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Abstract. This paper gives a preliminary description of DASOPT, a software system for the
optimal control of processes described by time-dependent partial differential equations (PDEs). DA-
SOPT combines the use of efficient numerical methods for solving differential-algebraic equations
(DAEs) with a package for large-scale optimization based on sequential quadratic programming
(SQP). DASOPT is intended for the computation of the optimal control of time-dependent nonlin-
ear systems of PDEs in two (and eventually three) spatial dimensions, including possible inequality
constraints on the state variables. By the use of either finite-difference or finite-element approxi-
mations to the spatial derivatives, the PDEs are converted into a large system of ODEs or DAEs.
Special techniques are needed in order to solve this very large optimal control problem. The use of
DASOPT is illustrated by its application to a nonlinear parabolic PDE boundary control problem in
two spatial dimensions. Computational results with and without bounds on the state variables are
presented.
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1. Introduction. We describe a numerical method (DASOPT) for finding the so-
lution of a general optimal control problem. We assume that the problem is described
with an objective function that must be minimized subject to constraints involving
a system of DAEs and (possibly) inequality constraints. The numerical method uses
the general-purpose packages DASPKSO (§4) and SNOPT (§3) in an essential way, and
takes full advantage of their capabilities.

In the method proposed, large-scale nonlinear programming is used to solve the
optimization/optimal control problem. The original time interval is divided into
subintervals in a multiple-shooting type approach that provides a source of paral-
lelism. (For other approaches, see, e.g., Dickmanns and Well [11], Kraft [20], Har-
graves and Paris [19], Pesch [28], Lamour [21], Betts and Huffman [3], von Stryk and
Bulirsch [35], Bulirsch et al. [9], von Stryk [34], Betts [2], Brenan [6], Schulz, Bock
and Steinbach [30], Tanartkit and Biegler [32], Pantelides, Sargent and Vassiliadis
[27], and Gritsis, Pantelides and Sargent [18].)

∗This research was partially supported by National Science Foundation grants CCR-95-27151
and DMI-9424639, National Institute of Standards and Technology contract 60 NANB2D 1272,
Department of Energy grant FG02-92ER25130, Office of Naval Research grants N00014-90-J-1242
and N00014-96-1-0274, the Minnesota Supercomputing Institute, and the Army High Performance
Computing Research Center under the auspices of the Department of the Army, Army Research Lab-
oratory Cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008,
the content of which does not necessarily reflect the position or the policy of the government, and
no official endorsement should be inferred.

†Department of Computer Science and Army High Performance Computing Research Center,
University of Minnesota, Minneapolis, Minnesota 55455.

‡Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455, and
Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
California 92093-0114.

§Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112.
¶Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
‖School of Mechanical Engineering, Kookmin University, Seoul, Korea.



2 L. PETZOLD, J. B. ROSEN, P. E. GILL, L. O. JAY AND K. PARK

The associated finite-dimensional optimization problem is characterized by: (a)
many variables and constraints; (b) sparse constraint and objective derivatives; and
(c) many constraints active at the solution. The optimization problem is solved using
the package SNOPT (§3), which is specifically designed for this type of problem.
SNOPT uses a sequential quadratic programming (SQP) method in conjunction with
a limited-memory quasi-Newton approximation of the Lagrangian Hessian. There has
been considerable interest elsewhere in extending SQP methods to the large structured
problems. Much of this work has focused on reduced-Hessian methods, which maintain
a dense quasi-Newton approximation to a smaller dimensional reduced Hessian (see,
e.g., Biegler, Nocedal and Schmidt [4], Eldersveld [12], Tjoa and Biegler [33], and
Schultz [29]). Our preference for approximating the full Hessian is motivated by
substantial improvements in reliability and efficiency compared to earlier versions of
SNOPT based on the reduced-Hessian approach.

The function and derivative computations for the optimization involve computing
the solution of a large-scale DAE system, and solution sensitivities with respect to the
initial conditions and the control parameters. The general-purpose package DASPKSO

(§4) is used to compute the DAE solution and sensitivities. The sensitivity equations
can be solved very efficiently, and in parallel with the original DAE.

In §5, a typical application is described, consisting of a nonlinear parabolic PDE
in two spatial dimensions, with boundary control of the interior temperature distri-
bution. This application serves as an initial test problem for DASOPT, and has the
important feature that the size of the problem is readily increased by simply using a
finer spatial grid size. It is shown in §5 how the PDE is reduced to a suitable finite-
dimensional optimization problem. The numerical results, obtained by DASOPT for
ten related cases, are summarized in §6. These results are displayed in ten figures
that show, as a function of time, the optimal control and the temperatures at interior
points obtained with different constraints and degrees of nonlinearity.

We assume that the continuous problem is given in the form

minimize
u,v

φ(u) =

∫ tmax

0

ψ(v, u, t) dt

subject to v(0) = v0,

f(v, v′, u, t) = 0, t ∈ [0, tmax], (1.1a)

g(v, u, t) ≥ 0, t ∈ [0, tmax]. (1.1b)

It is assumed that given the initial condition v0 and the control function u = u(t),
t ∈ [0, tmax], the state vector function v = v(t) is uniquely determined by the DAE
system (1.1a). Conditions on f that ensure this are discussed, for example, in Brenan,
Campbell and Petzold [7]. We also assume that the control u(t) satisfies some standard
conditions needed for the existence of an optimal control (see, e.g., Leitman [23]).

For simplicity of presentation, we assume that v0 is given and fixed. However,
there is no difficulty in treating v0 as a vector of parameters to be determined by
the optimization. Note also that φ(u) is most easily computed by adding the single
differential equation

ν′ = ψ(v, u, t), ν(0) = 0 (1.2)

to the system (1.1a). Then φ(u) = ν(tmax). It follows that the control function u(t)
determines the objective function φ(u).
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Throughout this paper, the optimal control is assumed to be continuous, which
is typical of the processes that we will be investigating. Additional restrictions on
u(t) and v(t) are specified by the inequalities (1.1b). These will almost always include
upper and lower bounds on u(t), and may include similar bounds on the state vector
v(t). In general, it is computationally much easier to enforce constraints on u(t) than
constraints that involve v(t).

In the applications considered here, the size of the DAE system (1.1a) may be
large. However, typically the dimension of the control vector u(t) will be much smaller.
In order to be able to represent u(t) in a low-dimensional vector space, it will be rep-
resented by a spline function, or a piecewise polynomial on [0, tmax]. The coefficients
of this spline or piecewise polynomial are determined by the optimization. If p ∈ IRnp

denotes the vector of coefficients, then both u(t) and the objective φ(u) are completely
determined by p, with

u(t) = ū(p, t), φ(u) = θ(p). (1.3)

The optimization problem given by (1.1) can then be considered as that of minimizing
θ(p), subject to the inequality constraints (1.1b).

2. Discretizing the control problem. There are a number of alternative
methods for discretizing the control problem. The first, known as the single shooting,
or “nested” method, minimizes over the control variables and solves the DAE system
(1.1a) over [0, tmax], given the set of control variable approximations generated at each
iteration of the optimization algorithm. This approach can be used in conjunction
with adaptive DAE software, and when it converges, it can be very efficient. How-
ever, it is well-known that single shooting can suffer from a lack of robustness and
stability (see, e.g., Ascher, Mattheij and Russell [1]). For some nonlinear problems it
can generate intermediate iterates that are nonphysical and/or not computable. For
some well-conditioned boundary-value problems, it can generate unstable initial-value
DAEs. Two classes of algorithms have been proposed to remedy these problems. One
is the multiple shooting method, in which the initial time interval is divided into subin-
tervals and the DAE (1.1a) is solved over each subinterval. Continuity is achieved
between the subintervals by adding the continuity conditions as constraints in the
optimization problem. The other is the collocation method, in which the solution and
its derivative are approximated via a collocation formula defined directly on a fine
grid over the whole interval. In this case, the optimization is performed over both the
control variables and the discretized solution variables.

In the DASOPT project, our aim is to develop software for the optimization of
several classes of nonlinear time-dependent PDEs. We have chosen to implement the
multiple shooting method (with single shooting as a special case). This method was
selected not only because of its stability and robustness, but also because it allows the
use of existing adaptive DAE and PDE software. Another substantial benefit is that
the resulting optimization problems are more tractable than those generated by the
collocation method—especially in the optimization of PDE systems. A disadvantage
of the straightforward implementation of multiple shooting considered here is that it
may be necessary to compute n2

v sensitivities at each optimization iteration, where
nv is the dimension of v (and the number of DAEs in (1.1a)). A more sophisticated
approach that has the complexity of single shooting and the stability and robustness of
multiple shooting will be the subject of a future paper. The reader should recognize
that the timing results for the test problem in §6 are not optimal, but reflect the
current status of the DASOPT software.
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For multiple shooting, the total time interval [0, tmax] is divided into N equal
subintervals of length ∆t each. Then

tk = k∆t, k = 0, 1, . . . , N, (2.1)

with tN = N∆t = tmax. The system of DAEs (1.1a) is now solved as an indepen-
dent subproblem over each subinterval [tk, tk+1], with its own initial conditions. A
continuous solution over [0, tmax] is obtained by matching the initial conditions at tk
with the final values obtained from the previous subinterval [tk−1, tk]. This matching
is included in the optimization, where the initial values of v for each subinterval are
additional optimization variables.

To be more specific, let vk(t) denote the solution of the DAE system (1.1a) on
the time subinterval [tk, tk+1], with the initial conditions

v0(0) = v0, vk(tk) = v̄k, k = 1, 2, . . . , N − 1. (2.2)

The value of v̄0 = v0 is given, and the v̄k, k = 1, 2, . . . , N − 1, are to be determined.
Let the vector ūk denote the coefficients of the spline or polynomial uk(ūk, t) that
represents u(t) for t ∈ [tk, tk+1]. For example, in the application discussed in §5, if nu

denotes the dimension of u, then each uk(t) is the quadratic polynomial

uk(t) = ūk0 + ūk1(t− tk) + ūk2(t− tk)2, for t ∈ [tk, tk+1], (2.3)

with ūk0, ūk1, and ūk2 each of order nu. It follows that uk(t) can be represented by
the 3nu vector ūk formed from ūk0, ūk1, and ūk2. The N vectors ūk, k = 0, 1, . . . ,
N − 1 are determined by the optimization. The continuity of the uk(t) and their first
derivatives is imposed by the linear equality constraints

ūk+1,0 = ūk0 + ūk1∆t+ ūk2(∆t)
2

ūk+1,1 = ūk1 + 2ūk2∆t,

}
k = 0, 1, . . . , N − 2. (2.4)

Bounds on the uk(t) at t = tk (and any additional points) give linear inequalities on
the ūkl.

Given v̄k and ūk, the DAE system (1.1a) gives vk(tk+1). Making this dependence
explicit we have

vk(tk+1) = s(v̄k, ūk). (2.5)

The matching conditions, to enforce continuity of v(t) at the subinterval boundaries,
then become

s(v̄k, ūk) − v̄k+1 = 0, k = 0, 1, . . . , N − 1. (2.6)

The last of these constraints involves the vector v̄N at the point tmax. This vector
does not specify an initial value for the differential equation, but imposes a condition
on s(v̄N−1, ūN−1) arising from either an explicit condition on v(tmax) or a condition
on v from the inequality constraint g ≥ 0 below. If these constraints are not present,
v̄N can be a free variable in the optimization. Note that since the DAE solutions over
each subinterval are independent, they can be computed in parallel.

The inequality constraints (1.1b) can now be imposed explicitly at each subinter-
val boundary, as requirements on the vectors v̄k and ūk. These become

g(v̄k, uk(tk), tk) ≥ 0, k = 0, 1, . . . , N − 1, (2.7a)

g(v̄N , uN−1(tN ), tN ) ≥ 0. (2.7b)
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Finally the objective function is determined by solving the ODE (1.2) as an additional
part of the DAE system (1.1a). That is, we solve

νk(tk) = 0, ν′k = ψ(vk(t), uk(t), t), (2.8)

for t ∈ [tk, tk+1]. This gives the objective function as
∑N−1

k=0 νk(tk+1).
Let p denote the vector of variables associated with the finite-dimensional opti-

mization problem. This vector has the form

p = (ū0, v̄1, ū1, v̄2, . . . , ūN−1, v̄N )T ,

with the total number of optimization variables given by np = N(nv + nū) where nū

is the dimension of each ūk. The discretized problem may be written in the general
form

minimize
p∈IRnp

θ(p)

subject to bl ≤






p
Ap
r(p)




 ≤ bu,
(2.9)

where r is a vector of nonlinear functions, A is a constant matrix that defines the
linear constraints, and bl and bu are constant upper and lower bounds. The vector
r comprises the matching conditions (2.6) and the components of g (2.7). The com-
ponents of bl and bu are set to define the appropriate constraint right-hand side. For
example, (bl)i = (bu)i = 0 for the matching conditions, and (bl)i = 0, (bu)i = +∞
for components of g. The matrix A contains the linear equality constraints associ-
ated with the continuity conditions (2.4) and any linear inequality constraints on ūk

resulting from upper and lower bounds on u(t). Upper and lower bounds on v(t) are
imposed directly as bounds on v̄k.

The optimization requires, in addition to the function evaluations, that both
the gradient of the objective function and the Jacobian of the constituent functions
be computed at each major iteration. We need the Jacobian of s(v̄k, ūk), which is
typically dense. Since s ∈ IRnv , v̄k ∈ IRnv and ūk ∈ IRnū , nv(nv + nū) sensitivity
evaluations are required. The value of nv may be large, so this may be the most
significant part of the total computation. This is illustrated in §5, where nv is the
total number of spatial grid points in the two-dimensional PDE. A modification of the
multiple shooting method that has complexity comparable to that of single shooting
is under development and will be the subject of a future paper.

The gradients of θ(p) with respect to the v̄k and ūk are computed similarly and
they involve the sensitivities required for the Jacobian as well, so this is also an
O(nv(nv + nū)) calculation.

3. Solving the optimization problem. In this section we discuss the applica-
tion of the general-purpose sparse nonlinear optimizer SNOPT to solve the discretized
optimal control problem. The discretized problem of §2 has several important char-
acteristics: (a) many variables and constraints; (b) sparse constraint and objective
derivatives; (c) objective and constraint functions (and their first derivatives) that
are expensive to evaluate; and (d) many constraints binding at the solution. SQP
methods are particularly well suited to problems with these characteristics.

At a constrained minimizer p∗, the objective gradient ∇θ can be written as a
linear combination of the constraint gradients. The multipliers in this linear com-
bination are known as the Lagrange multipliers. The Lagrange multipliers for an
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upper bound constraint are nonpositive, the multipliers for a lower bound constraint
are nonnegative. The vector of Lagrange multipliers associated with the nonlinear

constraints of (2.9) is denoted by π∗.
As their name suggests, SQP methods are a class of optimization methods that

solve a quadratic programming subproblem at each iteration. Each QP subproblem
minimizes a quadratic model of a certain modified Lagrangian function subject to
linearized constraints. A merit function is reduced along each search direction to
ensure convergence from any starting point. The basic structure of an SQP method
involves major and minor iterations. The major iterations generate a sequence of
iterates (pk, πk) that converge to (p∗, π∗). At each iterate a QP subproblem is used
to generate a search direction towards the next iterate (pk+1, πk+1). Solving such
a subproblem is itself an iterative procedure, with the minor iterations of an SQP
method being the iterations of the QP method. (For an overview of SQP methods,
see, for example, Gill, Murray and Wright [17].)

Each QP subproblem minimizes a quadratic model of the modified Lagrangian

L(p, pk, πk) = θ(p) − πT
k dL(p, pk), (3.1)

which is defined in terms of the constraint linearization,

rL(p, pk) = r(pk) + J(pk)(p− pk),

and the departure from linearity , dL(p, pk) = r(p) − rL(p, pk).
Given estimates (pk, πk) of (p∗, π∗), an improved estimate is found from (p̂k, π̂k),

the solution of the following QP subproblem:

minimize
p∈IRn

θ(pk) + ∇θ(pk)T (p− pk) + 1
2 (p− pk)THk(p− pk)

subject to bl ≤






p
Ap

r(pk) + J(pk)(p− pk)




 ≤ bu,

where Hk is a positive-definite approximation to ∇2
pL(pk, pk, πk).

Once the QP solution (p̂k, π̂k) has been determined, the major iteration proceeds
by determining new variables (pk+1, πk+1) as

(
pk+1

πk+1

)
=

(
pk

πk

)
+ αk

(
p̂k − pk

π̂k − πk

)
,

where αk is found from a line search that enforces a sufficient decrease in an augmented
Lagrangian merit function (see Gill, Murray and Saunders [15]).

In this SQP formulation, the objective and constraint derivatives ∇θ and J are
required once each major iteration. They are needed to define the objective and
constraints of the QP subproblem. The constraint derivatives have a structure deter-
mined by the multiple shooting scheme. For example, the Jacobian of the constraints
(2.6) that impose the matching conditions is of the form





U0 −I

V1 U1 −I

V2 U2 −I
. . .

. . .
. . .

VN−1 UN−1 −I




,
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where Vi = ∂s/∂v̄i and Ui = ∂s/∂ūi. The structure of the derivatives for the inequal-
ity constraints g ≥ 0 (2.7) will depend upon the particular application.

The QP algorithm is of reduced-gradient type, with the QP reduced Hessian being
computed at the first feasible minor iterate. The QP solver must repeatedly solve
linear systems formed from rows and columns of the structured derivatives. In the
current version of SNOPT, these sparse systems are solved using the general-purpose
sparse LU package LUSOL (see Gill et al. [16]). Current research is directed towards
other factorization methods that more fully exploit the block-diagonal structure of
the derivatives (see, e.g., Steinbach [31]).

SQP methods are most robust when the derivatives of the objective and constraint
functions are computed exactly. As described in §4, the function and derivative com-
putations involve computing the solution of a large-scale DAE system, and solution
sensitivities with respect to the initial conditions and the control parameters. For
problems associated with large-scale PDE systems, the derivatives require computing
the sensitivity of solutions to the PDE at each spatial grid point with respect to initial
conditions at every other spatial grid point.

The definition of the QP HessianHk is crucial to the success of an SQP method. In
SNOPT, Hk is a positive-definite approximation to G = ∇2

pL(pk, pk, πk), the Hessian
of the modified Lagrangian. The exact Hessian is highly structured. For example, if
there are no nonlinear constraints other than the matching conditions, ∇2

pL(p, pk, πk)
has the form:

G =





G00

G11 GT
21

G21 G22

G33 GT
43

G43 G44

. . .

GN−2,N−2 GT
N−1,N−2

GN−1,N−2 GN−1,N−1





,

where the diagonal block 2 × 2 matrix involving Gii, Gi+1,i and Gi+1,i+1 represents
the Hessian terms associated with variables v̄i and ūi. In SNOPT, Hk is a limited-
memory quasi-Newton approximate Hessian. On completion of the line search, let the
change in p and the gradient of the modified Lagrangian be

δk = pk+1 − pk and yk = ∇L(pk+1, pk, πk+1) −∇L(pk, pk, πk+1).

The approximate Hessian is updated using the BFGS quasi-Newton update,

Hk+1 = Hk − ρkqkq
T
k + θkyky

T
k,

where qk = Hkδk, ρk = 1/qT
kδk and θk = 1/yT

kδk. If necessary, δk and yk are redefined
to ensure that Hk+1 is positive definite (see Gill, Murray and Saunders [15] for more
details).

The limited-memory scheme used in SNOPT is based on the observation that
the SQP computation can be arranged so that the approximate Hessian Hk is only
required to perform matrix-vector products of the form Hku. This implies that Hk

need not be stored explicitly, but may be regarded as an operator involving an initial
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diagonal matrix Hr and a sum of rank-two matrices held implicitly in outer-product
form. With this approach, a preassigned fixed number (say ℓ) of these updates are
stored and products Hku are computed using O(ℓ) inner-products. For a discussion
of limited-memory methods see, e.g., Gill and Murray [14], Nocedal [26]), Buckley
and LeNir [8], and Gilbert and Lemaréchal [13].

Currently, SNOPT uses a simple limited-memory implementation of the BFGS
quasi-Newton method. As the iterations proceed, the two vectors (qk, yk) defining
the current update are added to an expanding list of most recent updates. When ℓ
updates have been accumulated, the storage is “reset” by discarding all information
accumulated so far. Let r and k denote the indices of two major iterations such that
r ≤ k ≤ r + ℓ (i.e., iteration k is in the sequence of ℓ iterations following a reset at
iteration r). During major iteration k, products of the form Hku are computed with
work proportional to k − r:

Hku = Hru+

k−1∑

j=r

ρj(y
T
ju)yj − ρj(q

T
ju)qj ,

where Hr is a positive-definite diagonal. On completion of iteration k = r + ℓ, the
diagonals of Hk are saved to form the new Hr (with r = k + 1).

4. DAE Sensitivity Analysis. Many engineering and scientific problems are
described by systems of differential-algebraic equations (DAEs). Parametric sensitiv-
ity analysis of the (DAE) model yields information useful for parameter estimation,
optimization, process sensitivity, model simplification and experimental design. Con-
sequently, algorithms that perform such an analysis in an efficient and rapid manner
are invaluable to researchers in many fields. In this section we present two such codes:
DASSLSO and DASPKSO. The codes are modifications of the DAE solvers DASSL and
DASPK ([7]). The DASPKSO code is used in DASOPT to compute the sensitivities of
the solution to the DAE system. The algorithms used in these sensitivity codes have
several novel features. They make use of an adaptive difference directional derivative
approximation to (or alternatively a user supplied expression for) the sensitivity equa-
tions. The ability to adapt the increment as time progresses is important because the
solution and sensitivities can sometimes change drastically. The sensitivity equations
are solved simultaneously with the original system, yielding a nonlinear system at
each time step. We will outline the algorithms here; further details on the algorithms,
codes, theory and numerical results can be found in [24]. The new codes are easy to
use, highly efficient, and well-suited for large-scale problems.

First, we briefly give some background on the algorithms in DASSL and DASPK.
Further details can be found in [7]. DASSL is a code for solving initial-value DAE
systems of the form

F (v, v′, t) = 0, v(0) = v0.

The DAE system must be index-one. For semi-explicit DAE systems (ODEs coupled
with nonlinear constraints) of the form

v′1 = f1(v1, v2, t) (4.1a)

0 = f2(v1, v2, t), (4.1b)

the system is index-one if ∂f2/∂v2 is nonsingular in a neighborhood of the solution.
The initial conditions given to DASSL must always be consistent. For semi-explicit
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DAE systems (4.1), this means that the initial conditions must satisfy the constraints
(4.1b). Given a consistent set of initial conditions, DASSL solves the DAE over
the given time interval via an implicit, adaptive-stepsize, variable-order numerical
method. The dependent variables and their derivatives are discretized via backward
differentiation formulas (BDF) of orders one through five. At each time step this
yields a nonlinear system that is solved using a modified Newton iteration. The linear
system at each Newton iteration is solved via either a dense or banded direct linear
system solver, depending on the option selected by the user.

DASSL has been highly successful for solving a wide variety of small to moderate-
sized DAE systems. For large-scale DAE systems such as those arising from PDEs in
two or three dimensions, DASPK can be much more effective. DASPK uses the time-
stepping methods of DASSL (and includes the DASSL algorithm as a user option). It
solves the nonlinear system at each time step using an inexact Newton method. This
means that the linear systems at each iteration are not necessarily solved exactly. In
fact, they are solved approximately via a preconditioned GMRES iterative method.
The user must provide a preconditioner, which is usually dependent on the class of
problems being solved.

4.1. Sensitivity for DAEs—the basic approach. Consider the general DAE
system with parameters,

F (v, v′, p, t) = 0, v(0) = v0,

where v ∈ IRnv , p ∈ IRnp . Here, nv and np are the dimension and the number
of parameters in the original DAE system, respectively. Sensitivity analysis entails
finding the derivative of the above system with respect to each parameter. This
produces an additional ns = np × nv sensitivity equations that, together with the
original system, yield

F (v, v′, p, t) = 0

∂F

∂v
si +

∂F

∂v′
s′i +

∂F

∂pi
= 0, i = 1, 2, . . . , np,

(4.2)

where si = dv/dpi and s′i = dv′/dpi. Given the vector of combined unknowns V =
( v s1 · · · snp

)T and the vector-valued function

F =





F (v, v′, p, t)

∂F

∂v
s1 +

∂F

∂v′
s′1 +

∂F

∂p1
...

∂F

∂v
snp

+
∂F

∂v′
s′np

+
∂F

∂pnp





,

the combined system can be rewritten as

F(V, V ′, p, t) = 0, V (0) =





v0

dv0
dp1
...
dv0
dpnp





.
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We note that the initial conditions for this DAE system must be chosen to be con-
sistent, and that this implies that the initial conditions for the sensitivity equations
must be consistent as well.

Approximating the solution to the combined system by a numerical method, for
example the implicit Euler method with stepsize h, yields the nonlinear system

G(Vn+1) = F(Vn+1, (Vn+1 − Vn)/h, p, tn+1) = 0. (4.3)

Newton’s method for the nonlinear system produces the iteration

V
(k+1)
n+1 = V

(k)
n+1 − J−1G(V

(k)
n+1),

where

J =





J

J1 J

J2 0 J
...

...
. . .

. . .

Jnp
0 . . . 0 J




, (4.4)

with

J =
1

h

∂F

∂v′
+
∂F

∂v
and Ji =

∂J

∂v
si +

∂J

∂pi
.

A number of codes for ODEs and DAEs solve the sensitivity system (4.2), or its special
case for ODEs, directly (see [10]). If the partial derivative matrices are not available
analytically, they are approximated by finite differences. The nonlinear system is
usually solved by a so-called staggered scheme, in which the first block is solved for
the state variables v via Newton’s method, and then the block-diagonal linear system
for the sensitivities s is solved at each time step.

4.2. Directional derivative sensitivity approximation. Although the di-
rect solution of (4.2) is successful for many problems, in the context of DASSL/DASPK,
there are three difficulties with this approach. First, for efficiency, DASSL was designed
to use its approximation to the system Jacobian over as many time steps as possi-
ble. However, sensitivity implementations using the staggered scheme described above
must re-evaluate the Jacobian at every step in order to ensure an accurate approxima-
tion to the sensitivity equations. Second, if the Jacobian has been approximated via
finite differences, which is most often the case, large errors may be introduced into the
sensitivities. Finally, in DASPK, the Jacobian matrices are never formed explicitly.
Making use of the fact that the GMRES iterative method requires only products of the
Jacobian matrix with a given vector, these matrix-vector products are approximated
via a directional derivative difference approximation.

To eliminate these problems, we focus on approximating the sensitivity system
(4.2) directly, rather than via the matrices ∂F/∂v, ∂F/∂v′, and ∂F/∂p. In the sim-
plest case, the user can specify directly the residual of the sensitivity system at the
same time as the residual of the original system. Eventually, we intend to incorporate
the automatic differentiation software ADIFOR [5] for this purpose. Alternatively, we
can approximate the right-hand side of the sensitivity equations using a directional
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derivative finite-difference approximation. As an example, define si = dv/dpi and
solve

F (v, v′, p, t) = 0,

1

δi
(F (v + δisi, v

′ + δis
′

i, p+ δiei, t) − F (v, v′, p, t)) = 0, i = 1, 2, . . . , np,

where δi is a small scalar quantity, and ei is the ith unit vector. Proper selection
of the scalar δi is crucial to maintaining acceptable round-off and truncation error
levels; the adaptive determination of the increment δi is discussed in greater detail
by Maly and Petzold [24]. Approximations to the sensitivity equations are generated
at the same time as the residual of the original system, via np additional calls to the
user function routine. The resulting system is discretized by a numerical method (in
DASSL/DASPK this is the BDF method of orders 1-5), yielding an iteration matrix
of the form (4.4).

In general, for a Newton or Newton-Krylov iteration, one should be able to ap-
proximate the iteration matrix J by its block diagonal part provided that the error
matrix for the Newton/modified Newton steps is nilpotent. To illustrate this idea,
consider the problem formulation (4.3)

G (V ) = 0

and apply a Newton step

V (k+1) = V (k) − Ĵ−1G(V (k)), (4.5)

where the Newton matrix J has been approximated by its block-diagonal part, Ĵ. The
true solution V ∗ satisfies

V ∗ = V ∗ − Ĵ−1G(V ∗). (4.6)

Subtracting (4.6) from (4.5) and defining ek = V (k+1)−V ∗, the iteration errors satisfy

V (k+1) − V ∗ = ek+1 ≈ ek − Ĵ−1Jek = (I − Ĵ−1J)ek.

The error matrix has the form

I − Ĵ−1J =





0

J−1J1 0

J−1J2 0 0
...

...
. . .

. . .

J−1Jnp
0 . . . 0 0




.

Maly and Petzold [24] show that because this matrix is nilpotent, the Newton iteration
in DASSLSO achieves 2-step quadratic convergence for nonlinear problems. Using the
block-diagonal part Ĵ as the preconditioner in the GMRES iteration in DASPKSO has
resulted in excellent performance.

4.3. Sensitivity Analysis of Derived Quantities. In addition to the sensitiv-
ity analysis modifications to DASSL and DASPK, a stand alone routine (SENSD) has
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been constructed that performs a sensitivity analysis of a derived quantity. This rou-
tine approximates the analytic sensitivity equations by finite differencing the derived
quantity Q(v, v′, p, t) (p ∈ IRnp , v ∈ IRnv and Q ∈ IRnq ), using

dQ(v, v′, p, t)

dpi
=
∂Q

∂v

dv

dpi
+
∂Q

∂v′
dv′

dpi
+
∂Q

∂pi
.

Expanding Q(v, v′, p, t) in a Taylor’s series about v gives

Q(v + δisi, v
′ + δis

′

i, p+ δiei) = Q(t, v, v′, p) + δi
∂Q

∂v
si + δi

∂Q

∂pi
+ δi

∂Q

∂v′
s′i +O(δ2i ),

so that

dQ(v, v′, p, t)

dpi
≈

1

δi
(Q(v + δisi, v

′ + δis
′

i, p+ δiei, t) −Q(v, v′, p, t)) .

This is one of many possible finite difference schemes that can be used. In the code,
central differencing is also an option. The routine SENSD can be called after a suc-
cessful return from a call to DASSLSO or DASPKSO and must be provided with a
function (DRVQ) which defines the derived quantity Q.

5. Formulation of a PDE test problem. In order to test DASOPT on a real-
istic model problem, we formulated a boundary control heating problem in two spatial
dimensions. This model problem is described by a nonlinear parabolic PDE. It is a
two-dimensional generalization of the model problem described in [22]. A rectangu-
lar domain in space is heated by controlling the temperature on its boundaries. It
is desired that the transient temperature in a specified interior subdomain follow a
prescribed temperature-time trajectory as closely as possible. The domain Ω is given
by

Ω = {(x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax},

and the control boundaries are given by

∂Ω1 = {(x, y) | y = 0}, and ∂Ω2 = {(x, y) | x = 0}.

The temperature distribution in Ω, as a function of time, is controlled by the energy
input across the boundaries ∂Ω1 and ∂Ω2, as discussed below. The other two bound-
aries (x = xmax and y = ymax) are assumed to be insulated, so that no energy flows
into or out of Ω along the normals to these boundaries. The temperature must be
controlled in the subdomain

Ωc = {(x, y) | xc ≤ x ≤ xmax, yc ≤ y ≤ ymax}.

This is illustrated in Fig. 5.1.
The control problem is to be solved for the time interval t ∈ [0, tmax]. The

temperature T = T (x, y, t) is then determined by the nonlinear parabolic PDE given
below, for (x, y, t) ∈ Ω × [0, tmax].

The temperature T is controlled by heat sources located on the boundaries ∂Ω1

and ∂Ω2. These heat sources are represented by control functions u1(x, t) on ∂Ω1,
and u2(y, t) on ∂Ω2. The control functions are to be determined. The objective is to
control the temperature-time trajectory on the subdomain Ωc. A target trajectory
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∂
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Fig. 5.1. Two dimensional spatial domain for the parabolic control test problem.

τ(t), t ∈ [0, tmax], is specified. The actual temperature in Ωc should approximate τ(t)
as closely as possible.

We measure the difference between T (x, y, t) and τ(t) on Ωc by the function

φ(u) =

∫ tmax

0

∫ ymax

yc

∫ xmax

xc

w(x, y, t)[T (x, y, t) − τ(t)]2 dx dy dt, (5.1)

where w(x, y, t) ≥ 0 is a specified weighting function. The control functions u1 and
u2 are determined so as to

minimize
u

φ(u), (5.2)

subject to T (x, y, t) satisfying the PDE and other constraints.
The temperature T (x, y, t) must satisfy the following PDE, boundary conditions,

and bounds

α(T )[Txx + Tyy] + S(T ) = Tt, (x, y, t) ∈ Ω × [0, tmax]

T (x, 0, t) − λTy = u1(x, t), x ∈ ∂Ω1

T (0, y, t) − λTx = u2(y, t), y ∈ ∂Ω2

Tx(xmax, y, t) = 0,

Ty(x, ymax, t) = 0,

0 ≤ T (x, y, t) ≤ Tmax.

(5.3)

The controls u1 and u2 are also required to satisfy the bounds

0 ≤ u1, u2 ≤ umax.

The initial temperature distribution T (x, y, 0) is a specified function. The coefficient
α(T ) = λ/c(T ), where λ is the heat conduction coefficient and c(T ) is the heat
capacity. The source term S(T ) represents internal heat generation, and is given by

S(T ) = Smaxe
−β1/(β2+T )

where Smax, β1, β2 ≥ 0 are specified nonnegative constants.
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The numerical solution has been obtained by constructing finite-difference grids in
space, and solving the resulting ODEs by the multiple-shooting method as described
below.

A uniform rectangular grid is constructed on the domain Ω

xi = i∆x, i = 0, 1, . . . ,m, ∆x = xmax/m

yj = j∆y, j = 0, 1, . . . , n, ∆y = ymax/n.

Then let

Tij(t) = T (xi, yj , t), u1i(t) = u1(xi, t), αij(t) = α(Tij(t)),

Sij(t) = S(Tij(t)), u2j(t) = u2(yj , t).

The PDE is then approximated in the interior of Ω by the following system of
(m− 1)(n− 1) ODEs

dTij

dt
=

αij

∆x2
[Ti−1,j − 2Tij + Ti+1,j ]

+
αij

∆y2
[Ti,j−1 − 2Tij + Ti,j+1] + Sij ,

(5.4)

for i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n− 1. Each of the 2(m+ n) boundary points also
satisfies a differential equation similar to (5.4). These will include values outside Ω,
which are eliminated by using the boundary conditions. Specifically, we use

Ti,n+1 = Ti,n−1, i = 0, 1, . . . ,m

Tm+1,j = Tm−1,j j = 0, 1, . . . , n,

to approximate the conditions Ty = 0 and Tx = 0.
The finite-difference approximations to the boundary conditions on ∂Ω1 and ∂Ω2

are given by

Ti0 −
λ

2∆y
(Ti1 − Ti,−1) = u1i, i = 0, 1, . . . ,m (5.5a)

T0j −
λ

2∆x
(T1j − T−1,j) = u2j , j = 0, 1, . . . , n (5.5b)

These relations are used to eliminate the values Ti,−1 and T−1,j from the differential
equations (as in (5.4)), for the functions Tij on ∂Ω1 and ∂Ω2. As a result, the control
functions u1i and u2j are explicitly included in these differential equations, giving
2(m + n) additional differential equations. Together with the (m − 1)(n − 1) ODEs
given by (5.4), this gives a total of (m + 1)(n + 1) ODEs for the same number of
unknown functions Tij(t). To simplify the notation in what follows, this system of
(m+ 1)(n+ 1) ODEs will be represented by

dv(t)

dt
= f(v, u(t), t), v(0) = v0, (5.6)

where v0 represents the initial value of v(t), and u = u(t) the control functions. The
vector function u(t) has elements u1i(t), i = 0, 1, . . . ,m, and u2j(t), j = 0, 1, . . . , n.
These ODEs correspond to those given by (1.1a).

As discussed earlier the multiple shooting method is applied by dividing the total
time interval [0, tmax] into N equal lengths ∆t, with N∆t = tmax. Also let tk = k∆t,
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k = 0, 1, . . . , N . The system of ODEs (5.6) on [0, tmax] is now considered as N
independent systems, each on its own time subinterval [tk, tk+1]. Let vk(t) represent
v(t) and uk(t) represent u(t) on [tk, tk+1], and v̄k be the initial value of vk(t). Then
vk(t) must satisfy

dvk

dt
= f(vk, uk(t), t), vk(tk) = v̄k, k = 0, 1, . . . , N − 1.

The value of v̄0 = v0, while the remaining initial values v̄k, k = 1, 2, . . . , N − 1,
are determined by continuity conditions (2.6) in the optimization problem. This is
illustrated in Fig. 5.2.

t

y

x

t

t 0

1

k

k+1t

t = t
 N max

T  =  0

T  =  0

y

x

y

x

max

max

Ω
Ω

Ω

∂

∂ 1

2

t

=  0

v

v
u

k+1

k

k

Fig. 5.2. Space-time domain for test problem showing the shooting intervals.

For each subinterval, the control vector uk(t) is approximated as in (2.3), with
the parameters ūk being determined by the optimization. Bounds on the uk(t) at
t = tk (and any additional points) give linear inequalities on the ūkl. Since uk(t) is
given in terms of the control parameters ūk, it is clear that vk(tk+1) is a function of
v̄k and ūk. This dependence has been explicitly given earlier in (2.5).

Equations (2.6) represent the N(m + 1)(n + 1) individual equality constraints
that must be satisfied. The optimization code SNOPT requires the Jacobian of these
constraints with respect to the parameters v̄k and ūk. These partial derivatives can
be obtained using the sensitivity capability of DASPKSO. The sensitivity of each
element of s(v̄k, ūk) with respect to each element of v̄k and ūk must be computed.
As s, v̄k ∈ IRnv and ūk ∈ IRnū , this requires that for each subinterval, nv(nv + nū)
sensitivity calculations are required. Thus a total of Nnv(nv + nū) such calculations
must be made to estimate the Jacobian. In order to reduce this computation to a
reasonable size, other approaches are needed, and they are being investigated.

The objective function is computed by adding the single ODE (1.2) to the system
(5.6). The gradient of the objective function is then obtained as part of the sensitivity
computation.

The state bounds on the Tij(tk) are imposed at each discrete time tk by the simple
bounds

0 ≤ v̄k ≤ Tmaxe, k = 1, 2, . . . , N. (5.7)

These will enforce the bounds at the points tk, but there may be some small violation
at intermediate time points.
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The optimization problem to be solved can now be stated as follows: minimize
the spatial discretization of (5.1) subject to the linear equality constraints (2.4), the
bound constraints (5.7), and the nonlinear equality constraints (2.6).

The nonlinear parabolic PDE boundary control problem described by (5.1), (5.2)
and (5.3) has been solved computationally using the discrete approximation described
above. Numerical results for ten cases, including cases with the nonlinear source term
and bounds on the interior temperatures, are summarized in the next section.

6. Computational results with DASOPT. The purpose of the computations
summarized in this section was to test the DASOPT code on the relatively simple 2D
nonlinear parabolic PDE problem described in the previous section. This test problem
has the property that the size of the optimization problem can be easily increased by
simply using a finer spatial grid. This readily permits the dependence of solution time
on problem size to be observed.

It was also important to determine if the combination of DASPKSO and SNOPT

would result in a convergent algorithm for this type of problem. As shown in the
examples below, convergence to an optimal control was typically obtained in no more
than 17 major iterations of SNOPT. While this parabolic PDE can be solved using
single shooting, we used multiple shooting in order to test the performance of the
combined system.

This type of problem also permitted testing the capability to impose inequality
constraints on the state variables, in this case bounds on the interior temperatures.
This ability is clearly shown by comparing the control and temperatures obtained
with and without bounds on the maximum permitted interior temperatures.

The computational results obtained with DASOPT, using the CRAY C90, on
the optimal control 2D nonlinear PDE will now be summarized. The rectangular
domain (see Fig. 5.1) is chosen as Ω = {(x, y) | 0 ≤ x ≤ 0.8, 0 ≤ y ≤ 1.6}. The
time integration interval is [0, 2] and the goal is to follow as closely as possible a
specified time-temperature trajectory τ(t) (as specified in all following figures) in the
subdomain Ωc = {(x, y) | 0.6 ≤ x ≤ 0.8, 1.2 ≤ y ≤ 1.6}. We want to determine
the boundary control so as to minimize the objective (5.1) with w(x, y, t) = 0 for
t ∈ [0, 0.2] and w(x, y, t) = 1 for t ∈ [0.2, 2]. On the boundaries ∂Ω1 and ∂Ω2 the
controls u1(x, t) and u2(y, t) are given by a control function u(t) as follows:

u1(x, t) =






u(t) 0 ≤ x ≤ 0.2;
(

1 −
x− 0.2

1.2

)
u(t) 0.2 ≤ x ≤ 0.8.

u2(x, t) =






u(t) 0 ≤ y ≤ 0.4;
(

1 −
y − 0.4

2.4

)
u(t) 0.4 ≤ y ≤ 1.6.

(6.1)

Note that for any fixed t, u is constant on the boundary ∂Ω1 for 0 ≤ x ≤ 0.2, and
then decreases linearly to u/2 at x = 0.8. The control u2 on ∂Ω2 is similar. We also
impose the initial condition u(0) = 0.

For the multiple shooting, the time integration interval is divided into ten shooting
intervals of equal length 0.2. We maintain the lower bound of zero on the temperature
at each shooting point. Each shooting interval is actually divided into two control
subintervals (explaining the presence of an additional index j) where the control
function u(t) is represented by a quadratic polynomial

ukj(t) = ūkj0 + ūkj1(t− tkj) + ūkj2(t− tkj)
2. (6.2)
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We enforce continuity in time at the extremities of each control subinterval among
all ukj(t) and their derivative u′kj(t). We also impose the following bounds on the
control parameters

|ūkj1| ≤ 5, |ūkj2| ≤ 7.

We maintain an upper bound on the maximal value of the control umax = 1.1 and,
except in one case, a lower bound of zero at the extremities and in the middle of each
control subinterval.

In all ten test cases presented here, the PDE parameters λ, c and α were assumed
to be constant, with the values λ = c = 1

2 , and α = 1. Therefore, the PDE is linear
when Smax = 0. The parameters in S(T ) were chosen as β1 = 0.2 and β2 = 0.05.
In addition to the linear case Smax = 0, the values of Smax = 0.5, 1.0, were used to
show the significant effect of the nonlinear heat source term. At t = 0, the initial
temperature Tij(0) = 0 was used for all cases.

The effect of the state variable bounds is shown by requiring that the temperatures
at every space-time grid-point satisfy Tij(tk) ≤ Tmax. This upper bound was imposed
in three of the ten cases. A lower bound of zero was also imposed for all ten cases,
but was only active in Case 9.

The computational results obtained for the ten cases are summarized in Table 6.1.
The time dependent optimal solution for each of the ten cases is presented in Figs. 6.1–
6.10. The figure number corresponds to the case number in Table 6.1, so that Fig. 6.x
shows results for Case x.

Table 6.1

Summary of test problem optimal solutions.

Case Grid Smax Tmax Initial φ Major Time Time
Size Bound Values (×105) Itns (Secs) /Itn

1 5× 5 0.0 None 0 1.525 17 176 10.4
2 5× 9 0.0 None 0 1.517 16 488 30.5
3 5× 17 0.0 None 0 1.515 16 1584 99.0
4 9× 17 0.0 None 0 1.536 11 3489 317.2
5 5× 9 0.5 None #2 1.836 16 432 27.0
6 5× 9 1.0 None #5 15.92 7 208 29.7
7 5× 9 0.0 0.7 0 5.754 9 285 31.7
8 5× 9 0.5 0.7 #7 2.490 7 224 32.0
9 5× 9 1.0 0.7 #5 4.277 6 204 34.0

10 5× 9 0.0 None 0 0.826 17 545 32.1

In Table 6.1, the grid size describes the discrete grid on the spatial domain Ω.
For example, the 5 × 5 grid gives ∆x = 0.2, ∆y = 0.4, and defines Tij , for i, j = 0, 1,
2, 3, 4. Thus for an m× n grid, there are mn spatial grid points, including boundary
grid points.

The column “Smax” shows the degree of nonlinearity of the problem, where
Smax = 0 implies that the problem is linear. The column “Tmax Bound” shows when
a state upper bound is imposed. The column “Initial Values” gives the initial esti-
mates used for the Tij(tk) and the ūkj control coefficients. The value zero assumes no
knowledge of the optimal solution and gives the most difficult optimization problem.
Much better estimates can be obtained from the optimal solution with a coarser grid,
or a lower value of Smax. A nonzero entry indicates that the optimal Tij(tk) and ūkj
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from a previous case were used as initial estimates. The value of the entry gives the
particular case used.

The SNOPT default parameter settings were used throughout, except for the
optimality tolerance, which was set to 10−5. Roughly speaking, these settings give an
approximate minimizer with a reduced-gradient norm less than 10−5 and a maximum
nonlinear constraint violation less than 10−6 (for further details of the termination
criteria, see [25]). The default maximum number of limited memory updates stored
(the number “ℓ” of §3) is 20.

The last four columns in Table 6.1 give the results of the computation. The
minimum value of the objective function φ, scaled by 105, is shown for each case. The
number of major iterations required by SNOPT, the CRAY C90 cpu time (in seconds),
and the average time per iteration are given in the last three columns.

Considerably more information on the optimal solution to each case is presented in
Figs. 6.1–6.10. These ten figures show the optimal control and selected temperatures
as a function of time. The dotted line shows the control u(t). The solid line (identical
for all cases) shows the desired temperature-time trajectory τ(t) on the subdomain Ωc.
The dashed line shows the temperature T00(t) at the boundary grid point x = y = 0.
Finally, the dash-dot lines show the temperatures at each of the grid points in the
subdomain Ωc.

We now comment briefly on these computational results. First, we observe that
DASOPT determines the optimal control (to within the specified tolerances) with very
few SQP major iterations. As shown in Table 6.1, no more than 17 iterations were
needed for any one of the ten cases. A grand total of 132 objective and constraint
evaluations and 122 major iterations were required to solve the ten cases. It follows
that, on average, SNOPT required slightly more than one function evaluation per
iteration. This favorable performance is due primarily to the use of the SQP method
in SNOPT. The ten figures show clearly how the optimal control is able to minimize the
difference between the solid line τ(t) and the temperature in Ωc, as given by the dash-
dot lines. This difference is measured by the objective function φ(u). Of course, it is
not possible for any boundary temperature control to obtain an interior temperature
in Ωc that exactly follows the desired temperature τ(t). This is because of the time
delay and smoothing effect of the heat equation. Therefore, the actual optimal value
of φ is positive in all cases considered and depends primarily on the extent to which
the problem is constrained, and the degree of nonlinearity. This explains why the
temperature profiles in Ωc shown in Figs. 6.1–6.10 do not match exactly. However,
we have observed a good agreement in the optimal values of φ found by DASOPT

when using different grid-sizes, see, e.g., the optimal values of φ obtained in Cases
1–4. The value of φ obtained in each of the ten cases is at least a local minimum,
as determined by the termination test in SNOPT. The smallest objective (Case 10,
with φ = 0.826 × 10−5) corresponds to the least constrained linear problem. For
comparison, the value of φ with u(t) = 0 and Tij(t) = 0, is φ = 1674.7× 10−5, so that
the objective function for Case 10 is reduced by a factor of approximately 2000 by
the optimization. The largest value (Case 6), is highly nonlinear and is constrained
by the requirement that u(t) ≥ 0. This constraint is removed for Case 9, and it is
seen that the value of φ is reduced by more than a factor of three. The smallest value
of φ is obtained (Case 10) because the control is piecewise linear, with a derivative
discontinuity permitted at the ends of each time subinterval. All other cases satisfy the
continuity constraints (2.4) on both the control function and its derivative. Another
illustration of the effect of additional state constraints is given by comparing Cases 2
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and 7. The only difference between them is that the value Tmax = 0.7 is enforced in
Case 7.

The significant effect of the nonlinear heat generation term is shown when Smax is
0.5 and 1.0. Matching the desired trajectory is more difficult with increased interior
heat generation. This is illustrated most clearly in Fig. 6.6, where the constraint
u(t) ≥ 0 substantially reduces the ability to remove internally generated heat for
t ≥ 1.2.

Finally, we discuss the effect of the grid size on the accuracy of the solution
to the PDE, and the computation time required. The accuracy of the approximate
solution to the PDE increases as the spatial mesh size (∆x,∆y) decreases, that is, as
the number mn of spatial grid points increases. This increased accuracy is, however,
obtained at the cost of a substantial increase in computing time. The primary cause
of this increase is the sensitivity calculation needed to obtain the gradient of the
objective function and the Jacobian of the nonlinear constraints (2.6) that enforce
the matching conditions. In the implementation used for these tests, the time needed
for the sensitivity calculation is proportional to (mn)2. Therefore it increases by a
factor of approximately 36 in going from a 5×5 grid (Case 1) to a 9×17 grid (Case 4).
The actual increase in time per iteration is approximately a factor of 31, so that the
sensitivity calculation requires over 90% of the total computing time.

Computing the time-temperature curves in Ωc shown in Figs. 6.1–6.4, we observe
that they are essentially unchanged as the grid size decreases. Furthermore, the
optimal control u(t) for each of these cases is almost identical. This indicates that
the coarse grid (Fig. 6.1) gives a good approximation to the optimal control and
temperatures for the more accurate finer grid (Fig. 6.4). This permits the use of a
multigrid method, where the optimal solution of a coarse grid is used as the initial
values for a finer grid solution. This was tested on these cases, with the result that
only three or four major iterations were needed to get to the optimal solution with
the finer grid. For more difficult problems there will be larger changes in the optimal
solution for the finer grid, but this multigrid technique should still be very useful in
reducing the total computing effort.

Closing remarks. The codes DASSLSO, DASPKSO and SENSD, as well as the
driver routines for the test problems in [24], are available via anonymous FTP from
ftp.cs.umn.edu, in the /users/tmaly directory.
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Fig. 6.1. Optimal solution computed by DASOPT on a 5 × 5 grid. Solid line: τ(t). Dotted

line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.2. Optimal solution computed by DASOPT on a 5 × 9 grid. Solid line: τ(t). Dotted

line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.3. Optimal solution computed by DASOPT on a 5 × 17 grid. Solid line: τ(t). Dotted

line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.4. Optimal solution computed by DASOPT on a 9 × 17 grid. Solid line: τ(t). Dotted

line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.5. Optimal solution computed by DASOPT on a 5× 9 grid with Smax = 0.5. Solid line:

τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.6. Optimal solution computed by DASOPT on a 5 × 9 grid with Smax = 1. Solid line:

τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.7. Optimal solution computed by DASOPT on a 5×9 grid with Tij(t) ≤ 0.7. Solid line:

τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.8. Optimal solution computed by DASOPT on a 5 × 9 grid with Tij(t) ≤ 0.7 and

Smax = 0.5. Solid line: τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t) in Ωc.
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Fig. 6.9. Optimal solution computed by DASOPT on a 5×9 grid with Tij(t) ≤ 0.7, Smax = 1,
and no lower bound on u(t). Solid line: τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot

lines: Tij(t) in Ωc.



NUMERICAL OPTIMAL CONTROL 25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

time

te
m

pe
ra

tu
re

objective function = 0.00000826

Fig. 6.10. Optimal solution computed by DASOPT on a 5 × 9 grid with piecewise continuous

linear control u(t). Solid line: τ(t). Dotted line: u(t). Dashed line: T00(t). Dash-dot lines: Tij(t)
in Ωc.


