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SQP METHODS AND THEIR

APPLICATION TO NUMERICAL

OPTIMAL CONTROL∗

ALEX BARCLAY† PHILIP E. GILL† J. BEN ROSEN‡

Abstract. In recent years, general-purpose sequential quadratic programming (SQP)
methods have been developed that can reliably solve constrained optimization problems
with many hundreds of variables and constraints. These methods require remarkably few
evaluations of the problem functions and can be shown to converge to a solution under
very mild conditions on the problem.

Some practical and theoretical aspects of applying general-purpose SQP methods to
optimal control problems are discussed, including the influence of the problem discretiza-
tion and the zero/nonzero structure of the problem derivatives. We conclude with some
recent approaches that tailor the SQP method to the control problem.

1. INTRODUCTION

Recently there has been considerable progress in the development of general-purpose
sequential quadratic programming (SQP) methods for large-scale nonlinear optimiza-
tion (see, e.g., Eldersveld [12], Tjoa and Biegler [34], Betts and Frank [4] and Gill,
Murray and Saunders [16]). These methods are efficient and reliable, and can be ap-
plied to large sparse problems with a mixture of linear and nonlinear constraints. The
methods require remarkably few evaluations of the problem functions and converge to
a solution under very mild conditions on the problem. An important application for
these methods is the class of problems derived by discretizing optimal control prob-
lems. These problems have several important characteristics: (i) many variables and
constraints; (ii) sparse and structured constraint and objective derivatives; (iii) objec-
tive and constraint functions (and their first derivatives) that are expensive to evaluate;
and (iv) many constraints active (i.e., exactly satisfied) at the solution.

In §2. we give a brief discussion of general-purpose SQP methods, with an emphasis
on those aspects that most affect performance. In §3. we consider the application of
these general-purpose methods to optimal control problems. In §4. we discuss the most
common forms of discretization and consider their effect on the efficiency of general-
purpose SQP methods. Finally, in §5. we briefly consider some SQP methods that are
specially tailored to problems derived from optimal control problems.
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2. SQP METHODS

The general nonlinearly constrained optimization problem can be written in the form

minimize
x∈IRn

F (x)

subject to bl ≤


x

Ax
c(x)

 ≤ bu,
(1)

where c is a vector of nonlinear functions, A is a constant matrix that defines the
linear constraints, and bl and bu are constant upper and lower bounds. It is assumed
that first derivatives of the problem are known explicitly, i.e., at any point x it is
possible to compute the gradient ∇F (x) of the objective F and the Jacobian J(x) of
the nonlinear constraints c. Our principal concern is with large problems, although
the precise definition of the size of a problem depends on several factors, including the
zero/nonzero structure of the problem derivatives and the number of degrees of freedom
at a solution (i.e., the number of variables less the number of active constraints at a
solution)1.

At a constrained minimizer x∗, the objective gradient ∇F can be written as a linear
combination of the constraint gradients. The multipliers in this linear combination
are known as the Lagrange multipliers. The Lagrange multipliers for an upper bound
constraint are nonpositive, the multipliers for a lower bound constraint are nonnegative.
The vector of Lagrange multipliers associated with the nonlinear constraints of (1) is
denoted by π∗.

SQP methods are a class of optimization methods that solve a quadratic program-
ming subproblem at each iteration. Each QP subproblem minimizes a quadratic model
of a certain modified Lagrangian function subject to linearized constraints. A merit
function is reduced along each search direction to ensure convergence from any starting
point. The basic structure of an SQP method involves major and minor iterations.
The major iterations generate a sequence of iterates (xk, πk) that converge to (x∗, π∗).
At each iterate a QP subproblem is used to generate a search direction towards the
next iterate (xk+1, πk+1). Solving such a subproblem is itself an iterative procedure,
with the minor iterations of an SQP method being the iterations of the QP method.
(For an overview of SQP methods, see, for example, Gill, Murray and Wright [18].)

In the SQP formulation considered here, the objective and constraint derivatives
∇F and J are required once each major iteration in order to define the objective and
constraints of the QP subproblem. SQP methods have two important properties. First,
they are most robust when the derivatives of the objective and constraint functions
are computed exactly. Second, the SQP iterates do not usually satisfy the nonlinear
equality constraints except as the solution is approached. (However, it is possible to
ensure that the iterates always satisfy the linear constraints.)

Each QP subproblem minimizes a quadratic model of the modified Lagrangian
L(x, xk, πk) = F (x)−πT

k dL(x, xk), which is defined in terms of the constraint lineariza-
tion, cL(x, xk) = c(xk) + J(xk)(x − xk), and the departure from linearity, dL(x, xk) =

1Some authors define the number of degrees of freedom as the number of variables less the number of
equality constraints (i.e., constraints with (bl)i = (bu)i).
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c(x) − cL(x, xk). Given estimates (xk, πk) of (x∗, π∗), an improved estimate is found
from (x̂k, π̂k), the solution of the following QP subproblem:

minimize
x∈IRn

F (xk) +∇F (xk)
T (x− xk) + 1

2
(x− xk)

THk(x− xk)

subject to bl ≤


x

Ax
c(xk) + J(xk)(x− xk)

 ≤ bu,

where Hk is a positive-definite approximation to ∇2
xL(xk, xk, πk). Once the QP solu-

tion (x̂k, π̂k) has been determined, the major iteration proceeds by determining new
variables (xk+1, πk+1) as xk+1 = xk +αk(x̂k−xk) and πk+1 = πk +βk(π̂k−πk), where the
scalars αk and βk are chosen to yield a sufficient decrease in a merit function (a suitable
combination of the objective and constraint functions). Some methods determine αk

and βk simultaneously using a linesearch, others use a linesearch for αk but keep βk

fixed at 1. The choice of merit function will not be considered here, but choices that
have proved effective in practice are the l1 penalty function (see e.g., Fletcher [14])
and an augmented Lagrangian function (see Schittkowski [30] and Gill, Murray and
Saunders [16]).

The definition of the QP Hessian Hk is crucial to the success of an SQP method.
In the method of SNOPT (Gill, Murray and Saunders [16]), Hk is a limited-memory
quasi-Newton approximation to G = ∇2

xL(xk, xk, πk), the Hessian of the modified
Lagrangian. Another possibility is to define Hk as a positive-definite matrix related
to a finite-difference approximation to G. Exact second derivatives have also been
proposed in this context (see, e.g., Fletcher [14], Eldersveld and Gill [13]).

The QP solver must repeatedly solve linear systems formed from rows and columns
of the QP constraint matrices. The class of active-set QP methods solve a system of
the form  H W T

W 0

  p

q

 =

 g

h

 (2)

each minor iteration. The matrices H and W consists of a subset of the rows and
columns of Hk, J(xk) and A specified by the working-set, which is an estimate of the
constraints active at a solution. Eventually, the working sets of the QP subproblem
usually “settle down” to the active set of the nonlinear problem. For this reason, the
final working set from one QP subproblem is used to guide the initial working set in the
next. Once the active set has been identified, the QP subproblems reach optimality in
one iteration, and hence only a single system (2) need be solved in later subproblems.

The method used to solve (2) largely determines the characteristics of the QP
method. When the system is large and sparse, we know of only two viable QP
methods—the reduced-Hessian method and the Schur-complement method.

Reduced-Hessian QP methods. These methods solve (2) using a full-rank
matrix Z that spans the null space of W (i.e., WZ = 0). The matrix Z is used
to transform (2) into two smaller systems, one of which involves the reduced Hessian
ZTHZ. The reduced Hessian is stored and updated in dense form, which is efficient as
long as the number of degrees of freedom is small compared to the number of variables.
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In particular, reduced Hessian methods are efficient if W is nearly square and products
Hkx can be formed efficiently.

If W is large and sparse, Z is usually maintained in “reduced-gradient” form, using
sparse LU factors of a square matrix B that alters as the working set changes. The
defining equations are

WP = ( B S ), Z = P

 −B−1S

I

 , (3)

where P is a permutation that ensures B is nonsingular. The number of degrees of
freedom is the number of columns of S. Products of the form Zv and ZTg are obtained
by solving with B or BT. For more details, see Gill, Murray and Saunders [16].

Schur-complement QP methods. After each change to W , the system (2) is
equivalent to a system of the form

H0 W T
0 U

W0 0 0

UT 0 V




u

v

w

 =


a

b

c

 ,

where the number of columns of U is equal to the number of QP iterations. Given the
system

K0 =

 H0 W T
0

W0 0

 (4)

at the start of the QP, factorizations of K0 and the Schur complement C = V −UTK−1
0 U

can be used to solve (2). It is efficient to work with a sparse factorization of K0 and
dense factors of C. The factorization of K0 may be computed using any suitable
code. If the number of updates is small enough, C may be maintained as a dense
factorization (based on either orthogonal or elementary transformations), and updated
to reflect changes in W . As the dimension of C grows, it is eventually necessary to
refactorize the system (2) from scratch. For more details, see Gill, Murray, Saunders
and Wright [17]. The Schur-complement QP method is implemented in the code SOCS
of Betts and Frank [4].

3. SQP METHODS FOR OPTIMAL CONTROL

In this section we give a brief review of the application of general-purpose SQP methods
to optimal control problems in which the dynamics are determined by a system of
ordinary differential equations (ODEs). The problem is assumed to be of the form

minimize
u,y

y1(tf ) (5)

subject to y(t0) = y0, (6)

y
.
(t) = f(y, u, t), t ∈ [0, tf ], (7)

g(y, u, t) ≥ 0, t ∈ [0, tf ], (8)
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where y(t) is an ny-vector of state variables and u(t) is an nu-vector of controls. The
inequalities (8) often include upper and lower bounds on control variables u(t) and
state variables y(t). It is assumed that given the initial condition y0 and the control
function u = u(t), t ∈ [0, tf ], the state vector function y = y(t) is uniquely determined
by the differential system (7). We also assume that the control u(t) is continuous and
satisfies some standard conditions needed for the existence of an optimal control (see,
e.g., Leitman [25]).

4. DISCRETIZING THE CONTROL PROBLEM

Although the size of the ODE system (7) can be large, the dimension of the control
vector u(t) is typically much smaller. The usual approach is to represent u(t) as a
low-order spline or piecewise polynomial function on [0, tf ]. The coefficients of this
spline or piecewise polynomial are then adjusted during the optimization.

Given the initial conditions y0 and values of the spline coefficients, the controls
can be evaluated at any point in [0, tf ] and the state vector function y = y(t) is
uniquely determined by the differential system (7). However, it is neither necessary
(nor advisable) to explicitly solve the differential system at each step. Instead, finite-
dimensional nonlinear equations associated with certain well-known ODE methods are
imposed as nonlinear constraints during the optimization. A feature of this approach
is that, since SQP methods do not generally satisfy nonlinear equality constraints until
the solution is approached, the differential system is only satisfied near the end of the
computation.

4.1 Discretizing the control functions

The total time interval [0, tf ] is divided into N equal subintervals of length ∆t each.
These subintervals define N + 1 nodes :

tk = k∆t, k = 0, 1, . . . , N, with tN = tf . (9)

A piecewise polynomial uk(t) is used to represent u(t) for t ∈ [tk, tk+1]. For example, if
uk(t) is a cubic polynomial, then uk(t) can be represented by 4nu coefficients, which are
then determined by the optimization. The continuity of the uk(t) and their derivatives
at the nodes is enforced by means of appropriate linear equality constraints. Any
bounds on the uk(t) at the nodes imply additional linear inequalities on the coefficients
of the polynomial.

A convenient alternative representation can be defined using Hermite interpolation.
In the case of a cubic approximation, optimization variables uk and wk are introduced
to represent the values of u(t) and u

.
(t) at each node tk. The unique piecewise cubic

uk(t) is defined that has values (uk, uk+1) and derivatives (wk, wk+1) at the end points
of [tk, tk+1]. This cubic allows the control at any point t = tk + ρ∆t in [tk, tk+1] to be
written as

uk(t) = uρ + ρ(ρ− 1) [(uk+1 − uk)(1− 2ρ) + wρ∆t] , (10)

where uρ = (1 − ρ)uk + ρuk+1 and wρ = (ρ − 1)wk + ρwk+1 (see, e.g., Hairer, Nørsett
and Wanner [20, p.190]). This scheme automatically gives continuity of uk(t) and its
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derivative at the nodes. Moreover, simple upper and lower bounds on the controls u(t)
lead to simple upper and lower bounds on the discretized variables {uk}.

4.2 Discretizing the differential equations

Three methods for discretizing the ODEs (7) will be considered: single shooting, multi-
ple shooting and collocation. Each of these methods gives a finite-dimensional problem
with a different character.

Single shooting. Given the initial conditions y0 and a piecewise polynomial con-
trol approximation {uk(t)}, the state vector y = y(t) is uniquely determined by the
differential system (7). The method of single shooting minimizes with respect to the
control variables (say, {uk, wk}) and solves (7) over [0, tf ] at each new point generated
by the optimization algorithm. It follows that the differential equations are being used
to eliminate the state variables from the problem. It is common for an adaptive ODE
solver to be used for this process.

The inequality constraints (8) can be imposed explicitly at each control subinterval
boundary as requirements on the uk. These become

g(yk, uk, tk) ≥ 0, k = 0, 1, . . . , N, (11)

where yk denotes the state value at tk. The objective value is the first component of
yN .

The discretized problem is a nonlinear optimization problem with variables x = (u0,
w0, u1, w1, . . . , uN , wN)T . In order to apply an SQP method, it is necessary to be
able to compute the derivatives of the inequality constraints (11). These calculations
involve the partial derivatives ∂yi/∂uj and ∂yi/∂wj, where yi denotes the ODE solution
evaluated at ti. Each of these derivatives is itself the solution of a differential equation
whose right-hand side involves the derivatives f ′

y and f ′
u. This system must be solved in

conjunction with the original ODEs. Since the state value yk is independent of (ui, wi)
for i > k, the Jacobian of y with respect to u and w is block lower triangular. Packages
are available that allow the efficient and reliable computation of these Jacobians (see,
e.g., Buchauer, Hiltmann and Kiehl [7], Maly and Petzold [26]). These packages allow
a constraint derivative to be computed with approximately the same effort and the
same accuracy as the constraint value itself.

Multiple shooting. In this case, the interval [0, tf ] is divided into subintervals and
the differential equations are solved over each subinterval. Continuity of the solutions
between the subintervals is achieved by enforcing the continuity conditions as nonlinear
equations (see Ascher, Mattheij and Russell [1]). In the optimal control context, the
multiple shooting equations are imposed as constraints in the optimization. When
the constraints need to be evaluated, the differential equation (7) is regarded as an
independent initial-value problem over each of the subintervals [tk, tk+1]. A continuous
solution over [0, tf ] is obtained by matching the initial conditions at tk with the final
values obtained from the previous subinterval [tk−1, tk]. The initial values of y for each
subinterval are treated as variables of the optimization and they are adjusted to achieve
continuity over [0, tf ].
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Let yk(t) denote the solution of the differential equations (7) on the interval [tk, tk+1]
with initial conditions yk(tk) = yk. The value of y0 is given, and the vectors yk, k = 1,
2, . . . , N − 1, are variables to be adjusted by the optimizer. For simplicity, we assume
that u(t) is represented by the Hermite piecewise cubic polynomial uk(t) defined above.
Given yk and the control values uk and wk at the nodes, the differential system (7) can
be solved by a “black-box” solver to give yk(tk+1). In general, yk(tk+1) will not equal
the initial value yk+1 for the next interval, and it is necessary to adjust yk, uk and wk

so that the continuity conditions

ck = yk(tk+1)− yk+1 = 0, k = 0, 1, . . . , N − 1, (12)

are satisfied at the subinterval boundaries. The last of these conditions involves yN ,
which does not specify an initial value for any differential equation. This vector can
be used to impose a condition on yN−1(tN) arising from either an explicit condition
on y(tf ) or a condition on y from the inequality constraints g ≥ 0, which are imposed
pointwise at the nodes, as in single shooting. If there are no inequalities, yN can be a
free variable in the optimization. The initial-value problems for each subinterval are
independent and can be solved in parallel (see, e.g., Kiehl [22], and Petzold et al. [29]).

As in single shooting, the calculation of the problem derivatives requires the solution
of additional ODEs. However, in this case the Jacobian and Hessian are sparse and
structured. If Hermite interpolation is used to define each uk(t), the vector of variables
x for the finite-dimensional problem can be written in the form x = (u0, w0, y1, u1,
w1, . . . , yN , uN , wN)T , with a grand total of n = nyN + 2nu(N + 1) variables. With
this ordering, the Jacobian of the continuity conditions (12) has the form

J =



U0 −I

Y1 U1 −I

Y2 U2 −I
. . . . . . . . .

YN−1 UN−1 −I


,

where Yk = ∂ck/∂yk and Uk contains the partial derivatives ∂ck/∂uk and ∂ck/∂wk

in appropriate order. The Jacobian for the inequality constraints g ≥ 0 (11) will
depend upon the particular application. The Lagrangian Hessian is also highly struc-
tured. If there are no nonlinear constraints other than the continuity conditions, then
∇2

xL(x, xk, πk) is a block-diagonal matrix with the same structure as JT J .
Methods based upon multiple shooting have been proposed, amongst others, by

Pantelides, Sargent and Vassiliadis [27], Gritsis, Pantelides and Sargent [19], and Pet-
zold et al. [29]).

Collocation. Methods for discretizing the differential constraints using collocation
have been proposed by Dickmanns and Well [11], Kraft [23], Hargraves and Paris [21],
and Betts and Huffman [5]. The method of collocation is closely related to multiple
shooting. Our discussion follows that of Brenan [6].

Discretization by collocation may be regarded as a form of multiple shooting in
which an appropriate implicit Runge Kutta (IRK) formula is used to solve the initial-
value problem over [tk, tk+1]. An s-stage IRK formula involves constants {αij}, {βj}
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ρ1 α11 · · · α1s
...

...
. . .

...
ρs αs1 · · · αss

β1 · · · βs

0 0 0 0
1
2

5
24

1
3
− 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

Figure 1: The Butcher tableau and its definition for Lobatto IIIA, s = 3.

and {ρi} specified by a Butcher tableau (see Figure 1) and involves the evaluation of
the right-hand side f at the points tkj = tk + ρj∆t, for j = 1, 2, . . . , s. The solution
of the initial-value problem is the state vector yk(tk+1) such that

yk(tk+1) = yk + ∆t
s∑

j=1

βjf(ykj, ukj, tkj), (13)

where the quantities ykj satisfy the s collocation conditions

ykj − yk −∆t
s∑

l=1

αjlf(ykl, ukl, tkl) = 0, j = 1, . . . , s, (14)

with the suffix ij denoting a quantity defined at tij. As in multiple shooting, the
vector yk(tk+1) is matched with yk+1 by imposing the continuity condition ck = 0 as
an optimization constraint, where ck = yk(tk+1)− yk+1. The collocation conditions are
also imposed as constraints, giving an additional s nonlinear equality constraints and
s unknowns {ykl} at each node.

The number of variables and constraints is reduced if the IRK scheme includes
ρ1 = 0 or ρs = 1, since one or two redundant collocation equations can be eliminated.
For example, with the Lobatto IIIA scheme with s = 3, the Butcher tableau of Figure 1
indicates that only three collocation points are required: tk1 = tk, tk2 = 1

2
(tk + tk+1),

and tk3 = tk+1. The continuity conditions (12) are then defined with

yk(tk+1) = yk +
∆t

6
(f(yk, uk, tk) + 4f(yk2, uk2, tk2) + f(yk+1, uk+1, tk+1)), (15)

where the state value yk2 satisfies the single collocation condition

yk +
∆t

24
(5f(yk, uk, tk) + 8f(yk2, uk2, tk2)− f(yk+1, uk+1, tk+1))− yk2 = 0, (16)

with uk2 = 1
2
(uk + uk+1) + 1

8
∆t(wk − wk+1). A similar scheme using a 2-stage Lobatto

IRK is proposed by Betts and Huffman [5]. See also, Pesch [28], Lamour [24], von
Stryk and Bulirsch [36], Bulirsch et al. [8], von Stryk [35], Betts [3], and Schulz, Bock
and Steinbach [32].

An important property of collocation is that the partial derivatives of problem
functions are relatively simple to compute. For the moment, suppose that the relation
uk2 = 1

2
(uk + uk+1) + 1

8
∆t(wk − wk+1) is imposed as the linear constraint

1

2
(uk + uk+1) + γ(wk − wk+1)− uk2 = 0, (17)
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where for brevity, we have denoted ∆t/8 by γ. It follows that at each subinterval,
the differential constraints give three derivatives, c′k, c′k2 and Ak, defined by the con-
tinuity conditions, the collocation conditions and the linear constraints above. These
derivatives may be listed schematically as follows:

yk uk wk yk2 uk2 yk+1 uk+1 wk+1

c′k I + β̄1Yk β̄1Uk β̄2Yk2 β̄2Uk2 β̄3Yk+1 − I β̄3Uk+1

c′k2 I + ᾱ21Yk ᾱ21Uk ᾱ22Yk2 − I ᾱ22Uk2 ᾱ23Yk+1 ᾱ23Uk+1

Ak
1
2
I γI −I 1

2
I −γI

where Yk and Uk denote the Jacobians f ′
y and f ′

u evaluated at tk and ᾱ and β̄ denote the
Lobatto coefficients scaled by ∆t. It follows that the full Jacobian has a block diagonal
structure, with N overlapping diagonal blocks. Except for the first block (which must
account for the ODE initial conditions) each diagonal block has sparsity and structure
identical to that defined above.

If the derivatives f ′
y and f ′

u are sparse, as they are in many applications, this
constraint Jacobian will be sparse and structured. This structure will not be altered
significantly if the linear constraints (17) are used to eliminate the variables uk2. In
this case the derivatives are

yk uk wk yk2 yk+1 uk+1 wk+1

c′k — β̄1Uk + 1
2
β̄2Uk2 γβ̄2Uk2 — — β̄3Uk+1 + 1

2
β̄2Uk2 −γβ̄2Uk2

c′k2 — ᾱ21Uk + 1
2
ᾱ22Uk2 γᾱ22Uk2 — — ᾱ23Uk+1 + 1

2
ᾱ22Uk2 −γᾱ22Uk2

where an entry “—” implies that the derivative is unchanged by the elimination.
The constraints can be simplified further if Hermite cubic interpolation is used to

represent y(t) on the interval [tk, tk+1]. It follows from the identity y
.
k = f(yk, uk, tk),

that the state variable at the collocation point can be represented in terms of the yk’s,
uk’s and wk’s (as in (10)). Hence we are left with just one implicit nonlinear equation

yk+1 − yk −
∆t

6
(f(yk, uk, tk) + 4f(yk2, uk2, tk2) + f(yk+1, uk+1, tk+1)) = 0,

where yk2 = 1
2
(yk + yk+1) + ∆t

8
(f(yk, uk, tk) − f(yk+1, uk+1, tk+1)). This is the basis of

the Hermite-Simpson method.
Although the variable yk2 can be eliminated from the problem, there is a strong

argument from the optimization viewpoint for not performing the elimination explicitly.
If the explicit relation for yk2 is kept as an explicit constraint, the associated derivatives
are given by

yk uk wk yk2 uk2 yk+1 uk+1 wk+1

c′k I + β̄1Yk β̄1Uk β̄2Yk2 β̄2Uk2 β̄3Yk+1 − I β̄3Uk+1

c′k2
1
2
I + γYk γUk −I 1

2
I − γYk+1 −γUk+1

Ak
1
2
I γI −I 1

2
I −γI

As before, if f ′
y and f ′

u are sparse, this scheme will give a sparse Jacobian for the solver.
Alternatively, if yk2 is not an explicit variable, the derivatives become significantly more
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complicated (and hence, less sparse). For example, the partial derivatives of c′k with
respect to yk and uk are −(I + β̄1Yk + β̄2Yk2(

1
2
I + γYk)) and −(β̄1Uk + β̄2γYk2Uk)

respectively.

When modeling large control problems, there is always the temptation to eliminate
as many constraints and variables as possible. In some cases this is justified–even
essential, but the elimination is often done at the expense of creating a constraint
Jacobian that is less sparse than the original. In large-scale optimization, it is not
the size of the problem that is important as much as the nonzero structure of the
Jacobian and Hessian. To be more precise, it is the interaction of this structure with
the matrix factorizations used to solve the linear systems (3) and (4) that is crucial. In
general, there is little to be lost, and much to be gained by hesitating before eliminating
variables and constraints by hand. This observation is based on the assumption that
the more sparse the Jacobian, the better the sparse solver is able to exploit the sparsity
during the factorizations.

4.3 Properties of the discretizations

If there are few control variables, the number of degrees of freedom will be small
compared to the number of variables, and methods based on the explicit estimation of
the reduced Hessian ZT HZ will work efficiently.

Single shooting gives a discretized problem with the smallest number of variables
and constraints. Moreover, the constraint Jacobian is essentially dense, and it is not
necessary to use a sparse solver. Single shooting is usually used in conjunction with
adaptive ODE software, and when it converges, it can be very efficient. In many cases,
good results can be obtained from single shooting (see, e.g., Büskens and Maurer [9]).
However, it is well-known that single shooting can suffer from a lack of robustness and
stability (see, e.g., Ascher, Mattheij and Russell [1]). For some nonlinear problems it
can generate intermediate iterates that are nonphysical and/or not computable. For
some well-conditioned boundary-value problems, it can generate unstable initial-value
problems.

If any one of the active inequality constraints (11) involves state variables, both
single and multiple shooting require the calculation of the partial derivatives ∂yi/∂uj

and ∂yi/∂wj at each node. There seems little justification for choosing single shooting
in this case, given the superior stability properties of multiple shooting (see below).
The decision is less straightforward if g does not involve the state variables, since no
additional ODEs need to be solved in this case.

Multiple shooting with an appropriate ODE solver does not have the potential sta-
bility problems of single shooting. However, both single and multiple shooting have
a weakness that is not present in collocation. In a “black-box” shooting scheme, it
is common for the constraints and their derivatives to be evaluated using an adaptive
ODE package in which the step sizes are chosen adaptively based on local error esti-
mates. Current SQP methods require that the Jacobian elements be computed to high
accuracy, which implies a relatively tight tolerance for the ODE solver. This can make
the problem derivatives extremely expensive, with as much as 95% of the computation
time being spent in the derivative calculation. By contrast, collocation derivatives can
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be obtained to (essentially) full precision at little cost if f ′
y and f ′

u are available. More-
over, if second derivatives of f can be computed (either by hand or with the use of a
symbolic differentiation package), then second-derivative SQP methods can be applied.

Another advantage of collocation is that it is very convenient to implement a
multigrid-type approach in which a solution on a coarse grid of nodes is used as an
initial estimate for the larger problem on a finer grid. In this context, second deriva-
tive methods are likely to be significantly more efficient than first-derivative methods.
Since quasi-Newton methods estimate second derivative information over a sequence of
iterations, a poor initial Hessian may cause the algorithm to wander away from a good
estimate of the solution. It may be seen that the reduced Hessian ZT HZ associated
with different discretizations are not related in a simple way, even when one mesh is
the refinement of another. This implies that the optimal reduced Hessian from one
problem is not easily used to start an optimization on a finer grid. This difficulty
does not occur with exact second derivatives since the reduced Hessian for the refined
system is computed from scratch.

A disadvantage of collocation is that the number of variables and constraints is
significantly increased compared to multiple shooting. However, as we have already
indicated, this need not be a serious disadvantage if the problem derivatives are suf-
ficiently sparse. A potentially more serious difficulty is that, for a given complexity
of optimization problem, the state variables obtained by collocation may not be as
accurate as those obtained by multiple shooting. In this case, a compromise is to use
collocation to obtain a good starting estimate for a multiple shooting approach.

5. SQP METHODS THAT EXPLOIT STRUCTURE

A general-purpose SQP algorithm treats all variables and constraints equally, and does
not distinguish between state and control variables. Many methods have been devised
that exploit the structure of the problem with the aim of increasing efficiency. The
formulation of such “modified” or “structured” SQP methods are considered next. For
clarity, the notation will be changed so that y and u denote the components of the
discretized versions of the state and control vectors, with y an n1-vector and u an n2-
vector. The structured problem has n (n = n1 + n2) variables and m (m = m1 + m2)
constraints, and is written as

minimize
y∈IRn1 ,u∈IRn2

F (y, u)

subject to c1(y, u) = 0, c2(y, u) ≥ 0.
(18)

The m1 constraints c1(y, u) = 0 represent the continuity and collocation conditions
associated with the discretized ODEs. The m2 inequalities c2(y, u) ≥ 0 define all the
inequality constraints, including simple upper and lower bounds. We assume that
n1 = m1, so that the number of equality constraints is equal to the number of state
variables. It follows that the constraint Jacobian for this problem has the form

J(x) =

 J1

J2

 =

 Jy
1 Ju

1

Jy
2 Ju

2

 ,
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where J1 and J2 are n1× (n1 +n2) and m2× (n1 +n2), and the matrices Jy
1 , Ju

1 , Jy
2 and

Ju
2 reflect the (y, u) partition of the variables. The QP subproblem associated with the

structured nonliner problem (18) can be written as

minimize
∆y∈IRn1 ,∆u∈IRn2

gT
y ∆y + gT

u ∆u +
1

2
( ∆yT ∆uT )H

 ∆y

∆u


subject to Jy

1 ∆y + Ju
1 ∆u = −c1,

Jy
2 ∆y + Ju

2 ∆u ≥ −c2,

(19)

where ∆y and ∆u denote the predicted change in the state and control parameters
respectively.

5.1 Structured Reduced-Hessian methods

Under the assumption that J1 is invertible, the equality constraints Jy
1 ∆y+Ju

1 ∆u = −c1

can be used to express ∆y as a function of ∆u, with

∆y = −(Jy
1 )−1c1 − (Jy

1 )−1Ju
1 ∆u. (20)

This expression may be used to establish the identity ∆y

∆u

 = Y1c1 + Z1∆u,

where Z1 and Y1 are n× n2 and n× n1 matrices such that

Y1 =

 −(Jy
1 )−1

0

 , and Z1 =

 −(Jy
1 )−1Ju

1

I

 .

Substituting for ∆y in the definition of the QP subproblem gives

minimize
∆u∈IRn2

(g + HY1c1)
T Z1∆u +

1

2
∆uT ZT

1 HZ1∆u

subject to J2Z1∆u ≥ −J2Y1c1 − c2,
(21)

which is a problem involving only the control variables ∆u. Once ∆u has been cal-
culated, the state increment is determined from (20). The dimensions of the Hessian
and constraints for this problem are n2×n2 and m2×n2, respectively. In the common
situation where the number of control variables is significantly smaller than the number
of state variables, then n2 � n, and the dimension of this QP is considerably smaller
than that of (19). Tanartkit and Biegler [33] propose forming the matrices ZT

1 HZ1

and J2Z1 explicitly and solving the subproblem (21) using a dense QP algorithm. A
feature of this method is that any additional structure in the derivatives matrix J2 is
lost (the extreme case of this is when the inequalities c2(y, u) consist of only simple
bounds. In this case the bounds are transformed into dense general inequalities.

Other approaches involve solving (21) with different choices for g + HY1c1 (see,
e.g., Beltracchi and Gabriele [2] and Schultz [31]). A structured problem of the form
(21) lies at the heart of many methods for optimal control. Dennis, Heinkenschloss and
Vicente [10] propose a trust-region SQP method for the case where the only inequalities
are simple bounds.
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5.2 Using approximate Jacobians

A disadvantage of the straightforward implementation of multiple shooting is that it is
necessary to compute the n2

y Jacobian elements at each major iteration. Gill, Jay and
Petzold [15] propose an algorithm that has the numerical complexity of single shooting
and the stability and robustness of multiple shooting. The first step is to transform
the nonlinear constraints of (18) and define the problem

minimize
y∈IRn1 ,u∈IRn2

F (y, u)

subject to cM
1 (y, u) = 0, cM

2 (y, u) ≥ 0,
(22)

where the m1-vector cM
1 (y, u) and m2-vector cM

2 (y, u) form elements of the vector c
such that

cM(x) = M(x)c(x), with M(x) =

 (Jy
1 )−1 0

−Jy
2 (Jy

1 )−1 I

 .

The idea is now to use an SQP algorithm to solve the problem (22). The only mod-
ification to the standard SQP strategy is that an approximate Jacobian J̃ is used in
place of J(x). The approximation is given by

J̃(x) = M(x)J(x) =

 I (Jy
1 )−1Ju

1

0 Ju
2 − Jy

2 (Jy
1 )−1Ju

1

 .

The entries for the unit columns of this Jacobian are available with no work. More-
over, the products (Jy

1 )−1Ju
1 used to define the other columns can be found with single-

shooting complexity (but multiple shooting stability) using directional sensitivity tech-
niques (see Maly and Petzold [26]).

The original variables of (18) are not subject to the transformation, which implies
that only minor modifications need to be made to general-purpose SQP methods in
order to accommodate the approximate Jacobian (one implementation is based on the
SQP code SNOPT of Gill, Murray and Saunders [16]). In addition, linear constraints
and selected nonlinear inequalities can be left untransformed, allowing their structure
to be exploited by the solver in the usual way. For more details, see Gill, Jay and
Petzold [15].
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