
Hence, we solve the minimization problem

minimize
f

μ

2
‖Hf − g‖2 + ‖Df‖2,

where H is estimated using a modified version of the kernel estima-
tion method presented in [12]. Some results are shown in Fig. 3, and
full resolution videos/ other sequences can be found on our website.

5. DISCUSSION AND CONCLUSION

A limitation of deconvtv in solving motion blur problems is that
a robust frame rate up conversion algorithm is needed, because the

Fig. 3. Zoom-in snapshots of the sequence “acoustic explorer”. Top:
input video sequence. Middle: contrast enhancement using gray-
level grouping [13]. Bottom: applying deconvtv to the results of
the middle row.

performance of the algorithm is sensitive to the quality of intermedi-
ate frames. Another limitation of deconvtv is that it handles small
hot-air turbulence only (perceptually similar to jittering). For large
area geometric distortion, non-rigid registration is needed.

To conclude, we propose and demonstrate a fast numerical opti-
mization algorithm that solves video restoration problems. The algo-
rithm treats the video as a space-time volume, instead of a sequence
of individual images. Therefore, spatial and temporal smoothness
can be enforced by setting up a total variation regularization. Our
algorithm can be used in several areas, including video deblurring/
denoising, disparity refinement and hot-air turbulence removal.
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