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Abstract. We consider methods for large-scale unconstrained minimization based on finding an
approximate minimizer of a quadratic function subject to a two-norm trust-region constraint. The
Steihaug-Toint method uses the conjugate-gradient method to minimize the quadratic over a sequence
of expanding subspaces until the iterates either converge to an interior point or cross the constraint
boundary. However, if the conjugate-gradient method is used with a preconditioner, the Steihaug-
Toint method requires that the trust-region norm be defined in terms of the preconditioning matrix.
If a different preconditioner is used for each subproblem, the shape of the trust-region can change
substantially from one subproblem to the next, which invalidates many of the assumptions on which
standard methods for adjusting the trust-region radius are based. In this paper we propose a method
that allows the trust-region norm to be defined independently of the preconditioner. The method
solves the inequality constrained trust-region subproblem over a sequence of evolving low-dimensional
subspaces. Each subspace includes an accelerator direction defined by a regularized Newton method
for satisfying the optimality conditions of a primal-dual interior method. A crucial property of this
direction is that it can be computed by applying the preconditioned conjugate-gradient method to
a positive-definite system in both the primal and dual variables of the trust-region subproblem.
Numerical experiments on problems from the CUTEr test collection indicate that the method can
require significantly fewer function evaluations than other methods. In addition, experiments with
general-purpose preconditioners show that it is possible to significantly reduce the number of matrix-
vector products relative to those required without preconditioning.
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1. Introduction. The jth iteration of a trust-region method for the uncon-
strained minimization of a scalar-valued function f involves finding an approximate
solution of the trust-region subproblem

minimize
s∈Rn

Qj(s) ≡ gT
j s + 1

2
sTHjs subject to ‖s‖ ≤ δj , (1.1)

where Qj(s) is a quadratic model of f(xj + s) − f(xj), the change in the objective,
gj and Hj are usually the gradient vector and Hessian matrix of f at xj , and δj is a
given positive trust-region radius.

The focus of this paper is on the solution of (1.1) when the matrix Hj is best
accessed as an operator for the definition of matrix-vector products of the form Hjv.
In this context, Steihaug [26] and Toint [27] independently proposed methods for
solving (1.1) when the trust region is defined in terms of the two-norm, i.e., the
constraint is ‖s‖2 ≤ δj . If Hj is positive definite, the Newton equations Hjs = −gj

define the unconstrained minimizer of (1.1). The Steihaug–Toint method begins with
the application of the conjugate-gradient (CG) method to the Newton equations.
This process is equivalent to minimizing Qj over a sequence of expanding subspaces
generated by the CG directions. As long as the curvature of Qj remains positive on
each of these subspaces, the CG iterates steadily increase in norm and the CG iterates
either converge inside the trust region or form a piecewise-linear path with a unique
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intersection-point on the trust-region boundary. When Hj is not positive definite, a
solution of (1.1) must lie on the boundary of the trust region and the CG method may
generate a direction p along which Qj has zero or negative curvature. In this case, the
algorithm is terminated at the point on p that intersects the boundary of the trust
region. (For other choices for the direction in this context, see, e.g., Toint [27] and
Nash [19].)

If Hj is positive definite, the Steihaug–Toint method will produce a solution
that is at least half as good as the global solution of (1.1)—even when the solution
lies on the boundary of the trust region (see, e.g., Yuan [28], or Conn, Gould, and
Toint [2, pp. 216–217]). However, if Hj is indefinite, the Steihaug–Toint step may
bear little relation to an optimal solution of (1.1). This means that, in contrast to
line-search methods, it is not possible to choose an approximate solution that bal-
ances the overall cost of computing the problem functions with the cost of computing
the trust-region step (see, e.g., [5] for more discussion of this issue). Several exten-
sions of the Steihaug–Toint method have been proposed that allow the accuracy of
a solution to be specified in the indefinite case. Gould et al. [11] proposed the gen-
eralized Lanczos trust-region (GLTR) algorithm, which finds a constrained minimizer
of (1.1) over a sequence of expanding subspaces associated with the Lanczos process
for reducing Hj to tridiagonal form. Erway, Gill, and Griffin [5] use a sequential
subspace minimization (SSM) method, which approximates a constrained minimizer
over a sequence of evolving low-dimensional subspaces that do not necessarily form
an expanding sequence.

These recent extensions to the Steihaug–Toint method add the ability to increase
the accuracy of the trust-region solution when needed. The result is a reliable and
efficient method for applying the CG method to large-scale optimization. However,
in the three situations discussed below, the Steihaug–Toint approach may not be
efficient.

Preconditioning the CG method. In many applications the convergence rate
of CG can be improved significantly by using a preconditioner, which is usually avail-
able in the form of a positive-definite operator M−1

j that clusters the eigenvalues of

M−1
j Hj . If a preconditioned CG method is used, the increasing norm property of the

iterates holds only in the weighted norm ‖x‖Mj
= (xTMjx)1/2, which mandates the use

of a trust region of the form ‖s‖Mj
≤ δj . Unfortunately, if a different preconditioner

is used for each trust-region subproblem, the shape of the trust region may alter dra-
matically from one subproblem to the next. Since a fundamental tenet of trust-region
methods is that the value of δj be used to determine the value of δj+1, the effective-
ness of the trust-region strategy may be seriously compromised. We emphasize the
distinction between the constant weighted trust region ‖Ns‖2 = (sTNTNs)1/2 ≤ δj

typically associated with a constant nonsingular scaling matrix N , and the varying
trust region ‖s‖Mj

≤ δj induced by the preconditioner.

Convergence to second-order points. The Steihaug–Toint method and its
extensions are first-order methods, in the sense that they provide the basis for an un-
constrained minimization method that is guaranteed to converge to points that satisfy
the first-order necessary conditions for optimality (i.e., g = 0). If direct matrix factor-
izations are used, it is possible to approximate a global minimizer of the trust-region
subproblem and thereby guarantee convergence of the unconstrained minimization to
points that satisfy the second-order conditions for optimality, i.e., points at which
the gradient is zero and the Hessian is positive semidefinite (see, e.g., Moré and
Sorensen [17]). We know of no method based on the CG method that is guaranteed
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to find a global solution of (1.1) in finite-precision. For example, the Steihaug–Toint
method is not guaranteed to compute a solution on the boundary when Qj is un-
bounded below. (Suppose that Hj is indefinite and Qj(s) has a stationary point ŝ
such that ‖ŝ‖ < δj . If Hj is positive definite on the Krylov subspace spanned by gj ,
Hjgj , H2

j gj , . . . , then CG will terminate at the interior point ŝ.) Notwithstanding
these theoretical difficulties, it seems worthwhile devising strategies that have the
potential of providing convergence to a global solution in “most cases”.

Efficiency on related trust-region problems. When solving a difficult prob-
lem, it is often the case that conventional methods for updating δj will define a
sequence of trust-region problems for which gj and Hj remain the same and only δj

changes (see, e.g., Conn, Gould, and Toint [2, pp. 116–117]). However, the Steihaug–
Toint method is unable to exploit this information during the generation of the ex-
panding sequence of subspaces.

In this paper we consider an interior-point SSM method (IP-SSM) that is designed
to mitigate these ill-effects. (i) The method allows the use of CG preconditioning in
conjunction with a conventional definition of the trust-region norm. (ii) The likelihood
of approximating the global minimizer of (1.1) is increased by the computation of an
approximate left-most eigenpair of Hj that is not based on the CG Krylov subspace
(see Section 1.1 below for the definition of a left-most eigenpair). In particular, the
approximate eigenpair does not depend on the gradient, which allows the computation
of a nonzero step when gj = 0 and Hj is indefinite. (iii) Information garnered during
the solution of one subproblem may be used to expedite the solution of the next.

SSM methods were first proposed by Hager [13] for minimizing a quadratic func-
tion cTx+ 1

2
xTHx subject to the equality constraint xTx = δ2. These methods approx-

imate a constrained minimizer over a sequence of evolving low-dimensional subspaces
that include an “accelerator” direction designed to increase the rate of convergence.
Broadly speaking, SSM methods differ in the composition of the basis for the sub-
space, and in the definition of the accelerator direction. Hager employs a subspace
based on the gradient vector and the left-most eigenvector (see Hager and Park [14]).
(Hager’s method uses a very accurate approximation to the left-most eigenvector, and
is not designed to find the low-cost approximate solutions needed in the trust-region
context.) The accelerator direction is found by applying the CG method to the KKT
optimality conditions using a form of constraint preconditioning (see Keller, Gould,
and Wathen [15]). In the method of Erway, Gill, and Griffin [5], the accelerator is an
approximate Newton direction for minimizing a primal-dual augmented Lagrangian.
A feature of both of these methods is that the subspace minimization is applied to a
problem in which the trust-region constraint holds with equality. The IP-SSM method
applies SSM directly to the inequality constrained trust-region problem and uses an
accelerator direction computed using a primal-dual interior method.

Finally, we mention several Krylov-based iterative methods that are intended to
find a solution of the problem of minimizing Qj(s) = gT

j s + 1

2
sTHjs subject to the

equality constraint ‖s‖2 = δj . The methods of Sorensen [25], Rojas and Sorensen [23],
Rojas, Santos, and Sorensen [22], and Rendl and Wolkowicz [21] approximate the
eigenvalues of a matrix obtained by augmenting Hj by a row and column.

The paper is organized in four sections. In Section 2 we formulate the proposed
SSM method and consider some properties of the regularized Newton equations used
to generate the SSM accelerator direction. Section 3 includes numerical comparisons
with the Steihaug–Toint and GLTR methods on unconstrained problems from the
CUTEr test collection (see Bongartz et al. [1] and Gould, Orban, and Toint [12]).
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Finally, Section 4 includes some concluding remarks and observations.

1.1. Notation and Glossary. Unless explicitly indicated, ‖ · ‖ denotes the
vector two-norm or its subordinate matrix norm. The symbol ei denotes the ith
column of the identity matrix I, where the dimensions of ei and I depend on the
context. The eigenvalues of a real symmetric matrix H are denoted by {λi}, where
λn ≤ λn−1 ≤ · · · ≤ λ1. The associated eigenvectors are denoted by {ui}. A normal-
ized eigenpair (λ, u) such that λ = λn is known as a left-most eigenpair of H. The
Moore–Penrose pseudoinverse of a matrix A is denoted by A†. Some sections include
algorithms written in a Matlab-style pseudocode. In these algorithms, brackets are
used to differentiate between computed and stored quantities. For example, the ex-
pression [Ax] := Ax signifies that the matrix-vector product of A with x is computed
and assigned to the vector [Ax]. Similarly, if P is a matrix with columns p1, p2, . . . ,
pm, then [AP ] denotes the matrix with columns [Ap1], [Ap2], . . . , [Apm].

2. A SSM Method with Interior-Point Acceleration. In this section we
omit the suffix j and focus on a typical trust-region subproblem of the form

minimize
s∈Rn

Q(s) ≡ gTs + 1

2
sTHs subject to ‖s‖ ≤ δ. (2.1)

The Steihaug–Toint method and its extensions start with the unconstrained minimiza-
tion of Q and consider the constraint only if the unconstrained solution lies outside
the trust region. In the IP-SSM method, the inequality constrained problem (2.1) is
minimized directly over a sequence of low-dimensional subspaces, giving a sequence
of reduced inequality constraint problems of the form

minimize
s∈Rn

Q(s) subject to ‖s‖ ≤ δ, s ∈ Sk = span{sk−1, zk, sa
k}, (2.2)

where sk−1 is the current best estimate of the subproblem solution, zk is the cur-
rent best estimate of un (the left-most eigenvector of H), and sa

k is an interior-point
accelerator direction. The Lanczos variant of the CG method [20] is used to define
the accelerator direction and provide basis vectors for the low-dimensional subspaces
associated with the reduced versions of the left-most eigenvalue problem.

2.1. Definition of the accelerator direction. The accelerator direction sa
k is

an approximate Newton direction for the perturbed optimality conditions associated
with the problem

minimize
s∈Rn

Q(s) = gTs + 1

2
sTHs subject to 1

2
δ2 − 1

2
sTs ≥ 0. (2.3)

This is an inequality constrained optimization problem with Lagrange multiplier σ
and Lagrangian function

L(s, σ) = Q(s) − σ( 1

2
δ2 − 1

2
sTs) = Q(s) − σc(s),

where c(s) denotes the constraint residual c(s) = 1

2
δ2 − 1

2
sTs. The necessary and

sufficient conditions for a global solution of (2.3) imply the existence of a primal-dual
solution (s∗, σ∗) satisfying

(H + σI)s = −g, with H + σI positive semidefinite,
c(s)σ = 0, with σ ≥ 0 and c(s) ≥ 0.

(2.4)
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(For a proof, see, e.g., Gay [8], Sorensen [24], Moré and Sorensen [18], or Conn, Gould,
and Toint [2].) The conventional primal-dual interior-point approach to solving (2.3)
is based on finding s and σ that satisfy the perturbed optimality conditions

(H + σI)s = −g, with H + σI positive semidefinite,
c(s)σ = µ, with σ > 0 and c(s) > 0

(2.5)

for a sequence of decreasing values of the positive parameter µ. Let F (s, σ) denote
the vector-valued function whose components are the residuals (H + σI)s + g and
c(s)σ − µ. Given an approximate zero (s, σ) of F such that c(s) > 0 and σ > 0, the
Newton equations for the next iterate (s + p, σ + q) are

(

H + σI s
−σsT c(s)

)(

p
q

)

= −
(

g + (H + σI)s
c(s)σ − µ

)

.

The assumption that σ > 0 implies that it is safe to divide the last equation by −σ
to give the symmetrized equations

(

H + σI s
sT −d

)(

p
q

)

= −
(

g + (H + σI)s
d(σ̂ − σ)

)

,

where d = c(s)/σ and σ̂ = µ/c(s). The presence of the nonzero (2, 2) block implies
that the conventional interior-point approach defines a regularization of Newton’s
method for a solution of the optimality conditions (2.4). The regularized solution
lies on the central path of solutions

(

s(µ), σ(µ)
)

of (2.5) (see, e.g., [7]). This implies

that for a given nonzero µ the regularized solution
(

s(µ), σ(µ)
)

will be different from
a solution (s∗, σ∗) of the optimality conditions (2.4). Moreover, the influence of the
regularization diminishes as µ → 0.

These considerations suggest that we seek an “exact” regularization that allows
the use of a fixed value of µ, but does not perturb the regularized solution. Consider
the perturbed optimality conditions

(H + σI)s = −g with H + σI positive semidefinite,
c(s)σ = µ(σe − σ) with σ > 0 and c(s) > −µ,

(2.6)

where σe is a nonnegative estimate of σ∗. If σe = σ∗, these conditions are satisfied
by (s∗, σ∗) for any positive µ sufficiently small. The symmetrized Newton equations
associated with conditions (2.6) are

(

H + σI s
sT −d

)(

p
q

)

= −
(

g + (H + σI)s
d(σ̂ − σ)

)

,

where, in this case, d = (c(s) + µ)/σ and σ̂ = µσe/(c(s) + µ). Forsgren, Gill and
Griffin [6] show that these equations are equivalent to the so-called doubly-augmented
system

(

H(σ) + (2/d)ssT −s
−sT d

) (

p
q

)

= −
(

g + H(σ)s − 2(σ − σ̂)s
d(σ − σ̂)

)

,

where H(σ) = H + σI. Finally, we multiply the last equation and last variable by

d−
1

2 and d
1

2 , respectively, to improve the scaling when σ → 0. This gives

(

H(σ) + 2s̄s̄T −s̄
−s̄T 1

)(

p
q̄

)

= −
(

g + H(σ)s − 2d
1

2

(

σ − σ̂
)

s̄

d
1

2 (σ − σ̂)

)

, (2.7)
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where s̄ = d−
1

2 s and q = d−
1

2 q̄. (The system (2.7) may be derived in terms of
the optimality conditions for a primal-dual modified barrier function, see Erway and
Gill [4].)

The equations (2.7) are positive definite in a neighborhood of a minimizer (s, σ)
such that σ ∈ (−λn,∞), and they may be solved using the CG method. If a direction
of negative or zero curvature is detected, the direction is used to update a lower
bound σℓ on the best estimate of σ (see Section 2.2). The equations need not be
solved to high accuracy because the quality of the accelerator step affects only the
rate of convergence of the SSM method. In the runs described in Section 3 only one
Newton iteration was performed.

The CG method may be used in conjunction with a preconditioner of the form

P =

(

M(σ) + 2s̄s̄T −s̄
−s̄T 1

)

,

where M(σ) is a positive-definite approximation to H(σ). The equations Pv = u used
to apply the preconditioner are solved by exploiting the equivalence of the systems

(

M(σ) + 2s̄s̄T −s̄
−s̄T 1

)(

v1

v2

)

=

(

u1

u2

)

(2.8a)

and

(

M(σ) s̄
s̄T −1

)(

v1

v2

)

=

(

u1 + 2u2s̄
−u2

)

(2.8b)

(see Forsgren, Gill and Griffin [6]). Equations (2.8b) are solved analytically if M(σ) is
diagonal. Alternatively, if M(σ) is defined using an incomplete Cholesky factorization
of H(σ) we solve (2.8b) using the block factorization

(

M(σ) s̄
s̄T −1

)

=

(

I 0
wT 1

)(

M(σ) 0
0 −

(

1 + wTs̄
)

)(

I w
0 1

)

,

where w satisfies M(σ)w = s̄. Thus, the preconditioned CG computations may be
arranged so that only solves with M(σ) are required.

The calculations associated with the computation of the accelerator direction sa
k

are summarized in Algorithm ipAccelerator below.

Algorithm ipAccelerator .
(

sa, [Hsa], σa, σℓ, z, ζ
)

= ipAccelerator
(

sa, [Hsa], σa, σℓ

)

;

σ̂ := µσe/
(

c(sa) + µ
)

;

Find an approximate solution (p, q) of (2.7) with (s, σ) = (sa, σa);
(During the Lanczos process, estimate the left-most eigenpair (z, ζ) of H, and
update σℓ if (2.7) is indefinite);
ασ := if q < 0 then (σa − σℓ)/q else +∞;
αs := the positive root of c(αsa) + µ = 0;
αM := min{1, (1 − µ)ασ, (1 − µ)αs}; Compute α such that 0 < α ≤ αM ;
sa := sa + αp; σa := σa + αq; [Hsa] :=[Hsa] + α[Hp];

The step α ∈ (0, αM ] may be computed using a backtracking line search on the
residual norm of the optimality conditions (2.6). In the runs of Section 3, the step



A SUBSPACE MINIMIZATION METHOD FOR THE TRUST-REGION STEP 7

was computed using a Wolfe line search on the associated primal-dual modified barrier
function (see Erway and Gill [4]).

Now we consider the precise effect of the regularization parameter µ. The sub-
problem (2.3) is said to be degenerate if the equations (H−λnI)s = −g are compatible
with least-length solution sL satisfying ‖sL‖ < δ. If λn ≥ 0, the quantities σ = 0 and
s = sL satisfy the optimality conditions (2.4). (If λn > 0, sL is just the Newton
direction −H−1g.) If λn < 0, the equations (H + σI)s = −g cannot be used alone
to determine the optimal s. However, the left-most eigenvector un is a null vector of
H − λnI, and there exists a scalar τ such that

(H − λnI)(sL + τun) = −g and ‖sL + τun‖ = δ.

In this case, σ = −λn and s = sL + τun satisfy the optimality conditions (2.4) and
thereby constitute a global solution of (2.3).

Theorem 2.1 (Regularization of the degenerate case). Let (s, σ) be a solution of
the trust-region subproblem such that (i) ‖s‖ = δ; (ii) H + σI is positive semidefinite
and singular; (iii) g ∈ null(H + σI)⊥; and (iv) ‖(H + σI)†g‖ < δ. If the left-most
eigenvalue of H has algebraic multiplicity 1, then the augmented system matrix

(

H + σI + (2/d)ssT −s

−sT d

)

(2.9)

is positive definite for any d > 0.
Proof. Assumptions (i)–(iv) imply that (s, σ) is a constrained degenerate solution.

In particular, it holds that σ = −λn, where λn is the left-most eigenvalue of H. A
solution s of the trust-region subproblem is given by

s = −(H − λnI)†g + βz, (2.10)

where z is a unit vector such that z ∈ null(H − λnI) and β is a nonzero scalar such
that ‖s‖ = δ. Consider the following decomposition of (2.9):

(

H + σI + 2

dssT −s

−sT d

)

=

(

I − 1

ds

0 1

) (

H − λnI + 1

dssT 0

0 d

) (

I 0

− 1

dsT 1

)

.

Assume that H + σI + (2/d)ssT is not positive definite. Then there exists a nonzero
p such that pT(H − λnI + (2/d)ssT )p ≤ 0. As H − λnI is positive semidefinite, it
must hold that p ∈ null(H − λnI) and sTp = 0. Moreover, since (H − λnI)†g ∈
range(H − λnI), it must hold that sTp = βzTp = 0, which implies that zTp = 0. But
this is only possible if dim(null(H − λnI)) > 1. Thus H + σI + (2/d)ssT must be
positive definite and the result follows.

2.2. Calculation of the approximate left-most eigenpair. The approxi-
mate Newton equations (2.7) are solved using the Lanczos-CG variant of the pre-
conditioned CG method. During the evaluation of the Lanczos process, the Lanczos
vectors are used to generate the subspace associated with an SSM method for an
estimate of the left-most eigenpair of H. The estimate is computed by solving the
reduced generalized eigenproblem

minimize
z∈Rn

zTHz subject to ‖z‖ = 1, z ∈ Zk = span{zk−1, v̄k, v̄k−1}, (2.11)
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where zk−1 is the left-most eigenvector estimate from the previous Lanczos-CG itera-
tion, and v̄k and v̄k−1 are the first n components of the two most recently computed
Lanczos vectors. Given the matrix Zk whose columns form a maximally linearly inde-
pendent subset of {zk−1, v̄k, v̄k−1}, the solution zk of (2.11) is defined as zk = Zkwk,
where wk solves the reduced problem

minimize
y

yTZT
kHZky subject to ‖Zky‖ = 1.

This problem has at most three dimensions, and is solved in closed form. Once zk

has been determined, the left-most eigenvalue is estimated by the Rayleigh quotient
ζk = zT

kHzk. The inclusion of zk−1 as a generator of Zk ensures that the Rayleigh
quotients decrease monotonically.

The calculation of ZT
kHZk requires the vectors Hzk−1, Hv̄k and Hv̄k−1. The

vector Hzk−1 is the solution of the previous reduced eigenproblem. The vectors Hv̄k

and Hv̄k−1 are available as part of the two-term Lanczos recurrence. For the next
step, the vector Hzk is defined in terms of the identity Hzk = HZkwk, which involves
a simple linear combination of Hzk−1, Hv̄k and Hv̄k−1. It follows that once Hz0 is
calculated, no additional matrix-vector products are needed. The calculation of the
eigenpair is summarized in Algorithm ssmEig below. A random z0 is used for the first
outer iteration (i.e., j = 0). In subsequent iterations, z0 is defined as the eigenvector
estimate from the previous trust-region subproblem. As the sequence {Hj} converges,
z0 should be a good estimate of the left-most eigenvector for each subproblem.

Algorithm ssmEig . (Part of the Lanczos-CG process within ipAccelerator)
(

z, ζ, [Hz], σℓ

)

= ssmEig(z, v̄k, v̄k−1, [Hz], [Hv̄k], [Hv̄k−1], σℓ);

Define Z from a maximally linearly independent subset of v̄k, v̄k−1, and z;
Form ZTHZ and ZTZ from z, v̄k, v̄k−1, [Hv̄k], [Hv̄k−1] and [Hz];
w := argminy

{

yTZTHZy : ‖Zy‖ = 1
}

;

z := Zw; ζ = zTHz;
[Hz] :=[HZ]w;
σℓ = max{|ζ|, σℓ};

Another estimate of the left-most eigenvector is available if the CG method detects
that the Newton system (2.7) is not positive definite. The next result shows that if
CG computes a conjugate direction p of negative curvature for (2.7), then p provides
an estimate of the left-most eigenvector.

Theorem 2.2. If p is a direction of negative curvature for the matrix

B =

(

H + σI + (2/d)ssT −s
−sT d

)

,

with d a positive scalar, then the vector of first n elements of p is a direction of
negative curvature for H + σI.

Proof. As p is a direction of negative curvature for B, we have

pTBp = pT

(

H + σI + (2/d)ssT −s
−sT d

)

p < 0.
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Let p̂ and ρ denote the first n elements and the last element of p respectively. A
simple calculation yields

pTBp = p̂T(H + σI)p̂ +
2

d
(sTp̂)2 − 2ρsTp̂ + ρ2d

= p̂T(H + σI)p̂ +
1

d
(sTp̂)2 +

1

d

(

(sTp̂)2 − 2(sTp̂)(ρd) + (ρd)2
)

= p̂T (H + σI)p̂ +
1

d

(

(sTp̂)2 + (sTp̂ − ρd)2
)

< 0.

It follows that p̂T(H + σI)p̂ < −
(

(sTp̂)2 + (sTp̂ − ρd)2
)

/d < 0, as required.
The algorithm maintains two approximate solutions: (se, σe) and (sa, σa). The

pair (se, σe) is the solution of the subspace minimization problem (2.2). The acceler-
ator pair (sa, σa) is the most recent estimate of a solution of the perturbed optimality
conditions (2.6).

At each iteration, a safeguarding algorithm ensures that both σa and σe are
strictly positive and not less than σℓ, a current greatest lower bound on −λn. The
algorithm also attempts to adjust σa so that matrix H+σaI of (2.7) is positive definite.
In order to maintain the monotonicity of Q, the value of se is always the solution of
the subspace minimization problem. However, any σe such that σe < σℓ < σa is
overwritten by σa. In addition, (sa, σa) is replaced by (se, σe) if σa < σℓ < σe. In the
event that both σa and σe are less than σℓ, the left-most eigenpair is used to update
σe, σa, and sa.

Algorithm safeguard .
(

sa, σa, σe, [Hsa]
)

= safeguard
(

sa, σa, se, σe, ζ, z, σℓ, [Hsa], [Hse], [Hz], δ
)

;

Choose σmin > 0;
if σa < σℓ and σℓ < σe then

σa := max{σe, σmin}; sa := se; [Hsa] :=[Hse]
else if σe < σℓ and σℓ < σa then

σe := σa;
else if σa < σℓ and σe < σℓ then

σe :=−ζ; σa :=−ζ; sa := δ × z; [Hsa] :=[Hz];
end

2.3. Solving the reduced subproblem. At the core of the algorithm is a
reduced trust-region subproblem (2.2) with at most three variables. Given the matrix
Pk whose columns form a maximally linearly independent subset of {sk−1, zk, sa

k},
the solution sk of (2.2) may be written as sk = Pkwk, where wk solves the reduced
problem

minimize
y

Q(Pky) ≡ gTPky + 1

2
yTPT

k HPky, subject to ‖Pky‖ ≤ δ. (2.12)

A maximally linearly independent subset of the vectors {sk−1, zk, sa
k} is found using a

QR decomposition with column interchanges. As in Algorithm ssmEig , the matrices
PT

k HPk and PT
k Pk can be formed with no additional matrix-vector products. The

vector Hsk is defined in terms of the identity Hsk = HPkwk, which involves a simple
linear combination of Hsk−1, Hzk, and Hsa

k. The matrices PT
k HPk and PT

k Pk are
symmetrized in each case.
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The reduced problem is solved using a modified version of the Moré–Sorensen
algorithm [17] that computes an exact left-most eigenpair of the 3×3 shifted Hessian.
At each iteration, the Cholesky factorization of PT

k HPk + σPT
k Pk is used to compute

a vector wR such that

(PT
k HPk + σPT

k Pk)wR = −PT
k g.

The accuracy of an approximate solution of (2.12) is determined by preassigned
tolerances κ1, κ2 ∈ (0, 1). On termination, the approximate solution of (2.2) is
s = sR + sN , where sR = PkwR and sN = PkwN , with wN defined as the zero vector
if (1 − κ1)δ ≤ ‖sR‖ ≤ (1 + κ1)δ, or σ = 0 and ‖sR‖ ≤ δ, or a left-most eigenvector of
PT

k HPk + σPT
k Pk if σ 6= 0 and ‖sR‖ < (1 − κ1)δ. The resulting value of s satisfies

Q(s) −Q∗ ≤ κ1(2 − κ1)max(|Q∗|, κ2) and ‖s‖ ≤ (1 + κ1)δ, (2.13)

where Q∗ denotes the global minimum of (2.12) (see Moré and Sorensen [17]).
The calculations associated with the solution of the reduced problem are given

in Algorithm ssmSolve , with se = sk−1, z = zk, and sa = sa
k. The inclusion of the

best approximation sk−1 in span{sk−1, zk, sa
k} guarantees that Q decreases at each

step. Care must be taken to separate the nullspace components of the Moré–Sorensen
solution to test the optimality conditions correctly, i.e., both se and sR are stored.
The Moré–Sorensen algorithm also returns the optimal σ for the reduced problem,
which is denoted by σe in ssmSolve .

Algorithm ssmSolve.
(

se, sR, σe, [Hse], [HsR]
)

= ssmSolve
(

se, sa, z, [Hse], [Hz], [Hsa]
)

;

Define P from a maximally linearly independent subset of se, z and sa;
Form PTHP , PTP and PTg from se, z, sa, [Hs], [Hz], and [Hsa];
Find y, an approximate solution of min

{

gTPy + 1

2
yTPTHPy : ‖Py‖ ≤ δ

}

;

(The Moré–Sorensen method finds sR and σe such that PT
(

(H +σeI)sR +g
)

= 0);

se := Py; [Hse] :=[HP ]y;

2.4. Solving the trust-region subproblem. At the start of each subspace
minimization, the regularization parameter µ is re-initialized at a fixed value µ0 and
reduced by a factor of two if a direction of negative curvature for (2.9) is found while
computing the accelerator direction. More details are given in Algorithm IP-SSM

below. A crucial feature of the method is that each subproblem is started with the
σe and approximate eigenpair from the previous subproblem. At the start of each
subproblem, the initial value of the interior-point accelerator variable σa is σe, as long
as σe is larger than σmin, a preassigned constant that specifies the smallest allowable
value of σa. (In the final iterations of an unconstrained minimization converging to a
point satisfying the second-order sufficient conditions for optimality, the trust-region
constraint will be inactive and σe = 0.) In order to give a positive-definite matrix
in (2.7), IP-SSM ensures that c(sa) + µ is positive. If c(sa) ≤ −µ, the accelerator
direction is replaced by se, with a suitable rescaling (if necessary) to guarantee that
sa lies exactly on the boundary.
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Algorithm IP-SSM .
(

se, [Hse], σe, z
)

= IP-SSM
(

g, δ, σe, z
)

;

Specify τ > 0; kmax > 0; σmin > 0; µ0 > 0;

σℓ := 0; σa := max{σe, σmin}; µ := µ0;

se :=−g; [Hse] := Hse; sa := 0; [Hsa] := 0;

re := ‖g + (H + σeI)se‖M−1 + σe|c(se)|;
while k < kmax and re > τ do

(

sa, [Hsa], σa, σℓ, z, ζ
)

:= ipAccelerator
(

sa, [Hsa], σa, σℓ

)

;
(

s̃, sR, σ̃, [Hs̃], [HsR]
)

:= ssmSolve
(

se, sa, z, [Hse], [Hz], [Hsa]
)

;

r̃ := ‖g + (H + σ̃I)sR‖M−1 + σ̃|c(s̃)|;
if r̃ ≤ re and σ̃ > σℓ then

se := s̃; σe := σ̃; [Hse] :=[Hs̃]; re := r̃;

end
(

sa, σa, σe, [Hsa]
)

:= safeguard(sa, σa, se, σe, ζ, z, σℓ, [Hsa], [Hse], [Hz], δ);

if ra < re/10 then σe := σa;

if ipAccelerator found a direction of negative curvature then

µ := µ/2; Compute c(sa);

if c(sa) + µ ≤ 0 then

sa := se; σa := σe; [Hsa] :=[Hse]; Compute c(sa);

if c(sa) + µ ≤ 0 then

sa := δ × sa/‖sa‖; [Hsa] :=[Hsa]/‖sa‖;
end

end

end

if ra < τ and re > τ then

if Q(sa) ≤ Q(se) then

se := sa; σe := σa; break;

end

end

σa := max{σa, σmin}; k := k + 1;

end

If the limit of kmax iterations is reached, IP-SSM returns the best values of (se, σe)
computed so far. Otherwise, IP-SSM terminates with final iterate (s, σ) given by
either (se, σe) or (sa, σa), depending on the values of the residuals re and ra such that

re = ‖g + (H + σeI)sR‖M−1 + σe|c(se)| and (2.14a)

ra = ‖g + (H + σaI)sa‖M−1 + σa|c(sa)|. (2.14b)

The idea is to choose the iterate with the least residual, subject to the requirement
that s improves on the Cauchy step. Given a positive tolerance τ , the final iterate
is (s, σ) = (se, σe) if re ≤ τ , or (s, σ) = (sa, σa) if ra ≤ τ < re and Q(sa) ≤ Q(se).
The initial value se = −g guarantees that every subspace minimizer improves on the
Cauchy step. The condition Q(sa) ≤ Q(se) ensures that this improvement is inherited
by the final point.
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3. Numerical Results. Numerical results were obtained using Matlab im-
plementations of the solvers: Steihaug–Toint, GLTR and IP-SSM. For comparison
purposes each solver was used within the same trust-region method, which was based
on the combination line search/trust-region method proposed by Gertz [9,10]. In this
method, an approximate solution sj of the jth trust-region subproblem is used to
update the trust-region iterate as xj+1 = xj + αjsj , where αj is obtained using a
variant of the Wolfe line search (see, Erway, Gill, and Griffin [5]). In the combination
line-search trust-region algorithm given below, Q−

j (s) = gT
j s+ 1

2

[

sTHjs
]

−
, where [ c ]−

denotes the negative part of c, i.e., [ c ]− = min{ 0, c }. With this choice of quadratic
model, the sufficient decrease condition on αj is

f(xj + αjsj) − f(xj) ≥ η1 Q−
j (αjsj), (3.1)

where η1 is a preassigned scalar such that 0 < η1 < 1

2
. The parameters were set to

η1 = 10−4, η2 = 1

4
, ω = 9

10
, and γ3 = 3

2
.

The initial trust-region radius was chosen as δ0 = 1. Thereafter, δj was updated
as a function of αj . Updating the trust-region radius in this way allowed the trust
region to adapt rapidly to changes in f . This property mitigated the bad effects
of linking the trust-region norm to the current preconditioner (see the discussion of
Section 1). In particular, the reliability and efficiency of the Steihaug–Toint and
GLTR solvers deteriorated considerably when a conventional method for updating δj

was used (see, e.g., Conn, Gould, and Toint [2, pp. 116–117]). For the remainder of
the discussion we refer to the “Steihaug–Toint method”, the “GLTR method” and the
“IP-SSM method” as being the combination trust-region/line-search method with the
appropriate solver.

The subspace trust-region subproblem was solved to an accuracy that was at least
as good as that required for the full problem. The constants κ1 and κ2 of (2.13) were
κ1 = min{10−1τ, 10−6} and κ2 = 0, where τ is the accuracy required in the full space
(see condition (3.2) below). The remaining parameters of IP-SSM were specified as
kmax = 10, µ0 = 10−1 and σmin = 100

√
ǫM , where ǫM is the machine precision.

In our implementation of the Steihaug–Toint solver, the Lanczos-CG process was
terminated with a point sj inside the trust region if

‖gj + Hjsj‖M−1

j
≤ τ, where τ = min

{

10−1, ‖gj‖0.1
M−1

j

}

‖gj‖M−1

j
, (3.2)

The same condition is used by GLTR (see Gould et al. [11]). This τ was also used in
the IP-SSM termination conditions (2.14). A limit of 20 Lanczos vectors was imposed
on all calculations involving the Lanczos-CG process. If this limit was reached during
the accelerator calculation, the Lanczos-CG iterate with the smallest residual was
returned.

3.1. The test environment. Numerical results are given for unconstrained
problems from the CUTEr test collection (see Bongartz et al. [1] and Gould, Orban
and Toint [12]). The test set was constructed using the CUTEr interactive select

tool, which allows the identification of groups of problems with certain characteris-
tics. In our case, the select tool was used to identify the twice-continuously dif-
ferentiable unconstrained problems for which the number of variables can be varied.
This process selected 67 problems: arwhead, bdqrtic, broydn7d, brybnd, chainwoo,
cosine, cragglvy, curly10, curly20, curly30, dixmaana, dixmaanb, dixmaanc,
dixmaand, dixmaane, dixmaanf, dixmaang, dixmaanh, dixmaani, dixmaanj, dix-

maank, dixmaanl, dixon3dq, dqdrtic, dqrtic, edensch, eg2, engval1, extrosnb,
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Combination Line-Search/Trust-Region Algorithm.
Specify constants 0 < η1 < η2 < 1; 0 < η1 < 1

2
; 0 < η1 < ω < 1; 1 < γ3;

Choose x0; δ0 := 1; j := 0;
while not converged do

Find an approximate solution sj for min
{

Qj(s) : ‖s‖2 ≤ δj

}

;

Find αj satisfying the Wolfe conditions:

f(xj + αjsj) ≤ f(xj) + η1Q−
j (αjsj) and |g(xj + αjsj)

Tsj | ≤ −ωQ− ′
j (αjsj);

xj+1 := xj + αjsj ;

if
(

f(xj+1) − f(xj)
)

/Q−
j (sj) ≥ η2 then

if ‖sj‖2 = δj and αj = 1 then

δj+1 := γ3δj ;

else if ‖sj‖2 < δj and αj = 1 then

δj+1 := max{δj , γ3‖sj‖2};
else

δj+1 := αj‖sj‖2;

end if
else

δj+1 := min{αj‖sj‖2, αjδj};
end if
j := j + 1;

end do

fletchcr, fletcbv2, fminsrf2, fminsurf, freuroth, genhumps, genrose, liarwhd,
morebv, ncb20, ncb20b, noncvxu2, noncvxun, nondia, nondquar, penalty1, pen-

alty2, powellsg, power, quartc, sbrybnd, schmvett, scosine, scurly10, scurly20,
scurly30, sinquad, sparsine, sparsqur, spmsrtls, srosenbr, testquad, tointgss,
tquartic, tridia, vardim, vareigvl and woods. The dimensions were selected so
that n ≥ 1000, with a default of n = 1000 unless otherwise recommended in the CUTEr
documentation. The problems sbrybnd, scosine, scurly10, scurly20 and scurly30

are scaled versions of brybnd, cosine, curly10, curly20 and curly30. This scaling
leads to a severely ill-conditioned Hessian for which a matrix-vector product has little
or no precision, often causing a compete breakdown of the CG iterations. As all the
methods under consideration are CG-based, the unpredictability of the testing process
on these problems forced us to remove them from the test set, resulting in a final set
of 62 problems.

Each solver (embedded within the same trust-region method as described above)
was tested in three contexts associated with the underlying CG method: (i) CG with no
preconditioning; (ii) CG with diagonal preconditioning; and (ii) CG with incomplete
Cholesky preconditioning. For a given preconditioner, the runs for all three solvers
are included in a single table to facilitate comparison. A method was considered to
have solved a problem successfully when the iterate xj satisfied

‖g(xj)‖2 ≤ max{ǫ‖g(x0)‖2, ǫ|f(x0)|, 10−5}, (3.3)

with ǫ = 10−6. For each test problem we list the number of function evaluations (“fe”)
and matrix-vector products (“prds”) required for each of the three solvers. Runs for
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which one of the methods converged to an alternate local minimizer are marked with
an “a”. A run was considered to have failed if the method could not satisfy condition
(3.3) in 2n iterations. These “failed” runs are marked with an “∗”.

The CUTEr collection includes problems with a wide range of difficulty. However,
many of the test problems for large-scale unconstrained optimization involve functions
with a few variables that are extended artificially to higher dimension. Such problems
are not necessarily representative of problems that arise in practice. The evaluation
of methods is complicated further by the fact that many of the problems are variants
of one case (see, e.g., the problems dixmaana–dixmaanl). Typically, a method will
behave in a similar way on all the problems of one type, which can distort the results
of numerical tests (such as performance profiles, see Section 3.5).

3.2. Results obtained without preconditioning. Tables 2–3 give results on
57 of the 62 CUTEr problems. The tables do not include results for the 5 problems
curly10, curly20, curly30, dixon3dq, and genhumps, which could not be solved
by any method without preconditioning. In addition, the table gives the percentage
improvement in function evaluations relative to the Steihaug–Toint method. Of the
57 problems listed, the Steihaug–Toint method solved 56, GLTR solved 54, and IP-

SSM solved 57. The methods converged to the same local minimizer in every case.
An “at-a-glance” comparison is afforded by Table 1. This table gives the cumulative
totals on the 54 problems for which all methods converged.

Table 1
Summary of methods with no preconditioning.

Steihaug GLTR IP-SSM

Function evals (fe) 4218 3540 1888

Matrix mults (prds) 10519 58918 54300

Improvement in fe — +16% +55%

IP-SSM required 55% fewer function evaluations than Steihaug–Toint, compared
to the 16% reduction provided by GLTR. The results for GLTR are comparable with
those obtained by Gould et al. [11], who report that GLTR solved 16 of a set of
17 CUTEr problems and required 12.5% fewer function evaluations than Steihaug–
Toint. Table 1 also indicates that for both IP-SSM and GLTR, the decrease in function
evaluations is achieved at the expense of additional matrix-vector products. For some
of the Steihaug–Toint runs (e.g., genrose, dqdrtic and fminsurf) the number of
function evaluations exceeds the number of matrix-vector products. In these cases
the line-search needed to work hard to improve the solution estimate when trust-
region acceptance test failed. The use of a line search in this situation contributed
significantly to the reliability of the solvers.

3.3. Diagonal preconditioning. The methods were tested with a diagonal
preconditioner based on the matrix D = diag(d1, d2, . . . , dn) of diagonals of the Hes-
sian evaluated at xj . For the Steihaug–Toint and GLTR solvers, the elements of the
diagonal preconditioner M were:

Mii = max{|di|, ‖D‖2/condmax},

where condmax is a preassigned upper bound on the condition number of M . Similarly,
the IP-SSM preconditioner was based on D + σaI, i.e.,

Mii = max{|di + σa|, ‖D + σaI‖2/condmax}.
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Table 2
CUTEr problems A–E. No preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

arwhead 6 6 6 6 6 21

bdqrtic 14 41 13 40 13 66

broydn7d 137 400 71 1279 48 797

brybnd 12 46 13 56 12 81

chainwoo 27 57 20 112 15 85

cosine 12 10 13 11 12 37

cragglvy 14 36 14 35 14 36

dixmaana 13 11 12 15 13 11

dixmaanb 13 11 13 12 13 11

dixmaanc 13 11 13 12 13 11

dixmaand 14 12 14 12 14 12

dixmaane 15 82 14 71 15 82

dixmaanf 15 30 15 44 15 30

dixmaang 15 24 15 24 15 24

dixmaanh 15 19 15 19 15 19

dixmaani 19 162 19 171 14 153

dixmaanj 16 40 16 40 16 40

dixmaank 16 30 16 30 16 30

dixmaanl 16 25 16 25 16 25

dqdrtic 14 11 13 14 13 28

dqrtic 27 20 28 24 28 60

edensch 15 25 15 33 15 59

eg2 4 3 4 3 11 217

engval1 14 17 14 18 14 45

extrosnb 31 70 31 82 25 95

The value of condmax was 108 in all runs. Tables 5–6 give the results for diagonal
preconditioning. They do not include runs for the 4 problems: curly10, curly20,
curly30, and dixon3dq, which could not be solved by any method. We also omit-
ted the 5 problems fminsurf, penalty1, penalty2, power and vareigvl because of
Matlab memory limitations when extracting the diagonals from the CUTEr Hessian.
Steihaug–Toint solved all the remaining 53 problems, GLTR solved 48 and IP-SSM

solved 51. The methods converged to the same local minimizer in every case ex-
cept testquad. Table 4 gives the cumulative totals on the 46 problems for which all
three methods converged and converged to the same local minimizer. Compared to
Steihaug–Toint, GLTR and IP-SSM required 1% and 49% fewer function evaluations
respectively.

Ideally, a preconditioner should reduce the number of matrix-vector products
without increasing the number of function evaluations. This appeared to be the case
for IP-SSM. Of the 46 problems included in the summary of Table 4, diagonally precon-
ditioned IP-SSM required more function evaluations than unpreconditioned IP-SSM for
9 problems only (20% of the cases). By contrast, diagonally preconditioned Steihaug–
Toint required more function evaluations for 39 problems (85%). GLTR required more
function evaluations for 41 problems (89%). In some cases, Steihaug–Toint and GLTR

required substantially more function evaluations than the unpreconditioned case, see,
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Table 3
CUTEr problems F–Z. No preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

fletchcr 1998 16422 * * 1751 21325

fletcbv2 1513 3024 1515 30318 90 17940

fminsrf2 * * * * 71 1666

fminsurf 340 93 82 1332 56 1830

freuroth 16 1 21 49 16 49

genrose 1174 577 808 17916 830 23743

liarwhd 19 2 19 37 17 63

morebv 27 511 27 511 5 427

ncb20 153 2205 117 2305 74 2848

ncb20b 10 61 9 65 9 103

noncvxu2 36 26 44 240 43 298

noncvxun 37 28 42 162 47 298

nondia 4 3 4 3 5 15

nondquar 23 115 18 101 22 248

penalty1 28 17 28 17 28 52

penalty2 2 1 2 1 2 4

powellsg 16 40 15 52 15 102

power 15 33 15 33 15 61

quartc 27 20 28 24 28 61

schmvett 9 37 * * 7 57

sinquad 19 27 19 36 17 92

sparsine 17 197 15 167 11 324

sparsqur 14 23 14 30 14 66

spmsrtls 18 117 20 213 29 684

srosenbr 9 10 9 10 9 36

testquad 72 1259 115 2138 16 937

tointgss 15 13 14 19 15 47

tquartic 18 23 17 25 15 53

tridia 50 842 50 869 19 1709

vardim 13 12 13 12 13 41

vareigvl 14 26 14 27 14 56

woods 12 14 13 18 13 38

e.g., ncb20 and noncvxu2. It could be argued that the overall statistics are unfairly
influenced by the block of 12 problems dixmaana–dixmaanl, which tend to exhibit
similar behavior when tested (and hence distort any conclusions based on the results of
battery testing). If results from these problems are excluded from the totals, the over-
all increase in function evaluations for Steihaug–Toint, GLTR and IP-SSM decreases
to 82%, 88% and 18% respectively.

As the main purpose of preconditioning is to reduce the number of CG iterations
(and hence the number of matrix-vector products) it is useful to consider the number
of products before and after preconditioning. As above, data was considered for the 46
problems summarized in Table 4. Compared to no preconditioning, there is a reduc-
tion in matrix-vector products for 23 problems (50% of the cases) for Steihaug–Toint,
20 problems (43%) for GLTR, and 27 problems (59%) for IP-SSM. If the problems
dixmaana–dixmaanl are excluded, the percentage of improved cases is 44%, 41% and
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71% respectively. These results indicate that the fixed trust-region norm used by IP-

SSM leads to some improvements in function evaluations and matrix-vector products
from preconditioning.

Table 4
Summary of methods with diagonal preconditioning.

Steihaug GLTR IP-SSM

Function evals (fe) 4830 4789 2455

Matrix mults (prds) 17072 21619 24054

Improvement in fe — +1% +49%

Table 5
CUTEr problems A–E. Diagonal preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

arwhead 15 11 14 15 6 21

bdqrtic 22 19 21 19 13 53

broydn7d 192 330 169 1091 48 645

brybnd 20 19 19 22 12 45

chainwoo 27 33 24 36 14 59

cosine 23 20 19 23 12 30

cragglvy 29 40 27 39 14 59

dixmaana 17 13 16 15 12 38

dixmaanb 17 12 16 15 12 37

dixmaanc 19 14 18 14 13 40

dixmaand 21 16 20 15 14 44

dixmaane 24 26 23 48 13 41

dixmaanf 20 22 19 21 16 59

dixmaang 20 20 20 20 16 60

dixmaanh 21 19 21 20 16 59

dixmaani 23 27 35 151 13 51

dixmaanj 20 22 20 23 16 60

dixmaank 21 22 21 22 16 60

dixmaanl 22 21 22 21 16 59

dqdrtic 21 12 18 17 13 26

dqrtic 50 28 50 28 28 64

edensch 24 21 23 28 15 53

eg2 8 6 8 6 25 257

engval1 19 15 19 15 13 37

extrosnb 39 48 40 86 26 91

3.4. Incomplete Cholesky preconditioning. The methods were also run
with a preconditioner based on an incomplete Cholesky factorization. These tests
used the software (icfs), which implements the factorization proposed by Lin and
Moré [16]. The icfs software requires the specification of an integer p that limits the
fill in the Cholesky factors to pn elements. The suggested default value of p = 5 was
used in all cases.

For the Steihaug–Toint and GLTR solvers, the preconditioner was the Lin-Moré
factorization of the Hessian Hj . If the Hessian is not positive definite, the Lin-Moré
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Table 6
CUTEr problems F–Z. Diagonal preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

fletchcr 1665 13557 1671 14827 1617 17724

fletcbv2 1513 30240 1515 30318 * *

fminsrf2 199 293 * * 94 3695

freuroth 23 22 23 22 14 39

genhumps 1488 1410 * * * *

genrose 1863 3758 * * 821 10560

liarwhd 26 27 26 28 17 75

morebv 25 474 25 474 7 895

ncb20 432 431 477 1392 84 1451

ncb20b 10 60 10 79 9 64

noncvxu2 745 505 702 932 46 302

noncvxun 656 447 627 815 46 281

nondia 83 63 59 85 5 18

nondquar 26 98 27 172 16 126

powellsg 23 40 22 52 16 101

quartc 50 28 50 28 28 64

schmvett 14 25 * * 8 44

sinquad 35 31 30 61 16 75

sparsine 30 158 66 360 11 240

sparsqur 25 26 25 26 14 59

spmsrtls 70 125 87 279 24 241

srosenbr 20 17 * * 9 34

testquad 28a 16a 24a 23a 10a 29a

tointgss 21 17 19 31 14 34

tquartic 16 24 12 28 11 46

tridia 24 27 22 35 12 54

vardim 56 34 56 34 13 44

woods 27 26 27 26 13 44

algorithm computes an incomplete factorization of a positive-definite matrix Hj +νI,
where ν is a positive scalar. Several factorizations may be necessary before an ap-
propriate value of ν is found. For IP-SSM, the preconditioner was the incomplete
Cholesky factorization of the positive-definite matrix Hj +σaI, where σa is the initial
value of the accelerator variable (usually σe, see Algorithm ipAccelerator). Clearly,
it is beneficial to apply the incomplete Cholesky factorization to a positive-definite
matrix. However, the preconditioner becomes less effective as the subspace minimiza-
tions proceed because σa changes from its initial value.

A total of 57 of the 62 problems were run with incomplete Cholesky precondi-
tioning. The five problems fminsurf, penalty1, penalty2, power and vareigvl

were omitted because of memory limitations (our implementation of GLTR required
a solve with a dense preconditioner). Tables 7–8 give details of the runs using in-
complete Cholesky preconditioning. Steihaug–Toint and IP-SSM solved 56 of the 57
problems, GLTR solved 50. As with diagonal preconditioning, the methods converged
to the same local minimizer in every case except testquad. In terms of the number
of problems solved, incomplete Cholesky preconditioning was the most reliable pre-
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conditioner. However, in terms the number of function evaluations and matrix-vector
products, the performance of all three methods was somewhat erratic—which we in-
terpret as evidence of the difficulty of formulating “general-purpose” preconditioners.
Although a given problem was more likely to be solved using incomplete Cholesky
preconditioning, the less challenging problems often required more function evalua-
tions and matrix-vector products. Table 9 gives cumulative totals for the 49 problems
on which all three methods converged (with the exception of testquad as discussed
above). Compared to Steihaug–Toint, GLTR required 29% more function evaluations.
IP-SSM required 40% fewer function evaluations.

Of the 49 problems included in the summary of Table 9, incomplete Cholesky
preconditioned IP-SSM required more function evaluations than unpreconditioned IP-

SSM for 12 problems (25% of the cases). The corresponding numbers for Steihaug–
Toint and GLTR were 35 (71% of the cases) and 38 (78% of the cases) respectively.
If the statistics for the 9 solved problems from dixmaana–dixmaanl are excluded, the
percentage of cases for which function evaluations increased becomes 68%, 75% and
20% for Steihaug–Toint, GLTR and IP-SSM respectively.

Compared to no preconditioning, a reduction in matrix-vector products was seen
in 28 problems (57% of the cases) for Steihaug–Toint, 27 problems (55%) for GLTR

and 35 problems (71%) for IP-SSM. Incomplete Cholesky preconditioning appeared
to be less effective for problems dixmaana–dixmaanl. If the solved instances of these
problems are excluded, the percentages increase to 58%, 62% and 80% respectively.
Again, there is a marked improvement for IP-SSM compared to Steihaug–Toint and
GLTR.

3.5. Performance profiles. The results of Tables 2–8 are summarized using
performance profiles (see Dolan and Moré [3]). Let card(S) denote the number of
elements in a finite set S. Let P denote the set of problems used for a given numerical
experiment. For each method s we define the function πs : [0, rM ] 7→ R

+ such that

πs(τ) =
1

card(P)
card({p ∈ P : log2(rp,s) ≤ τ}),

where rp,s denotes the ratio of the number of function evaluations needed to solve
problem p with method s and the least number of function evaluations needed to
solve problem p. The number rM is the maximum value of log2(rp,s). Figures 1–3
depict the functions πs for each of the methods tested. All performance profiles are
plotted on a log2-scale.

4. Discussion and Summary. We have considered an interior-point sequen-
tial subspace minimization method (IP-SSM) that solves the inequality constrained
trust-region subproblem over a sequence of evolving low-dimensional subspaces. Each
subspace includes an accelerator direction defined by a regularized Newton method
for the optimality conditions of a primal-dual interior method. A crucial property of
this direction is that it can be computed by applying the preconditioned CG method
to a positive-definite system in both the primal and dual variables of the trust-region
subproblem. IP-SSM has several properties. (i) The method does not require the
definition of the trust region to depend on the CG preconditioner. This allows the
application of preconditioning in conjunction with a conventional method for updat-
ing the trust-region radius. (ii) The likelihood of approximating the global minimizer
of the trust-region subproblem is increased by the computation of an approximate
left-most eigenpair of the Hessian. (iii) Information garnered during the solution of
one trust-region subproblem may be used to expedite the solution of the next.
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Table 7
CUTEr problems A–E. ICFS preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

arwhead 14 10 14 10 7 22

bdqrtic 22 15 22 15 11 41

broydn7d 124 73 150 187 38 143

brybnd 19 14 21 19 16 49

chainwoo 100 71 85 123 72 244

cosine 29 20 28 33 11 23

cragglvy 27 19 27 19 14 43

curly10 40 22 44 41 16 141

curly20 27 19 33 40 15 129

curly30 60 32 35 38 14 116

dixmaana 16 11 15 20 12 35

dixmaanb 18 12 17 16 12 32

dixmaanc 28 19 89 104 13 36

dixmaand 49 28 62 90 20 69

dixmaane 46 28 177 256 13 40

dixmaanf 29 20 * * 20 63

dixmaang 37 22 * * 27 78

dixmaanh 35 21 * * 39 175

dixmaani 26 19 173 252 13 37

dixmaanj 29 20 31 40 21 77

dixmaank 39 26 32 46 35 163

dixmaanl 42 28 44 68 36 134

dixon3dq 4 3 4 3 12 58

dqdrtic 21 12 18 17 13 26

dqrtic 50 28 50 28 28 64

edensch 25 18 23 22 16 46

eg2 8 6 8 6 18 131

engval1 19 13 19 13 13 32

extrosnb 38 27 36 32 27 78

Numerical experiments on problems from the CUTEr test collection indicate that
IP-SSM can require significantly fewer function evaluations than Steihaug–Toint and
GLTR. This implies that IP-SSM may be more efficient when the cost of a function
evaluation is expensive relative to the cost of a matrix-vector product. As is the
case with other iterative trust-region methods, the decrease in function evaluations is
achieved at the expense of additional matrix-vector products. However, in contrast to
Steihaug–Toint and GLTR, our experiments with general-purpose CG preconditioners
show that it is possible to significantly reduce the number of matrix-vector products
relative to those required without preconditioning. Moreover, these savings may be
achieved without increasing the number of function evaluations. This implies that the
use of custom preconditioners (such as those available for PDE constrained optimiza-
tion) have the potential of substantially reducing the cost of large-scale minimization,
regardless of the relative cost of evaluating the objective function and forming a
matrix-vector product.
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Table 8
CUTEr problems F–Z. ICFS preconditioning.

Steihaug GLTR IP-SSM

Problem fe prds fe prds fe prds

fletchcr * * * * 1708 5717

fletcbv2 2 1 2 1 5 160

fminsrf2 24 21 23 19 56 213

freuroth 22 14 22 14 13 27

genhumps 983 973 * * * *

genrose 1375 866 1396 1680 823 2630

liarwhd 27 28 27 31 17 65

morebv 2 1 2 1 3 11

ncb20 123 79 211 342 94 416

ncb20b 18 11 * * 14 49

noncvxu2 82 56 228 424 45 154

noncvxun 65 45 215 407 46 126

nondia 21 15 19 20 6 19

nondquar 20 17 20 17 16 109

powellsg 24 18 22 21 15 52

quartc 50 28 50 28 28 64

schmvett 40 23 8 6 7 19

sinquad 28 17 26 39 19 72

sparsine 45 203 50 245 11 149

sparsqur 26 19 26 19 14 44

spmsrtls 23 15 210 223 28 106

srosenbr 20 14 * * 9 28

testquad 28a 16a 24a 23a 10a 29a

tointgss 13 8 12 11 16 37

tquartic 14 24 11 26 11 46

tridia 19 11 17 16 10 31

vardim 64 38 64 38 13 38

woods 27 18 27 18 13 38

Table 9
Summary of methods with ICFS preconditioning.

Steihaug GLTR IP-SSM

Function evals (fe) 3084 3969 1835

Matrix mults (prds) 2174 5207 6664

Improvement in fe — −29% +40%
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[16] C.-J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM J.

Sci. Comput., 21 (1999), pp. 24–45.
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